51
|
Yura Y, Hamada M. Outline of Salivary Gland Pathogenesis of Sjögren's Syndrome and Current Therapeutic Approaches. Int J Mol Sci 2023; 24:11179. [PMID: 37446355 DOI: 10.3390/ijms241311179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disease characterized by the involvement of exocrine glands such as the salivary and lacrimal glands. The minor salivary glands, from which tissue samples may be obtained, are important for the diagnosis, evaluation of therapeutic efficacy, and genetic analyses of SS. In the onset of SS, autoantigens derived from the salivary glands are recognized by antigen-presenting dendritic cells, leading to the activation of T and B cells, cytokine production, autoantibody production by plasma cells, the formation of ectopic germinal centers, and the destruction of salivary gland epithelial cells. A recent therapeutic approach with immune checkpoint inhibitors for malignant tumors enhances the anti-tumor activity of cytotoxic effector T cells, but also induces SS-like autoimmune disease as an adverse event. In the treatment of xerostomia, muscarinic agonists and salivary gland duct cleansing procedure, as well as sialendoscopy, are expected to ameliorate symptoms. Clinical trials on biological therapy to attenuate the hyperresponsiveness of B cells in SS patients with systemic organ involvement have progressed. The efficacy of treatment with mesenchymal stem cells and chimeric antigen receptor T cells for SS has also been investigated. In this review, we will provide an overview of the pathogenesis of salivary gland lesions and recent trends in therapeutic approaches for SS.
Collapse
Affiliation(s)
- Yoshiaki Yura
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Masakazu Hamada
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| |
Collapse
|
52
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
53
|
Scott O, Visuvanathan S, Reddy E, Mahamed D, Gu B, Roifman CM, Cohn RD, Guidos CJ, Ivakine EA. The human Stat1 gain-of-function T385M mutation causes expansion of activated T-follicular helper/T-helper 1-like CD4 T cells and sex-biased autoimmunity in specific pathogen-free mice. Front Immunol 2023; 14:1183273. [PMID: 37275873 PMCID: PMC10235531 DOI: 10.3389/fimmu.2023.1183273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Humans with gain-of-function (GOF) mutations in STAT1 (Signal Transducer and Activator of Transcription 1), a potent immune regulator, experience frequent infections. About one-third, especially those with DNA-binding domain (DBD) mutations such as T385M, also develop autoimmunity, sometimes accompanied by increases in T-helper 1 (Th1) and T-follicular helper (Tfh) CD4 effector T cells, resembling those that differentiate following infection-induced STAT1 signaling. However, environmental and molecular mechanisms contributing to autoimmunity in STAT1 GOF patients are not defined. Methods We generated Stat1T385M/+ mutant mice to model the immune impacts of STAT1 DBD GOF under specific-pathogen free (SPF) conditions. Results Stat1T385M/+ lymphocytes had more total Stat1 at baseline and also higher amounts of IFNg-induced pStat1. Young mutants exhibited expansion of Tfh-like cells, while older mutants developed autoimmunity accompanied by increased Tfh-like cells, B cell activation and germinal center (GC) formation. Mutant females exhibited these immune changes sooner and more robustly than males, identifying significant sex effects of Stat1T385M-induced immune dysregulation. Single cell RNA-Seq (scRNA-Seq) analysis revealed that Stat1T385M activated transcription of GC-associated programs in both B and T cells. However, it had the strongest transcriptional impact on T cells, promoting aberrant CD4 T cell activation and imparting both Tfh-like and Th1-like effector programs. Discussion Collectively, these data demonstrate that in the absence of overt infection, Stat1T385M disrupted naïve CD4 T cell homeostasis and promoted expansion and differentiation of abnormal Tfh/Th1-like helper and GC-like B cells, eventually leading to sex-biased autoimmunity, suggesting a model for STAT1 GOF-induced immune dysregulation and autoimmune sequelae in humans.
Collapse
Affiliation(s)
- Ori Scott
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- Program for Genetics & Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Shagana Visuvanathan
- Program for Genetics & Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Emily Reddy
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Deeqa Mahamed
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bin Gu
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Chaim M. Roifman
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ronald D. Cohn
- Program for Genetics & Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Clinical & Metabolic Genetics, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Cynthia J. Guidos
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
54
|
Lockhart A, Reed A, de Castro TR, Herman C, Canesso MCC, Mucida D. Dietary protein shapes the profile and repertoire of intestinal CD4 + T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536475. [PMID: 37090529 PMCID: PMC10120666 DOI: 10.1101/2023.04.11.536475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The intestinal immune system must tolerate food antigens to avoid allergy, a process requiring CD4 + T cells. Combining antigenically defined diets with gnotobiotic models, we show that food and microbiota distinctly influence the profile and T cell receptor repertoire of intestinal CD4 + T cells. Independent of the microbiota, dietary proteins contributed to accumulation and clonal selection of antigen-experienced CD4 + T cells at the intestinal epithelium, imprinting a tissue specialized transcriptional program including cytotoxic genes on both conventional and regulatory CD4 + T cells (Tregs). This steady state CD4 + T cell response to food was disrupted by inflammatory challenge, and protection against food allergy in this context was associated with Treg clonal expansion and decreased pro-inflammatory gene expression. Finally, we identified both steady state epithelium-adapted CD4 + T cells and tolerance-induced Tregs that recognize dietary antigens, suggesting that both cell types may be critical for preventing inappropriate immune responses to food.
Collapse
|
55
|
Wayman JA, Thomas A, Bejjani A, Katko A, Almanan M, Godarova A, Korinfskaya S, Cazares TA, Yukawa M, Kottyan LC, Barski A, Chougnet CA, Hildeman DA, Miraldi ER. An atlas of gene regulatory networks for memory CD4 + T cells in youth and old age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531590. [PMID: 36945549 PMCID: PMC10028906 DOI: 10.1101/2023.03.07.531590] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Aging profoundly affects immune-system function, promoting susceptibility to pathogens, cancers and chronic inflammation. We previously identified a population of IL-10-producing, T follicular helper-like cells (" Tfh10 "), linked to suppressed vaccine responses in aged mice. Here, we integrate single-cell ( sc )RNA-seq, scATAC-seq and genome-scale modeling to characterize Tfh10 - and the full CD4 + memory T cell ( CD4 + TM ) compartment - in young and old mice. We identified 13 CD4 + TM populations, which we validated through cross-comparison to prior scRNA-seq studies. We built gene regulatory networks ( GRNs ) that predict transcription-factor control of gene expression in each T-cell population and how these circuits change with age. Through integration with pan-cell aging atlases, we identified intercellular-signaling networks driving age-dependent changes in CD4 + TM. Our atlas of finely resolved CD4 + TM subsets, GRNs and cell-cell communication networks is a comprehensive resource of predicted regulatory mechanisms operative in memory T cells, presenting new opportunities to improve immune responses in the elderly.
Collapse
|
56
|
Hasegawa T, Oka T, Son HG, Oliver-García VS, Azin M, Eisenhaure TM, Lieb DJ, Hacohen N, Demehri S. Cytotoxic CD4 + T cells eliminate senescent cells by targeting cytomegalovirus antigen. Cell 2023; 186:1417-1431.e20. [PMID: 37001502 DOI: 10.1016/j.cell.2023.02.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 12/19/2022] [Accepted: 02/24/2023] [Indexed: 04/03/2023]
Abstract
Senescent cell accumulation has been implicated in the pathogenesis of aging-associated diseases, including cancer. The mechanism that prevents the accumulation of senescent cells in aging human organs is unclear. Here, we demonstrate that a virus-immune axis controls the senescent fibroblast accumulation in the human skin. Senescent fibroblasts increased in old skin compared with young skin. However, they did not increase with advancing age in the elderly. Increased CXCL9 and cytotoxic CD4+ T cells (CD4 CTLs) recruitment were significantly associated with reduced senescent fibroblasts in the old skin. Senescent fibroblasts expressed human leukocyte antigen class II (HLA-II) and human cytomegalovirus glycoprotein B (HCMV-gB), becoming direct CD4 CTL targets. Skin-resident CD4 CTLs eliminated HCMV-gB+ senescent fibroblasts in an HLA-II-dependent manner, and HCMV-gB activated CD4 CTLs from the human skin. Collectively, our findings demonstrate HCMV reactivation in senescent cells, which CD4 CTLs can directly eliminate through the recognition of the HCMV-gB antigen.
Collapse
Affiliation(s)
- Tatsuya Hasegawa
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Shiseido Global Innovation Center, Yokohama, Japan.
| | - Tomonori Oka
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Heehwa G Son
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Valeria S Oliver-García
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marjan Azin
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - David J Lieb
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nir Hacohen
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
57
|
Morafraile EC, Saiz-Ladera C, Nieto-Jiménez C, Győrffy B, Nagy A, Velasco G, Pérez-Segura P, Ocaña A. Mapping Immune Correlates and Surfaceome Genes in BRAF Mutated Colorectal Cancers. Curr Oncol 2023; 30:2569-2581. [PMID: 36975409 PMCID: PMC10047091 DOI: 10.3390/curroncol30030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Despite the impressive results obtained with immunotherapy in several cancer types, a significant fraction of patients remains unresponsive to these treatments. In colorectal cancer (CRC), B-RafV600 mutations have been identified in 8–15% of the patients. In this work we interrogated a public dataset to explore the surfaceome of these tumors and found that several genes, such as GP2, CLDN18, AQP5, TM4SF4, NTSR1, VNN1, and CD109, were upregulated. By performing gene set enrichment analysis, we also identified a striking upregulation of genes (CD74, LAG3, HLA-DQB1, HLA-DRB5, HLA-DMA, HLA-DMB, HLA-DPB1, HLA-DRA, HLA-DOA, FCGR2B, HLA-DQA1, HLA-DRB1, and HLA-DPA1) associated with antigen processing and presentation via MHC class II. Likewise, we found a strong correlation between PD1 and PD(L)1 expression and the presence of genes encoding for proteins involved in antigen presentation such as CD74, HLA-DPA1, and LAG3. Furthermore, a similar association was observed for the presence of dendritic cells and macrophages. Finally, a low but positive relationship was observed between tumor mutational burden and neoantigen load. Our findings support the idea that a therapeutic strategy based on the targeting of PD(L)1 together with other receptors also involved in immuno-modulation, such as LAG3, could help to improve current treatments against BRAF-mutated CRC tumors.
Collapse
Affiliation(s)
- Esther Cabañas Morafraile
- Center for Biological Research Margarita Salas (CIB-CSIC), Spanish National Research Council, 28040 Madrid, Spain
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
- Correspondence: (E.C.M.); (A.O.)
| | - Cristina Saiz-Ladera
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Cristina Nieto-Jiménez
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary
- 2nd Department of Pediatrics, Semmelweis University, 1094 Budapest, Hungary
- TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, 1117 Budapest, Hungary
| | - Adam Nagy
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary
- 2nd Department of Pediatrics, Semmelweis University, 1094 Budapest, Hungary
- TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, 1117 Budapest, Hungary
| | - Guillermo Velasco
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Complutense University, 28040 Madrid, Spain
| | - Pedro Pérez-Segura
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Alberto Ocaña
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
- Correspondence: (E.C.M.); (A.O.)
| |
Collapse
|
58
|
Holvoet P. Noncoding RNAs Controlling Oxidative Stress in Cancer. Cancers (Basel) 2023; 15:cancers15041155. [PMID: 36831498 PMCID: PMC9954372 DOI: 10.3390/cancers15041155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Mitochondria in cancer cells tend to overproduce reactive oxygen species (ROS), inducing a vicious cycle between mitochondria, ROS, genomic instability, and cancer development. The first part of this review deals with the role of noncoding RNAs in regulating mitochondrial ROS production and the expression of antioxidants in cancer cells, preventing the increase of ROS in the tumor microenvironment. In addition, cytotoxic T and natural killer cells release high levels of ROS, inducing cell death, while anti-immune regulatory T cells, tumor-associated M2 macrophages, and myeloid-derived suppressor cells, at least at the initial stage of tumor growth, release low levels of ROS supporting tumor growth. Therefore, this review's second part deals with noncoding RNAs' role in regulating the metabolic reprogramming of immune cells about ROS release. Furthermore, the enrichment of noncoding RNAs in microvesicles allows communication between cell types in a tumor and between a tumor and tumor-adjacent tissues. Therefore, the third part illustrates how noncoding RNA-containing microvesicles secreted by mesenchymal stem cells and primary tumor cells may primarily aid the shift of immune cells to a pro-oncogenic phenotype. Conversely, microvesicles released by tumor-adjacent tissues may have the opposite effect. Our review reveals that a specific noncoding RNA may affect oxidative stress by several mechanisms, which may have opposite effects on tumor growth. Furthermore, they may be involved in mechanisms other than regulating oxidative stress, which may level out their effects on oxidative stress and tumor growth. In addition, several noncoding RNAs might share a specific function, making it very unlikely that intervening with only one of these noncoding RNAs will block this particular mechanism. Overall, further validation of the interaction between noncoding RNAs about cancer types and stages of tumor development is warranted.
Collapse
Affiliation(s)
- Paul Holvoet
- Division of Experimental Cardiology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
59
|
Li X, Zhu X, Zhang X, Wang W. Successful treatment of a pure red-cell aplasia patient with γδT cells and clonal TCR gene rearrangement: A case report. Front Immunol 2023; 13:1103448. [PMID: 36726982 PMCID: PMC9885080 DOI: 10.3389/fimmu.2022.1103448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Pure red-cell aplasia (PRCA) is a syndrome associated with reduced erythroid precursors. This report presents the case of an elderly PRCA patient with significantly proliferated γδT cells and clonal T-cell receptor (TCR) gene rearrangement. The cause of this patient's PRCA was confirmed to be an autoimmune disorder rather than malignancy on the basis of flow cytometry, TCR gene rearrangement, and positron emission tomography/computed tomography (PET/CT) findings. Moreover, the γδT cell group identified in this case was captured for the first time under the microscope; this CD4+/CD8- (extremely high CD4/CD8 ratio) population is rare in PRCA patients. Our patient with a monoclonal and polyclonal hybrid of TCR gene rearrangement was sensitive to cyclosporin A (CsA), despite previous reports suggesting that patients with TCR clonal rearrangement may respond poorly to this drug. Overall, this case presents valuable clinical findings for the future diagnosis and management of PRCA caused by autoimmune conditions and further research on γδT cells' autoimmune pathophysiology and gene rearrangement.
Collapse
Affiliation(s)
- Xian Li
- Department of Hematology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Zhu
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Xiaohong Zhang
- Department of Hematology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiqin Wang
- Department of Hematology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,*Correspondence: Weiqin Wang,
| |
Collapse
|
60
|
Eschke M, Moore PF, Chang H, Alber G, Keller SM. Canine peripheral blood TCRαβ T cell atlas: Identification of diverse subsets including CD8A + MAIT-like cells by combined single-cell transcriptome and V(D)J repertoire analysis. Front Immunol 2023; 14:1123366. [PMID: 36911660 PMCID: PMC9995359 DOI: 10.3389/fimmu.2023.1123366] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/19/2023] [Indexed: 02/25/2023] Open
Abstract
The dog is valued as a companion animal and increasingly recognized as a model for human disorders. Given the importance of T cells in health and disease, comprehensive knowledge of canine T cells can contribute to our understanding of pathogenesis mechanisms and inform the development of new treatment strategies. However, the diversity of canine T cells is still poorly understood mainly due to the lack of species-reactive antibodies for use in flow cytometry. The aim of this study was to generate a detailed atlas of peripheral blood TCRαβ+ T cells of healthy dogs using single-cell RNA-sequencing (scRNAseq) combined with immune repertoire sequencing. A total of 22 TCRαβ+ T cell clusters were identified, which were classified into three major groups: CD4-dominant (11 clusters), CD8A-dominant (8 clusters), and CD4/CD8A-mixed (3 clusters). Based on differential gene expression, distinct differentiation states (naïve, effector, memory, exhausted) and lineages (e.g. CD4 T helper and regulatory T cells) could be distinguished. Importantly, several T cell populations were identified, which have not been described in dogs before. Of particular note, our data provide first evidence for the existence of canine mucosa-associated invariant T cell (MAIT)-like cells, representing one of three newly identified FCER1G+ innate-like CD8A+ T cell populations in the peripheral blood of healthy dogs. In conclusion, using scRNAseq combined with immune repertoire sequencing we were able to resolve canine TCRαβ+ T cell populations at unprecedented resolution. The peripheral blood TCRαβ+ T cell atlas of healthy dogs generated here represents an important reference data set for future studies and is of relevance for identifying new targets for T cell-specific therapies.
Collapse
Affiliation(s)
- Maria Eschke
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Peter F Moore
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Haiyang Chang
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, Canada
| | - Gottfried Alber
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Stefan M Keller
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States
| |
Collapse
|
61
|
Regulation of CD4 T Cell Responses by the Transcription Factor Eomesodermin. Biomolecules 2022; 12:biom12111549. [PMID: 36358898 PMCID: PMC9687629 DOI: 10.3390/biom12111549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Central to the impacts of CD4 T cells, both positive in settings of infectious disease and cancer and negative in the settings of autoimmunity and allergy, is their ability to differentiate into distinct effector subsets with specialized functions. The programming required to support such responses is largely dictated by lineage-specifying transcription factors, often called ‘master regulators’. However, it is increasingly clear that many aspects of CD4 T cell immunobiology that can determine the outcomes of disease states involve a broader transcriptional network. Eomesodermin (Eomes) is emerging as an important member of this class of transcription factors. While best studied in CD8 T cells and NK cells, an increasing body of work has focused on impacts of Eomes expression in CD4 T cell responses in an array of different settings. Here, we focus on the varied impacts reported in these studies that, together, indicate the potential of targeting Eomes expression in CD4 T cells as a strategy to improve a variety of clinical outcomes.
Collapse
|
62
|
Xu J, Gu X, Xie Y, He R, Xu J, Xiong L, Peng X, Yang G. Characterization of a novel cysteine protease inhibitor in Baylisascaris schroederi migratory larvae and its role in regulating mice immune cell response. Front Immunol 2022; 13:894820. [PMID: 36105820 PMCID: PMC9464942 DOI: 10.3389/fimmu.2022.894820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Baylisascaris schroederi (B. schroederi) is a severe threat to the survival of giant pandas. Currently, the immune regulation mechanism of B. schroederi is poorly understood. Cysteine protease inhibitors (CPI) play important roles in the regulation of host immune responses against certain nematodes. In this study, a recombinant CPI of B. schroederi migratory larvae (rBsCPI-1) was cloned and expressed, and the effects of rBsCPI-1 on the physiological activities and antigen presentation of monocyte-derived macrophages (MDMs) were analyzed. We also analyzed the regulatory effects of rBsCPI-1 on the proliferation and differentiation of CD4+ T cells. And further identified the signaling pathways which play important roles in this process. The results showed that rBsCPI-1 activated the TLR2/4-small Rho GTPases-PAK1 pathway. On the one hand, it increased the phagocytosis and migration of MDMs. On the other hand, it activated downstream MAPK and NF-κB signaling pathways to induce apoptosis of MDMs. rBsCPI-1 also induced MDMs to polarize to the M2 subtype, thereby exerting an immunosuppressive effect. Meanwhile, rBsCPI-1 inhibited the antigen presentation process by decreasing the expression of MHC-II molecules, further inhibiting the proliferation of CD4+ T cells and inducing a Th1/Th2 mixed immune response. Treg cells with immunosuppressive effects were increased. The PD-L2/PD-1 and CD80/CTLA-4 signaling pathways between MDMs and CD4+ T cells were also activated by rBsCPI-1. In conclusion, this study preliminarily confirmed that rBsCPI-1 affects the physiological activities and polarization of MDMs through the TLR2/4 signaling pathway, and further interferes with antigen presentation response, inducing CD4+ T cells to play an immunosuppressive cellular response during the migratory process of B. schroederi. Thus, this study will provide a reference for elucidating the immune evasion mechanism of B. schroederi and developing new drugs and protective vaccines against B. schroederi.
Collapse
Affiliation(s)
- Jingyun Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Lang Xiong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Wenjiang, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- *Correspondence: Guangyou Yang,
| |
Collapse
|
63
|
Tamura Y, Yamane K, Kawano Y, Bullinger L, Wirtz T, Weber T, Sander S, Ohki S, Kitajima Y, Okada S, Rajewsky K, Yasuda T. Concomitant Cytotoxic Effector Differentiation of CD4+ and CD8+ T Cells in Response to EBV-Infected B Cells. Cancers (Basel) 2022; 14:cancers14174118. [PMID: 36077655 PMCID: PMC9454722 DOI: 10.3390/cancers14174118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The Epstein–Barr virus (EBV) is a γ-herpes virus that primarily infects human B cells, and more than 90% of adults have experienced infection. EBV+ B cells express several viral proteins, transmitting signals important for the transformation and tumorigenesis of the infected B cells. Immune surveillance by the host immune system is important to suppress such abnormal expansion of EBV-infected B cells. Here we found that both CD4+ T cells and CD8+ T cells show similar gene expression patterns relating to cytotoxicity towards EBV-infected B cells. EBV-specific cytotoxic CD4+ T cells markedly expressed T-bet, Granzyme B, and Perforin alongside killing activity, which could reflect mechanisms shared with cytotoxic CD8+ T cells. Our findings support the concept that, upon EBV and perhaps other viral infections, T cells of different subsets can be drawn into common pathways mediating immune surveillance through cytotoxicity. Abstract Most people infected by EBV acquire specific immunity, which then controls latent infection throughout their life. Immune surveillance of EBV-infected cells by cytotoxic CD4+ T cells has been recognized; however, the molecular mechanism of generating cytotoxic effector T cells of the CD4+ subset remains poorly understood. Here we compared phenotypic features and the transcriptome of EBV-specific effector-memory CD4+ T cells and CD8+ T cells in mice and found that both T cell types show cytotoxicity and, to our surprise, widely similar gene expression patterns relating to cytotoxicity. Similar to cytotoxic CD8+ T cells, EBV-specific cytotoxic CD4+ T cells from human peripheral blood expressed T-bet, Granzyme B, and Perforin and upregulated the degranulation marker, CD107a, immediately after restimulation. Furthermore, T-bet expression in cytotoxic CD4+ T cells was highly correlated with Granzyme B and Perforin expression at the protein level. Thus, differentiation of EBV-specific cytotoxic CD4+ T cells is possibly controlled by mechanisms shared by cytotoxic CD8+ T cells. T-bet-mediated transcriptional regulation may explain the similarity of cytotoxic effector differentiation between CD4+ T cells and CD8+ T cells, implicating that this differentiation pathway may be directed by environmental input rather than T cell subset.
Collapse
Affiliation(s)
- Yumi Tamura
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Keita Yamane
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yohei Kawano
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Chariteé-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Tristan Wirtz
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Timm Weber
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Sandrine Sander
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Shun Ohki
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yasuo Kitajima
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Klaus Rajewsky
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Tomoharu Yasuda
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Correspondence: ; Tel.: +81-82-257-5175
| |
Collapse
|
64
|
Andreatta M, Tjitropranoto A, Sherman Z, Kelly MC, Ciucci T, Carmona SJ. A CD4 + T cell reference map delineates subtype-specific adaptation during acute and chronic viral infections. eLife 2022; 11:e76339. [PMID: 35829695 PMCID: PMC9323004 DOI: 10.7554/elife.76339] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
CD4+ T cells are critical orchestrators of immune responses against a large variety of pathogens, including viruses. While multiple CD4+ T cell subtypes and their key transcriptional regulators have been identified, there is a lack of consistent definition for CD4+ T cell transcriptional states. In addition, the progressive changes affecting CD4+ T cell subtypes during and after immune responses remain poorly defined. Using single-cell transcriptomics, we characterized the diversity of CD4+ T cells responding to self-resolving and chronic viral infections in mice. We built a comprehensive map of virus-specific CD4+ T cells and their evolution over time, and identified six major cell states consistently observed in acute and chronic infections. During the course of acute infections, T cell composition progressively changed from effector to memory states, with subtype-specific gene modules and kinetics. Conversely, in persistent infections T cells acquired distinct, chronicity-associated programs. By single-cell T cell receptor (TCR) analysis, we characterized the clonal structure of virus-specific CD4+ T cells across individuals. Virus-specific CD4+ T cell responses were essentially private across individuals and most T cells differentiated into both Tfh and Th1 subtypes irrespective of their TCR. Finally, we showed that our CD4+ T cell map can be used as a reference to accurately interpret cell states in external single-cell datasets across tissues and disease models. Overall, this study describes a previously unappreciated level of adaptation of the transcriptional states of CD4+ T cells responding to viruses and provides a new computational resource for CD4+ T cell analysis.
Collapse
Affiliation(s)
- Massimo Andreatta
- Department of Oncology, UNIL CHUV and Ludwig Institute for Cancer Research Lausanne, University of LausanneLausanneSwitzerland
- Agora Cancer Research CenterLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Ariel Tjitropranoto
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of RochesterRochesterUnited States
| | - Zachary Sherman
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of RochesterRochesterUnited States
| | - Michael C Kelly
- Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research IncFrederickUnited States
| | - Thomas Ciucci
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of RochesterRochesterUnited States
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Santiago J Carmona
- Department of Oncology, UNIL CHUV and Ludwig Institute for Cancer Research Lausanne, University of LausanneLausanneSwitzerland
- Agora Cancer Research CenterLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| |
Collapse
|