51
|
Pumirat P, Vanaporn M, Boonyuen U, Indrawattana N, Rungruengkitkun A, Chantratita N. Effects of sodium chloride on heat resistance, oxidative susceptibility, motility, biofilm and plaque formation of Burkholderia pseudomallei. Microbiologyopen 2017. [PMID: 28643413 PMCID: PMC5552950 DOI: 10.1002/mbo3.493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Burkholderia pseudomallei is an environmental saprophyte and the causative agent of melioidosis, a severe infectious disease prevalent in tropical areas, including southeast Asia and northern Australia. In Thailand, the highest incidence of melioidosis is in the northeast region, where saline soil and water are abundant. We hypothesized that B. pseudomallei develops an ability to thrive in saline conditions and gains a selective ecological advantage over other soil-dwelling microorganisms. However, little is known about how an elevated NaCl concentration affects survival and adaptive changes in this pathogen. In this study, we examined the adaptive changes in six isolates of B. pseudomallei after growth in Luria-Bertani medium containing different concentrations of NaCl at 37°C for 6 hr. The bacteria were then investigated for resistance to heat at 50°C and killing by hydrogen peroxide (H2 O2 ). In addition, flagellar production, biofilm formation, and the plaque formation efficiency of B. pseudomallei after culture in saline conditions were observed. In response to exposure to 150 and 300 mmol L-1 NaCl, all B. pseudomallei isolates showed significantly increased thermal tolerance, oxidative resistance, and plaque-forming efficiency. However, NaCl exposure notably decreased the number of B. pseudomallei flagella. Taken together, these results provide insight into the adaptations of B. pseudomallei that might be crucial for survival and persistence in the host and/or endemic environments with high salinity.
Collapse
Affiliation(s)
- Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Muthita Vanaporn
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Amporn Rungruengkitkun
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
52
|
Pumpuang A, Dunachie SJ, Phokrai P, Jenjaroen K, Sintiprungrat K, Boonsilp S, Brett PJ, Burtnick MN, Chantratita N. Comparison of O-polysaccharide and hemolysin co-regulated protein as target antigens for serodiagnosis of melioidosis. PLoS Negl Trop Dis 2017; 11:e0005499. [PMID: 28358816 PMCID: PMC5395236 DOI: 10.1371/journal.pntd.0005499] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/18/2017] [Accepted: 03/17/2017] [Indexed: 12/22/2022] Open
Abstract
Background Melioidosis is a severe disease caused by Burkholderia pseudomallei. Clinical manifestations are diverse and acute infections require immediate treatment with effective antibiotics. While culture is the current diagnostic standard, it is time-consuming and has low sensitivity. In endemic areas, inaccessibility to biosafety level 3 facilities and a lack of good serodiagnostic tools can impede diagnosis and disease surveillance. Recent studies have suggested that O-polysaccharide (OPS) and hemolysin co-regulated protein 1 (Hcp1) are promising target antigens for serodiagnosis of melioidosis. Methodology/Principle findings We evaluated rapid ELISAs using crude antigens, purified OPS and Hcp1 to measure antibody levels in three sets of sera: (i) 419 serum samples from melioidosis patients, Thai and U.S. healthy donors, (ii) 120 serum samples from patients with other bacterial infections, and (iii) 423 serum samples from 200 melioidosis patients obtained upon admission and at 12 and 52 weeks post-recovery. We observed significantly higher antibody levels using the crude antigen prepared from wild type B. pseudomallei K96243 compared to that of an OPS-mutant. The areas under receiver operator characteristics (AUROCCs) for diagnosis were compared for individual Hcp1-ELISA or OPS-ELISA or combined Hcp1/OPS-ELISA. For Thai donors, AUROCCs were highest and comparable between the Hcp1-ELISA and the combined Hcp1/OPS-ELISA (0.95 versus 0.94). For U.S. donors, the AUROCC was highest for the combined Hcp1/OPS-ELISA (0.96). Significantly higher seropositivity was observed in diabetic patients compared to those without diabetes for both the Hcp1-ELISA (87.3% versus 69.7%) and OPS-ELISA (88.1% versus 60.6%). Although antibody levels for Hcp1 were highest upon admission, the titers declined by week 52 post-recovery. Conclusions/Significance Hcp1 and OPS are promising candidates for serodiagnosis of melioidosis in different groups of patients. The Hcp1-ELISA performed better than the OPS-ELISA in endemic areas, thus, Hcp1 represents a promising target antigen for the development of POC tests for acute melioidosis. Melioidosis, caused by Burkholderia pseudomallei, is a life-threatening infection endemic in tropical countries. Definitive diagnosis of melioidosis relies upon bacterial culture which requires suitable laboratory facilities and reliable antibody testing. To obtain an effective target antigen for use in a simple point-of-care (POC) test, rapid ELISAs using crude B. pseudomallei antigen preparations or purified O-polysaccharide (OPS) and hemolysin co-regulated protein (Hcp1) were compared using serum samples from three large collections obtained from melioidosis patients and patients with other bacterial infections. We detected high levels of antibodies to Hcp1 and OPS in serum from melioidosis patients upon admission and showed that anti-Hcp1 levels declined post-recovery. When serum samples from endemic areas were tested, the performance of the Hcp1-ELISA and combined Hcp1/OPS-ELISA were higher than the OPS-ELISA. When serum from non-endemic areas was tested, the combined Hcp1/OPS-ELISA gave the highest performance. Both the OPS- and Hcp1-based ELISAs were useful for detection of antibodies in various groups of patients including diabetics. Since anti-Hcp1 titers in melioidosis patient serum were higher than anti-OPS titers, Hcp1 is an attractive candidate for further development of a rapid POC test for use in endemic areas.
Collapse
Affiliation(s)
- Apinya Pumpuang
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Pathology, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Susanna J. Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Phornpun Phokrai
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kemajittra Jenjaroen
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kitisak Sintiprungrat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Siriphan Boonsilp
- Department of Clinical Pathology, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Paul J. Brett
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, United States of America
| | - Mary N. Burtnick
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, United States of America
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
53
|
Bearss JJ, Hunter M, Dankmeyer JL, Fritts KA, Klimko CP, Weaver CH, Shoe JL, Quirk AV, Toothman RG, Webster WM, Fetterer DP, Bozue JA, Worsham PL, Welkos SL, Amemiya K, Cote CK. Characterization of pathogenesis of and immune response to Burkholderia pseudomallei K96243 using both inhalational and intraperitoneal infection models in BALB/c and C57BL/6 mice. PLoS One 2017; 12:e0172627. [PMID: 28235018 PMCID: PMC5325312 DOI: 10.1371/journal.pone.0172627] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/07/2017] [Indexed: 01/02/2023] Open
Abstract
Burkholderia pseudomallei, the etiologic agent of melioidosis, is a Gram negative bacterium designated as a Tier 1 threat. This bacterium is known to be endemic in Southeast Asia and Northern Australia and can infect humans and animals by several routes. Inhalational melioidosis has been associated with monsoonal rains in endemic areas and is also a significant concern in the biodefense community. There are currently no effective vaccines for B. pseudomallei and antibiotic treatment can be hampered by non-specific symptomology and also the high rate of naturally occurring antibiotic resistant strains. Well-characterized animal models will be essential when selecting novel medical countermeasures for evaluation prior to human clinical trials. Here, we further characterize differences between the responses of BALB/c and C57BL/6 mice when challenged with low doses of a low-passage and well-defined stock of B. pseudomallei K96243 via either intraperitoneal or aerosol routes of exposure. Before challenge, mice were implanted with a transponder to collect body temperature readings, and daily body weights were also recorded. Mice were euthanized on select days for pathological analyses and determination of the bacterial burden in selected tissues (blood, lungs, liver, and spleen). Additionally, spleen homogenate and sera samples were analyzed to better characterize the host immune response after infection with aerosolized bacteria. These clinical, pathological, and immunological data highlighted and confirmed important similarities and differences between these murine models and exposure routes.
Collapse
Affiliation(s)
- Jeremy J. Bearss
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - Melissa Hunter
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Jennifer L. Dankmeyer
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Kristen A. Fritts
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Christopher P. Klimko
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Chris H. Weaver
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Jennifer L. Shoe
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Avery V. Quirk
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Ronald G. Toothman
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Wendy M. Webster
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - David P. Fetterer
- BioStatisitics Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Joel A. Bozue
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Patricia L. Worsham
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Susan L. Welkos
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Kei Amemiya
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Christopher K. Cote
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| |
Collapse
|
54
|
pH Alkalinization by Chloroquine Suppresses Pathogenic Burkholderia Type 6 Secretion System 1 and Multinucleated Giant Cells. Infect Immun 2016; 85:IAI.00586-16. [PMID: 27799332 DOI: 10.1128/iai.00586-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/23/2016] [Indexed: 01/14/2023] Open
Abstract
Burkholderia mallei and B. pseudomallei cause glanders and melioidosis, respectively, in humans and animals. A hallmark of pathogenesis is the formation of granulomas containing multinucleated giant cells (MNGCs) and cell death. These processes depend on type 6 secretion system 1 (T6SS-1), which is required for virulence in animals. We examined the cell biology of MNGC formation and cell death. We found that chloroquine diphosphate (CLQ), an antimalarial drug, inhibits Burkholderia growth, phagosomal escape, and subsequent MNGC formation. This depends on CLQ's ability to neutralize the acid pH because other alkalinizing compounds similarly inhibit escape and MNGC formation. CLQ inhibits bacterial virulence protein expression because T6SS-1 and some effectors of type 3 secretion system 3 (T3SS-3), which is also required for virulence, are expressed at acid pH. We show that acid pH upregulates the expression of Hcp1 of T6SS-1 and TssM, a protein coregulated with T6SS-1. Finally, we demonstrate that CLQ treatment of Burkholderia-infected Madagascar hissing cockroaches (HCs) increases their survival. This study highlights the multiple mechanisms by which CLQ inhibits growth and virulence and suggests that CLQ be further tested and considered, in conjunction with antibiotic use, for the treatment of diseases caused by Burkholderia.
Collapse
|
55
|
Techawiwattanaboon T, Chareonsudjai S. A predicted cation transporter protein, BPSS1228, is involved in intracellular behaviour of Burkholderia pseudomallei in a human lung epithelial cell line (A549). FEMS Microbiol Lett 2016; 363:fnw259. [PMID: 28003338 DOI: 10.1093/femsle/fnw259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/10/2016] [Accepted: 11/10/2016] [Indexed: 12/15/2022] Open
Abstract
Burkholderia pseudomallei causes melioidosis, a potentially fatal infectious disease in tropical and subtropical countries worldwide. The intracellular behaviour of this pathogen in host cells has been reported to impact the severity of melioidosis, including the development of septicaemia, a consequence of pneumonia melioidosis. We previously identified a predicted cation transporter protein, BPSS1228, that participates in the transitional stage of this intracellular pathogen. For further analysis, in this study B. pseudomallei bpss1228 mutant and complemented strains were constructed and bacterial infectivity on human lung epithelial cells, A549, investigated in vitro Burkholderia pseudomallei bpss1228 mutant showed impaired bacterial adhesion and invasion into A549 cells compared with wild-type strain, while the deficient phenotypes were restored to wild-type levels by the complemented strain. Additionally, the inactivation of bpss1228 in the mutant strain affected flagella-based swimming on a semi-solid surface and resistance to acid stresses simulating intracellular environments. These observations of BPSS1228 relating to B. pseudomallei infection strategies shed a new light on its association with intracellular B. pseudomallei during the interaction with host cells.
Collapse
Affiliation(s)
- Teerasit Techawiwattanaboon
- Department of Microbiology, Faculty of Medicine, Melioidosis Research Center and Biofilm Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Melioidosis Research Center and Biofilm Research Group, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
56
|
Memišević V, Kumar K, Zavaljevski N, DeShazer D, Wallqvist A, Reifman J. DBSecSys 2.0: a database of Burkholderia mallei and Burkholderia pseudomallei secretion systems. BMC Bioinformatics 2016; 17:387. [PMID: 27650316 PMCID: PMC5029111 DOI: 10.1186/s12859-016-1242-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/08/2016] [Indexed: 01/08/2023] Open
Abstract
Background Burkholderia mallei and B. pseudomallei are the causative agents of glanders and melioidosis, respectively, diseases with high morbidity and mortality rates. B. mallei and B. pseudomallei are closely related genetically; B. mallei evolved from an ancestral strain of B. pseudomallei by genome reduction and adaptation to an obligate intracellular lifestyle. Although these two bacteria cause different diseases, they share multiple virulence factors, including bacterial secretion systems, which represent key components of bacterial pathogenicity. Despite recent progress, the secretion system proteins for B. mallei and B. pseudomallei, their pathogenic mechanisms of action, and host factors are not well characterized. Results We previously developed a manually curated database, DBSecSys, of bacterial secretion system proteins for B. mallei. Here, we report an expansion of the database with corresponding information about B. pseudomallei. DBSecSys 2.0 contains comprehensive literature-based and computationally derived information about B. mallei ATCC 23344 and literature-based and computationally derived information about B. pseudomallei K96243. The database contains updated information for 163 B. mallei proteins from the previous database and 61 additional B. mallei proteins, and new information for 281 B. pseudomallei proteins associated with 5 secretion systems, their 1,633 human- and murine-interacting targets, and 2,400 host-B. mallei interactions and 2,286 host-B. pseudomallei interactions. The database also includes information about 13 pathogenic mechanisms of action for B. mallei and B. pseudomallei secretion system proteins inferred from the available literature or computationally. Additionally, DBSecSys 2.0 provides details about 82 virulence attenuation experiments for 52 B. mallei secretion system proteins and 98 virulence attenuation experiments for 61 B. pseudomallei secretion system proteins. We updated the Web interface and data access layer to speed-up users’ search of detailed information for orthologous proteins related to secretion systems of the two pathogens. Conclusions The updates of DBSecSys 2.0 provide unique capabilities to access comprehensive information about secretion systems of B. mallei and B. pseudomallei. They enable studies and comparisons of corresponding proteins of these two closely related pathogens and their host-interacting partners. The database is available at http://dbsecsys.bhsai.org.
Collapse
Affiliation(s)
- Vesna Memišević
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Kamal Kumar
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Nela Zavaljevski
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - David DeShazer
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA.
| |
Collapse
|
57
|
Lewis ERG, Torres AG. The art of persistence-the secrets to Burkholderia chronic infections. Pathog Dis 2016; 74:ftw070. [PMID: 27440810 DOI: 10.1093/femspd/ftw070] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
Abstract
The Gram-negative proteobacteria genus Burkholderia encompasses multiple bacterial species that are pathogenic to humans and other vertebrates. Two pathogenic species of interest within this genus are Burkholderia pseudomallei (Bpm) and the B. cepacia complex (Bcc); the former is the causative agent of melioidosis in humans and other mammals, and the latter is associated with pneumonia in immunocompromised patients. One understudied and shared characteristic of these two pathogenic groups is their ability to persist and establish chronic infection within the host. In this review, we will explore the depth of knowledge about chronic infections caused by persistent Bpm and Bcc. We examine the host risk factors and immune responses associated with more severe chronic infections. We also discuss host adaptation and phenotypes associated with persistent Burkholderia species. Lastly, we survey how other intracellular bacteria associated with chronic infections are combatted and explore possible future applications to target Burkholderia Our goal is to highlight understudied areas that should be addressed for a more thorough understanding of chronic Burkholderia infections and how to combat them.
Collapse
Affiliation(s)
- Eric R G Lewis
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA Department of Pathology, Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 7555-1070, USA
| |
Collapse
|
58
|
Li Q, Fang Y, Zhu P, Ren CY, Chen H, Gu J, Jia YP, Wang K, Tong WD, Zhang WJ, Pan J, Lu DS, Tang B, Mao XH. Burkholderia pseudomallei survival in lung epithelial cells benefits from miRNA-mediated suppression of ATG10. Autophagy 2016; 11:1293-307. [PMID: 26151773 DOI: 10.1080/15548627.2015.1058474] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, a disease with high mortality, which is prevalent in tropical regions of the world. A recent study shows that B. pseudomallei can survive inside mammalian cells because of its ability to actively evade cell autophagy. However, the underlying mechanisms remain unclear. In the present study, based on microarray screening, we found that ATG10 was downregulated following B. pseudomallei infection in A549 human lung epithelial cells. Forced expression of ATG10 accelerated the elimination of intracellular B. pseudomallei by enhancing the process of autophagy. Moreover, MIR4458, MIR4667-5p, and MIR4668-5p were found, by microarray screening, to be upregulated in response to B. pseudomallei infection. These 3 novel miRNAs, MIR4458, MIR4667-5p, and MIR4668-5p, targeted to the 3'-untranslated region of ATG10 in different time-course and spatial manners. Upregulation of these miRNAs reduced the level of ATG10 and inhibited autophagy, leading to increasing survival rate of intracellular B. pseudomallei. Furthermore, the increase of these miRNAs was correlated with the reduced promoter methylation status in A549 cells in response to B. pseudomallei infection. Our results reveal that 3 novel miRNAs regulate autophagy-mediated elimination of B. pseudomallei by targeting ATG10, and provide potential targets for clinical treatment.
Collapse
Affiliation(s)
- Qian Li
- a Department of Clinical Microbiology and Immunology ; Southwest Hospital & College of Medical Laboratory Science; Third Military Medical University ; Chongqing , China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Weehuizen TAF, Hommes TJ, Lankelma JM, de Jong HK, Roelofs JJ, de Vos AF, Colonna M, van der Poll T, Wiersinga WJ. Triggering Receptor Expressed on Myeloid Cells (TREM)-2 Impairs Host Defense in Experimental Melioidosis. PLoS Negl Trop Dis 2016; 10:e0004747. [PMID: 27253382 PMCID: PMC4890812 DOI: 10.1371/journal.pntd.0004747] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/07/2016] [Indexed: 12/22/2022] Open
Abstract
Background Triggering receptor expressed on myeloid cells (TREM) -1 and TREM-2 are key regulators of the inflammatory response that are involved in the clearance of invading pathogens. Melioidosis, caused by the "Tier 1" biothreat agent Burkholderia pseudomallei, is a common form of community-acquired sepsis in Southeast-Asia. TREM-1 has been suggested as a biomarker for sepsis and melioidosis. We aimed to characterize the expression and function of TREM-1 and TREM-2 in melioidosis. Methodology/Principal Findings Wild-type, TREM-1/3 (Trem-1/3-/-) and TREM-2 (Trem-2-/-) deficient mice were intranasally infected with live B. pseudomallei and killed after 24, and/or 72 h for the harvesting of lungs, liver, spleen, and blood. Additionally, survival studies were performed. Cellular functions were further analyzed by stimulation and/or infection of isolated cells. TREM-1 and TREM-2 expression was increased both in the lung and liver of B. pseudomallei-infected mice. Strikingly, Trem-2-/-, but not Trem-1/3-/-, mice displayed a markedly improved host defense as reflected by a strong survival advantage together with decreased bacterial loads, less inflammation and reduced organ injury. Cellular responsiveness of TREM-2, but not TREM-1, deficient blood and bone-marrow derived macrophages (BMDM) was diminished upon exposure to B. pseudomallei. Phagocytosis and intracellular killing of B. pseudomallei by BMDM and alveolar macrophages were TREM-1 and TREM-2-independent. Conclusions/Significance We found that TREM-2, and to a lesser extent TREM-1, plays a remarkable detrimental role in the host defense against a clinically relevant Gram-negative pathogen in mice: TREM-2 deficiency restricts the inflammatory response, thereby decreasing organ damage and mortality. Triggering receptor expressed on myeloid cells (TREM)-1 and -2 are receptors on immune cells that act as mediators of the innate immune response. It is thought that TREM-1 amplifies the immune response, while TREM-2 acts as a negative regulator. Previously, we found that TREM-1 is upregulated in melioidosis patients. In contrast, nothing is known on TREM-2 expression and its role in melioidosis. In this study we examined the expression and functional role of both TREM-1 and -2 in a murine melioidosis model. We found that TREM-1 and-2 expression was upregulated during melioidosis. Using our experimental melioidosis model, we observed that Trem-2-/- mice were protected against B.pseudomallei-induced lethality. Trem-2-/- mice demonstrated reduced bacterial loads, inflammation and organ damage compared to wild-type mice in experimental melioidosis. Despite reduced bacterial dissemination of B.pseudomallei to distant organs in Trem-1/3-/ mice-, no differences in survival were found between Trem-1/3-/- and wild-type mice during melioidosis. Lastly, we investigated cellular functions of TREM-1 and TREM-2 and found that TREM-2 deficiency led to decreased cellular responsiveness to B. pseudomallei infection. In conclusion, we found that TREM-2 plays an important role during experimental murine melioidosis. TREM-2-deficiency reduces inflammation and organ damage, thereby improving survival.
Collapse
Affiliation(s)
- Tassili A. F. Weehuizen
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, Amsterdam, the Netherlands
- * E-mail: ;
| | - Tijmen J. Hommes
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, Amsterdam, the Netherlands
| | - Jacqueline M. Lankelma
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, Amsterdam, the Netherlands
| | - Hanna K. de Jong
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, Amsterdam, the Netherlands
| | | | - Alex F. de Vos
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, Amsterdam, the Netherlands
| | - Marco Colonna
- Department of Pathology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Tom van der Poll
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, Amsterdam, the Netherlands
- Department of Medicine, Division of Infectious Diseases, Academic Medical Center, Amsterdam, the Netherlands
| | - W. Joost Wiersinga
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, Amsterdam, the Netherlands
- Department of Medicine, Division of Infectious Diseases, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
60
|
Aschenbroich SA, Lafontaine ER, Hogan RJ. Melioidosis and glanders modulation of the innate immune system: barriers to current and future vaccine approaches. Expert Rev Vaccines 2016; 15:1163-81. [PMID: 27010618 DOI: 10.1586/14760584.2016.1170598] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Burkholderia pseudomallei and Burkholderia mallei are pathogenic bacteria causing fatal infections in animals and humans. Both organisms are classified as Tier 1 Select Agents owing to their highly fatal nature, potential/prior use as bioweapons, severity of disease via respiratory exposure, intrinsic resistance to antibiotics, and lack of a current vaccine. Disease manifestations range from acute septicemia to chronic infection, wherein the facultative intracellular lifestyle of these organisms promotes persistence within a broad range of hosts. This ability to thrive intracellularly is thought to be related to exploitation of host immune response signaling pathways. There are currently considerable gaps in our understanding of the molecular strategies employed by these pathogens to modulate these pathways and evade intracellular killing. A better understanding of the specific molecular basis for dysregulation of host immune responses by these organisms will provide a stronger platform to identify novel vaccine targets and develop effective countermeasures.
Collapse
Affiliation(s)
- Sophie A Aschenbroich
- a Department of Pathology , College of Veterinary Medicine, University of Georgia , Athens , GA , USA
| | - Eric R Lafontaine
- b Department of Infectious Diseases , College of Veterinary Medicine, University of Georgia , Athens , GA , USA
| | - Robert J Hogan
- b Department of Infectious Diseases , College of Veterinary Medicine, University of Georgia , Athens , GA , USA.,c Department of Veterinary Biosciences and Diagnostic Imaging , College of Veterinary Medicine, University of Georgia , Athens , GA , USA
| |
Collapse
|
61
|
Bozue JA, Chaudhury S, Amemiya K, Chua J, Cote CK, Toothman RG, Dankmeyer JL, Klimko CP, Wilhelmsen CL, Raymond JW, Zavaljevski N, Reifman J, Wallqvist A. Phenotypic Characterization of a Novel Virulence-Factor Deletion Strain of Burkholderia mallei That Provides Partial Protection against Inhalational Glanders in Mice. Front Cell Infect Microbiol 2016; 6:21. [PMID: 26955620 PMCID: PMC4767903 DOI: 10.3389/fcimb.2016.00021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/01/2016] [Indexed: 01/29/2023] Open
Abstract
Burkholderia mallei (Bm) is a highly infectious intracellular pathogen classified as a category B biological agent by the Centers for Disease Control and Prevention. After respiratory exposure, Bm establishes itself within host macrophages before spreading into major organ systems, which can lead to chronic infection, sepsis, and death. Previously, we combined computational prediction of host-pathogen interactions with yeast two-hybrid experiments and identified novel virulence factor genes in Bm, including BMAA0553, BMAA0728 (tssN), and BMAA1865. In the present study, we used recombinant allelic exchange to construct deletion mutants of BMAA0553 and tssN (ΔBMAA0553 and ΔTssN, respectively) and showed that both deletions completely abrogated virulence at doses of >100 times the LD50 of the wild-type Bm strain. Analysis of ΔBMAA0553- and ΔTssN-infected mice showed starkly reduced bacterial dissemination relative to wild-type Bm, and subsequent in vitro experiments characterized pathogenic phenotypes with respect to intracellular growth, macrophage uptake and phagosomal escape, actin-based motility, and multinucleated giant cell formation. Based on observed in vitro and in vivo phenotypes, we explored the use of ΔTssN as a candidate live-attenuated vaccine. Mice immunized with aerosolized ΔTssN showed a 21-day survival rate of 67% after a high-dose aerosol challenge with the wild-type Bm ATCC 23344 strain, compared to a 0% survival rate for unvaccinated mice. However, analysis of histopathology and bacterial burden showed that while the surviving vaccinated mice were protected from acute infection, Bm was still able to establish a chronic infection. Vaccinated mice showed a modest IgG response, suggesting a limited potential of ΔTssN as a vaccine candidate, but also showed prolonged elevation of pro-inflammatory cytokines, underscoring the role of cellular and innate immunity in mitigating acute infection in inhalational glanders.
Collapse
Affiliation(s)
- Joel A Bozue
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Sidhartha Chaudhury
- Telemedicine and Advanced Technology Research Center, Biotechnology HPC Software Applications Institute, United States Army Medical Research and Materiel Command Fort Detrick, MD, USA
| | - Kei Amemiya
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Jennifer Chua
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Christopher K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Ronald G Toothman
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Jennifer L Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Christopher P Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Catherine L Wilhelmsen
- Pathology Division, United States Army of Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Jolynn W Raymond
- Pathology Division, United States Army of Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | - Nela Zavaljevski
- Telemedicine and Advanced Technology Research Center, Biotechnology HPC Software Applications Institute, United States Army Medical Research and Materiel Command Fort Detrick, MD, USA
| | - Jaques Reifman
- Telemedicine and Advanced Technology Research Center, Biotechnology HPC Software Applications Institute, United States Army Medical Research and Materiel Command Fort Detrick, MD, USA
| | - Anders Wallqvist
- Telemedicine and Advanced Technology Research Center, Biotechnology HPC Software Applications Institute, United States Army Medical Research and Materiel Command Fort Detrick, MD, USA
| |
Collapse
|
62
|
Willcocks SJ, Denman CC, Atkins HS, Wren BW. Intracellular replication of the well-armed pathogen Burkholderia pseudomallei. Curr Opin Microbiol 2016; 29:94-103. [DOI: 10.1016/j.mib.2015.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 12/31/2022]
|
63
|
The Burkholderia pseudomallei Proteins BapA and BapC Are Secreted TTSS3 Effectors and BapB Levels Modulate Expression of BopE. PLoS One 2015; 10:e0143916. [PMID: 26624293 PMCID: PMC4666416 DOI: 10.1371/journal.pone.0143916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 11/11/2015] [Indexed: 12/15/2022] Open
Abstract
Many Gram-negative pathogens use a type III secretion system (TTSS) for the injection of bacterial effector proteins into host cells. The injected effector proteins play direct roles in modulation of host cell pathways for bacterial benefit. Burkholderia pseudomallei, the causative agent of melioidosis, expresses three different TTSSs. One of these systems, the TTSS3, is essential for escape from host endosomes and therefore intracellular survival and replication. Here we have characterized three putative TTSS3 proteins; namely BapA, BapB and BapC. By employing a tetracysteine (TC)-FlAsH™ labelling technique to monitor the secretion of TC-tagged fusion proteins, BapA and BapC were shown to be secreted during in vitro growth in a TTSS3-dependant manner, suggesting a role as TTSS3 effectors. Furthermore, we constructed B. pseudomallei bapA, bapB and bapC mutants and used the well-characterized TTSS3 effector BopE as a marker of secretion to show that BapA, BapB and BapC are not essential for the secretion process. However, BopE transcription and secretion were significantly increased in the bapB mutant, suggesting that BapB levels modulate BopE expression. In a BALB/c mouse model of acute melioidosis, the bapA, bapB and bapC mutants showed a minor reduction of in vivo fitness. Thus, this study defines BapA and BapC as novel TTSS3 effectors, BapB as a regulator of BopE production, and all three as necessary for full B. pseudomallei in vivo fitness.
Collapse
|
64
|
David J, Bell RE, Clark GC. Mechanisms of Disease: Host-Pathogen Interactions between Burkholderia Species and Lung Epithelial Cells. Front Cell Infect Microbiol 2015; 5:80. [PMID: 26636042 PMCID: PMC4649042 DOI: 10.3389/fcimb.2015.00080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/30/2015] [Indexed: 11/17/2022] Open
Abstract
Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widely recognized as an important player in innate immunity and the early response to infections. Here we review the complex relationship between Burkholderia species and epithelial cells with an emphasis on the most pathogenic species, Burkholderia pseudomallei and Burkholderia mallei. The current gaps in knowledge in our understanding are highlighted along with the epithelial host-pathogen interactions that offer potential opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jonathan David
- Microbiology, Biomedical Sciences, Defence Science and Technology Laboratory Salisbury, UK
| | - Rachel E Bell
- Microbiology, Biomedical Sciences, Defence Science and Technology Laboratory Salisbury, UK ; Division of Immunology, Infection and Inflammatory Disease, Centre for Molecular and Cellular Biology of Inflammation, King's College London London, UK
| | - Graeme C Clark
- Microbiology, Biomedical Sciences, Defence Science and Technology Laboratory Salisbury, UK
| |
Collapse
|
65
|
Chiang CY, Ulrich RL, Ulrich MP, Eaton B, Ojeda JF, Lane DJ, Kota KP, Kenny TA, Ladner JT, Dickson SP, Kuehl K, Raychaudhuri R, Sun M, Bavari S, Wolcott MJ, Covell D, Panchal RG. Characterization of the murine macrophage response to infection with virulent and avirulent Burkholderia species. BMC Microbiol 2015; 15:259. [PMID: 26545875 PMCID: PMC4636792 DOI: 10.1186/s12866-015-0593-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 10/28/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm) are Gram-negative facultative intracellular pathogens, which are the causative agents of melioidosis and glanders, respectively. Depending on the route of exposure, aerosol or transcutaneous, infection by Bp or Bm can result in an extensive range of disease - from acute to chronic, relapsing illness to fatal septicemia. Both diseases are associated with difficult diagnosis and high fatality rates. About ninety five percent of patients succumb to untreated septicemic infections and the fatality rate is 50 % even when standard antibiotic treatments are administered. RESULTS The goal of this study is to profile murine macrophage-mediated phenotypic and molecular responses that are characteristic to a collection of Bp, Bm, Burkholderia thailandensis (Bt) and Burkholderia oklahomensis (Bo) strains obtained from humans, animals, environment and geographically diverse locations. Burkholderia spp. (N = 21) were able to invade and replicate in macrophages, albeit to varying degrees. All Bp (N = 9) and four Bm strains were able to induce actin polymerization on the bacterial surface following infection. Several Bp and Bm strains showed reduced ability to induce multinucleated giant cell (MNGC) formation, while Bo and Bp 776 were unable to induce this phenotype. Measurement of host cytokine responses revealed a statistically significant Bm mediated IL-6 and IL-10 production compared to Bp strains. Hierarchical clustering of transcriptional data from 84 mouse cytokines, chemokines and their corresponding receptors identified 29 host genes as indicators of differential responses between the Burkholderia spp. Further validation confirmed Bm mediated Il-1b, Il-10, Tnfrsf1b and Il-36a mRNA expressions were significantly higher when compared to Bp and Bt. CONCLUSIONS These results characterize the phenotypic and immunological differences in the host innate response to pathogenic and avirulent Burkholderia strains and provide insight into the phenotypic alterations and molecular targets underlying host-Burkholderia interactions.
Collapse
Affiliation(s)
- Chih-Yuan Chiang
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA.
| | - Ricky L Ulrich
- Institute for Therapeutic Innovation, Department of Medicine, University of Florida, Orlando, FL, USA.
| | | | - Brett Eaton
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA.
| | - Jenifer F Ojeda
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA.
| | - Douglas J Lane
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA.
| | | | - Tara A Kenny
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA.
| | - Jason T Ladner
- Center for Genome Sciences, USAMRIID, Fort Detrick, MD, USA.
| | | | | | | | - Mei Sun
- Pathology Division, USAMRIID, Fort Detrick, MD, USA.
| | - Sina Bavari
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA.
| | - Mark J Wolcott
- Diagnostic Systems Division, USAMRIID, Fort Detrick, MD, USA.
| | - David Covell
- Screening Technologies Branch, Developmental Therapeutics Program, National Cancer Institute, Frederick, MD, USA.
| | - Rekha G Panchal
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA.
| |
Collapse
|
66
|
Southern SJ, Male A, Milne T, Sarkar-Tyson M, Tavassoli A, Oyston PCF. Evaluating the role of phage-shock protein A in Burkholderia pseudomallei. MICROBIOLOGY-SGM 2015; 161:2192-203. [PMID: 26374246 PMCID: PMC5452601 DOI: 10.1099/mic.0.000175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The phage-shock protein (Psp) response is an extracytoplasmic response system that is vital for maintenance of the cytoplasmic membrane when the cell encounters stressful conditions. The paradigm of the Psp response has been established in Escherichia coli. The response has been shown to be important for survival during the stationary phase, maintenance of the proton motive force across membranes and implicated in virulence. In this study, we identified a putative PspA homologue in Burkholderia pseudomallei, annotated as BPSL2105. Similar to the induction of PspA in E. coli, the expression of B. pseudomallei BPSL2105 was induced by heat shock. Deletion of BPSL2105 resulted in a survival defect in the late stationary phase coincident with dramatic changes in the pH of the culture medium. The B. pseudomallei BPSL2105 deletion mutant also displayed reduced survival in macrophage infection – the first indication that the Psp response plays a role during intracellular pathogenesis in this species. The purified protein formed large oligomeric structures similar to those observed for the PspA protein of E. coli, and PspA homologues in Bacillus, cyanobacteria and higher plants, providing further evidence to support the identification of BPSL2105 as a PspA-like protein in B. pseudomallei.
Collapse
Affiliation(s)
- Stephanie J Southern
- 1Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - Abigail Male
- 2Department of Chemistry, University of Southampton, Southampton, UK
| | - Timothy Milne
- 1Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - Mitali Sarkar-Tyson
- 1Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, UK 3University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Ali Tavassoli
- 2Department of Chemistry, University of Southampton, Southampton, UK 4The Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Petra C F Oyston
- 1Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| |
Collapse
|
67
|
Amemiya K, Dankmeyer JL, Fetterer DP, Worsham PL, Welkos SL, Cote CK. Comparison of the early host immune response to two widely diverse virulent strains of Burkholderia pseudomallei that cause acute or chronic infections in BALB/c mice. Microb Pathog 2015; 86:53-63. [PMID: 26162294 DOI: 10.1016/j.micpath.2015.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 10/23/2022]
Abstract
Burkholderia pseudomallei is the etiologic agent of melioidosis, which is endemic in Southeast Asia and Northern Australia. We previously found by the intraperitoneal (IP) route that we could discern differences in virulence in mice amongst different strains of B. pseudomallei. We report an early immune response study comparing two strains in our collection which represent the least, B. pseudomallei 1106a, and one of the most, HBPUB10134a, virulent strains in BALB/c mice. B. pseudomallei HBPUB10134a infected mouse spleens contained a 2-3 log higher bacterial burden than mice infected with B. pseudomallei 1106a 3 days post-infection (PI). More and higher amounts of inflammatory cytokines/chemokines were detected in sera and spleen extracts from B. pseudomallei HBPUB10134a than B. pseudomallei 1106a infected mice. The most prominent were IFNγ, IL-1α, IL-1β, IL-6, IL-10, IP-10, and MIG. After 7 days PI, there was a decrease in bacterial burden in spleens from 1106a infected mice and a decrease in cytokines/chemokines in sera and spleen extracts from both sets of mice. By day 14 PI we saw an increase in monocytes/macrophages, NK cells, and granulocytes in spleens from both sets of mice. No B. pseudomallei HBPUB10134a infected mice survived after this time. In summary, B. pseudomallei HBPUB10134a was more virulent and induced host innate immune responses typical of a more acute-type infection than did B. pseudomallei 1106a which produced a more chronic infection in mice.
Collapse
Affiliation(s)
- Kei Amemiya
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA.
| | - Jennifer L Dankmeyer
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - David P Fetterer
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Patricia L Worsham
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Susan L Welkos
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Christopher K Cote
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| |
Collapse
|
68
|
Welkos SL, Klimko CP, Kern SJ, Bearss JJ, Bozue JA, Bernhards RC, Trevino SR, Waag DM, Amemiya K, Worsham PL, Cote CK. Characterization of Burkholderia pseudomallei Strains Using a Murine Intraperitoneal Infection Model and In Vitro Macrophage Assays. PLoS One 2015; 10:e0124667. [PMID: 25909629 PMCID: PMC4409376 DOI: 10.1371/journal.pone.0124667] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/17/2015] [Indexed: 01/10/2023] Open
Abstract
Burkholderia pseudomallei, the etiologic agent of melioidosis, is a gram-negative facultative intracellular bacterium. This bacterium is endemic in Southeast Asia and Northern Australia and can infect humans and animals by several routes. It has also been estimated to present a considerable risk as a potential biothreat agent. There are currently no effective vaccines for B. pseudomallei, and antibiotic treatment can be hampered by nonspecific symptomology, the high incidence of naturally occurring antibiotic resistant strains, and disease chronicity. Accordingly, there is a concerted effort to better characterize B. pseudomallei and its associated disease. Before novel vaccines and therapeutics can be tested in vivo, a well characterized animal model is essential. Previous work has indicated that mice may be a useful animal model. In order to develop standardized animal models of melioidosis, different strains of bacteria must be isolated, propagated, and characterized. Using a murine intraperitoneal (IP) infection model, we tested the virulence of 11 B. pseudomallei strains. The IP route offers a reproducible way to rank virulence that can be readily reproduced by other laboratories. This infection route is also useful in distinguishing significant differences in strain virulence that may be masked by the exquisite susceptibility associated with other routes of infection (e.g., inhalational). Additionally, there were several pathologic lesions observed in mice following IP infection. These included varisized abscesses in the spleen, liver, and haired skin. This model indicated that commonly used laboratory strains of B. pseudomallei (i.e., K96243 and 1026b) were significantly less virulent as compared to more recently acquired clinical isolates. Additionally, we characterized in vitro strain-associated differences in virulence for macrophages and described a potential inverse relationship between virulence in the IP mouse model of some strains and in the macrophage phagocytosis assay. Strains which were more virulent for mice (e.g., HBPU10304a) were often less virulent in the macrophage assays, as determined by several parameters such as intracellular bacterial replication and host cell cytotoxicity.
Collapse
Affiliation(s)
- Susan L. Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, United States of America
| | - Christopher P. Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, United States of America
| | - Steven J. Kern
- Biostatisitics Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, United States of America
| | - Jeremy J. Bearss
- Veterinary Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, United States of America
| | - Joel A. Bozue
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, United States of America
| | - Robert C. Bernhards
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, United States of America
| | - Sylvia R. Trevino
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, United States of America
| | - David M. Waag
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, United States of America
| | - Kei Amemiya
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, United States of America
| | - Patricia L. Worsham
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, United States of America
| | - Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
69
|
Gong L, Lai SC, Treerat P, Prescott M, Adler B, Boyce JD, Devenish RJ. Burkholderia pseudomallei type III secretion system cluster 3 ATPase BsaS, a chemotherapeutic target for small-molecule ATPase inhibitors. Infect Immun 2015; 83:1276-85. [PMID: 25605762 PMCID: PMC4363454 DOI: 10.1128/iai.03070-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/05/2015] [Indexed: 12/18/2022] Open
Abstract
Melioidosis is an infectious disease of high mortality for humans and other animal species; it is prevalent in tropical regions worldwide. The pathogenesis of melioidosis depends on the ability of its causative agent, the Gram-negative bacterium Burkholderia pseudomallei, to enter and survive in host cells. B. pseudomallei can escape from the phagosome into the cytosol of phagocytic cells where it replicates and acquires actin-mediated motility, avoiding killing by the autophagy-dependent process, LC3 (microtubule-associated protein light chain 3)-associated phagocytosis (LAP). The type III secretion system cluster 3 (TTSS3) facilitates bacterial escape from phagosomes, although the mechanism has not been fully elucidated. Given the recent identification of small-molecule inhibitors of the TTSS ATPase, we sought to determine the potential of the predicted TTSS3 ATPase, encoded by bsaS, as a target for chemotherapeutic treatment of infection. A B. pseudomallei bsaS deletion mutant was generated and used as a control against which to assess the effect of inhibitor treatment. Infection of RAW 264.7 cells with wild-type bacteria and subsequent treatment with the ATPase inhibitor compound 939 resulted in reduced intracellular bacterial survival, reduced escape from phagosomes, and increased colocalization with both LC3 and the lysosomal marker LAMP1 (lysosome-associated membrane protein 1). These changes were similar to those observed for infection of RAW 264.7 cells with the bsaS deletion mutant. We propose that treatment with the ATPase inhibitor compound 939 decreased intracellular bacterial survival through a reduced ability of bacteria to escape from phagosomes and increased killing via LAP. Therefore, small-molecule inhibitors of the TTSS3 ATPase have potential as therapeutic treatments against melioidosis.
Collapse
Affiliation(s)
- Lan Gong
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Clayton, Australia Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Victoria, Clayton, Australia
| | - Shu-Chin Lai
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Clayton, Australia
| | - Puthayalai Treerat
- Department of Microbiology, Monash University, Victoria, Clayton, Australia Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Victoria, Clayton, Australia
| | - Mark Prescott
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Clayton, Australia
| | - Ben Adler
- Department of Microbiology, Monash University, Victoria, Clayton, Australia Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Victoria, Clayton, Australia
| | - John D Boyce
- Department of Microbiology, Monash University, Victoria, Clayton, Australia Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Victoria, Clayton, Australia
| | - Rodney J Devenish
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Clayton, Australia Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Victoria, Clayton, Australia
| |
Collapse
|
70
|
Memišević V, Zavaljevski N, Rajagopala SV, Kwon K, Pieper R, DeShazer D, Reifman J, Wallqvist A. Mining host-pathogen protein interactions to characterize Burkholderia mallei infectivity mechanisms. PLoS Comput Biol 2015; 11:e1004088. [PMID: 25738731 PMCID: PMC4349708 DOI: 10.1371/journal.pcbi.1004088] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/15/2014] [Indexed: 01/01/2023] Open
Abstract
Burkholderia pathogenicity relies on protein virulence factors to control and promote bacterial internalization, survival, and replication within eukaryotic host cells. We recently used yeast two-hybrid (Y2H) screening to identify a small set of novel Burkholderia proteins that were shown to attenuate disease progression in an aerosol infection animal model using the virulent Burkholderia mallei ATCC 23344 strain. Here, we performed an extended analysis of primarily nine B. mallei virulence factors and their interactions with human proteins to map out how the bacteria can influence and alter host processes and pathways. Specifically, we employed topological analyses to assess the connectivity patterns of targeted host proteins, identify modules of pathogen-interacting host proteins linked to processes promoting infectivity, and evaluate the effect of crosstalk among the identified host protein modules. Overall, our analysis showed that the targeted host proteins generally had a large number of interacting partners and interacted with other host proteins that were also targeted by B. mallei proteins. We also introduced a novel Host-Pathogen Interaction Alignment (HPIA) algorithm and used it to explore similarities between host-pathogen interactions of B. mallei, Yersinia pestis, and Salmonella enterica. We inferred putative roles of B. mallei proteins based on the roles of their aligned Y. pestis and S. enterica partners and showed that up to 73% of the predicted roles matched existing annotations. A key insight into Burkholderia pathogenicity derived from these analyses of Y2H host-pathogen interactions is the identification of eukaryotic-specific targeted cellular mechanisms, including the ubiquitination degradation system and the use of the focal adhesion pathway as a fulcrum for transmitting mechanical forces and regulatory signals. This provides the mechanisms to modulate and adapt the host-cell environment for the successful establishment of host infections and intracellular spread. Burkholderia species need to manipulate many host processes and pathways in order to establish a successful intracellular infection in eukaryotic host organisms. Burkholderia mallei uses secreted virulence factor proteins as a means to execute host-pathogen interactions and promote pathogenesis. While validated virulence factor proteins have been shown to attenuate infection in animal models, their actual roles in modifying and influencing host processes are not well understood. Here, we used host-pathogen protein-protein interactions derived from yeast two-hybrid screens to study nine known B. mallei virulence factors and map out potential virulence mechanisms. From the data, we derived both general and specific insights into Burkholderia host-pathogen infectivity pathways. We showed that B. mallei virulence factors tended to target multifunctional host proteins, proteins that interacted with each other, and host proteins with a large number of interacting partners. We also identified similarities between host-pathogen interactions of B. mallei, Yersinia pestis, and Salmonella enterica using a novel host-pathogen interactions alignment algorithm. Importantly, our data are compatible with a framework in which multiple B. mallei virulence factors broadly influence key host processes related to ubiquitin-mediated proteolysis and focal adhesion. This provides B. mallei the means to modulate and adapt the host-cell environment to advance infection.
Collapse
Affiliation(s)
- Vesna Memišević
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Nela Zavaljevski
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | | | - Keehwan Kwon
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Rembert Pieper
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - David DeShazer
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
- * E-mail:
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| |
Collapse
|
71
|
Guo RF, Wong FL, Perez ML. Splenic abscesses in a returning traveler. Infect Dis Rep 2015; 7:5791. [PMID: 25874071 PMCID: PMC4387372 DOI: 10.4081/idr.2015.5791] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/07/2015] [Accepted: 02/11/2015] [Indexed: 12/03/2022] Open
Abstract
Burkholderia, an aerobic gram-negative rod, is the causative organism behind melioidosis and is a common soil and water organism found predominantly in South-East Asia. We report the case of a 68 year-old man returning from an extended trip to the Philippines, with splenic hypodense lesions on abdominal computer tomography scan, later confirmed to be culture-positive for Burkholderia pseudomallei. The patient was treated with a course of intravenous ceftazidime followed by eradication therapy with oral doxycycline and trimethoprim-sulfamethoxazole. He recovered with complete resolution of symptoms at follow up. In a returning traveler from an endemic area, melioidosis should be considered as part of the differential for any febrile illness with abscesses.
Collapse
Affiliation(s)
- Richard F Guo
- Department of Internal Medicine, Kaiser Permanente Medical Center , Fontana, CA, USA
| | - Frances L Wong
- Department of Inpatient Pharmacy, Kaiser Permanente Medical Center , Fontana, CA, USA
| | - Mario L Perez
- Department of Infectious Disease, Kaiser Permanente Medical Center , Fontana, CA, USA
| |
Collapse
|
72
|
Techawiwattanaboon T, Bartpho T, Sermswan RW, Chareonsudjai S. Transcription level analysis of intracellular Burkholderia pseudomallei illustrates the role of BPSL1502 during bacterial interaction with human lung epithelial cells. J Microbiol 2015; 53:134-40. [PMID: 25626369 DOI: 10.1007/s12275-015-4522-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/10/2014] [Accepted: 12/05/2014] [Indexed: 01/04/2023]
Abstract
Melioidosis caused by Burkholderia pseudomallei is a globally important disease of increasing concern according to high case-fatality rate and epidemic spreading. The ability of B. pseudomallei to attach and invade host cells and subsequently survive intracellularly has stimulated many questions concerning the comprehension of bacterial pathogenesis progression. Transcription levels of intracellular B. pseudomallei genes in human lung epithelial cells were therefore analyzed using bioinformatic tools, RT-PCR and real time RT-PCR. Here, it is reported that the identification of bpsl1502, encoding B. pseudomallei SurE (stationary phase survival protein E) located in a global transcriptional regulation operon was accomplished. The up-regulation of B. pseudomallei SurE was demonstrated during intracellular survival of A549 cells at 12, 18, and 24 h post-infection. To investigate the role of this protein, a B. pseudomallei SurE defective mutant was constructed. The invasion and initial survival of the SurE mutants within the A549 cells were impaired. There was no difference, however, between the growth of B. pseudomallei SurE mutant as compared to the wild type in Luria-Bertani culture. These data suggest that SurE may assist B. pseudomallei host cells invade and facilitate early intracellular infection but is not crucial during the stationary growth phase. The identification of B. pseudomallei SurE provides more information of bacterial strategy during an early step of the pathogenesis process of melioidosis.
Collapse
|
73
|
Contribution of the BacT/Alert MB Mycobacterium bottle to bloodstream infection surveillance in Thailand: added yield for Burkholderia pseudomallei. J Clin Microbiol 2015; 53:910-4. [PMID: 25588650 DOI: 10.1128/jcm.02008-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Community-acquired bloodstream infections cause substantial morbidity and mortality worldwide, but microbiology capacity and surveillance limitations have challenged good descriptions of pathogen distribution in many regions, including Southeast Asia. Active surveillance for bloodstream infections has been conducted in two rural Thailand provinces for >7 years. Blood specimens were divided into two culture bottles, one optimized for aerobic growth (F bottle) and a second for enhanced growth of mycobacteria (MB bottle), and processed with the BactT/Alert 3D system. Because the routine use of MB culture bottles is resource intensive (expensive and requires prolonged incubation), we assessed the added yield of MB bottles by comparing the proportion of pathogens detected by MB versus that by F bottles from 2005 to 2012. Of 63,066 blood cultures, 7,296 (12%) were positive for at least one pathogen; the most common pathogens were Escherichia coli (28%), Burkholderia pseudomallei (11%), Klebsiella pneumoniae (9%), and Staphylococcus aureus (6%). Two bottles improved the yield overall, but the added yield attributable to the MB bottles was limited to a few pathogens. In addition to the detection of mycobacteria and some fungi, MB bottles improved the detection of B. pseudomallei (27% [MB] versus 8% [F]; P < 0.0001), with added benefit if therapy was initiated prior to the blood culture. The targeted use of MB bottles is warranted for patients at risk for mycobacterial and fungal infections and for infection with B. pseudomallei, a common cause of septicemia in Thailand.
Collapse
|
74
|
Devenish RJ, Lai S. Autophagy and Burkholderia. Immunol Cell Biol 2014; 93:18-24. [DOI: 10.1038/icb.2014.87] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/11/2014] [Accepted: 09/16/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Rodney J Devenish
- Department of Biochemistry and Molecular Biology, Monash University, Clayton CampusMelbourneVICAustralia
| | - Shu‐chin Lai
- Department of Biochemistry and Molecular Biology, Monash University, Clayton CampusMelbourneVICAustralia
| |
Collapse
|
75
|
Stone JK, DeShazer D, Brett PJ, Burtnick MN. Melioidosis: molecular aspects of pathogenesis. Expert Rev Anti Infect Ther 2014; 12:1487-99. [PMID: 25312349 DOI: 10.1586/14787210.2014.970634] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Burkholderia pseudomallei is a gram-negative bacterium that causes melioidosis, a multifaceted disease that is highly endemic in southeast Asia and northern Australia. This facultative intracellular pathogen possesses a large genome that encodes a wide array of virulence factors that promote survival in vivo by manipulating host cell processes and disarming elements of the host immune system. Antigens and systems that play key roles in B. pseudomallei virulence include capsular polysaccharide, lipopolysaccharide, adhesins, specialized secretion systems, actin-based motility and various secreted factors. This review provides an overview of the current and steadily expanding knowledge regarding the molecular mechanisms used by this organism to survive within a host and their contribution to the pathogenesis of melioidosis.
Collapse
Affiliation(s)
- Joshua K Stone
- Department of Microbiology and Immunology, University of South Alabama, 610 Clinic Drive, Mobile, AL 36688, USA
| | | | | | | |
Collapse
|
76
|
Mulye M, Bechill MP, Grose W, Ferreira VP, Lafontaine ER, Wooten RM. Delineating the importance of serum opsonins and the bacterial capsule in affecting the uptake and killing of Burkholderia pseudomallei by murine neutrophils and macrophages. PLoS Negl Trop Dis 2014; 8:e2988. [PMID: 25144195 PMCID: PMC4140662 DOI: 10.1371/journal.pntd.0002988] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 05/18/2014] [Indexed: 12/30/2022] Open
Abstract
Infection of susceptible hosts by the encapsulated Gram-negative bacterium Burkholderia pseudomallei (Bp) causes melioidosis, with septic patients attaining mortality rates ≥ 40%. Due to its high infectivity through inhalation and limited effective therapies, Bp is considered a potential bioweapon. Thus, there is great interest in identifying immune effectors that effectively kill Bp. Our goal is to compare the relative abilities of murine macrophages and neutrophils to clear Bp, as well as determine the importance of serum opsonins and bacterial capsule. Our findings indicate that murine macrophages and neutrophils are inherently unable to clear either unopsonized Bp or the relatively-avirulent acapsular bacterium B. thailandensis (Bt). Opsonization of Bp and Bt with complement or pathogen-specific antibodies increases macrophage-uptake, but does not promote clearance, although antibody-binding enhances complement deposition. In contrast, complement opsonization of Bp and Bt causes enhanced uptake and killing by neutrophils, which is linked with rapid ROS induction against bacteria exhibiting a threshold level of complement deposition. Addition of bacteria-specific antibodies enhances complement deposition, but antibody-binding alone cannot elicit neutrophil clearance. Bp capsule provides some resistance to complement deposition, but is not anti-phagocytic or protective against reactive oxygen species (ROS)-killing. Macrophages were observed to efficiently clear Bp only after pre-activation with IFNγ, which is independent of serum- and/or antibody-opsonization. These studies indicate that antibody-enhanced complement activation is sufficient for neutrophil-clearance of Bp, whereas macrophages are ineffective at clearing serum-opsonized Bp unless pre-activated with IFNγ. This suggests that effective immune therapies would need to elicit both antibodies and Th1-adaptive responses for successful prevention/eradication of melioidosis.
Collapse
Affiliation(s)
- Minal Mulye
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Michael P. Bechill
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - William Grose
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Viviana P. Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Eric R. Lafontaine
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - R. Mark Wooten
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
77
|
Burtnick MN, Brett PJ, DeShazer D. Proteomic analysis of the Burkholderia pseudomallei type II secretome reveals hydrolytic enzymes, novel proteins, and the deubiquitinase TssM. Infect Immun 2014; 82:3214-26. [PMID: 24866793 PMCID: PMC4136222 DOI: 10.1128/iai.01739-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/10/2014] [Indexed: 12/25/2022] Open
Abstract
Burkholderia pseudomallei, the etiologic agent of melioidosis, is an opportunistic pathogen that harbors a wide array of secretion systems, including a type II secretion system (T2SS), three type III secretion systems (T3SS), and six type VI secretion systems (T6SS). The proteins exported by these systems provide B. pseudomallei with a growth advantage in vitro and in vivo, but relatively little is known about the full repertoire of exoproducts associated with each system. In this study, we constructed deletion mutations in gspD and gspE, T2SS genes encoding an outer membrane secretin and a cytoplasmic ATPase, respectively. The secretion profiles of B. pseudomallei MSHR668 and its T2SS mutants were noticeably different when analyzed by SDS-PAGE. We utilized liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify proteins present in the supernatants of B. pseudomallei MSHR668 and B. pseudomallei ΔgspD grown in rich and minimal media. The MSHR668 supernatants contained 48 proteins that were either absent or substantially reduced in the supernatants of ΔgspD strains. Many of these proteins were putative hydrolytic enzymes, including 12 proteases, two phospholipases, and a chitinase. Biochemical assays validated the LC-MS/MS results and demonstrated that the export of protease, phospholipase C, and chitinase activities is T2SS dependent. Previous studies had failed to identify the mechanism of secretion of TssM, a deubiquitinase that plays an integral role in regulating the innate immune response. Here we present evidence that TssM harbors an atypical signal sequence and that its secretion is mediated by the T2SS. This study provides the first in-depth characterization of the B. pseudomallei T2SS secretome.
Collapse
Affiliation(s)
- Mary N Burtnick
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, USA
| | - Paul J Brett
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, USA
| | - David DeShazer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| |
Collapse
|
78
|
Interaction of Interferon gamma-induced reactive oxygen species with ceftazidime leads to synergistic killing of intracellular Burkholderia pseudomallei. Antimicrob Agents Chemother 2014; 58:5954-63. [PMID: 25070108 DOI: 10.1128/aac.02781-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Burkholderia pseudomallei, a facultative intracellular pathogen, causes severe infections and is inherently refractory to many antibiotics. Previous studies from our group have shown that interferon gamma (IFN-γ) interacts synergistically with the antibiotic ceftazidime to kill bacteria in infected macrophages. The present study aimed to identify the underlying mechanism of that interaction. We first showed that blocking reactive oxygen species (ROS) pathways reversed IFN-γ- and ceftazidime-mediated killing, which led to our hypothesis that IFN-γ-induced ROS interacted with ceftazidime to synergistically kill Burkholderia bacteria. Consistent with this hypothesis, we also observed that buthionine sulfoximine (BSO), another inducer of ROS, could substitute for IFN-γ to similarly potentiate the effect of ceftazidime on intracellular killing. Next, we observed that IFN-γ induced ROS-mediated killing of intracellular but not extracellular bacteria. On the other hand, ceftazidime effectively reduced extracellular bacteria but was not capable of intracellular killing when applied at 10 μg/ml. We investigated the exact role of IFN-γ-induced ROS responses on intracellular bacteria and notably observed a lack of actin polymerization associated with Burkholderia bacteria in IFN-γ-treated macrophages, which led to our finding that IFN-γ-induced ROS blocks vacuolar escape. Based on these results, we propose a model in which synergistically reduced bacterial burden is achieved primarily through separate and compartmentalized killing: intracellular killing by IFN-γ-induced ROS responses and extracellular killing by ceftazidime. Our findings suggest a means of enhancing antibiotic activity against Burkholderia bacteria through combination with drugs that induce ROS pathways or otherwise target intracellular spread and/or replication of bacteria.
Collapse
|
79
|
Memišević V, Kumar K, Cheng L, Zavaljevski N, DeShazer D, Wallqvist A, Reifman J. DBSecSys: a database of Burkholderia mallei secretion systems. BMC Bioinformatics 2014; 15:244. [PMID: 25030112 PMCID: PMC4112206 DOI: 10.1186/1471-2105-15-244] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/16/2014] [Indexed: 01/08/2023] Open
Abstract
Background Bacterial pathogenicity represents a major public health concern worldwide. Secretion systems are a key component of bacterial pathogenicity, as they provide the means for bacterial proteins to penetrate host-cell membranes and insert themselves directly into the host cells’ cytosol. Burkholderia mallei is a Gram-negative bacterium that uses multiple secretion systems during its host infection life cycle. To date, the identities of secretion system proteins for B. mallei are not well known, and their pathogenic mechanisms of action and host factors are largely uncharacterized. Description We present the Database of Burkholderia malleiSecretion Systems (DBSecSys), a compilation of manually curated and computationally predicted bacterial secretion system proteins and their host factors. Currently, DBSecSys contains comprehensive experimentally and computationally derived information about B. mallei strain ATCC 23344. The database includes 143 B. mallei proteins associated with five secretion systems, their 1,635 human and murine interacting targets, and the corresponding 2,400 host-B. mallei interactions. The database also includes information about 10 pathogenic mechanisms of action for B. mallei secretion system proteins inferred from the available literature. Additionally, DBSecSys provides details about 42 virulence attenuation experiments for 27 B. mallei secretion system proteins. Users interact with DBSecSys through a Web interface that allows for data browsing, querying, visualizing, and downloading. Conclusions DBSecSys provides a comprehensive, systematically organized resource of experimental and computational data associated with B. mallei secretion systems. It provides the unique ability to study secretion systems not only through characterization of their corresponding pathogen proteins, but also through characterization of their host-interacting partners. The database is available at https://applications.bhsai.org/dbsecsys.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U,S, Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA.
| |
Collapse
|
80
|
Eu LC, Ong KC, Hiu J, Vadivelu J, Nathan S, Wong KT. In situ hybridization to detect and identify Burkholderia pseudomallei in human melioidosis. Mod Pathol 2014; 27:657-64. [PMID: 24186135 DOI: 10.1038/modpathol.2013.184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 11/10/2022]
Abstract
Burkholderia pseudomallei causes a potentially fatal infection called melioidosis. We have developed a nonfluorescent, colorimetric in situ hybridization assay using a specific probe to target 16s rRNA of B. pseudomallei in formalin-fixed, paraffin-embedded infected tissues for diagnostic purposes and to study infectious disease pathology. A 63-base pair DNA probe was synthesized and labeled with digoxigenin by PCR. Probe specificity was confirmed by BLAST analysis and by testing on appropriate microbial controls. The in situ hybridization assay was specifically and consistently positive for B. pseudomallei, showing strongly and crisply stained, single bacillus and bacilli clusters in mainly inflamed tissues in seven human acute melioidosis cases and experimentally infected mouse tissues. Intravascular and extravascular bacilli were detected in both intracellular and extracellular locations in various human organs, including lung, spleen, kidney, liver, bone marrow, and aortic mycotic aneurysm, particularly in the inflamed areas. Intravascular, intracellular bacteria in melioidosis have not been previously reported. Although the identity of infected intravascular leukocytes has to be confirmed, extravascular, intracellular bacilli appear to be found mainly within macrophages and neutrophils. Rarely, large intravascular, extracellular bacillary clusters/emboli could be detected in both human and mouse tissues. B. cepacia and non-Burkholderia pathogens (16 microbial species) all tested negative. Nonpathogenic B. thailandensis showed some cross-hybridization but signals were less intense. This in situ hybridization assay could be usefully adapted for B. pseudomallei identification in other clinical specimens such as pus and sputum.
Collapse
Affiliation(s)
- Lin Chuan Eu
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jessie Hiu
- Forensic Department, Queen Elizabeth Hospital, Sabah, Malaysia
| | - Jamunarani Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
81
|
A Burkholderia pseudomallei outer membrane vesicle vaccine provides protection against lethal sepsis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:747-54. [PMID: 24671550 DOI: 10.1128/cvi.00119-14] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The environmental Gram-negative encapsulated bacillus Burkholderia pseudomallei is the causative agent of melioidosis, a disease associated with high morbidity and mortality rates in areas of Southeast Asia and northern Australia in which the disease is endemic. B. pseudomallei is also classified as a tier I select agent due to the high level of lethality of the bacterium and its innate resistance to antibiotics, as well as the lack of an effective vaccine. Gram-negative bacteria, including B. pseudomallei, secrete outer membrane vesicles (OMVs) which are enriched with multiple protein, lipid, and polysaccharide antigens. Previously, we demonstrated that immunization with multivalent B. pseudomallei-derived OMVs protects highly susceptible BALB/c mice against an otherwise lethal aerosol challenge. In this work, we evaluated the protective efficacy of OMV immunization against intraperitoneal challenge with a heterologous strain because systemic infection with phenotypically diverse environmental B. pseudomallei strains poses another hazard and a challenge to vaccine development. We demonstrated that B. pseudomallei OMVs derived from strain 1026b afforded significant protection against septicemic infection with B. pseudomallei strain K96243. OMV immunization induced robust OMV-, lipopolysaccharide-, and capsular polysaccharide-specific serum IgG (IgG1, IgG2a, and IgG3) and IgM antibody responses. OMV-immune serum promoted bacterial killing in vitro, and passive transfer of B. pseudomallei OMV immune sera protected naive mice against a subsequent challenge. These results indicate that OMV immunization provides antibody-mediated protection against acute, rapidly lethal sepsis in mice. B. pseudomallei-derived OMVs may represent an efficacious multivalent vaccine strategy against melioidosis.
Collapse
|
82
|
Functional characterization and evaluation of in vitro protective efficacy of murine monoclonal antibodies BURK24 and BURK37 against Burkholderia pseudomallei. PLoS One 2014; 9:e90930. [PMID: 24614539 PMCID: PMC3948747 DOI: 10.1371/journal.pone.0090930] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/03/2014] [Indexed: 01/29/2023] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis has been recognized by CDC as a category B select agent. Although substantial efforts have been made for development of vaccine molecules against the pathogen, significant hurdles still remain. With no licensed vaccines available and high relapse rate of the disease, there is a pressing need for development of alternate protection strategies. Antibody-mediated passive protection is promising in this regard and our primary interest was to unravel this frontier of specific mAbs against Burkholderia pseudomallei infections, as functional characterization of antibodies is a pre-requisite to demonstrate them as protective molecules. To achieve this, we designed our study on in vitro-based approach and assessed two mAbs, namely BURK24 and BURK37, reactive with outer membrane proteins and lipopolysaccharide of the pathogen respectively, for their ability to manifest inhibitory effects on the pathogenesis mechanisms of B. pseudomallei including biofilm formation, invasion and induction of apoptosis. The experiments were performed using B. pseudomallei standard strain NCTC 10274 and a clinical isolate, B. pseudomallei 621 recovered from a septicemia patient with diabetic ailment. The growth kinetic studies of the pathogen in presence of various concentrations of each individual mAb revealed their anti-bacterial properties. Minimal inhibitory concentration and minimal bactericidal concentration of both the mAbs were determined by using standards of Clinical and Laboratory Standards Institute (CLSI) and experiments were performed using individual mAbs at their respective bacteriostatic concentration. As an outcome, both mAbs exhibited significant anti-Burkholderia pseudomallei properties. They limited the formation of biofilm by the bacterium and completely crippled its invasion into human alveolar adenocarcinoma epithelial cells. Also, the mAbs were appreciably successful in preventing the bacterium to induce apoptosis in A549 cells. The present study design revealed the protection attributes possessed by BURK24 and BURK37 that has to be further substantiated by additional in vivo studies.
Collapse
|
83
|
The serine protease inhibitor Ecotin is required for full virulence of Burkholderia pseudomallei. Microb Pathog 2014; 67-68:55-8. [DOI: 10.1016/j.micpath.2014.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/08/2014] [Accepted: 01/10/2014] [Indexed: 11/21/2022]
|
84
|
The Type VI secretion system spike protein VgrG5 mediates membrane fusion during intercellular spread by pseudomallei group Burkholderia species. Infect Immun 2014; 82:1436-44. [PMID: 24421040 DOI: 10.1128/iai.01367-13] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pseudomallei group Burkholderia species are facultative intracellular parasites that spread efficiently from cell to cell by a mechanism involving the fusion of adjacent cell membranes. Intercellular fusion requires the function of the cluster 5 type VI secretion system (T6SS-5) and its associated valine-glycine repeat protein, VgrG5. Here we show that VgrG5 alleles are conserved and functionally interchangeable between Burkholderia pseudomallei and its relatives B. mallei, B. oklahomensis, and B. thailandensis. We also demonstrate that the integrity of the VgrG5 C-terminal domain is required for fusogenic activity, and we identify sequence motifs, including two hydrophobic segments, that are important for fusion. Mutagenesis and secretion experiments using B. pseudomallei strains engineered to express T6SS-5 in vitro show that the VgrG5 C-terminal domain is dispensable for T6SS-mediated secretion of Hcp5, demonstrating that the ability of VgrG5 to mediate membrane fusion can be uncoupled from its essential role in type VI secretion. We propose a model in which a unique fusogenic activity at the C terminus of VgrG5 facilitates intercellular spread by B. pseudomallei and related species following injection across the plasma membranes of infected cells.
Collapse
|
85
|
Memišević V, Zavaljevski N, Pieper R, Rajagopala SV, Kwon K, Townsend K, Yu C, Yu X, DeShazer D, Reifman J, Wallqvist A. Novel Burkholderia mallei virulence factors linked to specific host-pathogen protein interactions. Mol Cell Proteomics 2013; 12:3036-51. [PMID: 23800426 PMCID: PMC3820922 DOI: 10.1074/mcp.m113.029041] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/10/2013] [Indexed: 11/09/2022] Open
Abstract
Burkholderia mallei is an infectious intracellular pathogen whose virulence and resistance to antibiotics makes it a potential bioterrorism agent. Given its genetic origin as a commensal soil organism, it is equipped with an extensive and varied set of adapted mechanisms to cope with and modulate host-cell environments. One essential virulence mechanism constitutes the specialized secretion systems that are designed to penetrate host-cell membranes and insert pathogen proteins directly into the host cell's cytosol. However, the secretion systems' proteins and, in particular, their host targets are largely uncharacterized. Here, we used a combined in silico, in vitro, and in vivo approach to identify B. mallei proteins required for pathogenicity. We used bioinformatics tools, including orthology detection and ab initio predictions of secretion system proteins, as well as published experimental Burkholderia data to initially select a small number of proteins as putative virulence factors. We then used yeast two-hybrid assays against normalized whole human and whole murine proteome libraries to detect and identify interactions among each of these bacterial proteins and host proteins. Analysis of such interactions provided both verification of known virulence factors and identification of three new putative virulence proteins. We successfully created insertion mutants for each of these three proteins using the virulent B. mallei ATCC 23344 strain. We exposed BALB/c mice to mutant strains and the wild-type strain in an aerosol challenge model using lethal B. mallei doses. In each set of experiments, mice exposed to mutant strains survived for the 21-day duration of the experiment, whereas mice exposed to the wild-type strain rapidly died. Given their in vivo role in pathogenicity, and based on the yeast two-hybrid interaction data, these results point to the importance of these pathogen proteins in modulating host ubiquitination pathways, phagosomal escape, and actin-cytoskeleton rearrangement processes.
Collapse
Affiliation(s)
- Vesna Memišević
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - Nela Zavaljevski
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | | | | | - Keehwan Kwon
- §J. Craig Venter Institute, Rockville, Maryland 20850
| | | | - Chenggang Yu
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - Xueping Yu
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - David DeShazer
- ¶Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702
| | - Jaques Reifman
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - Anders Wallqvist
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| |
Collapse
|
86
|
Evolutionary analysis of Burkholderia pseudomallei identifies putative novel virulence genes, including a microbial regulator of host cell autophagy. J Bacteriol 2013; 195:5487-98. [PMID: 24097950 DOI: 10.1128/jb.00718-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, contains a large pathogen genome (7.2 Mb) with ∼2,000 genes of putative or unknown function. Interactions with potential hosts and environmental factors may induce rapid adaptations in these B. pseudomallei genes, which can be discerned through evolutionary analysis of multiple B. pseudomallei genomes. Here we show that several previously uncharacterized B. pseudomallei genes bearing genetic signatures of rapid adaptation (positive selection) can induce diverse cellular phenotypes when expressed in mammalian cells. Notably, several of these phenotypes are plausibly related to virulence, including multinuclear giant cell formation, apoptosis, and autophagy induction. Specifically, we show that BPSS0180, a type VI cluster-associated gene, is capable of inducing autophagy in both phagocytic and nonphagocytic mammalian cells. Following infection of macrophages, a B. pseudomallei mutant disrupted in BPSS0180 exhibited significantly decreased colocalization with LC3 and impaired intracellular survival; these phenotypes were rescued by introduction of an intact BPSS0180 gene. The results suggest that BPSS0180 may be a novel inducer of host cell autophagy that contributes to B. pseudomallei intracellular growth. More generally, our study highlights the utility of applying evolutionary principles to microbial genomes to identify novel virulence genes.
Collapse
|
87
|
Sterile-α- and armadillo motif-containing protein inhibits the TRIF-dependent downregulation of signal regulatory protein α to interfere with intracellular bacterial elimination in Burkholderia pseudomallei-infected mouse macrophages. Infect Immun 2013; 81:3463-71. [PMID: 23836818 DOI: 10.1128/iai.00519-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, evades macrophage killing by suppressing the TRIF-dependent pathway, leading to inhibition of inducible nitric oxide synthase (iNOS) expression. We previously demonstrated that virulent wild-type B. pseudomallei inhibits the TRIF-dependent pathway by upregulating sterile-α- and armadillo motif-containing protein (SARM) and by inhibiting downregulation of signal regulatory protein α (SIRPα); both molecules are negative regulators of Toll-like receptor signaling. In contrast, the less virulent lipopolysaccharide (LPS) mutant of B. pseudomallei is unable to exhibit these features and is susceptible to macrophage killing. However, the functional relationship of these two negative regulators in the evasion of macrophage defense has not been elucidated. We demonstrated here that SIRPα downregulation was observed after inhibition of SARM expression by small interfering RNA in wild-type-infected macrophages, indicating that SIRPα downregulation is regulated by SARM. Furthermore, this downregulation requires activation of the TRIF signaling pathway, as we observed abrogation of SIRPα downregulation as well as restricted bacterial growth in LPS mutant-infected TRIF-depleted macrophages. Although inhibition of SARM expression is correlated to SIRPα downregulation and iNOS upregulation in gamma interferon-activated wild-type-infected macrophages, these phenomena appear to bypass the TRIF-dependent pathway. Similar to live bacteria, the wild-type LPS is able to upregulate SARM and to prevent SIRPα downregulation, implying that the LPS of B. pseudomallei may play a crucial role in regulating the expression of these two negative regulators. Altogether, our findings show a previously unrecognized role of B. pseudomallei-induced SARM in inhibiting SIRPα downregulation-mediated iNOS upregulation, facilitating the ability of the bacterium to multiply in macrophages.
Collapse
|
88
|
Silva EB, Dow SW. Development of Burkholderia mallei and pseudomallei vaccines. Front Cell Infect Microbiol 2013; 3:10. [PMID: 23508691 PMCID: PMC3598006 DOI: 10.3389/fcimb.2013.00010] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 02/20/2013] [Indexed: 12/16/2022] Open
Abstract
Burkholderia mallei and Burkholderia pseudomallei are Gram-negative bacteria that cause glanders and melioidosis, respectively. Inhalational infection with either organism can result in severe and rapidly fatal pneumonia. Inoculation by the oral and cutaneous routes can also produce infection. Chronic infection may develop after recovery from acute infection with both agents, and control of infection with antibiotics requires prolonged treatment. Symptoms for both meliodosis and glanders are non-specific, making diagnosis difficult. B. pseudomallei can be located in the environment, but in the host, B. mallei and B. psedomallei are intracellular organisms, and infection results in similar immune responses to both agents. Effective early innate immune responses are critical to controlling the early phase of the infection. Innate immune signaling molecules such as TLR, NOD, MyD88, and pro-inflammatory cytokines such as IFN-γ and TNF-α play key roles in regulating control of infection. Neutrophils and monocytes are critical cells in the early infection for both microorganisms. Both monocytes and macrophages are necessary for limiting dissemination of B. pseudomallei. In contrast, the role of adaptive immune responses in controlling Burkholderia infection is less well understood. However, T cell responses are critical for vaccine protection from Burkholderia infection. At present, effective vaccines for prevention of glanders or meliodosis have not been developed, although recently development of Burkholderia vaccines has received renewed attention. This review will summarize current and past approaches to develop B. mallei and B. pseudomalllei vaccines, with emphasis on immune mechanisms of protection and the challenges facing the field. At present, immunization with live attenuated bacteria provides the most effective and durable immunity, and it is important therefore to understand the immune correlates of protection induced by live attenuated vaccines. Subunit vaccines have typically provided less robust immunity, but are safer to administer to a wider variety of people, including immune compromised individuals because they do not reactivate or cause disease. The challenges facing B. mallei and B. pseudomalllei vaccine development include identification of broadly protective antigens, design of efficient vaccine delivery and adjuvant systems, and a better understanding of the correlates of protection from both acute and chronic infection.
Collapse
Affiliation(s)
- Ediane B Silva
- Department of Microbiology, Immunology, and Pathology, Regional Center of Excellence in Emerging Diseases and Bioterrorism, Colorado State University Ft. Collins, CO, USA
| | | |
Collapse
|
89
|
Nandasiri S, Wimalaratna H, Manjula M, Corea E. Transverse myelitis secondary to melioidosis: a case report. BMC Infect Dis 2012; 12:232. [PMID: 23020820 PMCID: PMC3511196 DOI: 10.1186/1471-2334-12-232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/20/2012] [Indexed: 11/20/2022] Open
Abstract
Background Melioidosis has become an emerging infection in Sri Lanka; a country which is considered non endemic for it. Paraplegia due to Burkholderia pseudomallei is a very rare entity encountered even in countries where the disease is endemic. There are no reported cases of transverse myelitis due to melioidosis in Sri Lankan population thus we report the first case. Case presentation A 21 year old farmer presented with sudden onset bi lateral lower limb weakness, numbness and urine retention. Examination revealed flaccid areflexic lower limbs with a sensory loss of all modalities and a sensory level at T10 together with sphincter involvement. MRI of the thoracolumbar spine showed extensive myelitis of the thoracic spine complicating left psoas abscess without definite extension to the spinal cord or cord compression. Burkholderia pseudomallei was isolated from the psoas abscess pus cultures and the diagnosis of melioidosis was confirmed with high titers of Burkholderia pseudomallei antibodies and positive PCR. He was treated with high doses of IV ceftazidime and oral cotrimoxazole for one month with a plan to continue cotrimoxazole and doxycycline till one year. Patient’s general condition improved but the residual neurological problems persisted. Conclusion The exact pathogenesis of spinal cord melioidosis is not quite certain except in the cases where there is direct microbial invasion, which does not appear to be the case in our patient. We postulate our patient’s presentation could be due to ischemia of the spinal cord following septic embolisation or thrombosis of spinal artery due to the abscess nearby. A neurotrophic exotoxin causing myelitis or post infectious immunological demyelination is yet another possibility. This emphasizes the necessity of further studies to elucidate the exact pathogenesis in this type of presentations. Health care professionals in Sri Lanka, where this is an emerging infection, need to improve their knowledge regarding this disease and should have high degree of suspicion to make a correct and a timely diagnosis to reduce the morbidity and mortality due to Burkholderia pseudomallei infection. It is highly likely that this infection is under diagnosed in developing countries where diagnostic facilities are minimal. Therefore strategies to improve the awareness and upgrade the diagnostic facilities need to be implemented in near future.
Collapse
|
90
|
Involvement of signal regulatory protein α, a negative regulator of Toll-like receptor signaling, in impairing the MyD88-independent pathway and intracellular killing of Burkholderia pseudomallei-infected mouse macrophages. Infect Immun 2012; 80:4223-31. [PMID: 22988019 DOI: 10.1128/iai.00718-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The facultative intracellular gram-negative bacterium Burkholderia pseudomallei is the causative agent of melioidosis and is known for its ability to evade the Toll-like receptor (TLR)-mediated innate immune response. Previously it has been demonstrated that this bacterium was able to suppress the MyD88-independent pathway and can survive macrophage intracellular killing. However, the underlying mechanisms responsible for the suppression of this pathway are not fully understood. In the present study, we showed that both living and heat-killed B. pseudomallei bacteria restrict the TLR signaling response, particularly macrophage inducible nitric oxide synthase (iNOS) expression, by preventing downregulation of constitutively expressed signal regulatory protein α (SIRPα) molecule, a known negative regulator of TLR signaling. In contrast, a lipopolysaccharide (LPS) mutant of B. pseudomallei, a less virulent strain, was able to downregulate SIRPα expression in mouse macrophages. However, depletion of constitutively expressed SIRPα was able to induce the gene expression downstream of TLR signaling pathways (particularly the MyD88-independent pathway), such as that of the iNOS gene, leading to enhanced macrophage intracellular killing of B. pseudomallei. Induction of gene expression was consistent with the enhanced degradation pattern of IκBα with SIRPα depletion. Additionally, the downregulation of SIRPα expression with upregulation of iNOS was observed when the macrophages were pretreated with gamma interferon (IFN-γ) prior to the infection, suggesting that the enhanced intracellular killing of bacteria by IFN-γ is associated with the decreased SIRPα expression. Altogether our findings demonstrate that B. pseudomallei evades macrophage intracellular killing by preventing the downregulation of SIRPα that results in the inhibition of gene expression downstream of the MyD88-independent pathway.
Collapse
|
91
|
Affiliation(s)
- W Joost Wiersinga
- Department of Medicine, Division of Infectious Diseases, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|