51
|
Hypoxia influences the effects of magnesium degradation products on the interactions between endothelial and mesenchymal stem cells. Acta Biomater 2020; 101:624-636. [PMID: 31622779 DOI: 10.1016/j.actbio.2019.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023]
Abstract
Biodegradable materials like well-documented Magnesium (Mg) are promising for their biocompatibility and tissue regeneration. Since Mg degradation is reported to be oxygen related, the effects of Mg were hypothesised to be influenced by oxygen. As two vital components of bone marrow, endothelial cells (EC) and mesenchymal stem cells (MSC), their interactions represent high scientific interest for tissue engineering and biodegradable Mg application. Human umbilical cord perivascular (HUCPV) and umbilical vein endothelial cell (HUVEC) were selected as sources of MSC and EC, respectively. Two types of coculture models were established to represent different phases of MSC-EC interaction: (i) where cells were physically separated thanks to a transwell and (ii) where cells were allowed to have heterotypic cellular contacts. Cell migration, gene, cytokines, and proliferation were investigated in HUCPV-HUVEC coculture using DNA, flow cytometry, wound healing assay, semi-quantitative real-time polymerase chain reaction (qRT-PCR), and enzyme-linked immunosorbent assay (ELISA). Mg degradation products increased HUCPV migration in transwell under hypoxia. Oxygen tension changed the gene regulation of migratory, angiogenetic or osteogenic regulators. Under contacting coculture and hypoxia, Mg degradation products remarkably increased cytokines (e.g., c-c motif chemokine ligand 2 and vascular endothelial growth factor) and MSC mineralisation. Mg degradation products decreased and increased the MSC proliferation in transwell and in heterotypic-contact coculture, respectively. In summary, this study indicates the roles of low oxygen and heterotypic contact to effects of Mg materials facilitating HUVEC and HUCPV. STATEMENT OF SIGNIFICANCE.
Collapse
|
52
|
Garabet L, Henriksson CE, Lozano ML, Ghanima W, Bussel J, Brodin E, Fernández-Pérez MP, Martínez C, González-Conejero R, Mowinckel MC, Sandset PM. Markers of endothelial cell activation and neutrophil extracellular traps are elevated in immune thrombocytopenia but are not enhanced by thrombopoietin receptor agonists. Thromb Res 2019; 185:119-124. [PMID: 31805421 DOI: 10.1016/j.thromres.2019.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/20/2019] [Accepted: 11/28/2019] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Patients with immune thrombocytopenia (ITP) are at increased risk of thrombosis, which seems to be further enhanced by treatment with thrombopoietin-receptor-agonists (TPO-RAs). The underlying mechanisms of thrombosis in ITP are not fully understood. Endothelial cell activation and neutrophil extracellular traps (NETs) play important roles in thrombosis, however, their roles in ITP itself, or in TPO-RA-treatment, have not yet been fully explored. We aimed to investigate whether endothelial cell activation and NETs are involved in the hypercoagulable state of ITP, and whether TPO-RA-treatment enhances endothelial cell activation and NET formation. MATERIAL AND METHODS We measured markers of endothelial cell activation including intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1) and thrombomodulin in 21 ITP patients, and E-selectin in 18 ITP patients. Markers of NET formation, citrullinated histone H3-DNA (H3Cit-DNA) and cell-free DNA (cfDNA), were measured in 15 ITP patients. All markers were measured before, and 2 and 6 weeks after initiation of TPO-RA-treatment in ITP patients, and in matched controls. RESULTS Higher levels of ICAM-1, thrombomodulin, and H3Cit-DNA were found in ITP patients, both before and after TPO-RA-treatment, compared with controls. No differences were found for VCAM-1, E-selectin or cfDNA. TPO-RA-treatment did not further increase markers of endothelial cell activation or NET formation. CONCLUSIONS This study showed that ITP patients have increased endothelial cell activation and NET formation, both of which may contribute to the intrinsic hypercoagulable state of ITP. TPO-RA-treatment, however, did not further increase endothelial cell activation or NET formation indicating that other drug-associated prothrombotic mechanisms are involved.
Collapse
Affiliation(s)
- Lamya Garabet
- Multidisciplinary Laboratory Medicine and Medical Biochemistry, Akershus University Hospital, Norway; Department of Research, Østfold Hospital Trust, Norway; Institute of Clinical Medicine, University of Oslo, Norway.
| | - Carola E Henriksson
- Institute of Clinical Medicine, University of Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Norway
| | - María Luisa Lozano
- Hospital JM Morales Meseguer, Centro Regional de Hemodonacion, IMIB-Arrixaca, Murcia, Spain; Grupo de investigación CB15/00055 del Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Waleed Ghanima
- Department of Research, Østfold Hospital Trust, Norway; Institute of Clinical Medicine, University of Oslo, Norway
| | - James Bussel
- New York Presbyterian Hospital, Weill Cornell, United States
| | - Ellen Brodin
- Department of Haematology, Akershus University Hospital, Norway
| | | | - Constantino Martínez
- Hospital JM Morales Meseguer, Centro Regional de Hemodonacion, IMIB-Arrixaca, Murcia, Spain
| | | | - Marie-Christine Mowinckel
- Research Institute of Internal Medicine, Oslo University Hospital, Norway; Department of Haematology, Oslo University Hospital, Norway
| | - Per Morten Sandset
- Institute of Clinical Medicine, University of Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Norway; Department of Haematology, Oslo University Hospital, Norway
| |
Collapse
|
53
|
Vandermosten L, Vanhorebeek I, De Bosscher K, Opdenakker G, Van den Steen PE. Critical Roles of Endogenous Glucocorticoids for Disease Tolerance in Malaria. Trends Parasitol 2019; 35:918-930. [PMID: 31606404 DOI: 10.1016/j.pt.2019.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 10/25/2022]
Abstract
During malaria, the hypothalamic-pituitary-adrenal (HPA) axis is activated and glucocorticoid (GC) levels are increased, but their essential roles have been largely overlooked. GCs are decisive for systemic regulation of vital processes such as immune responses, vascular function, and metabolism, which are crucial in malaria. Here, we introduce GCs in general, followed by their versatile roles for disease tolerance in malaria. A complementary comparison is provided with their role in sepsis. Finally, potential translational implications are considered. The failed clinical trials of dexamethasone against cerebral malaria in the past have diminished the interest in GCs in malaria. However, the issue of relative corticosteroid insufficiency has barely been explored in malaria patients, but may hold promise for a better understanding and treatment of specific malaria complications.
Collapse
Affiliation(s)
- Leen Vandermosten
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Ilse Vanhorebeek
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research Laboratory, VIB Center for Medical Biotechnology, Department of Biomolecular Medicine, UGent, Ghent, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
54
|
The Efficacy and Safety of Glucocorticoids Plus Conventional Therapy for Hepatitis B-Related Liver Failure in China: A Meta-Analysis. HEPATITIS MONTHLY 2019. [DOI: 10.5812/hepatmon.65787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
55
|
Friedman MA, Choi D, Planck SR, Rosenbaum JT, Sibley CH. Gene Expression Pathways across Multiple Tissues in Antineutrophil Cytoplasmic Antibody-associated Vasculitis Reveal Core Pathways of Disease Pathology. J Rheumatol 2019; 46:609-615. [PMID: 30647166 PMCID: PMC6545268 DOI: 10.3899/jrheum.180455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To identify commonalities in gene expression data across all antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) tissues thus far characterized. METHODS Gene expression data were collected from the 3 AAV tissues thus far characterized (orbit, peripheral leukocytes, and sinus brushings). These data were analyzed to identify commonly expressed genes and disease pathways. The pathways data were adjusted for multiple comparisons using a combined local false discovery rate, which estimates the probability of a false discovery of a given pathway in all 3 tissues analyzed. RESULTS Only 4 genes were upregulated in all 3 tissues - IL1RN, TLR2, SLC11A1, and MMP9. After multiple comparison adjustments, the network pathway analysis revealed 28 pathways associated with all 3 tissues. The most strongly associated pathway for all 3 tissues was the neutrophil degranulation pathway [multidimensional local false discovery (md-locfdr) = 1.05 × 10-12], followed by the osteoclast differentiation (md-locfdr = 3.8 × 10-05), cell surface interactions at the vascular wall (md-locfdr = 4.2 × 10-04), signaling by interleukins (md-locfdr = 6.1 × 10-04), and phagosome (md-locfdr = 0.003) pathways. There were no downregulated genes or pathways common to all 3 tissues. CONCLUSION This analysis identified individual genes and pathways of disease common to all AAV tissues thus far characterized. The use of a network pathway analysis allowed us to identify pathologic mechanisms that were not readily apparent in the commonly expressed genes alone. Many of these pathways are consistent with current theories about infectious drivers and the crossroads of innate and adaptive immune mechanisms. In addition, this analysis highlights novel pathways, such as vessel wall interactions and platelet activation, which require further investigation.
Collapse
Affiliation(s)
- Marcia A Friedman
- From the Department of Medicine, and the Casey Eye Institute, and the OHSU-PSU (Portland State University) School of Public Health, Oregon Health & Science University (OHSU), Portland, Oregon, USA; Graduate School of Dentistry, Kyung Hee University, Seoul, Korea; Devers Eye Institute, Legacy Health Systems, Portland, Oregon, USA.
- M.A. Friedman, MD, Instructor of Medicine, Department of Medicine, OHSU; D. Choi, PhD, Professor, Department of Medicine, and the Casey Eye Institute, and the OHSU-PSU School of Public Health, and the Graduate School of Dentistry, Kyung Hee University; S.R. Planck, PhD, Professor of Ophthalmology, Department of Medicine, and Casey Eye Institute, OHSU; J.T. Rosenbaum, MD, Professor of Ophthalmology, Department of Medicine, and Casey Eye Institute, OHSU, and Devers Eye Institute, Legacy Health Systems; C.H. Sibley, MD, Assistant Professor of Medicine, Department of Medicine, OHSU.
| | - Dongseok Choi
- From the Department of Medicine, and the Casey Eye Institute, and the OHSU-PSU (Portland State University) School of Public Health, Oregon Health & Science University (OHSU), Portland, Oregon, USA; Graduate School of Dentistry, Kyung Hee University, Seoul, Korea; Devers Eye Institute, Legacy Health Systems, Portland, Oregon, USA
- M.A. Friedman, MD, Instructor of Medicine, Department of Medicine, OHSU; D. Choi, PhD, Professor, Department of Medicine, and the Casey Eye Institute, and the OHSU-PSU School of Public Health, and the Graduate School of Dentistry, Kyung Hee University; S.R. Planck, PhD, Professor of Ophthalmology, Department of Medicine, and Casey Eye Institute, OHSU; J.T. Rosenbaum, MD, Professor of Ophthalmology, Department of Medicine, and Casey Eye Institute, OHSU, and Devers Eye Institute, Legacy Health Systems; C.H. Sibley, MD, Assistant Professor of Medicine, Department of Medicine, OHSU
| | - Stephen R Planck
- From the Department of Medicine, and the Casey Eye Institute, and the OHSU-PSU (Portland State University) School of Public Health, Oregon Health & Science University (OHSU), Portland, Oregon, USA; Graduate School of Dentistry, Kyung Hee University, Seoul, Korea; Devers Eye Institute, Legacy Health Systems, Portland, Oregon, USA
- M.A. Friedman, MD, Instructor of Medicine, Department of Medicine, OHSU; D. Choi, PhD, Professor, Department of Medicine, and the Casey Eye Institute, and the OHSU-PSU School of Public Health, and the Graduate School of Dentistry, Kyung Hee University; S.R. Planck, PhD, Professor of Ophthalmology, Department of Medicine, and Casey Eye Institute, OHSU; J.T. Rosenbaum, MD, Professor of Ophthalmology, Department of Medicine, and Casey Eye Institute, OHSU, and Devers Eye Institute, Legacy Health Systems; C.H. Sibley, MD, Assistant Professor of Medicine, Department of Medicine, OHSU
| | - James T Rosenbaum
- From the Department of Medicine, and the Casey Eye Institute, and the OHSU-PSU (Portland State University) School of Public Health, Oregon Health & Science University (OHSU), Portland, Oregon, USA; Graduate School of Dentistry, Kyung Hee University, Seoul, Korea; Devers Eye Institute, Legacy Health Systems, Portland, Oregon, USA
- M.A. Friedman, MD, Instructor of Medicine, Department of Medicine, OHSU; D. Choi, PhD, Professor, Department of Medicine, and the Casey Eye Institute, and the OHSU-PSU School of Public Health, and the Graduate School of Dentistry, Kyung Hee University; S.R. Planck, PhD, Professor of Ophthalmology, Department of Medicine, and Casey Eye Institute, OHSU; J.T. Rosenbaum, MD, Professor of Ophthalmology, Department of Medicine, and Casey Eye Institute, OHSU, and Devers Eye Institute, Legacy Health Systems; C.H. Sibley, MD, Assistant Professor of Medicine, Department of Medicine, OHSU
| | - Cailin H Sibley
- From the Department of Medicine, and the Casey Eye Institute, and the OHSU-PSU (Portland State University) School of Public Health, Oregon Health & Science University (OHSU), Portland, Oregon, USA; Graduate School of Dentistry, Kyung Hee University, Seoul, Korea; Devers Eye Institute, Legacy Health Systems, Portland, Oregon, USA
- M.A. Friedman, MD, Instructor of Medicine, Department of Medicine, OHSU; D. Choi, PhD, Professor, Department of Medicine, and the Casey Eye Institute, and the OHSU-PSU School of Public Health, and the Graduate School of Dentistry, Kyung Hee University; S.R. Planck, PhD, Professor of Ophthalmology, Department of Medicine, and Casey Eye Institute, OHSU; J.T. Rosenbaum, MD, Professor of Ophthalmology, Department of Medicine, and Casey Eye Institute, OHSU, and Devers Eye Institute, Legacy Health Systems; C.H. Sibley, MD, Assistant Professor of Medicine, Department of Medicine, OHSU
| |
Collapse
|
56
|
Cari L, De Rosa F, Nocentini G, Riccardi C. Context-Dependent Effect of Glucocorticoids on the Proliferation, Differentiation, and Apoptosis of Regulatory T Cells: A Review of the Empirical Evidence and Clinical Applications. Int J Mol Sci 2019; 20:E1142. [PMID: 30845709 PMCID: PMC6429178 DOI: 10.3390/ijms20051142] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids (GCs) are widely used to treat several diseases because of their powerful anti-inflammatory and immunomodulatory effects on immune cells and non-lymphoid tissues. The effects of GCs on T cells are the most relevant in this regard. In this review, we analyze how GCs modulate the survival, maturation, and differentiation of regulatory T (Treg) cell subsets into both murine models and humans. In this way, GCs change the Treg cell number with an impact on the mid-term and long-term efficacy of GC treatment. In vitro studies suggest that the GC-dependent expansion of Treg cells is relevant when they are activated. In agreement with this observation, the GC treatment of patients with established autoimmune, allergic, or (auto)inflammatory diseases causes an expansion of Treg cells. An exception to this appears to be the local GC treatment of psoriatic lesions. Moreover, the effects on Treg number in patients with multiple sclerosis are uncertain. The effects of GCs on Treg cell number in healthy/diseased subjects treated with or exposed to allergens/antigens appear to be context-dependent. Considering the relevance of this effect in the maturation of the immune system (tolerogenic response to antigens), the success of vaccination (including desensitization), and the tolerance to xenografts, the findings must be considered when planning GC treatment.
Collapse
Affiliation(s)
- Luigi Cari
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia I-06129, Italy.
| | - Francesca De Rosa
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia I-06129, Italy.
| | - Giuseppe Nocentini
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia I-06129, Italy.
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia I-06129, Italy.
| |
Collapse
|
57
|
Otrocka-Domagała I, Paździor-Czapula K, Gesek M. Dexamethasone-induced impairment of post-injury skeletal muscle regeneration. BMC Vet Res 2019; 15:56. [PMID: 30744624 PMCID: PMC6371463 DOI: 10.1186/s12917-019-1804-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/30/2019] [Indexed: 12/14/2022] Open
Abstract
Background Due to the routine use of dexamethasone (DEX) in veterinary and human medicine and its negative impact on the rate of wound healing and skeletal muscle condition, we decided to investigate the effect of DEX on the inflammatory and repair phases of skeletal muscle regeneration. In this study, a porcine skeletal muscle injury model was used. The animals were divided into non-treated and DEX-treated (0.2 mg/kg/day) groups. On the 15th day of DEX administration, bupivacaine hydrochloride-induced muscle injury was performed, and the animals were sacrificed in subsequent days. Regeneration was assessed by histopathology and immunohistochemistry. In the inflammatory phase, the presence and degree of extravasation, necrosis and inflammation were evaluated, while in the repair phase, the numbers of muscle precursor cells (MPCs), myotubes and young myofibres were estimated. Results In the inflammatory phase, DEX increased the severity and prolonged extravasation, prolonged necrosis and inflammation at the site of the muscle injury. In the repair phase, DEX delayed and prolonged MPC presence, impaired and prolonged myotube formation, and delayed young myofibre formation. Furthermore, DEX markedly affected the kinetics of the parameters of the inflammatory phase of the skeletal muscle regeneration more than that of the repair phase. Conclusions DEX impairment of the inflammatory and repair phases of the skeletal muscle regeneration was proven for the first time. The drug appears to affect the inflammatory phase more than the repair phase of regeneration. In light of our results, the possibility of reduction of the regenerative capacity of skeletal muscles should be considered during DEX therapy, and its use should be based on risk–benefit assessment.
Collapse
Affiliation(s)
- Iwona Otrocka-Domagała
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Street 13, 10-719, Olsztyn, Poland.
| | - Katarzyna Paździor-Czapula
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Street 13, 10-719, Olsztyn, Poland
| | - Michał Gesek
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Street 13, 10-719, Olsztyn, Poland
| |
Collapse
|
58
|
Nowak K, Ratajczak-Wrona W, Górska M, Jabłońska E. Parabens and their effects on the endocrine system. Mol Cell Endocrinol 2018; 474:238-251. [PMID: 29596967 DOI: 10.1016/j.mce.2018.03.014] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/16/2018] [Accepted: 03/24/2018] [Indexed: 01/07/2023]
Abstract
Preservatives (ingredients which inhibit growth of microorganisms) are used to prolong shelf life of various foods, cosmetics, and pharmaceutical products. Parabens are one of the most popular preservatives used in the aforementioned products and is currently being used worldwide. Parabens are easily absorbed by the human body. Thus, it is important to discuss about their safety with respect to human physiology. In view of the current literature, which classifies parabens as a group of endocrine disrupting chemicals (EDCs), it seems that the precise assessment of their influence on the human endocrine system is particularly important. Disruption of the endocrine homoeostasis might lead to multidirectional implications causing disruption of fitness and functions of the body. Therefore, in this review article, we aimed to summarize the current literature on properties, occurrence, and metabolism of parabens as well as to present recent progress in knowledge about their influence on the human endocrine system.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Poland.
| | | | - Maria Górska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Poland
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, Poland
| |
Collapse
|
59
|
Tsoref O, Tyomkin D, Amit U, Landa N, Cohen-Rosenboim O, Kain D, Golan M, Naftali-Shani N, David A, Leor J. E-selectin-targeted copolymer reduces atherosclerotic lesions, adverse cardiac remodeling, and dysfunction. J Control Release 2018; 288:136-147. [DOI: 10.1016/j.jconrel.2018.08.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 01/08/2023]
|
60
|
Li L, Cheng Y, Emrich S, Schorey J. Activation of endothelial cells by extracellular vesicles derived from Mycobacterium tuberculosis infected macrophages or mice. PLoS One 2018; 13:e0198337. [PMID: 29851993 PMCID: PMC5979010 DOI: 10.1371/journal.pone.0198337] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
Endothelial cells play an essential role in regulating an immune response through promoting leukocyte adhesion and cell migration and production of cytokines such as TNFα. Regulation of endothelial cell immune function is tightly regulated and recent studies suggest that extracellular vesicles (EVs) are prominently involved in this process. However, the importance of EVs in regulating endothelial activation in the context of a bacterial infection is poorly understood. To begin addressing this knowledge gap we characterized the endothelial cell response to EVs released from Mycobacterium tuberculosis (Mtb) infected macrophages. Our result showed increased macrophage migration through the monolayer when endothelial cells were pretreated with EVs isolated from Mtb-infected macrophages. Transcriptome analysis showed a significant upregulation of genes involved in cell adhesion and the inflammatory process in endothelial cells treated with EVs. These results were validated by quantitative PCR and flow cytometry. Pathway analysis of these differentially expressed genes indicated that several immune response-related pathways were up-regulated. Endothelial cells were also treated with EVs isolated from the serum of Mtb-infected mice. Interestingly, EVs isolated 14 days but not 7 or 21 days post-infection showed a similar ability to induce endothelial cell activation suggesting a change in EV function during the course of an Mtb infection. Immunofluorescence microscopy result indicated that NF-κB and the Type 1 interferon pathways were involved in endothelial activation by EVs. In summary, our data suggest that EVs can activate endothelial cells and thus may play an important role in modulating host immune responses during an Mtb infection.
Collapse
Affiliation(s)
- Li Li
- Department of Biological Sciences, Eck Institute for Global Health, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN, United States of America
| | - Yong Cheng
- Department of Biological Sciences, Eck Institute for Global Health, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN, United States of America
| | - Scott Emrich
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, United States of America
| | - Jeffrey Schorey
- Department of Biological Sciences, Eck Institute for Global Health, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN, United States of America
- * E-mail:
| |
Collapse
|
61
|
Robinson BD, Shaji CA, Lomas A, Tharakan B. Measurement of Microvascular Endothelial Barrier Dysfunction and Hyperpermeability In Vitro. Methods Mol Biol 2018; 1717:237-242. [PMID: 29468597 DOI: 10.1007/978-1-4939-7526-6_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Loss of microvascular endothelial barrier integrity leads to vascular hyperpermeability and vasogenic edema in a variety of disease processes including trauma, ischemia and sepsis. Understanding these principles gives valuable information on pathophysiology and therapeutic drug development. While animal models of traumatic and ischemic injuries are useful to understand vascular dysfunctions associated with such injuries, in vitro barrier integrity assays are reliable and helpful adjuncts to understand the cellular and molecular changes and signaling mechanisms that regulate barrier function. We describe here the endothelial monolayer permeability assay and transendothelial electrical resistance (TEER) measurement as in vitro methods to test changes in microvascular integrity and permeability. These in vitro assays are based on either the measurement of electrical resistance of the monolayer or the quantitative evaluation of fluorescently tagged molecules (e.g., FITC-dextran) that pass through the monolayer when there is damage or breakdown.
Collapse
Affiliation(s)
- Bobby Darnell Robinson
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Baylor Scott and White Research Institute, Temple, TX, USA
| | - Chinchusha Anasooya Shaji
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Baylor Scott and White Research Institute, Temple, TX, USA
| | - Angela Lomas
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Baylor Scott and White Research Institute, Temple, TX, USA
| | - Binu Tharakan
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Baylor Scott and White Research Institute, Temple, TX, USA.
| |
Collapse
|
62
|
TNF Tolerance in Monocytes and Macrophages: Characteristics and Molecular Mechanisms. J Immunol Res 2017; 2017:9570129. [PMID: 29250561 PMCID: PMC5698820 DOI: 10.1155/2017/9570129] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/25/2017] [Indexed: 01/07/2023] Open
Abstract
Tumor necrosis factor (TNF) tolerance in monocytes and macrophages means that preexposure to TNF reduces the sensitivity in these cells to a subsequent restimulation with this cytokine. Differential effects arise following preincubation with both low and high doses of TNF resulting in absolute as well as induction tolerance affecting specific immunologically relevant gene sets. In this review article, we summarize the relevance of TNF tolerance in vivo and the molecular mechanisms underlying these forms of tolerance including the role of transcription factors and signaling systems. In addition, the characteristics of cross-tolerance between TNF and lipopolysaccharide (LPS) as well as pathophysiological aspects of TNF tolerance are discussed. We conclude that TNF tolerance may represent a protective mechanism involved in the termination of inflammation and preventing excessive or prolonged inflammation. Otherwise, tolerance may also be a trigger of immune paralysis thus contributing to severe inflammatory diseases such as sepsis. An improved understanding of TNF tolerance will presumably facilitate the implementation of diagnostic or therapeutic approaches to more precisely assess and treat inflammation-related diseases.
Collapse
|
63
|
Lawlor CM, Ananth A, Barton BM, Flowers TC, McCoul ED. Pharmacotherapy for Angiotensin-Converting Enzyme Inhibitor–Induced Angioedema: A Systematic Review. Otolaryngol Head Neck Surg 2017; 158:232-239. [DOI: 10.1177/0194599817737974] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective Angioedema is a potentially life-threatening complication of angiotensin-converting enzyme inhibitor (ACEI) use, occurring in up to 0.5% of users. Although the pathophysiology of ACEI-induced angioedema is attributable to elevated serum bradykinin, standard management typically includes corticosteroids and antihistamines. We sought to summarize the evidence supporting pharmacotherapy for ACEI-induced angioedema. Data Sources PubMed, MEDLINE, and Embase portals. Methods A systematic literature review was conducted according to the PRISMA guidelines. Databases were queried by 3 independent reviewers for English-language studies published between 1980 and 2017. The initial search screened for all occurrences of “angioedema” and then was further refined to include studies of ACEI-related cases and exclude hereditary angioedema. Results Five articles representing 218 cases were identified, including 3 randomized controlled trials and 2 prospective case series with historical controls. One of 2 studies of icatibant (bradykinin B2 receptor antagonist) found more rapid symptom improvement than that with a control group of corticosteroids and antihistamines. Two studies of ecallantide (plasma kallikrein inhibitor) and 1 study of C1 inhibitor replacement found no significant benefit over control. No studies were identified that compared the efficacy of corticosteroids with antihistamines, of one dose with another, of fresh frozen plasma, or of combination therapy. Conclusion The efficacy of treatment of ACEI-induced angioedema with bradykinin antagonists, kallikrein inhibitor, and C1 inhibitor warrants further study. Although consistent benefit of these medications has not been demonstrated, their use has not caused harm. One study examining off-label use of icatibant has demonstrated efficacy over control. In addition, further study is needed to establish the efficacy and mechanism of action of standard pharmacotherapy such as corticosteroids and antihistamines in treatment of this condition.
Collapse
Affiliation(s)
- Claire M. Lawlor
- Department of Otolaryngology–Head and Neck Surgery, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Ashwin Ananth
- Department of Otolaryngology–Head and Neck Surgery, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Blair M. Barton
- Department of Otolaryngology–Head and Neck Surgery, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Thomas C. Flowers
- Department of Otolaryngology–Head and Neck Surgery, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Edward D. McCoul
- Department of Otolaryngology–Head and Neck Surgery, School of Medicine, Tulane University, New Orleans, Louisiana, USA
- Department of Otorhinolaryngology, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
- Ochsner Clinical School, School of Medicine, University of Queensland, New Orleans, Louisiana, USA
| |
Collapse
|
64
|
Halper J. Basic Components of Vascular Connective Tissue and Extracellular Matrix. ADVANCES IN PHARMACOLOGY 2017; 81:95-127. [PMID: 29310805 DOI: 10.1016/bs.apha.2017.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Though the composition of the three layers constituting the blood vessel wall varies among the different types of blood vessels, and some layers may even be missing in capillaries, certain basic components, and properties are shared by all blood vessels, though each histologically distinct layer contains a unique complement of extracellular components, growth factors and cytokines, and cell types as well. The structure and composition of vessel layers informs and is informed by the function of the particular blood vessel. The adaptation of the composition and the resulting function of the extracellular matrix (ECM) to changes in circulation/blood flow and a variety of other extravascular stimuli can be characterized as remodeling spearheaded by vascular cells. There is a surprising amount of cell traffic among the three layers. It starts with endothelial cell mediated transmigration of inflammatory cells from the bloodstream into the subendothelium, and then into tissue adjoining the blood vessel. Smooth muscle cells and a variety of adventitial cells reside in tunica media and tunica externa, respectively. The latter cells are a mixture of progenitor/stem cells, fibroblasts, myofibroblasts, pericytes, macrophages, and dendritic cells and respond to endothelial injury by transdifferentiation as they travel into the two inner layers, intima and media for corrective mission in the ECM composition. This chapter addresses the role of various vascular cell types and ECM components synthesized by them in maintenance of normal structure and in their contribution to major pathological processes, such as atherosclerosis, organ fibrosis, and diabetic retinopathy.
Collapse
Affiliation(s)
- Jaroslava Halper
- College of Veterinary Medicine and AU/UGA Medical Partnership, The University of Georgia, Athens, GA, United States.
| |
Collapse
|
65
|
Burford NG, Webster NA, Cruz-Topete D. Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System. Int J Mol Sci 2017; 18:ijms18102150. [PMID: 29035323 PMCID: PMC5666832 DOI: 10.3390/ijms18102150] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/06/2017] [Accepted: 10/11/2017] [Indexed: 02/06/2023] Open
Abstract
The collective of endocrine organs acting in homeostatic regulation—known as the hypothalamic-pituitary-adrenal (HPA) axis—comprises an integration of the central nervous system as well as peripheral tissues. These organs respond to imminent or perceived threats that elicit a stress response, primarily culminating in the release of glucocorticoids into the systemic circulation by the adrenal glands. Although the secretion of glucocorticoids serves to protect and maintain homeostasis in the typical operation at baseline levels, inadequate regulation can lead to physiologic and psychologic pathologies. The cardiovascular system is especially susceptible to prolonged dysregulation of the HPA axis and glucocorticoid production. There is debate about whether cardiovascular health risks arise from the direct detrimental effects of stress axis activation or whether pathologies develop secondary to the accompanying metabolic strain of excess glucocorticoids. In this review, we will explore the emerging research that indicates stress does have direct effects on the cardiovascular system via the HPA axis activation, with emphasis on the latest research on the impact of glucocorticoids signaling in the vasculature and the heart.
Collapse
Affiliation(s)
- Natalie G Burford
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA 71130-3932, USA.
| | - Natalia A Webster
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA 71130-3932, USA.
| | - Diana Cruz-Topete
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA 71130-3932, USA.
| |
Collapse
|
66
|
Çaldır MV, Çelik GK, Çiftçi Ö, Müderrisoğlu İH. Author`s Reply. Anatol J Cardiol 2017; 18:309-310. [PMID: 29076818 PMCID: PMC5731530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Mehmet Vedat Çaldır
- Department of Cardiology, Faculty of Medicine, Başkent University; Konya-Turkey,Address for Correspondence: Dr. Mehmet Vedat Çaldır Başkent Üniversitesi Konya Hastanesi Kardiyoloji Bölümü Hocacihan Mah. Saray cad. No: 1, Selçuklu, Konya-Türkiye Phone: +90 332 257 06 06/2116 E-mail:
| | | | - Özgür Çiftçi
- Department of Cardiology, Koru Private Hospital; Ankara-Turkey
| | | |
Collapse
|
67
|
Zielińska KA, de Cauwer L, Knoops S, Van der Molen K, Sneyers A, Thommis J, De Souza JB, Opdenakker G, De Bosscher K, Van den Steen PE. Plasmodium berghei NK65 in Combination with IFN-γ Induces Endothelial Glucocorticoid Resistance via Sustained Activation of p38 and JNK. Front Immunol 2017; 8:1199. [PMID: 29033931 PMCID: PMC5625030 DOI: 10.3389/fimmu.2017.01199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/11/2017] [Indexed: 01/25/2023] Open
Abstract
Malaria-associated acute respiratory distress syndrome (MA-ARDS) is an often lethal complication of malaria. Currently, no adequate therapy for this syndrome exists. Although glucocorticoids (GCs) have been used to improve clinical outcome of ARDS, their therapeutic benefits remain unclear. We previously developed a mouse model of MA-ARDS, in which dexamethasone treatment revealed GC resistance. In the present study, we investigated GC sensitivity of mouse microvascular lung endothelial cells stimulated with interferon-γ (IFN-γ) and Plasmodium berghei NK65 (PbNK65). Upon challenge with IFN-γ alone, dexamethasone inhibited the expression of CCL5 (RANTES) by 90% and both CCL2 (MCP-1) and CXCL10 (IP-10) by 50%. Accordingly, whole transcriptome analysis revealed that dexamethasone differentially affected several gene clusters and in particular inhibited a large cluster of IFN-γ-induced genes, including chemokines. In contrast, combined stimulation with IFN-γ and PbNK65 extract impaired inhibitory actions of GCs on chemokine release, without affecting the capacity of the GC receptor to accumulate in the nucleus. Subsequently, we investigated the effects of GCs on two signaling pathways activated by IFN-γ. Dexamethasone left phosphorylation and protein levels of signal transducer and activator of transcription 1 (STAT1) unhampered. In contrast, dexamethasone inhibited the IFN-γ-induced activation of two mitogen-activated protein kinases (MAPK), JNK, and p38. However, PbNK65 extract abolished the inhibitory effects of GCs on MAPK signaling, inducing GC resistance. These data provide novel insights into the mechanisms of GC actions in endothelial cells and show how malaria may impair the beneficial effects of GCs.
Collapse
Affiliation(s)
- Karolina A Zielińska
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Lode de Cauwer
- Receptor Research Laboratories, Nuclear Receptor Lab, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Sofie Knoops
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Kristof Van der Molen
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Alexander Sneyers
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jonathan Thommis
- Receptor Research Laboratories, Nuclear Receptor Lab, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - J Brian De Souza
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|