51
|
Cavallari I, Scattolin G, Silic-Benussi M, Raimondi V, D'Agostino DM, Ciminale V. Mitochondrial Proteins Coded by Human Tumor Viruses. Front Microbiol 2018; 9:81. [PMID: 29467726 PMCID: PMC5808139 DOI: 10.3389/fmicb.2018.00081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/12/2018] [Indexed: 12/26/2022] Open
Abstract
Viruses must exploit the cellular biosynthetic machinery and evade cellular defense systems to complete their life cycles. Due to their crucial roles in cellular bioenergetics, apoptosis, innate immunity and redox balance, mitochondria are important functional targets of many viruses, including tumor viruses. The present review describes the interactions between mitochondria and proteins coded by the human tumor viruses human T-cell leukemia virus type 1, Epstein-Barr virus, Kaposi's sarcoma-associated herpesvirus, human hepatitis viruses B and C, and human papillomavirus, and highlights how these interactions contribute to viral replication, persistence and transformation.
Collapse
Affiliation(s)
| | - Gloria Scattolin
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | | | | | | | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV-IRRCS, Padova, Italy.,Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| |
Collapse
|
52
|
The Secrets of T Cell Polarization. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
53
|
Jones N, Cronin JG, Dolton G, Panetti S, Schauenburg AJ, Galloway SAE, Sewell AK, Cole DK, Thornton CA, Francis NJ. Metabolic Adaptation of Human CD4 + and CD8 + T-Cells to T-Cell Receptor-Mediated Stimulation. Front Immunol 2017; 8:1516. [PMID: 29170670 PMCID: PMC5684100 DOI: 10.3389/fimmu.2017.01516] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/26/2017] [Indexed: 02/02/2023] Open
Abstract
Linking immunometabolic adaptation to T-cell function provides insight for the development of new therapeutic approaches in multiple disease settings. T-cell activation and downstream effector functions of CD4+ and CD8+ T-cells are controlled by the strength of interaction between the T-cell receptor (TCR) and peptides presented by human leukocyte antigens (pHLA). The role of TCR–pHLA interactions in modulating T-cell metabolism is unknown. Here, for the first time, we explore the relative contributions of the main metabolic pathways to functional responses in human CD4+ and CD8+ T-cells. Increased expression of hexokinase II accompanied by higher basal glycolysis is demonstrated in CD4+ T-cells; cytokine production in CD8+ T-cells is more reliant on oxidative phosphorylation. Using antigen-specific CD4+ and CD8+ T-cell clones and altered peptide ligands, we demonstrate that binding affinity tunes the underlying metabolic shift. Overall, this study provides important new insight into how metabolic pathways are controlled during antigen-specific activation of human T-cells.
Collapse
Affiliation(s)
- Nicholas Jones
- Institute of Life Science, Medical School, Swansea University, Swansea, United Kingdom
| | - James G Cronin
- Institute of Life Science, Medical School, Swansea University, Swansea, United Kingdom
| | - Garry Dolton
- Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Silvia Panetti
- Institute of Life Science, Medical School, Swansea University, Swansea, United Kingdom
| | | | | | - Andrew K Sewell
- Cardiff University School of Medicine, Cardiff, United Kingdom
| | - David K Cole
- Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Catherine A Thornton
- Institute of Life Science, Medical School, Swansea University, Swansea, United Kingdom
| | - Nigel J Francis
- Institute of Life Science, Medical School, Swansea University, Swansea, United Kingdom
| |
Collapse
|
54
|
Wang J, Li Z, Gao L, Qi Y, Zhu H, Qin X. The regulation effect of AMPK in immune related diseases. SCIENCE CHINA-LIFE SCIENCES 2017; 61:523-533. [DOI: 10.1007/s11427-017-9169-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022]
|
55
|
High-density lipoprotein immunomodulates the functional activities of macrophage and cytokines produced during ex vivo macrophage-CD4 + T cell crosstalk at the recent-onset human type 1 diabetes. Cytokine 2017; 96:59-70. [DOI: 10.1016/j.cyto.2017.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/08/2017] [Accepted: 03/01/2017] [Indexed: 12/31/2022]
|
56
|
Lee AM, Colin-York H, Fritzsche M. CalQuo 2 : Automated Fourier-space, population-level quantification of global intracellular calcium responses. Sci Rep 2017; 7:5416. [PMID: 28710416 PMCID: PMC5511169 DOI: 10.1038/s41598-017-05322-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/09/2017] [Indexed: 02/06/2023] Open
Abstract
Intracellular calcium acts as a secondary messenger in a wide variety of crucial biological signaling processes. Advances in fluorescence microscopy and calcium sensitive dyes has led to the routine quantification of calcium responses in non-excitable cells. However, the automatization of global intracellular calcium analysis at the single-cell level within a large population simultaneously remains challenging. One software, CalQuo (Calcium Quantification), offers some automatic features in calcium analysis. Here, we present an advanced version of the software package: CalQuo 2 . CalQuo 2 analyzes the calcium response in the Fourier-domain, allowing the number of user-defined filtering parameters to be reduced to one and a greater diversity of calcium responses to be recognized, compared to CalQuo that directly interprets the calcium intensity signal. CalQuo 2 differentiates cells that release a single calcium response and those that release oscillatory calcium fluxes. We have demonstrated the use of CalQuo 2 by measuring the calcium response in genetically modified Jurkat T-cells under varying ligand conditions, in which we show that peptide:MHCs and anti-CD3 antibodies trigger a fraction of T cells to release oscillatory calcium fluxes that increase with increasing koff rates. These results show that CalQuo 2 is a robust and user-friendly tool for characterizing global, single cell calcium responses.
Collapse
Affiliation(s)
- Angela M Lee
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
| | - Huw Colin-York
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
| | - Marco Fritzsche
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom.
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7FY, United Kingdom.
| |
Collapse
|
57
|
Dose-Dependent Responses of I3C and DIM on T-Cell Activation in the Human T Lymphocyte Jurkat Cell Line. Int J Mol Sci 2017; 18:ijms18071409. [PMID: 28671563 PMCID: PMC5535901 DOI: 10.3390/ijms18071409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/15/2022] Open
Abstract
Indole-3-carbinol (I3C) and its dimer diindolylmethane (DIM) are bioactive metabolites of a glucosinolate, glucobrassicin, found in cruciferous vegetables. Both I3C and DIM have been reported to possess pro-apoptotic, anti-proliferative and anti-carcinogenic properties via modulation of immune pathways. However, results from these studies remain inconclusive since they lack thorough evaluation of these bioactives’ physiological versus pharmacological effects. In the present study, we investigated I3C and DIM’s dose-dependent effects on cytokines production in human T lymphocytes Jurkat cell line (Clone E6-1). The results showed that I3C and DIM pretreatment, at higher concentrations of 50 and 10 μM, respectively, significantly increased PMA/ionomycin-induced interleukin-2 (IL-2), interleukin-8 (IL-8) and tumor necrosis factor-α (TNF-α) production, measured by real time polymerase chain reaction (RT-PCR) and enzyme linked immunosorbent assay (ELISA). As a plausible mechanism underlying such pronounced cytokine release, we found robust increase in downstream nuclear factor κB (NF-κB) and nuclear factor of activated T-cells 1 (NFAT1) signaling with I3C pretreatment, whereas DIM pretreatment only significantly induced NF-κB activation, but not NFAT1. We hypothesize that I3C/DIM pretreatment primes the T cells to become hyperresponsive upon PMA/ionomycin stimulation which in turn differentially induces two major downstream Ca2+-dependent inflammatory pathways, NF-κB and NFAT1. Our data show novel insights into the mechanisms underlying induction of pro-inflammatory cytokine release by pharmacological concentrations of I3C and DIM, an effect negligible under physiological conditions.
Collapse
|
58
|
Kim TD, Jung HR, Seo SH, Oh SC, Ban Y, Tan X, Min Kim J, Hyun Lee S, Koh DS, Jung H, Park YJ, Ran Yoon S, Doh J, Ha SJ, Choi I, Greenberg PD. MicroRNA-150 modulates intracellular Ca 2+ levels in naïve CD8 + T cells by targeting TMEM20. Sci Rep 2017; 7:2623. [PMID: 28572627 PMCID: PMC5453935 DOI: 10.1038/s41598-017-02697-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/19/2017] [Indexed: 11/09/2022] Open
Abstract
Regulation of intracellular Ca2+ signaling is a major determinant of CD8+ T cell responsiveness, but the mechanisms underlying this regulation of Ca2+ levels, especially in naïve CD8+ T cells, are not fully defined. Here, we showed that microRNA-150 (miR-150) controls intracellular Ca2+ levels in naïve CD8+ T cells required for activation by suppressing TMEM20, a negative regulator of Ca2+ extrusion. miR-150 deficiency increased TMEM20 expression, which resulted in increased intracellular Ca2+ levels in naïve CD8+ T cells. The subsequent increase in Ca2+ levels induced expression of anergy-inducing genes, such as Cbl-b, Egr2, and p27, through activation of NFAT1, as well as reduced cell proliferation, cytokine production, and the antitumor activity of CD8+ T cells upon antigenic stimulation. The anergy-promoting molecular milieu and function induced by miR-150 deficiency were rescued by reinstatement of miR-150. Additionally, knockdown of TMEM20 in miR-150-deficient naïve CD8+ T cells reduced intracellular Ca2+ levels. Our findings revealed that miR-150 play essential roles in controlling intracellular Ca2+ level and activation in naïve CD8+ T cells, which suggest a mechanism to overcome anergy induction by the regulation of intracellular Ca2+ levels.
Collapse
Affiliation(s)
- Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon, 34141, Republic of Korea. .,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong, Daejeon, 34113, Republic of Korea.
| | - Hong-Ryul Jung
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon, 34141, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering (I-Bio), POSTECH, Pohang, 37673, Republic of Korea
| | - Sang-Hwan Seo
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon, 34141, Republic of Korea
| | - Se-Chan Oh
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong, Daejeon, 34113, Republic of Korea
| | - Youngho Ban
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Xiaoxia Tan
- Departments of Immunology and Medicine, University of Washington School of Medicine and Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jung Min Kim
- NAR Center, Inc., Daejeon Oriental Hospital of Daejeon University, 22-5 Daeheung-dong, Jung-gu, Daejeon, 34929, Republic of Korea
| | - Sang Hyun Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon, 34141, Republic of Korea
| | - Duk-Su Koh
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Haiyoung Jung
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong, Daejeon, 34113, Republic of Korea
| | - Young-Jun Park
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong, Daejeon, 34113, Republic of Korea
| | - Suk Ran Yoon
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong, Daejeon, 34113, Republic of Korea
| | - Junsang Doh
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), POSTECH, Pohang, 37673, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Inpyo Choi
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon, 34141, Republic of Korea. .,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong, Daejeon, 34113, Republic of Korea.
| | - Philip D Greenberg
- Departments of Immunology and Medicine, University of Washington School of Medicine and Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
| |
Collapse
|
59
|
Reactive oxygen species are required for driving efficient and sustained aerobic glycolysis during CD4+ T cell activation. PLoS One 2017; 12:e0175549. [PMID: 28426686 PMCID: PMC5398529 DOI: 10.1371/journal.pone.0175549] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/28/2017] [Indexed: 01/08/2023] Open
Abstract
The immune system is necessary for protecting against various pathogens. However, under certain circumstances, self-reactive immune cells can drive autoimmunity, like that exhibited in type 1 diabetes (T1D). CD4+ T cells are major contributors to the immunopathology in T1D, and in order to drive optimal T cell activation, third signal reactive oxygen species (ROS) must be present. However, the role ROS play in mediating this process remains to be further understood. Recently, cellular metabolic programs have been shown to dictate the function and fate of immune cells, including CD4+ T cells. During activation, CD4+ T cells must transition metabolically from oxidative phosphorylation to aerobic glycolysis to support proliferation and effector function. As ROS are capable of modulating cellular metabolism in other models, we sought to understand if blocking ROS also regulates CD4+ T cell activation and effector function by modulating T cell metabolism. To do so, we utilized an ROS scavenging and potent antioxidant manganese metalloporphyrin (MnP). Our results demonstrate that redox modulation during activation regulates the mTOR/AMPK axis by maintaining AMPK activation, resulting in diminished mTOR activation and reduced transition to aerobic glycolysis in diabetogenic splenocytes. These results correlated with decreased Myc and Glut1 upregulation, reduced glucose uptake, and diminished lactate production. In an adoptive transfer model of T1D, animals treated with MnP demonstrated delayed diabetes progression, concurrent with reduced CD4+ T cell activation. Our results demonstrate that ROS are required for driving and sustaining T cell activation-induced metabolic reprogramming, and further support ROS as a target to minimize aberrant immune responses in autoimmunity.
Collapse
|
60
|
Hydroxyhydroquinone, a by-product of coffee bean roasting, increases intracellular Ca 2+ concentration in rat thymic lymphocytes. Food Chem Toxicol 2017; 102:39-45. [DOI: 10.1016/j.fct.2017.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/07/2017] [Accepted: 01/27/2017] [Indexed: 12/23/2022]
|
61
|
Cancer-immune therapy: restoration of immune response in cancer by immune cell modulation. THE NUCLEUS 2017. [DOI: 10.1007/s13237-017-0194-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
62
|
Ma JM, Wang R, Xu JY, Fan Y. Intracellular Ca2+ and related proteins in patients with oral lichen planus. Immunol Res 2016; 64:531-9. [PMID: 26503431 DOI: 10.1007/s12026-015-8728-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oral lichen planus (OLP) is suggested to be a T cell-mediated chronic inflammatory oral mucosal disease. Gene expressed in the oligodendrocyte lineage-myelin basic proteins (Golli-MBP) and stromal interaction molecule 1 (STIM1) are important in the activation and function of T lymphocytes. This study aimed to analyze and compare the expression of Golli-MBP and STIM1 between OLP patients and healthy controls and to analyze the level of intracellular Ca(2+), which is involved in lymphocyte activation. The Ca(2+) fluorescent probe, Fluo-3/AM, was used to test the level of intracellular Ca(2+) in patients with OLP and healthy controls peripheral blood lymphocytes. Golli-MBP and STIM1 mRNA and protein levels were analyzed using quantitative real-time PCR and Western blot, respectively. Following lymphocyte activation, the intracellular Ca(2+) in OLP patients was markedly lower than that in the control group (P < 0.001). In OLP patients, the expression of Golli-MBP mRNA and protein was significantly upregulated compared to those of the control group (P < 0.001). Similarly, OLP patients showed markedly upregulated levels of STIM1 mRNA expression (P < 0.01) and protein compared to healthy controls. The intracellular Ca(2+) of OLP patients was markedly lower than that of healthy controls. This evidence may indicate that Ca(2+) signaling pathways in OLP patients are abnormal. The overexpression of Golli-MBP and STIM1 may play a role in the pathogenesis of OLP.
Collapse
Affiliation(s)
- Jiang-Min Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136#, Hanzhong Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Department of Stomatology, Kunshan Hospital of Traditional Chinese Medicine, 189#, Chaoyang Road, Kunshan, 215300, Jiangsu, People's Republic of China
| | - Ran Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136#, Hanzhong Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Department of Stomatology, Nanjing Red Cross Hospital, 242#, Baixia Road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Juan-Yong Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136#, Hanzhong Road, Nanjing, 210029, Jiangsu, People's Republic of China.,Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, 136#, Hanzhong Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Yuan Fan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136#, Hanzhong Road, Nanjing, 210029, Jiangsu, People's Republic of China. .,Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, 136#, Hanzhong Road, Nanjing, 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
63
|
Sharma D, Tiwari BK, Mehto S, Antony C, Kak G, Singh Y, Natarajan K. Suppression of Protective Responses upon Activation of L-Type Voltage Gated Calcium Channel in Macrophages during Mycobacterium bovis BCG Infection. PLoS One 2016; 11:e0163845. [PMID: 27723836 PMCID: PMC5056721 DOI: 10.1371/journal.pone.0163845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/15/2016] [Indexed: 12/22/2022] Open
Abstract
The prevalence of Mycobacterium tuberculosis (M. tb) strains eliciting drug resistance has necessitated the need for understanding the complexities of host pathogen interactions. The regulation of calcium homeostasis by Voltage Gated Calcium Channel (VGCCs) upon M. tb infection has recently assumed importance in this area. We previously showed a suppressor role of VGCC during M. tb infections and recently reported the mechanisms of its regulation by M. tb. Here in this report, we further characterize the role of VGCC in mediating defence responses of macrophages during mycobacterial infection. We report that activation of VGCC during infection synergistically downmodulates the generation of oxidative burst (ROS) by macrophages. This attenuation of ROS is regulated in a manner which is dependent on Toll like Receptor (TLR) and also on the route of calcium influx, Protein Kinase C (PKC) and by Mitogen Activation Protein Kinase (MAPK) pathways. VGCC activation during infection increases cell survival and downmodulates autophagy. Concomitantly, pro-inflammatory responses such as IL-12 and IFN-γ secretion and the levels of their receptors on cell surface are inhibited. Finally, the ability of phagosomes to fuse with lysosomes in M. bovis BCG and M. tb H37Rv infected macrophages is also compromised when VGCC activation occurs during infection. The results point towards a well-orchestrated strategy adopted by mycobacteria to supress protective responses mounted by the host. This begins with the increase in the surface levels of VGCCs by mycobacteria and their antigens by well-controlled and regulated mechanisms. Subsequent activation of the upregulated VGCC following tweaking of calcium levels by molecular sensors in turn mediates suppressor responses and prepare the macrophages for long term persistent infection.
Collapse
Affiliation(s)
- Deepika Sharma
- Infectious Disease Immunology Lab, Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Brijendra Kumar Tiwari
- Infectious Disease Immunology Lab, Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Subhash Mehto
- Infectious Disease Immunology Lab, Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Cecil Antony
- Infectious Disease Immunology Lab, Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Gunjan Kak
- Infectious Disease Immunology Lab, Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, India
| | - Krishnamurthy Natarajan
- Infectious Disease Immunology Lab, Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| |
Collapse
|
64
|
Assas MB, Wakid MH, Zakai HA, Miyan JA, Pennock JL. Transient receptor potential vanilloid 1 expression and function in splenic dendritic cells: a potential role in immune homeostasis. Immunology 2016; 147:292-304. [PMID: 26643862 DOI: 10.1111/imm.12562] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/26/2015] [Accepted: 11/16/2015] [Indexed: 01/08/2023] Open
Abstract
Neuro-immune interactions, particularly those driven by neuropeptides, are increasingly implicated in immune responses. For instance, triggering calcium-channel transient receptor potential vanilloid 1 (TRPV1) on sensory nerves induces the release of calcitonin-gene-related peptide (CGRP), a neuropeptide known to moderate dendritic cell activation and T helper cell type 1 polarization. Despite observations that CGRP is not confined to the nervous system, few studies have addressed the possibility that immune cells can respond to well-documented 'neural' ligands independently of peripheral nerves. Here we have identified functionally relevant TRPV1 on primary antigen-presenting cells of the spleen and have demonstrated both calcium influx and CGRP release in three separate strains of mice using natural agonists. Furthermore, we have shown down-regulation of activation markers CD80/86 on dendritic cells, and up-regulation of interleukin-6 and interleukin-10 in response to CGRP treatment. We suggest that dendritic cell responses to neural ligands can amplify neuropeptide release, but more importantly that variability in CGRP release across individuals may have important implications for immune cell homeostasis.
Collapse
Affiliation(s)
- Mushref Bakri Assas
- Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Visiting Scientist, Faculty of Medicine and Human Sciences, University of Manchester, Manchester, UK
| | - Majed H Wakid
- Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haytham A Zakai
- Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jaleel A Miyan
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Joanne L Pennock
- Institute of Inflammation & Repair, Faculty of Medicine and Human Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
65
|
Thaxton JE, Li Z. To affinity and beyond: harnessing the T cell receptor for cancer immunotherapy. Hum Vaccin Immunother 2015; 10:3313-21. [PMID: 25483644 DOI: 10.4161/21645515.2014.973314] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
T cell adoptive therapies for immune-mediated regression of cancers have attracted a great deal of recent attention. Clinical results are glamorous, yet much remains to be uncovered behind the basic science that allows us to engineer T cells and T cell receptors (TCRs) for clinical use. We discuss the development of TCRs for therapeutic use in the context of thymic selection toward central tolerance and we review therapies based on tumor infiltrating lymphocytes (TILs), endogenous antigen specific TCRs, and engineered TCRs. Further we discuss the development of low and high affinity TCRs and the extent to which each challenges central tolerance. Current results suggest that adaptation of TCR engineering of moderate affinity TCRs coupled with co-regulatory and stimulatory molecules may be the safest and most efficacious road for TCR development aimed at tumor abolition.
Collapse
Key Words
- AIRE, autoimmune regulator
- CDR, complementarity determining region
- CTA, cancer testis antigen
- MHC, major histocompatibility complex
- SLEC, short-lived effector cell
- T cell receptor
- TAA, tumor-associated antigen
- TCR, T cell receptor
- TIL, tumor infiltrating lymphocyte
- TSA, tissue-specific self-antigen
- adoptive cell therapy
- affinity
- cancer
- co-receptor
- mTEC, medullary thymic epithelial cell
- tumor
Collapse
Affiliation(s)
- Jessica E Thaxton
- a Department of Microbiology and Immunology; Hollings Cancer Center ; Medical University of South Carolina ; Charleston , SC USA
| | | |
Collapse
|
66
|
Antonioli L, Colucci R, Pellegrini C, Giustarini G, Sacco D, Tirotta E, Caputi V, Marsilio I, Giron MC, Németh ZH, Blandizzi C, Fornai M. The AMPK enzyme-complex: from the regulation of cellular energy homeostasis to a possible new molecular target in the management of chronic inflammatory disorders. Expert Opin Ther Targets 2015; 20:179-91. [DOI: 10.1517/14728222.2016.1086752] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
67
|
Langston PK, Yang M, Bierbach U, Parsonage D, Poole LB, Price MJ, Grayson JM. Au-ACRAMTU-PEt3 Alters Redox Balance To Inhibit T Cell Proliferation and Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:1984-94. [PMID: 26209624 PMCID: PMC4854305 DOI: 10.4049/jimmunol.1400391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/18/2015] [Indexed: 12/24/2022]
Abstract
Although T cells play a critical role in protection from viruses, bacteria, and tumors, they also cause autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis. Unwanted T cell responses during organ transplant, graft-versus-host disease, and allergies are also major clinical problems. Although drugs are available to suppress unwanted immune responses, they have limited efficacy with serious side effects. Thus, new therapeutics limiting T cell activation, proliferation, and function can make an immediate clinical impact. To identify new suppressors of lymphocyte activation, proliferation, and function, we examined the immunosuppressive activity of gold(I) analogs of platinum-acridine antitumor agents. We found that the gold complex Au-ACRAMTU-PEt3 is a potent suppressor of murine and human T cell activation. Preincubation with Au-ACRAMTU-PEt3 suppresses the proliferation of CD4(+) and CD8(+) T cells at a similar concentration as pharmaceutical grade cyclosporine A. Au-ACRAMTU-PEt3 pretreatment decreases the production of IFN-γ, TNF-α, IL-2, and IL-17 by human and murine CD4(+) and CD8(+) T cells. When mice were treated with Au-ACRAMTU-PEt3 during viral infection, the expansion of virus-specific CD8(+) T cells was decreased 10-fold and viral load was elevated. Taken together, these results demonstrate that Au-ACRAMTU-PEt3 has potent immunosuppressive activity that could be used to suppress immune responses during transplantation and autoimmunity.
Collapse
Affiliation(s)
- P Kent Langston
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Mu Yang
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109; and
| | - Ulrich Bierbach
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109; and
| | - Derek Parsonage
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Leslie B Poole
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Madeline J Price
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Jason M Grayson
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27101;
| |
Collapse
|
68
|
Chen T, Ren C, Li W, Jiang X, Xia J, Wong NK, Hu C. Calmodulin of the tropical sea cucumber: Gene structure, inducible expression and contribution to nitric oxide production and pathogen clearance during immune response. FISH & SHELLFISH IMMUNOLOGY 2015; 45:231-238. [PMID: 25913576 DOI: 10.1016/j.fsi.2015.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/12/2015] [Accepted: 04/14/2015] [Indexed: 06/04/2023]
Abstract
Calmodulin (CaM) is an essential second messenger protein that transduces calcium signals by binding calcium ions (Ca(2+)) and modulating its interactions with various target proteins. In contrast to vertebrates, where CaM is well established as a cofactor for Ca(2+)-dependent physiological and cellular functions including host defense, there is a paucity of understanding on CaM in invertebrates (such as echinoderms) in response to immune challenge or microbial infections. In this study, we obtained and described the gene sequence of CaM from the tropical sea cucumber Stichopus monotuberculatus, a promising yet poorly characterized aquacultural species. mRNA expression of StmCaM could be detected in the intestine and coelomic fluid after Vibrio alginolyticus injection. Transcriptional and translational expression of StmCaM was inducible in nature, as evidenced by the expression patterns in primary coelomocytes following Vibrio challenge. This response could be mimicked by the Vibrio cells membrane components or lipopolysaccharides (LPS), and blocked by co-treatment of the LPS-neutralizing agent polymyxin B (PMB). Furthermore, inhibition of CaM activity by incubation with its inhibitor trifluoroperazine dihydrochloride (TFP) blunted the production of Vibrio-induced nitric oxide (NO) and augmented the survival of invading Vibrio in coelomocytes. Collectively, our study here supplied the first evidence for echinoderm CaM participation in innate immunity, and provided a functional link between CaM expression and antibacterial NO production in sea cucumber.
Collapse
Affiliation(s)
- Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Wuhu Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Jianjun Xia
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Nai-Kei Wong
- Department of Chemistry, University of Hong Kong, Hong Kong, China.
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
69
|
Kern B, Jain U, Utsch C, Otto A, Busch B, Jiménez-Soto L, Becher D, Haas R. Characterization of Helicobacter pylori VacA-containing vacuoles (VCVs), VacA intracellular trafficking and interference with calcium signalling in T lymphocytes. Cell Microbiol 2015; 17:1811-32. [PMID: 26078003 DOI: 10.1111/cmi.12474] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 05/27/2015] [Accepted: 06/11/2015] [Indexed: 12/11/2022]
Abstract
The human pathogen Helicobacter pylori colonizes half of the global population. Residing at the stomach epithelium, it contributes to the development of diseases such as gastritis, duodenal and gastric ulcers, and gastric cancer. A major factor is the secreted vacuolating toxin VacA, which forms anion-selective channels in the endosome membrane that cause the compartment to swell, but the composition and purpose of the resulting VacA-containing vacuoles (VCVs) are still unknown. VacA exerts influence on the host immune response in various ways, including inhibition of T-cell activation and proliferation and suppression of the host immune response. In this study, for the first time the composition of VCVs from T cells was comprehensively analysed to investigate VCV function. VCVs were successfully isolated via immunomagnetic separation, and the purified vacuoles were analysed by mass spectrometry. We detected a set of 122 VCV-specific proteins implicated among others in immune response, cell death and cellular signalling processes, all of which VacA is known to influence. One of the individual proteins studied further was stromal interaction molecule (STIM1), a calcium sensor residing in the endoplasmic reticulum (ER) that is important in store-operated calcium entry. Live cell imaging microscopy data demonstrated colocalization of VacA with STIM1 in the ER and indicated that VacA may interfere with the movement of STIM1 towards the plasma membrane-localized calcium release activated calcium channel protein ORAI1 in response to Ca(2+) store depletion. Furthermore, VacA inhibited the increase of cytosolic-free Ca(2+) in the Jurkat E6-1 T-cell line and human CD4(+) T cells. The presence of VacA in the ER and its trafficking to the Golgi apparatus was confirmed in HeLa cells, identifying these two cellular compartments as novel VacA target structures.
Collapse
Affiliation(s)
- Beate Kern
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Utkarsh Jain
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Ciara Utsch
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Andreas Otto
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Benjamin Busch
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Luisa Jiménez-Soto
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Dörte Becher
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Rainer Haas
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany.,German Center for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
70
|
Menon MB, Gaestel M. Sep(t)arate or not – how some cells take septin-independent routes through cytokinesis. J Cell Sci 2015; 128:1877-86. [PMID: 25690008 DOI: 10.1242/jcs.164830] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cytokinesis is the final step of cell division, and is a process that requires a precisely coordinated molecular machinery to fully separate the cytoplasm of the parent cell and to establish the intact outer cell barrier of the daughter cells. Among various cytoskeletal proteins involved, septins are known to be essential mediators of cytokinesis. In this Commentary, we present recent observations that specific cell divisions can proceed in the absence of the core mammalian septin SEPT7 and its Drosophila homolog Peanut (Pnut) and that thus challenge the view that septins have an essential role in cytokinesis. In the pnut mutant neuroepithelium, orthogonal cell divisions are successfully completed. Similarly, in the mouse, Sept7-null mutant early embryonic cells and, more importantly, planktonically growing adult hematopoietic cells undergo productive proliferation. Hence, as discussed here, mechanisms must exist that compensate for the lack of SEPT7 and the other core septins in a cell-type-specific manner. Despite there being crucial non-canonical immune-relevant functions of septins, septin depletion is well tolerated by the hematopoietic system. Thus differential targeting of cytokinesis could form the basis for more specific anti-proliferative therapies to combat malignancies arising from cell types that require septins for cytokinesis, such as carcinomas and sarcomas, without impairing hematopoiesis that is less dependent on septin.
Collapse
Affiliation(s)
- Manoj B Menon
- Institute of Physiological Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Matthias Gaestel
- Institute of Physiological Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
71
|
Fracchia KM, Walsh CM. Metabolic mysteries of the inflammatory response: T cell polarization and plasticity. Int Rev Immunol 2014; 34:3-18. [PMID: 25398050 DOI: 10.3109/08830185.2014.974748] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
While simultaneously maintaining homeostasis and reducing further harm to the host, the immune system is equipped to eliminate both tumors and pathogenic microorganisms. Bifurcated into cell-mediated and humoral immunity, the adaptive immune system requires a series of complex and coordinated signals to drive the proliferation and differentiation of appropriate subsets. These include signals that modulate cellular metabolism. When first published in the 1920s, "the Warburg effect" was used to describe a phenomenon in which most cancer cells relied on aerobic glycolysis to meet their biosynthetic demands. Despite the early observations of Warburg and his colleagues, targeting cancer cell metabolism for therapeutic purposes still remains theoretical. Notably, many T cells exhibit the same Warburg metabolism as cancer cells and the therapeutic benefit of targeting their metabolic pathways has since been reexamined. Emerging evidence suggests that specific metabolic alterations associated with T cells may be ancillary to their subset differentiation and influential in their inflammatory response. Thus, T cell lymphocyte activation leads to skewing in metabolic plasticity, and issue that will be the subject of this review.
Collapse
|
72
|
Greenberg EF, Lavik AR, Distelhorst CW. Bcl-2 regulation of the inositol 1,4,5-trisphosphate receptor and calcium signaling in normal and malignant lymphocytes: potential new target for cancer treatment. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:2205-10. [PMID: 24642270 PMCID: PMC4119508 DOI: 10.1016/j.bbamcr.2014.03.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/07/2014] [Accepted: 03/10/2014] [Indexed: 01/23/2023]
Abstract
The anti-apoptotic protein Bcl-2 is a versatile regulator of cell survival. Its interactions with its own pro-apoptotic family members are widely recognized for their role in promoting the survival of cancer cells. These interactions are thus being targeted for cancer treatment. Less widely recognized is the interaction of Bcl-2 with the inositol 1,4,5-trisphosphate receptor (InsP3R), an InsP3-gated Ca(2+) channel located on the endoplasmic reticulum. The nature of this interaction, the mechanism by which it controls Ca(2+) release from the ER, its role in T-cell development and survival, and the possibility of targeting it as a novel cancer treatment strategy are summarized in this review. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Edward F Greenberg
- Division of Hematology/Oncology, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, University Hospitals Case Medical Center, USA; MetroHealth Medical Center, USA.
| | - Andrew R Lavik
- Division of Hematology/Oncology, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, University Hospitals Case Medical Center, USA.
| | - Clark W Distelhorst
- Division of Hematology/Oncology, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, University Hospitals Case Medical Center, USA.
| |
Collapse
|
73
|
Li S, Jia Z, Li X, Geng X, Sun J. Calmodulin is a stress and immune response gene in Chinese mitten crab Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2014; 40:120-128. [PMID: 24997436 DOI: 10.1016/j.fsi.2014.06.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 06/03/2023]
Abstract
Calmodulin (CaM) is a multifunctional calcium sensor protein that participates in various cellular processes under normal, stress and pathological conditions. In crabs, however, the involvement of CaM in response to environmental stress and immune challenges has not been revealed yet. In the present study, a CaM cDNA (EsCaM) was identified from Chinese mitten crab Eriocheir sinensis and its mRNA expression patterns in response to ambient (salinity and pH) stress and immune challenges was examined. EsCaM encodes a 149-amino-acid protein with a calculated molecular mass of 16.8 kDa and an isoelectric point of 4.09. In unstimulated healthy E. sinensis, EsCaM mRNA transcript was detected in all tested tissues with predominant expression in hepatopancreas and the lowest expression in haemocytes. Ambient salinity (15‰ and 30‰ salinities) and pH (pH 6 and 8.5) stress significantly altered EsCaM mRNA expression in gill, hepatopancreas, haemocytes, intestine and muscle in Chinese mitten crab. In addition, EsCaM gene expression was significantly and rapidly induced as early as 2 h after LPS and Poly(I:C) immune stimulations in haemocytes in vitro. Furthermore, EsCaM expression was significantly up-regulated in E. sinensis haemocytes, gill, hepatopancreas, intestine and muscle in response to Edwardsiella tarda and Vibrio anguillarum challenges. Collectively, our findings suggest that EsCaM is an important stress and immune response gene in Chinese mitten crab.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 Binshuixidao, Xiqing District, Tianjin 300387, China.
| | - Zirui Jia
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 Binshuixidao, Xiqing District, Tianjin 300387, China
| | - Xuejing Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 Binshuixidao, Xiqing District, Tianjin 300387, China
| | - Xuyun Geng
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, 442 South Jiefang Road, Hexi District, Tianjin 300221, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 Binshuixidao, Xiqing District, Tianjin 300387, China.
| |
Collapse
|
74
|
Walsh CM, Fruman DA. Too much of a good thing: immunodeficiency due to hyperactive PI3K signaling. J Clin Invest 2014; 124:3688-90. [PMID: 25133419 DOI: 10.1172/jci77198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Primary immune deficiency diseases arise due to heritable defects that often involve signaling molecules required for immune cell function. Typically, these genetic defects cause loss of gene function, resulting in primary immune deficiencies such as severe combined immune deficiency (SCID) and X-linked agammaglobulinemia (XLA); however, gain-of-function mutations may also promote immune deficiency. In this issue of the JCI, Deau et al. establish that gain-of-function mutations in PIK3R1, which encodes the p85α regulatory subunit of class IA PI3Ks, lead to immunodeficiency. These observations are consistent with previous reports that hyperactivating mutations in PIK3CD, which encodes the p110δ catalytic subunit, are capable of promoting immune deficiency. Mutations that reduce PI3K activity also result in defective lymphocyte development and function; therefore, these findings support the notion that too little or too much PI3K activity leads to immunodeficiency.
Collapse
|
75
|
Byrd TF, Hoang LT, Kim EG, Pfister ME, Werner EM, Arndt SE, Chamberlain JW, Hughey JJ, Nguyen BA, Schneibel EJ, Wertz LL, Whitfield JS, Wikswo JP, Seale KT. The microfluidic multitrap nanophysiometer for hematologic cancer cell characterization reveals temporal sensitivity of the calcein-AM efflux assay. Sci Rep 2014; 4:5117. [PMID: 24873950 PMCID: PMC4038811 DOI: 10.1038/srep05117] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 05/06/2014] [Indexed: 01/21/2023] Open
Abstract
Cytometric studies utilizing flow cytometry or multi-well culture plate fluorometry are often limited by a deficit in temporal resolution and a lack of single cell consideration. Unfortunately, many cellular processes, including signaling, motility, and molecular transport, occur transiently over relatively short periods of time and at different magnitudes between cells. Here we demonstrate the multitrap nanophysiometer (MTNP), a low-volume microfluidic platform housing an array of cell traps, as an effective tool that can be used to study individual unattached cells over time with precise control over the intercellular microenvironment. We show how the MTNP platform can be used for hematologic cancer cell characterization by measuring single T cell levels of CRAC channel modulation, non-translational motility, and ABC-transporter inhibition via a calcein-AM efflux assay. The transporter data indicate that Jurkat T cells exposed to indomethacin continue to accumulate fluorescent calcein for over 60 minutes after calcein-AM is removed from the extracellular space.
Collapse
Affiliation(s)
- Thomas F Byrd
- 1] Searle Systems Biology and Bioengineering Undergraduate Research Experience, Vanderbilt University, Nashville, TN, 37235, USA [2] University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Loi T Hoang
- Searle Systems Biology and Bioengineering Undergraduate Research Experience, Vanderbilt University, Nashville, TN, 37235, USA
| | - Eric G Kim
- Searle Systems Biology and Bioengineering Undergraduate Research Experience, Vanderbilt University, Nashville, TN, 37235, USA
| | - Matthew E Pfister
- Searle Systems Biology and Bioengineering Undergraduate Research Experience, Vanderbilt University, Nashville, TN, 37235, USA
| | - Erik M Werner
- Searle Systems Biology and Bioengineering Undergraduate Research Experience, Vanderbilt University, Nashville, TN, 37235, USA
| | - Stephen E Arndt
- Searle Systems Biology and Bioengineering Undergraduate Research Experience, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jeffrey W Chamberlain
- Searle Systems Biology and Bioengineering Undergraduate Research Experience, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jacob J Hughey
- Searle Systems Biology and Bioengineering Undergraduate Research Experience, Vanderbilt University, Nashville, TN, 37235, USA
| | - Bao A Nguyen
- Searle Systems Biology and Bioengineering Undergraduate Research Experience, Vanderbilt University, Nashville, TN, 37235, USA
| | - Erik J Schneibel
- Searle Systems Biology and Bioengineering Undergraduate Research Experience, Vanderbilt University, Nashville, TN, 37235, USA
| | - Laura L Wertz
- Searle Systems Biology and Bioengineering Undergraduate Research Experience, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jonathan S Whitfield
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - John P Wikswo
- 1] Searle Systems Biology and Bioengineering Undergraduate Research Experience, Vanderbilt University, Nashville, TN, 37235, USA [2] Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, 37235, USA [3] Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA [4] Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA [5] Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kevin T Seale
- 1] Searle Systems Biology and Bioengineering Undergraduate Research Experience, Vanderbilt University, Nashville, TN, 37235, USA [2] Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, 37235, USA [3] Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| |
Collapse
|
76
|
Toldi G. The regulation of calcium homeostasis in T lymphocytes. Front Immunol 2013; 4:432. [PMID: 24367370 PMCID: PMC3851972 DOI: 10.3389/fimmu.2013.00432] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/21/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Gergely Toldi
- First Department of Pediatrics, Semmelweis University , Budapest , Hungary
| |
Collapse
|