51
|
Campana S, Demey C, Busch K, Hentschel U, Muyzer G, de Goeij JM. Marine sponges maintain stable bacterial communities between reef sites with different coral to algae cover ratios. FEMS Microbiol Ecol 2021; 97:fiab115. [PMID: 34351429 PMCID: PMC8378938 DOI: 10.1093/femsec/fiab115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
Marine sponges play a major ecological role in recycling resources on coral reef ecosystems. The cycling of resources may largely depend on the stability of the host-microbiome interactions and their susceptibility to altered environmental conditions. Given the current coral to algal phase shift on coral reefs, we investigated whether the sponge-associated bacterial communities of four sponge species, with either high or low microbial abundances (HMA and LMA), remain stable at two reefs sites with different coral to algae cover ratios. Additionally, we assessed the bacterial community composition of two of these sponge species before and after a reciprocal transplantation experiment between the sites. An overall stable bacterial community composition was maintained across the two sites in all sponge species, with a high degree of host-specificity. Furthermore, the core bacterial communities of the sponges remained stable also after a 21-day transplantation period, although a minor shift was observed in less abundant taxa (< 1%). Our findings support the conclusion that host identity and HMA-LMA status are stronger traits in shaping bacterial community composition than habitat. Nevertheless, long-term microbial monitoring of sponges along with benthic biomass and water quality assessments are needed for identifying ecosystem tolerance ranges and tipping points in ongoing coral reef phase shifts.
Collapse
Affiliation(s)
- Sara Campana
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, Netherlands
| | - Celine Demey
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, Netherlands
| | - Kathrin Busch
- Department of Marine Ecology, Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Ute Hentschel
- Department of Marine Ecology, Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Gerard Muyzer
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, Netherlands
| | - Jasper M de Goeij
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, Netherlands
- CARMABI Foundation, Piscaderabaai z/n, P.O. Box 2090, Willemstad, Curaçao
| |
Collapse
|
52
|
Mohanty I, Nguyen NA, Moore SG, Biggs JS, Gaul DA, Garg N, Agarwal V. Enzymatic Synthesis Assisted Discovery of Proline-Rich Macrocyclic Peptides in Marine Sponges. Chembiochem 2021; 22:2614-2618. [PMID: 34185944 PMCID: PMC8415105 DOI: 10.1002/cbic.202100275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/25/2021] [Indexed: 11/10/2022]
Abstract
Proline-rich macrocyclic peptides (PRMPs) are natural products present in geographically and phylogenetically dispersed marine sponges. The large diversity and low abundance of PRMPs in sponge metabolomes precludes isolation and structure elucidation of each individual PRMP congener. Here, using standards developed via biomimetic enzymatic synthesis of PRMPs, a mass spectrometry-based workflow to sequence PRMPs was developed and validated to reveal that the diversity of PRMPs in marine sponges is much greater than that has been realized by natural product isolation-based strategies. Findings are placed in the context of diversity-oriented transamidative macrocyclization of peptide substrates in sponge holobionts.
Collapse
Affiliation(s)
- Ipsita Mohanty
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Nguyet A Nguyen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Samuel G Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jason S Biggs
- University of Guam Marine Laboratory, UOG Station, Mangilao, Guam 96923, USA
| | - David A Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
53
|
Taylor JA, Díez-Vives C, Majzoub ME, Nielsen S, Thomas T. Stress response of the marine sponge Scopalina sp.. Can microbial community composition predict sponge disease? FEMS Microbiol Ecol 2021; 97:6310570. [PMID: 34180510 DOI: 10.1093/femsec/fiab095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Disease has become an increasingly recognised problem in the marine environment, but our understanding of the factors that drive disease or our ability to predict its occurrence is limited. Marine sponges are known for their close associations with microorganisms, which are generally accepted to underpin sponge health and function. The aim of this study is to explore whether the microbial community composition of sponges can act as a predictor of disease occurrence under stressful environmental conditions. The development of a naturally occurring disease in the temperate sponge species Scopalina sp. was reproducibly recreated in a flow-through aquarium environment using increasing temperature stress. Throughout the experiments, four morphological health states were observed and described. Fingerprinting based on terminal restriction fragment length polymorphism of the bacterial community uncovered a statistically significant signature in healthy sponges prior to stress or apparent symptoms that correlated with the time it took for the disease to occur. This shows that the bacterial community composition of individual sponges can act as predictors of necrotic disease development. To the best of our knowledge, this is the first time a microbial signature of this nature has been reported in marine sponges and this finding can contribute to unravelling cause-effect pathways for stress-related dysbiosis and disease.
Collapse
Affiliation(s)
- Jessica A Taylor
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, NSW 2052, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Cristina Díez-Vives
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, NSW 2052, Australia.,Department of Life Sciences, The Natural History Museum, London, UK
| | - Marwan E Majzoub
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, NSW 2052, Australia.,School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shaun Nielsen
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, NSW 2052, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, NSW 2052, Australia.,School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
54
|
Röttjers L, Vandeputte D, Raes J, Faust K. Null-model-based network comparison reveals core associations. ISME COMMUNICATIONS 2021; 1:36. [PMID: 37938641 PMCID: PMC9723671 DOI: 10.1038/s43705-021-00036-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/07/2021] [Accepted: 06/25/2021] [Indexed: 06/15/2023]
Abstract
Microbial network construction and analysis is an important tool in microbial ecology. Such networks are often constructed from statistically inferred associations and may not represent ecological interactions. Hence, microbial association networks are error prone and do not necessarily reflect true community structure. We have developed anuran, a toolbox for investigation of noisy networks with null models. Such models allow researchers to generate data under the null hypothesis that all associations are random, supporting identification of nonrandom patterns in groups of association networks. This toolbox compares multiple networks to identify conserved subsets (core association networks, CANs) and other network properties that are shared across all networks. We apply anuran to a time series of fecal samples from 20 women to demonstrate the existence of CANs in a subset of the sampled individuals. Moreover, we use data from the Global Sponge Project to demonstrate that orders of sponges have a larger CAN than expected at random. In conclusion, this toolbox is a resource for investigators wanting to compare microbial networks across conditions, time series, gradients, or hosts.
Collapse
Affiliation(s)
- Lisa Röttjers
- Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Doris Vandeputte
- Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Jeroen Raes
- Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Karoline Faust
- Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
55
|
Yang F, Zou Q. mAML: an automated machine learning pipeline with a microbiome repository for human disease classification. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2020:5862399. [PMID: 32588040 PMCID: PMC7316531 DOI: 10.1093/database/baaa050] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022]
Abstract
Due to the concerted efforts to utilize the microbial features to improve disease prediction capabilities, automated machine learning (AutoML) systems aiming to get rid of the tediousness in manually performing ML tasks are in great demand. Here we developed mAML, an ML model-building pipeline, which can automatically and rapidly generate optimized and interpretable models for personalized microbiome-based classification tasks in a reproducible way. The pipeline is deployed on a web-based platform, while the server is user-friendly and flexible and has been designed to be scalable according to the specific requirements. This pipeline exhibits high performance for 13 benchmark datasets including both binary and multi-class classification tasks. In addition, to facilitate the application of mAML and expand the human disease-related microbiome learning repository, we developed GMrepo ML repository (GMrepo Microbiome Learning repository) from the GMrepo database. The repository involves 120 microbiome-based classification tasks for 85 human-disease phenotypes referring to 12 429 metagenomic samples and 38 643 amplicon samples. The mAML pipeline and the GMrepo ML repository are expected to be important resources for researches in microbiology and algorithm developments. Database URL: http://lab.malab.cn/soft/mAML
Collapse
Affiliation(s)
- Fenglong Yang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu 610054, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu 610054, China
| |
Collapse
|
56
|
Ho XY, Katermeran NP, Deignan LK, Phyo MY, Ong JFM, Goh JX, Ng JY, Tun K, Tan LT. Assessing the Diversity and Biomedical Potential of Microbes Associated With the Neptune's Cup Sponge, Cliona patera. Front Microbiol 2021; 12:631445. [PMID: 34267732 PMCID: PMC8277423 DOI: 10.3389/fmicb.2021.631445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
Marine sponges are known to host a complex microbial consortium that is essential to the health and resilience of these benthic invertebrates. These sponge-associated microbes are also an important source of therapeutic agents. The Neptune's Cup sponge, Cliona patera, once believed to be extinct, was rediscovered off the southern coast of Singapore in 2011. The chance discovery of this sponge presented an opportunity to characterize the prokaryotic community of C. patera. Sponge tissue samples were collected from the inner cup, outer cup and stem of C. patera for 16S rRNA amplicon sequencing. C. patera hosted 5,222 distinct OTUs, spanning 26 bacterial phyla, and 74 bacterial classes. The bacterial phylum Proteobacteria, particularly classes Gammaproteobacteria and Alphaproteobacteria, dominated the sponge microbiome. Interestingly, the prokaryotic community structure differed significantly between the cup and stem of C. patera, suggesting that within C. patera there are distinct microenvironments. Moreover, the cup of C. patera had lower diversity and evenness as compared to the stem. Quorum sensing inhibitory (QSI) activities of selected sponge-associated marine bacteria were evaluated and their organic extracts profiled using the MS-based molecular networking platform. Of the 110 distinct marine bacterial strains isolated from sponge samples using culture-dependent methods, about 30% showed quorum sensing inhibitory activity. Preliminary identification of selected QSI active bacterial strains revealed that they belong mostly to classes Alphaproteobacteria and Bacilli. Annotation of the MS/MS molecular networkings of these QSI active organic extracts revealed diverse classes of natural products, including aromatic polyketides, siderophores, pyrrolidine derivatives, indole alkaloids, diketopiperazines, and pyrone derivatives. Moreover, potential novel compounds were detected in several strains as revealed by unique molecular families present in the molecular networks. Further research is required to determine the temporal stability of the microbiome of the host sponge, as well as mining of associated bacteria for novel QS inhibitors.
Collapse
Affiliation(s)
- Xin Yi Ho
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Nursheena Parveen Katermeran
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Lindsey Kane Deignan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ma Yadanar Phyo
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Ji Fa Marshall Ong
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Jun Xian Goh
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Juat Ying Ng
- National Parks Board, Singapore Botanic Gardens, Singapore, Singapore
| | - Karenne Tun
- National Parks Board, Singapore Botanic Gardens, Singapore, Singapore
| | - Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
57
|
Campana S, Busch K, Hentschel U, Muyzer G, de Goeij JM. DNA-stable isotope probing (DNA-SIP) identifies marine sponge-associated bacteria actively utilizing dissolved organic matter (DOM). Environ Microbiol 2021; 23:4489-4504. [PMID: 34159693 PMCID: PMC8453545 DOI: 10.1111/1462-2920.15642] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/30/2022]
Abstract
Sponges possess exceptionally diverse associated microbial communities and play a major role in (re)cycling of dissolved organic matter (DOM) in marine ecosystems. Linking sponge-associated community structure with DOM utilization is essential to understand host-microbe interactions in the uptake, processing, and exchange of resources. We coupled, for the first time, DNA-stable isotope probing (DNA-SIP) with 16S rRNA amplicon sequencing in a sponge holobiont to identify which symbiotic bacterial taxa are metabolically active in DOM uptake. Parallel incubation experiments with the sponge Plakortis angulospiculatus were amended with equimolar quantities of unlabelled (12 C) and labelled (13 C) DOM. Seven bacterial amplicon sequence variants (ASVs), belonging to the phyla PAUC34f, Proteobacteria, Poribacteria, Nitrospirae, and Chloroflexi, were identified as the first active consumers of DOM. Our results support the predictions that PAUC34f, Poribacteria, and Chloroflexi are capable of organic matter degradation through heterotrophic carbon metabolism, while Nitrospirae may have a potential mixotrophic metabolism. We present a new analytical application of DNA-SIP to detect substrate incorporation into a marine holobiont with a complex associated bacterial community and provide new experimental evidence that links the identity of diverse sponge-associated bacteria to the consumption of DOM.
Collapse
Affiliation(s)
- Sara Campana
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, Netherlands
| | - Kathrin Busch
- Department of Marine Ecology, Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Ute Hentschel
- Department of Marine Ecology, Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Gerard Muyzer
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, Netherlands
| | - Jasper M de Goeij
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, Netherlands.,CARMABI Foundation, Piscaderabaai z/n, P.O. Box 2090, Willemstad, Curaçao
| |
Collapse
|
58
|
Schmittmann L, Franzenburg S, Pita L. Individuality in the Immune Repertoire and Induced Response of the Sponge Halichondria panicea. Front Immunol 2021; 12:689051. [PMID: 34220847 PMCID: PMC8242945 DOI: 10.3389/fimmu.2021.689051] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
The animal immune system mediates host-microbe interactions from the host perspective. Pattern recognition receptors (PRRs) and the downstream signaling cascades they induce are a central part of animal innate immunity. These molecular immune mechanisms are still not fully understood, particularly in terms of baseline immunity vs induced specific responses regulated upon microbial signals. Early-divergent phyla like sponges (Porifera) can help to identify the evolutionarily conserved mechanisms of immune signaling. We characterized both the expressed immune gene repertoire and the induced response to lipopolysaccharides (LPS) in Halichondria panicea, a promising model for sponge symbioses. We exposed sponges under controlled experimental conditions to bacterial LPS and performed RNA-seq on samples taken 1h and 6h after exposure. H. panicea possesses a diverse array of putative PRRs. While part of those PRRs was constitutively expressed in all analyzed sponges, the majority was expressed individual-specific and regardless of LPS treatment or timepoint. The induced immune response by LPS involved differential regulation of genes related to signaling and recognition, more specifically GTPases and post-translational regulation mechanisms like ubiquitination and phosphorylation. We have discovered individuality in both the immune receptor repertoire and the response to LPS, which may translate into holobiont fitness and susceptibility to stress. The three different layers of immune gene control observed in this study, - namely constitutive expression, individual-specific expression, and induced genes -, draw a complex picture of the innate immune gene regulation in H. panicea. Most likely this reflects synergistic interactions among the different components of immunity in their role to control and respond to a stable microbiome, seawater bacteria, and potential pathogens.
Collapse
Affiliation(s)
- Lara Schmittmann
- Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Sören Franzenburg
- Research Group Genetics&Bioinformatics/Systems Immunology, Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Lucía Pita
- Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
59
|
Hardoim CCP, Lôbo-Hajdu G, Custódio MR, Hardoim PR. Prokaryotic, Fungal, and Unicellular Eukaryotic Core Communities Across Three Sympatric Marine Sponges From the Southwestern Atlantic Coast Are Dominated Largely by Deterministic Assemblage Processes. Front Microbiol 2021; 12:674004. [PMID: 34168631 PMCID: PMC8217869 DOI: 10.3389/fmicb.2021.674004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Marine sponges are known to harbor a diverse and complex microbiota; however, a vast majority of surveys have been investigating the prokaryotic communities in the north hemisphere and Australia. In addition, the mechanisms of microbial community assembly are poorly understood in this pivotal player of the ecosystem. Thus, this survey addressed the holobiome of the sponge species in the São Paulo region (Brazil) for the first time and investigated the contribution of neutral and niche processes of prokaryotic, fungal, and unicellular eukaryotic assemblage in three sympatric species Aplysina caissara, Aplysina fulva, and Tedania ignis along with environmental samples. The compositions of the holobiome associated with the sponges and detected in environmental samples were strikingly different. Remarkably, between 47 and 88% of the assigned operational taxonomic units (OTUs) were specifically associated with sponge species. Moreover, around 77, 69, and 53% of the unclassified OTUs from prokaryotic, fungal, and unicellular eukaryotic communities, respectively, showed less than 97% similarity with well-known databases, suggesting that sponges from the southwestern Atlantic coast are an important source of microbial novelty. These values are even higher, around 80 and 61% of the unclassified OTUs, when excluding low abundance samples from fungal and unicellular eukaryotic datasets, respectively. Host species were the major driver shaping the sponge-associated microbial community. Deterministic processes were primarily responsible for the assembly of microbial communities in all sponge species, while neutral processes of prokaryotic and fungal community assembly were also detected in the sympatric A. caissara and T. ignis replicates, respectively. Most of the species-rich sponge-associated lineages from this region are also found in the Northern seas and many of them might play essential roles in the symbioses, such as biosynthesis of secondary metabolites that exhibit antimicrobial and antiviral activities, as well as provide protection against host predation. Overall, in this study the microbiota was assembled by interactions with the host sponge in a deterministic-based manner; closely related sponge species shared a strong phylogenetic signal in their associated prokaryotic and fungal community traits and Brazilian sponges were a reservoir of novel microbial species.
Collapse
Affiliation(s)
| | - Gisele Lôbo-Hajdu
- Department of Genetic, Biology Institute Roberto Alcântara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Márcio R. Custódio
- Department of Physiology, Biosciences Institute and NP-Biomar, Center for Marine Biology, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
60
|
Survey of artificial intelligence approaches in the study of anthropogenic impacts on symbiotic organisms – a holistic view. Symbiosis 2021. [DOI: 10.1007/s13199-021-00778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
61
|
Mohanty I, Tapadar S, Moore SG, Biggs JS, Freeman CJ, Gaul DA, Garg N, Agarwal V. Presence of Bromotyrosine Alkaloids in Marine Sponges Is Independent of Metabolomic and Microbiome Architectures. mSystems 2021; 6:e01387-20. [PMID: 33727403 PMCID: PMC8547014 DOI: 10.1128/msystems.01387-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
Marine sponge holobionts are prolific sources of natural products. One of the most geographically widespread classes of sponge-derived natural products is the bromotyrosine alkaloids. A distinguishing feature of bromotyrosine alkaloids is that they are present in phylogenetically disparate sponges. In this study, using sponge specimens collected from Guam, the Solomon Islands, the Florida Keys, and Puerto Rico, we queried whether the presence of bromotyrosine alkaloids potentiates metabolomic and microbiome conservation among geographically distant and phylogenetically different marine sponges. A multi-omic characterization of sponge holobionts revealed vastly different metabolomic and microbiome architectures among different bromotyrosine alkaloid-harboring sponges. However, we find statistically significant correlations between the microbiomes and metabolomes, signifying that the microbiome plays an important role in shaping the overall metabolome, even in low-microbial-abundance sponges. Molecules mined from the polar metabolomes of these sponges revealed conservation of biosynthetic logic between bromotyrosine alkaloids and brominated pyrrole-imidazole alkaloids, another class of marine sponge-derived natural products. In light of prior findings postulating the sponge host itself to be the biosynthetic source of bromotyrosine alkaloids, our data now set the stage for investigating the causal relationships that dictate the microbiome-metabolome interconnectedness for marine sponges in which the microbiome may not contribute to natural product biogenesis.IMPORTANCE Our work demonstrates that phylogenetically and geographically distant sponges with very different microbiomes can harbor natural product chemical classes that are united in their core chemical structures and biosynthetic logic. Furthermore, we show that independent of geographical dispersion, natural product chemistry, and microbial abundance, overall sponge metabolomes tightly correlate with their microbiomes.
Collapse
Affiliation(s)
- Ipsita Mohanty
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Subhasish Tapadar
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Samuel G Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jason S Biggs
- University of Guam Marine Laboratory, UOG Station, Mangilao, Guam
| | - Christopher J Freeman
- Department of Biology, College of Charleston, Charleston, South Carolina, USA
- Smithsonian Marine Station, Ft. Pierce, Florida, USA
| | - David A Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
62
|
Oliveira V, Polónia ARM, Cleary DFR, Huang YM, de Voogd NJ, da Rocha UN, Gomes NCM. Characterization of putative circular plasmids in sponge-associated bacterial communities using a selective multiply-primed rolling circle amplification. Mol Ecol Resour 2021; 21:110-121. [PMID: 32866335 DOI: 10.1111/1755-0998.13248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/22/2020] [Accepted: 08/14/2020] [Indexed: 11/28/2022]
Abstract
Plasmid transfers among bacterial populations can directly influence the ecological adaptation of these populations and their interactions with host species and environment. In this study, we developed a selective multiply-primed rolling circle amplification (smRCA) approach to enrich and characterize circular plasmid DNA from sponge microbial symbionts via high-throughput sequencing (HTS). DNA (plasmid and total community DNA) obtained from sponge (Cinachyrella sp.) samples and a bacterial symbiont (Vibrio sp. CyArs1) isolated from the same sponge species (carrying unknown plasmids) were used to develop and validate our methodology. The smRCA was performed during 16 hr with 141 plasmid-specific primers covering all known circular plasmid groups. The amplified products were purified and subjected to a reamplification with random hexamer primers (2 hr) and then sequenced using Illumina MiSeq. The developed method resulted in the successful amplification and characterization of the sponge plasmidome and allowed us to detect plasmids associated with the bacterial symbiont Vibrio sp. CyArs1 in the sponge host. In addition to this, a large number of small (<2 kbp) and cryptic plasmids were also amplified in sponge samples. Functional analysis identified proteins involved in the control of plasmid partitioning, maintenance and replication. However, most plasmids contained unknown genes, which could potentially serve as a resource of unknown genetic information and novel replication systems. Overall, our results indicate that the smRCA-HTS approach developed here was able to selectively enrich and characterize plasmids from bacterial isolates and sponge host microbial communities, including plasmids larger than 20 kbp.
Collapse
Affiliation(s)
- Vanessa Oliveira
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Ana R M Polónia
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Daniel F R Cleary
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Yusheng M Huang
- Tropical Island Sustainable Development Research Center, National Penghu University of Science and Technology, Magong City Penghu, Taiwan
- Department of Marine Recreation, National Penghu University of Science and Technology, Magong City Penghu, Taiwan
| | - Nicole J de Voogd
- Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - Ulisses N da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Newton C M Gomes
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
63
|
Archaeal communities of low and high microbial abundance sponges inhabiting the remote western Indian Ocean island of Mayotte. Antonie van Leeuwenhoek 2020; 114:95-112. [DOI: 10.1007/s10482-020-01503-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022]
|
64
|
Oliveira BFR, Lopes IR, Canellas ALB, Muricy G, Dobson ADW, Laport MS. Not That Close to Mommy: Horizontal Transmission Seeds the Microbiome Associated with the Marine Sponge Plakina cyanorosea. Microorganisms 2020; 8:E1978. [PMID: 33322780 PMCID: PMC7764410 DOI: 10.3390/microorganisms8121978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 01/28/2023] Open
Abstract
Marine sponges are excellent examples of invertebrate-microbe symbioses. In this holobiont, the partnership has elegantly evolved by either transmitting key microbial associates through the host germline and/or capturing microorganisms from the surrounding seawater. We report here on the prokaryotic microbiota during different developmental stages of Plakina cyanorosea and their surrounding environmental samples by a 16S rRNA metabarcoding approach. In comparison with their source adults, larvae housed slightly richer and more diverse microbial communities, which are structurally more related to the environmental microbiota. In addition to the thaumarchaeal Nitrosopumilus, parental sponges were broadly dominated by Alpha- and Gamma-proteobacteria, while the offspring were particularly enriched in the Vibrionales, Alteromonodales, Enterobacterales orders and the Clostridia and Bacteroidia classes. An enterobacterial operational taxonomic unit (OTU) was the dominant member of the strict core microbiota. The most abundant and unique OTUs were not significantly enriched amongst the microbiomes from host specimens included in the sponge microbiome project. In a wider context, Oscarella and Plakina are the sponge genera with higher divergence in their associated microbiota compared to their Homoscleromorpha counterparts. Our results indicate that P. cyanorosea is a low microbial abundance sponge (LMA), which appears to heavily depend on the horizontal transmission of its microbial partners that likely help the sponge host in the adaptation to its habitat.
Collapse
Affiliation(s)
- Bruno F. R. Oliveira
- Laboratório de Bacteriologia Molecular e Marinha, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil; (B.F.R.O.); (I.R.L.); (A.L.B.C.)
- School of Microbiology, University College Cork, T12 Y960 Cork, Ireland;
| | - Isabelle R. Lopes
- Laboratório de Bacteriologia Molecular e Marinha, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil; (B.F.R.O.); (I.R.L.); (A.L.B.C.)
| | - Anna L. B. Canellas
- Laboratório de Bacteriologia Molecular e Marinha, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil; (B.F.R.O.); (I.R.L.); (A.L.B.C.)
| | - Guilherme Muricy
- Laboratório de Biologia de Porifera, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro 20940040, Brazil;
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, T12 Y960 Cork, Ireland;
- Environmental Research Institute, University College Cork, T23 XE10 Cork, Ireland
| | - Marinella S. Laport
- Laboratório de Bacteriologia Molecular e Marinha, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil; (B.F.R.O.); (I.R.L.); (A.L.B.C.)
| |
Collapse
|
65
|
de Oliveira BFR, Freitas-Silva J, Sánchez-Robinet C, Laport MS. Transmission of the sponge microbiome: moving towards a unified model. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:619-638. [PMID: 33048474 DOI: 10.1111/1758-2229.12896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Sponges have co-evolved for millions of years alongside several types of microorganisms, which aside from participating in the animal's diet, are mostly symbionts. Since most of the genetic repertoire in the holobiont genome is provided by microbes, it is expected that the host-associated microbiome will be at least partially heritable. Sponges can therefore acquire their symbionts in different ways. Both vertical transmission (VT) and horizontal transmission (HT) have different advantages and disadvantages in the life cycle of these invertebrates. However, a third mode of transmission, called leaky vertical transmission or mixed mode of transmission (MMT), which incorporates both VT and HT modes, has gained relevance and seems to be the most robust model. In that regard, the aim of this review is to present the evolving knowledge on these main modes of transmission of the sponge microbiome. Our conclusions lead us to suggest that MMT may be more common for all sponges, with its frequency varying across the transmission spectrum between species and the environment. This hybrid model supports the stable and specific transmission of these microbial partners and reinforces their assistance in the resilience of sponges over the years.
Collapse
Affiliation(s)
- Bruno Francesco Rodrigues de Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, Brazil
| | - Jéssyca Freitas-Silva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, Brazil
| | - Claudia Sánchez-Robinet
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, Brazil
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, Brazil
| |
Collapse
|
66
|
Abstract
AbstractThis article aims to provide a thorough overview of the use of Artificial Intelligence (AI) techniques in studying the gut microbiota and its role in the diagnosis and treatment of some important diseases. The association between microbiota and diseases, together with its clinical relevance, is still difficult to interpret. The advances in AI techniques, such as Machine Learning (ML) and Deep Learning (DL), can help clinicians in processing and interpreting these massive data sets. Two research groups have been involved in this Scoping Review, working in two different areas of Europe: Florence and Sarajevo. The papers included in the review describe the use of ML or DL methods applied to the study of human gut microbiota. In total, 1109 papers were considered in this study. After elimination, a final set of 16 articles was considered in the scoping review. Different AI techniques were applied in the reviewed papers. Some papers applied ML, while others applied DL techniques. 11 papers evaluated just different ML algorithms (ranging from one to eight algorithms applied to one dataset). The remaining five papers examined both ML and DL algorithms. The most applied ML algorithm was Random Forest and it also exhibited the best performances.
Collapse
|
67
|
Phylogeny resolved, metabolism revealed: functional radiation within a widespread and divergent clade of sponge symbionts. ISME JOURNAL 2020; 15:503-519. [PMID: 33011742 DOI: 10.1038/s41396-020-00791-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 01/17/2023]
Abstract
The symbiosis between bacteria and sponges has arguably the longest evolutionary history for any extant metazoan lineage, yet little is known about bacterial evolution or adaptation in this process. An example of often dominant and widespread bacterial symbionts of sponges is a clade of uncultured and uncharacterised Proteobacteria. Here we set out to characterise this group using metagenomics, in-depth phylogenetic analyses, metatranscriptomics, and fluorescence in situ hybridisation microscopy. We obtained five metagenome-assembled-genomes (MAGs) from different sponge species that, together with a previously published MAG (AqS2), comprise two families within a new gammaproteobacterial order that we named UTethybacterales. Members of this order share a heterotrophic lifestyle but vary in their predicted ability to use various carbon, nitrogen and sulfur sources, including taurine, spermidine and dimethylsulfoniopropionate. The deep branching of the UTethybacterales within the Gammaproteobacteria and their almost exclusive presence in sponges suggests they have entered a symbiosis with their host relatively early in evolutionary time and have subsequently functionally radiated. This is reflected in quite distinct lifestyles of various species of UTethybacterales, most notably their diverse morphologies, predicted substrate preferences, and localisation within the sponge tissue. This study provides new insight into the evolution of metazoan-bacteria symbiosis.
Collapse
|
68
|
Pascelli C, Laffy PW, Botté E, Kupresanin M, Rattei T, Lurgi M, Ravasi T, Webster NS. Viral ecogenomics across the Porifera. MICROBIOME 2020; 8:144. [PMID: 33008461 PMCID: PMC7532657 DOI: 10.1186/s40168-020-00919-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/08/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Viruses directly affect the most important biological processes in the ocean via their regulation of prokaryotic and eukaryotic populations. Marine sponges form stable symbiotic partnerships with a wide diversity of microorganisms and this high symbiont complexity makes them an ideal model for studying viral ecology. Here, we used morphological and molecular approaches to illuminate the diversity and function of viruses inhabiting nine sponge species from the Great Barrier Reef and seven from the Red Sea. RESULTS Viromic sequencing revealed host-specific and site-specific patterns in the viral assemblages, with all sponge species dominated by the bacteriophage order Caudovirales but also containing variable representation from the nucleocytoplasmic large DNA virus families Mimiviridae, Marseilleviridae, Phycodnaviridae, Ascoviridae, Iridoviridae, Asfarviridae and Poxviridae. Whilst core viral functions related to replication, infection and structure were largely consistent across the sponge viromes, functional profiles varied significantly between species and sites largely due to differential representation of putative auxiliary metabolic genes (AMGs) and accessory genes, including those associated with herbicide resistance, heavy metal resistance and nylon degradation. Furthermore, putative AMGs varied with the composition and abundance of the sponge-associated microbiome. For instance, genes associated with antimicrobial activity were enriched in low microbial abundance sponges, genes associated with nitrogen metabolism were enriched in high microbial abundance sponges and genes related to cellulose biosynthesis were enriched in species that host photosynthetic symbionts. CONCLUSIONS Our results highlight the diverse functional roles that viruses can play in marine sponges and are consistent with our current understanding of sponge ecology. Differential representation of putative viral AMGs and accessory genes across sponge species illustrate the diverse suite of beneficial roles viruses can play in the functional ecology of these complex reef holobionts. Video Abstract.
Collapse
Affiliation(s)
- Cecília Pascelli
- AIMS@JCU, Townsville, Queensland, Australia
- Australian Institute of Marine Science, PMB No.3, Townsville MC, Townsville, Queensland, 4810, Australia
- James Cook University, Townsville, Australia
| | - Patrick W Laffy
- AIMS@JCU, Townsville, Queensland, Australia
- Australian Institute of Marine Science, PMB No.3, Townsville MC, Townsville, Queensland, 4810, Australia
| | - Emmanuelle Botté
- Australian Institute of Marine Science, PMB No.3, Townsville MC, Townsville, Queensland, 4810, Australia
| | - Marija Kupresanin
- KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences & Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, Division of Computational Systems Biology, University of Vienna, Vienna, Austria
| | - Miguel Lurgi
- Biosciences Department, University of Swansea, Swansea, Wales
| | - Timothy Ravasi
- KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences & Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Nicole S Webster
- AIMS@JCU, Townsville, Queensland, Australia.
- Australian Institute of Marine Science, PMB No.3, Townsville MC, Townsville, Queensland, 4810, Australia.
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, Australia.
| |
Collapse
|
69
|
Rix L, Ribes M, Coma R, Jahn MT, de Goeij JM, van Oevelen D, Escrig S, Meibom A, Hentschel U. Heterotrophy in the earliest gut: a single-cell view of heterotrophic carbon and nitrogen assimilation in sponge-microbe symbioses. THE ISME JOURNAL 2020; 14:2554-2567. [PMID: 32601480 PMCID: PMC7490408 DOI: 10.1038/s41396-020-0706-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 01/07/2023]
Abstract
Sponges are the oldest known extant animal-microbe symbiosis. These ubiquitous benthic animals play an important role in marine ecosystems in the cycling of dissolved organic matter (DOM), the largest source of organic matter on Earth. The conventional view on DOM cycling through microbial processing has been challenged by the interaction between this efficient filter-feeding host and its diverse and abundant microbiome. Here we quantify, for the first time, the role of host cells and microbial symbionts in sponge heterotrophy. We combined stable isotope probing and nanoscale secondary ion mass spectrometry to compare the processing of different sources of DOM (glucose, amino acids, algal-produced) and particulate organic matter (POM) by a high-microbial abundance (HMA) and low-microbial abundance (LMA) sponge with single-cell resolution. Contrary to common notion, we found that both microbial symbionts and host choanocyte (i.e. filter) cells and were active in DOM uptake. Although all DOM sources were assimilated by both sponges, higher microbial biomass in the HMA sponge corresponded to an increased capacity to process a greater variety of dissolved compounds. Nevertheless, in situ feeding data demonstrated that DOM was the primary carbon source for both the LMA and HMA sponge, accounting for ~90% of their heterotrophic diets. Microbes accounted for the majority (65-87%) of DOM assimilated by the HMA sponge (and ~60% of its total heterotrophic diet) but <5% in the LMA sponge. We propose that the evolutionary success of sponges is due to their different strategies to exploit the vast reservoir of DOM in the ocean.
Collapse
Affiliation(s)
- Laura Rix
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany.
- School of Biological Sciences, University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Marta Ribes
- Department of Marine Biology and Oceanography, Institute of Marine Science, ICM-CSIC, Barcelona, Spain
| | - Rafel Coma
- Department of Marine Ecology, Centre for Advanced Studies, CEAB-CSIC, Blanes, Spain
| | - Martin T Jahn
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Jasper M de Goeij
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94248, 1090 GE, Amsterdam, The Netherlands
| | - Dick van Oevelen
- Department of Estuarine and Delta Systems, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, PO Box 140, 4400 AC, Yerseke, The Netherlands
| | - Stéphane Escrig
- Laboratory for Biological Geochemistry, School of Architecture Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Ute Hentschel
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
- Christian-Albrechts-University of Kiel (CAU), Kiel, Germany
| |
Collapse
|
70
|
Cammarota G, Ianiro G, Ahern A, Carbone C, Temko A, Claesson MJ, Gasbarrini A, Tortora G. Gut microbiome, big data and machine learning to promote precision medicine for cancer. Nat Rev Gastroenterol Hepatol 2020; 17:635-648. [PMID: 32647386 DOI: 10.1038/s41575-020-0327-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/02/2020] [Indexed: 12/13/2022]
Abstract
The gut microbiome has been implicated in cancer in several ways, as specific microbial signatures are known to promote cancer development and influence safety, tolerability and efficacy of therapies. The 'omics' technologies used for microbiome analysis continuously evolve and, although much of the research is still at an early stage, large-scale datasets of ever increasing size and complexity are being produced. However, there are varying levels of difficulty in realizing the full potential of these new tools, which limit our ability to critically analyse much of the available data. In this Perspective, we provide a brief overview on the role of gut microbiome in cancer and focus on the need, role and limitations of a machine learning-driven approach to analyse large amounts of complex health-care information in the era of big data. We also discuss the potential application of microbiome-based big data aimed at promoting precision medicine in cancer.
Collapse
Affiliation(s)
- Giovanni Cammarota
- Gastroenterology Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Gianluca Ianiro
- Gastroenterology Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Ahern
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Carmine Carbone
- Oncology Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andriy Temko
- School of Engineering, University College Cork, Cork, Ireland.,Qualcomm ML R&D, Cork, Ireland
| | - Marcus J Claesson
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Antonio Gasbarrini
- Gastroenterology Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giampaolo Tortora
- Oncology Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
71
|
Astudillo-García C, Bell JJ, Montoya JM, Moitinho-Silva L, Thomas T, Webster NS, Taylor MW. Assessing the strength and sensitivity of the core microbiota approach on a highly diverse sponge reef. Environ Microbiol 2020; 22:3985-3999. [PMID: 32827171 DOI: 10.1111/1462-2920.15185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/01/2020] [Indexed: 11/30/2022]
Abstract
Marine sponge reefs usually comprise a complex array of taxonomically different sponge species, many of these hosting highly diverse microbial communities. The number of microbial species known to occupy a given sponge ranges from tens to thousands, bringing numerous challenges to their analysis. One way to deal with such complexity is to use a core microbiota approach, in which only prevalent and abundant microbes are considered. Here we aimed to test the strength and sensitivity of the core microbiota approach by applying different core definitions to 20 host sponge species. Application of increasingly stringent relative abundance and/or percentage occurrence thresholds to qualify as part of the core microbiota decreased the number of 'core' OTUs and phyla and, consequently, changed both alpha- and beta-diversity patterns. Moreover, microbial co-occurrence patterns explored using correlation networks were also affected by the core microbiota definition. The application of stricter thresholds resulted in smaller and less compartmentalized networks, with different keystone species. These results highlight that the application of different core definitions to phylogenetically disparate host species can result in the drawing of markedly different conclusions. Consequently, we recommend to assess the effects of different core community definitions on the specific system of study before considering its application.
Collapse
Affiliation(s)
- Carmen Astudillo-García
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - James J Bell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Jose M Montoya
- Ecological Networks and Global Change Group, Theoretical and Experimental Ecology Station, CNRS-University Paul Sabatier, Moulis, France
| | - Lucas Moitinho-Silva
- School of Biological, Earth and Environmental Sciences, Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Torsten Thomas
- School of Biological, Earth and Environmental Sciences, Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, Australia.,Australian Centre for Ecogenomics, University of Queensland, Brisbane, Qld, Australia
| | - Michael W Taylor
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
72
|
Papale M, Rizzo C, Fani R, Bertolino M, Costa G, Paytuví-Gallart A, Schiaparelli S, Michaud L, Azzaro M, Lo Giudice A. Exploring the Diversity and Metabolic Profiles of Bacterial Communities Associated With Antarctic Sponges (Terra Nova Bay, Ross Sea). Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
73
|
Mohanty I, Moore SG, Yi D, Biggs JS, Gaul DA, Garg N, Agarwal V. Precursor-Guided Mining of Marine Sponge Metabolomes Lends Insight into Biosynthesis of Pyrrole-Imidazole Alkaloids. ACS Chem Biol 2020; 15:2185-2194. [PMID: 32662980 DOI: 10.1021/acschembio.0c00375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pyrrole-imidazole alkaloids are natural products isolated from marine sponges, holobiont metazoans that are associated with symbiotic microbiomes. Pyrrole-imidazole alkaloids have attracted attention due to their chemical complexity and their favorable pharmacological properties. However, insights into how these molecules are biosynthesized within the sponge holobionts are scarce. Here, we provide a multiomic profiling of the microbiome and metabolomic architectures of three sponge genera that are prolific producers of pyrrole-imidazole alkaloids. Using a retrobiosynthetic scheme as a guide, we mine the metabolomes of these sponges to detect intermediates in pyrrole-imidazole alkaloid biosynthesis. Our findings reveal that the nonproteinogenic amino acid homoarginine is a critical branch point that connects primary metabolite lysine to the production of pyrrole-imidazole alkaloids. These insights are derived from the polar metabolomes of these sponges which additionally reveal the presence of zwitterionic betaines that may serve important ecological roles in marine habitats. We also establish that metabolomic richness does not correlate with microbial diversity of the sponge holobiont for neither the polar nor the nonpolar metabolomes. Our findings now provide the biochemical foundation for genomic interrogation of the sponge holobiont to establish biogenetic routes for pyrrole-imidazole alkaloid production.
Collapse
Affiliation(s)
- Ipsita Mohanty
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Samuel G. Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Dongqi Yi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jason S. Biggs
- Marine Laboratory, University of Guam, UOG Station, Mangilao 96923, Guam
| | - David A. Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
74
|
Said Hassane C, Fouillaud M, Le Goff G, Sklirou AD, Boyer JB, Trougakos IP, Jerabek M, Bignon J, de Voogd NJ, Ouazzani J, Gauvin-Bialecki A, Dufossé L. Microorganisms Associated with the Marine Sponge Scopalina hapalia: A Reservoir of Bioactive Molecules to Slow Down the Aging Process. Microorganisms 2020; 8:E1262. [PMID: 32825344 PMCID: PMC7570120 DOI: 10.3390/microorganisms8091262] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/09/2020] [Accepted: 08/17/2020] [Indexed: 01/14/2023] Open
Abstract
Aging research aims at developing therapies that delay normal aging processes and some related pathologies. Recently, many compounds and extracts from natural products have been shown to slow aging and/or extend lifespan. Marine sponges and their associated microorganisms have been found to produce a wide variety of bioactive secondary metabolites; however, those from the Southwest of the Indian Ocean are much less studied, especially regarding anti-aging activities. In this study, the microbial diversity of the marine sponge Scopalina hapalia was investigated by metagenomic analysis. Twenty-six bacterial and two archaeal phyla were recovered from the sponge, of which the Proteobacteria phylum was the most abundant. In addition, 30 isolates from S. hapalia were selected and cultivated for identification and secondary metabolites production. The selected isolates were affiliated to the genera Bacillus, Micromonospora, Rhodoccocus, Salinispora, Aspergillus, Chaetomium, Nigrospora and unidentified genera related to the family Thermoactinomycetaceae. Crude extracts from selected microbial cultures were found to be active against seven clinically relevant targets (elastase, tyrosinase, catalase, sirtuin 1, Cyclin-dependent kinase 7 (CDK7), Fyn kinase and proteasome). These results highlight the potential of microorganisms associated with a marine sponge from Mayotte to produce anti-aging compounds. Future work will focus on the isolation and the characterization of bioactive compounds.
Collapse
Affiliation(s)
- Charifat Said Hassane
- Laboratoire de Chimie et Biotechnologie des Produits Naturels, Faculté des Sciences et Technologies, Université de La Réunion, 15 Avenue René Cassin, CS 92003, 97744 Saint-Denis CEDEX 9, La Réunion, France; (C.S.H.); (M.F.); (J.B.B.)
| | - Mireille Fouillaud
- Laboratoire de Chimie et Biotechnologie des Produits Naturels, Faculté des Sciences et Technologies, Université de La Réunion, 15 Avenue René Cassin, CS 92003, 97744 Saint-Denis CEDEX 9, La Réunion, France; (C.S.H.); (M.F.); (J.B.B.)
| | - Géraldine Le Goff
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France; (G.L.G.); (J.B.); (J.O.)
| | - Aimilia D. Sklirou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.D.S.); (I.P.T.)
| | - Jean Bernard Boyer
- Laboratoire de Chimie et Biotechnologie des Produits Naturels, Faculté des Sciences et Technologies, Université de La Réunion, 15 Avenue René Cassin, CS 92003, 97744 Saint-Denis CEDEX 9, La Réunion, France; (C.S.H.); (M.F.); (J.B.B.)
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.D.S.); (I.P.T.)
| | - Moran Jerabek
- Crelux GmbH, Am Klopferspitz 19a, 82152 Martinsried, Germany;
| | - Jérôme Bignon
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France; (G.L.G.); (J.B.); (J.O.)
| | - Nicole J. de Voogd
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands;
- Institute of Environmental Sciences, Leiden University, Einsteinweg 2, 2333 CC Leiden, The Netherlands
| | - Jamal Ouazzani
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France; (G.L.G.); (J.B.); (J.O.)
| | - Anne Gauvin-Bialecki
- Laboratoire de Chimie et Biotechnologie des Produits Naturels, Faculté des Sciences et Technologies, Université de La Réunion, 15 Avenue René Cassin, CS 92003, 97744 Saint-Denis CEDEX 9, La Réunion, France; (C.S.H.); (M.F.); (J.B.B.)
| | - Laurent Dufossé
- Laboratoire de Chimie et Biotechnologie des Produits Naturels, Faculté des Sciences et Technologies, Université de La Réunion, 15 Avenue René Cassin, CS 92003, 97744 Saint-Denis CEDEX 9, La Réunion, France; (C.S.H.); (M.F.); (J.B.B.)
| |
Collapse
|
75
|
Cleary DFR, Polónia ARM, Reijnen BT, Berumen ML, de Voogd NJ. Prokaryote Communities Inhabiting Endemic and Newly Discovered Sponges and Octocorals from the Red Sea. MICROBIAL ECOLOGY 2020; 80:103-119. [PMID: 31932882 DOI: 10.1007/s00248-019-01465-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
In the present study, we assessed prokaryotic communities of demosponges, a calcareous sponge, octocorals, sediment and seawater in coral reef habitat of the central Red Sea, including endemic species and species new to science. Goals of the study were to compare the prokaryotic communities of demosponges with the calcareous sponge and octocorals and to assign preliminary high microbial abundance (HMA) or low microbial abundance (LMA) status to the sponge species based on compositional trait data. Based on the compositional data, we were able to assign preliminary LMA or HMA status to all sponge species. Certain species, however, had traits of both LMA and HMA species. For example, the sponge Ectyoplasia coccinea, which appeared to be a LMA species, had traits, including a relatively high abundance of Chloroflexi members, that were more typical of HMA species. This included dominant OTUs assigned to two different classes within the Chloroflexi. The calcareous sponge clustered together with seawater, the known LMA sponge Stylissa carteri and other presumable LMA species. The two dominant OTUs of this species were assigned to the Deltaproteobacteria and had no close relatives in the GenBank database. The octocoral species in the present study had prokaryotic communities that were distinct from sediment, seawater and all sponge species. These were characterised by OTUs assigned to the orders Rhodospirillales, Cellvibrionales, Spirochaetales and the genus Endozoicomonas, which were rare or absent in samples from other biotopes.
Collapse
Affiliation(s)
- D F R Cleary
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - A R M Polónia
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - B T Reijnen
- Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - M L Berumen
- Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - N J de Voogd
- Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands
- Institute of Environmental Sciences, Environmental Biology Department, Leiden University, Leiden, The Netherlands
| |
Collapse
|
76
|
Yang Q, Franco CMM, Lin HW, Zhang W. Untapped sponge microbiomes: structure specificity at host order and family levels. FEMS Microbiol Ecol 2020; 95:5554005. [PMID: 31494678 DOI: 10.1093/femsec/fiz136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
Sponges are complex holobionts in which the structure of the microbiome has seldom been characterized above the host species level. The hypothesis tested in this study is that the structure of the sponge microbiomes is specific to the host at the order and family levels. This was done by using 33 sponge species belonging to 19 families representing five orders. A combination of three primer sets covering the V1-V8 regions of the 16S rRNA gene provided a more comprehensive coverage of the microbiomes. Both the diversity and structure of sponge microbiomes were demonstrated to be highly specific to the host phylogeny at the order and family levels. There are always dominant operational taxonomic units (OTUs) (relative abundance >1%) shared between microbial communities of sponges within the same family or order, but these shared OTUs showed high levels of dissimilarity between different sponge families and orders. The unique OTUs for a particular sponge family or order could be regarded as their 'signature identity'. 70%-87% of these unique OTUs (class level) are unaffiliated and represent a vast resource of untapped microbiota. This study contributes to a deeper understanding on the concept of host-specificity of sponge microbiomes and highlights a hidden reservoir of sponge-associated microbial resources.
Collapse
Affiliation(s)
- Qi Yang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia.,Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Christopher M M Franco
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia
| | - Hou-Wen Lin
- Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia.,Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
77
|
Highlights of marine natural products having parallel scaffolds found from marine-derived bacteria, sponges, and tunicates. J Antibiot (Tokyo) 2020; 73:504-525. [PMID: 32507851 PMCID: PMC7276339 DOI: 10.1038/s41429-020-0330-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022]
Abstract
Marine-derived bacteria are a prolific source of a wide range of structurally diverse natural products. This review, dedicated to Professor William Fenical, begins by showcasing many seminal discoveries made at the University of California San Diego from marine-derived actinomycetes. Discussed early on is the 20-year journey of discovery and advancement of the seminal actinomycetes natural product salinosporamide A into Phase III anticancer clinical trials. There are many fascinating parallels discussed that were gleaned from the comparative literature of marine sponge, tunicate, and bacteria-derived natural products. Identifying bacterial biosynthetic machinery housed in sponge and tunicate holobionts through both culture-independent and culture-dependent approaches is another important and expanding subject that is analyzed. Work reviewed herein also evaluates the hypotheses that many marine invertebrate-derived natural products are biosynthesised by associated or symbiotic bacteria. The insights and outcomes from metagenomic sequencing and synthetic biology to expand molecule discovery continue to provide exciting outcomes and they are predicted to be the source of the next generation of novel marine natural product chemical scaffolds.
Collapse
|
78
|
Helber SB, Steinert G, Wu YC, Rohde S, Hentschel U, Muhando CA, Schupp PJ. Sponges from Zanzibar host diverse prokaryotic communities with potential for natural product synthesis. FEMS Microbiol Ecol 2020; 95:5369420. [PMID: 30830220 DOI: 10.1093/femsec/fiz026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/02/2019] [Indexed: 11/13/2022] Open
Abstract
Sponges are one of the most dominant organisms in marine ecosystems. One reason for their success is their association with microorganisms that are besides the host itself responsible for the chemical defence. Sponge abundances have been increasing on coral reefs in the Western Indian Ocean (WIO) and are predicted to increase further with rising anthropogenic impacts on coral reefs. However, there is a paucity of information on chemical ecology of sponges from the WIO and their prokaryotic community composition. We used a combination of Illumina sequencing and a predictive metagenomic analysis to (i) assess the prokaryotic community composition of sponges from Zanzibar, (ii) predict the presence of KEGG metabolic pathways responsible for bioactive compound production and (iii) relate their presence to the degree of observed chemical defence in their respective sponge host. We found that sponges from Zanzibar host diverse prokaryotic communities that are host species-specific. Sponge-species and respective specimens that showed strong chemical defences in previous studies were also predicted to be highly enriched in various pathways responsible for secondary metabolite production. Hence, the combined sequencing and predictive metagenomic approach proved to be a useful indicator for the metabolic potential of sponge holobionts.
Collapse
Affiliation(s)
- Stephanie B Helber
- Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University Oldenburg, Schleusenstr. 1, 26382 Wilhelmshaven, Germany.,Leibniz Center for Tropical Marine Research (ZMT) GmbH, Fahrenheitstr. 6, 28359 Bremen, Germany
| | - Georg Steinert
- Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University Oldenburg, Schleusenstr. 1, 26382 Wilhelmshaven, Germany
| | - Yu-Chen Wu
- GEOMAR Helmholtz Centre for Ocean Research, Christian-Albrechts University of Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Sven Rohde
- Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University Oldenburg, Schleusenstr. 1, 26382 Wilhelmshaven, Germany
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research, Christian-Albrechts University of Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Christopher A Muhando
- Institute of Marine Sciences (IMS), Mizingani Road, P.O Box 668, Stonetown, Zanzibar, Tanzania
| | - Peter J Schupp
- Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University Oldenburg, Schleusenstr. 1, 26382 Wilhelmshaven, Germany.,Helmholtz Institute for Functional Marine Biodiversity, Carl von Ossietzky University of Oldenburg, Ammerländer Heeerstr. 231, 26129 Oldenburg, Germany
| |
Collapse
|
79
|
Steinert G, Busch K, Bayer K, Kodami S, Arbizu PM, Kelly M, Mills S, Erpenbeck D, Dohrmann M, Wörheide G, Hentschel U, Schupp PJ. Compositional and Quantitative Insights Into Bacterial and Archaeal Communities of South Pacific Deep-Sea Sponges (Demospongiae and Hexactinellida). Front Microbiol 2020; 11:716. [PMID: 32390977 PMCID: PMC7193145 DOI: 10.3389/fmicb.2020.00716] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/27/2020] [Indexed: 12/01/2022] Open
Abstract
In the present study, we profiled bacterial and archaeal communities from 13 phylogenetically diverse deep-sea sponge species (Demospongiae and Hexactinellida) from the South Pacific by 16S rRNA-gene amplicon sequencing. Additionally, the associated bacteria and archaea were quantified by real-time qPCR. Our results show that bacterial communities from the deep-sea sponges are mostly host-species specific similar to what has been observed for shallow-water demosponges. The archaeal deep-sea sponge community structures are different from the bacterial community structures in that they are almost completely dominated by a single family, which are the ammonia-oxidizing genera within the Nitrosopumilaceae. Remarkably, the archaeal communities are mostly specific to individual sponges (rather than sponge-species), and this observation applies to both hexactinellids and demosponges. Finally, archaeal 16s gene numbers, as detected by quantitative real-time PCR, were up to three orders of magnitude higher than in shallow-water sponges, highlighting the importance of the archaea for deep-sea sponges in general.
Collapse
Affiliation(s)
- Georg Steinert
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany
| | - Kathrin Busch
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Kristina Bayer
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Sahar Kodami
- German Center for Marine Biodiversity Research, Senckenberg Research Institute, Wilhelmshaven, Germany
| | - Pedro Martinez Arbizu
- German Center for Marine Biodiversity Research, Senckenberg Research Institute, Wilhelmshaven, Germany
| | - Michelle Kelly
- National Institute of Water and Atmospheric Research, Ltd., Auckland, New Zealand
| | - Sadie Mills
- National Institute of Water and Atmospheric Research, Ltd., Wellington, New Zealand
| | - Dirk Erpenbeck
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Dohrmann
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
| | - Ute Hentschel
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Christian-Albrecht University of Kiel, Kiel, Germany
| | - Peter J. Schupp
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
| |
Collapse
|
80
|
Ferreira MRS, Cleary DFR, Coelho FJRC, Gomes NCM, Huang YM, Polónia ARM, de Voogd NJ. Geographical location and habitat predict variation in prokaryotic community composition of Suberites diversicolor. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01546-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Marine lakes are unique habitats that house diverse assemblages of benthic and planktonic organisms including endemic species. In this study, we aimed to assess to what extent geographical location (Berau versus Papua) and the degree of marine lake connectivity (relatively open versus closed) to the surrounding marine environment structures the prokaryotic community composition of the sponge species Suberites diversicolor.
Methods
Sponge specimens were sampled in five marine lakes in Borneo and Papua and one open sea habitat in Taiwan.
Result
Prokaryotic communities of S. diversicolor were dominated by members assigned to the Proteobacteria (particularly Alphaproteobacteria and Gammaproteobacteria) and Cyanobacteria, which together made up from 78 to 87% of sequences in all samples. The dominant operational taxonomic units (OTUs) in most samples, OTUs 1 and 3, were both assigned to the alphaproteobacterial order Rhodospirillales with OTU-1 dominant in the marine lakes of Berau and Papua and OTU-3 in Taiwan. OTU-3 was also largely absent from Papuan samples but present in all Berau samples. Compositionally, S. diversicolor samples clustered according to geographical location with the main axis of variation separating marine lake samples collected in Berau from those collected in Papua and the second axis of variation separating open sea samples collected in Taiwan from all marine lake samples. In addition, our results suggest that the degree of lake connectivity to the open sea also influences prokaryotic composition.
Conclusion
Although previous studies have shown that sponge-associated microbial communities tend to be stable across different geographical and environmental gradients, in the present study, both geography and local environmental conditions were significant predictors of variation in prokaryotic community composition of S. diversicolor.
Collapse
|
81
|
Glasl B, Robbins S, Frade PR, Marangon E, Laffy PW, Bourne DG, Webster NS. Comparative genome-centric analysis reveals seasonal variation in the function of coral reef microbiomes. ISME JOURNAL 2020; 14:1435-1450. [PMID: 32123297 PMCID: PMC7242418 DOI: 10.1038/s41396-020-0622-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 01/06/2023]
Abstract
Microbially mediated processes contribute to coral reef resilience yet, despite extensive characterisation of microbial community variation following environmental perturbation, the effect on microbiome function is poorly understood. We undertook metagenomic sequencing of sponge, macroalgae and seawater microbiomes from a macroalgae-dominated inshore coral reef to define their functional potential and evaluate seasonal shifts in microbially mediated processes. In total, 125 high-quality metagenome-assembled genomes were reconstructed, spanning 15 bacterial and 3 archaeal phyla. Multivariate analysis of the genomes relative abundance revealed changes in the functional potential of reef microbiomes in relation to seasonal environmental fluctuations (e.g. macroalgae biomass, temperature). For example, a shift from Alphaproteobacteria to Bacteroidota-dominated seawater microbiomes occurred during summer, resulting in an increased genomic potential to degrade macroalgal-derived polysaccharides. An 85% reduction of Chloroflexota was observed in the sponge microbiome during summer, with potential consequences for nutrition, waste product removal, and detoxification in the sponge holobiont. A shift in the Firmicutes:Bacteroidota ratio was detected on macroalgae over summer with potential implications for polysaccharide degradation in macroalgal microbiomes. These results highlight that seasonal shifts in the dominant microbial taxa alter the functional repertoire of host-associated and seawater microbiomes, and highlight how environmental perturbation can affect microbially mediated processes in coral reef ecosystems.
Collapse
Affiliation(s)
- Bettina Glasl
- Australian Institute of Marine Science, Townsville, QLD, Australia. .,College of Science and Engineering, James Cook University, Townsville, QLD, Australia. .,AIMS@JCU, Townsville, QLD, Australia.
| | - Steven Robbins
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia
| | - Pedro R Frade
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Emma Marangon
- Australian Institute of Marine Science, Townsville, QLD, Australia.,College of Science and Engineering, James Cook University, Townsville, QLD, Australia.,AIMS@JCU, Townsville, QLD, Australia
| | - Patrick W Laffy
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - David G Bourne
- Australian Institute of Marine Science, Townsville, QLD, Australia.,College of Science and Engineering, James Cook University, Townsville, QLD, Australia.,AIMS@JCU, Townsville, QLD, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, Australia.,AIMS@JCU, Townsville, QLD, Australia.,Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
82
|
Mohanty I, Podell S, Biggs JS, Garg N, Allen EE, Agarwal V. Multi-Omic Profiling of Melophlus Sponges Reveals Diverse Metabolomic and Microbiome Architectures that Are Non-overlapping with Ecological Neighbors. Mar Drugs 2020; 18:E124. [PMID: 32092934 PMCID: PMC7074536 DOI: 10.3390/md18020124] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/11/2022] Open
Abstract
Marine sponge holobionts, defined as filter-feeding sponge hosts together with their associated microbiomes, are prolific sources of natural products. The inventory of natural products that have been isolated from marine sponges is extensive. Here, using untargeted mass spectrometry, we demonstrate that sponges harbor a far greater diversity of low-abundance natural products that have evaded discovery. While these low-abundance natural products may not be feasible to isolate, insights into their chemical structures can be gleaned by careful curation of mass fragmentation spectra. Sponges are also some of the most complex, multi-organismal holobiont communities in the oceans. We overlay sponge metabolomes with their microbiome structures and detailed metagenomic characterization to discover candidate gene clusters that encode production of sponge-derived natural products. The multi-omic profiling strategy for sponges that we describe here enables quantitative comparison of sponge metabolomes and microbiomes to address, among other questions, the ecological relevance of sponge natural products and for the phylochemical assignment of previously undescribed sponge identities.
Collapse
Affiliation(s)
- Ipsita Mohanty
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; (I.M.); (N.G.)
| | - Sheila Podell
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA; (S.P.); (E.E.A.)
| | - Jason S. Biggs
- University of Guam Marine Laboratory, UOG Station, Mangilao 96913, Guam;
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; (I.M.); (N.G.)
| | - Eric E. Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA; (S.P.); (E.E.A.)
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; (I.M.); (N.G.)
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
83
|
Moreno-Pino M, Cristi A, Gillooly JF, Trefault N. Characterizing the microbiomes of Antarctic sponges: a functional metagenomic approach. Sci Rep 2020; 10:645. [PMID: 31959785 PMCID: PMC6971038 DOI: 10.1038/s41598-020-57464-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 12/11/2019] [Indexed: 01/22/2023] Open
Abstract
Relatively little is known about the role of sponge microbiomes in the Antarctic marine environment, where sponges may dominate the benthic landscape. Specifically, we understand little about how taxonomic and functional diversity contributes to the symbiotic lifestyle and aids in nutrient cycling. Here we use functional metagenomics to investigate the community composition and metabolic potential of microbiomes from two abundant Antarctic sponges, Leucetta antarctica and Myxilla sp. Genomic and taxonomic analyses show that both sponges harbor a distinct microbial community with high fungal abundance, which differs from the surrounding seawater. Functional analyses reveal both sponge-associated microbial communities are enriched in functions related to the symbiotic lifestyle (e.g., CRISPR system, Eukaryotic-like proteins, and transposases), and in functions important for nutrient cycling. Both sponge microbiomes possessed genes necessary to perform processes important to nitrogen cycling (i.e., ammonia oxidation, nitrite oxidation, and denitrification), and carbon fixation. The latter indicates that Antarctic sponge microorganisms prefer light-independent pathways for CO2 fixation mediated by chemoautotrophic microorganisms. Together, these results show how the unique metabolic potential of two Antarctic sponge microbiomes help these sponge holobionts survive in these inhospitable environments, and contribute to major nutrient cycles of these ecosystems.
Collapse
Affiliation(s)
- Mario Moreno-Pino
- GEMA Center for Genomics, Ecology & Environment, Facultad de Ciencias, Universidad Mayor, Santiago, 8580745, Chile
| | - Antonia Cristi
- GEMA Center for Genomics, Ecology & Environment, Facultad de Ciencias, Universidad Mayor, Santiago, 8580745, Chile
| | - James F Gillooly
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Nicole Trefault
- GEMA Center for Genomics, Ecology & Environment, Facultad de Ciencias, Universidad Mayor, Santiago, 8580745, Chile.
| |
Collapse
|
84
|
Cárdenas CA, Font A, Steinert G, Rondon R, González-Aravena M. Temporal Stability of Bacterial Communities in Antarctic Sponges. Front Microbiol 2019; 10:2699. [PMID: 31824467 PMCID: PMC6883807 DOI: 10.3389/fmicb.2019.02699] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/07/2019] [Indexed: 11/18/2022] Open
Abstract
Marine sponges host dense, diverse, and species-specific microbial communities around the globe; however, most of the current knowledge is restricted to species from tropical and temperate waters. Only recently, some studies have assessed the microbiome of a few Antarctic sponges; however, contrary to low mid-latitude sponges, the knowledge about temporal (stability) patterns in the bacterial communities of Antarctic sponges is absent. Here, we studied the temporal patterns of bacterial communities in the Antarctic sponges Mycale (Oxymycale) acerata, Isodictya sp., Hymeniacidon torquata, and Tedania (Tedaniopsis) wellsae that were tagged in situ and monitored during three austral summers over a 24-month period. By using amplicon sequencing of the bacterial 16S rRNA gene we found that the microbiome differed between species. In general, bacterial communities were dominated by gammaproteobacterial OTUs; however, M. acerata showed the most distinct pattern, being dominated by a single betaproteobacterial OTU. The analysis at OTU level (defined at 97% sequence similarity) showed a highly stable bacterial community through time, despite the abnormal seawater temperatures (reaching 3°C) and rates of temperature increase of 0.15°C day-1 recorded in austral summer 2017. Sponges were characterized by a small core bacterial community that accounted for a high percentage of the abundance. Overall, no consistent changes in core OTU abundance were recorded for all studied species, confirming a high temporal stability of the microbiome. In addition, predicted functional pathway profiles showed that the most abundant pathways among all sponges belonged mostly to metabolism pathway groups (e.g., amino acid, carbohydrate, energy, and nucleotide). The predicted functional pathway patterns differed among the four sponge species. However, no clear temporal differences were detected supporting what was found in terms of the relatively stable composition of the bacterial communities.
Collapse
Affiliation(s)
- César A. Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
| | - Alejandro Font
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
| | - Georg Steinert
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Rodolfo Rondon
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
| | | |
Collapse
|
85
|
Paul VJ, Freeman CJ, Agarwal V. Chemical Ecology of Marine Sponges: New Opportunities through "-Omics". Integr Comp Biol 2019; 59:765-776. [PMID: 30942859 PMCID: PMC6797912 DOI: 10.1093/icb/icz014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The chemical ecology and chemical defenses of sponges have been investigated for decades; consequently, sponges are among the best understood marine organisms in terms of their chemical ecology, from the level of molecules to ecosystems. Thousands of natural products have been isolated and characterized from sponges, and although relatively few of these compounds have been studied for their ecological functions, some are known to serve as chemical defenses against predators, microorganisms, fouling organisms, and other competitors. Sponges are hosts to an exceptional diversity of microorganisms, with almost 40 microbial phyla found in these associations to date. Microbial community composition and abundance are highly variable across host taxa, with a continuum from diverse assemblages of many microbial taxa to those that are dominated by a single microbial group. Microbial communities expand the nutritional repertoire of their hosts by providing access to inorganic and dissolved sources of nutrients. Not only does this continuum of microorganism-sponge associations lead to divergent nutritional characteristics in sponges, these associated microorganisms and symbionts have long been suspected, and are now known, to biosynthesize some of the natural products found in sponges. Modern "omics" tools provide ways to study these sponge-microbe associations that would have been difficult even a decade ago. Metabolomics facilitate comparisons of sponge compounds produced within and among taxa, and metagenomics and metatranscriptomics provide tools to understand the biology of host-microbe associations and the biosynthesis of ecologically relevant natural products. These combinations of ecological, microbiological, metabolomic and genomics tools, and techniques provide unprecedented opportunities to advance sponge biology and chemical ecology across many marine ecosystems.
Collapse
Affiliation(s)
- Valerie J Paul
- Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL 34949, USA
| | - Christopher J Freeman
- Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL 34949, USA
- Department of Biology, College of Charleston, Charleston, SC 29424, USA
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
86
|
Konstantinou D, Voultsiadou E, Panteris E, Zervou SK, Hiskia A, Gkelis S. Leptothoe, a new genus of marine cyanobacteria (Synechococcales) and three new species associated with sponges from the Aegean Sea. JOURNAL OF PHYCOLOGY 2019; 55:882-897. [PMID: 31001838 DOI: 10.1111/jpy.12866] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Cyanobacterial diversity associated with sponges remains underestimated, though it is of great scientific interest in order to understand the ecology and evolutionary history of the symbiotic relationships between the two groups. Of the filamentous cyanobacteria, the genus Leptolyngbya is the most frequently found in association with sponges as well as the largest and obviously polyphyletic group. In this study, five Leptolyngbya-like sponge-associated isolates were investigated using a combination of molecular, chemical, and morphological approach and revealed a novel marine genus herein designated Leptothoe gen. nov. In addition, three new species of Leptothoe, Le. sithoniana, Le. kymatousa, and Le. spongobia, are described based on a suite of distinct characters compared to other marine Leptolyngbyaceae species/strains. The three new species, hosted by four sponge species, showed different degrees of host specificity. Leptothoe sithoniana and Le. kymatousa hosted by the sponges Petrosia ficiformis and Chondrilla nucula, respectively, seem to be more specialized than Le. spongobia, which was hosted by the sponges Dysidea avara and Acanthella acuta. All three species contained nitrogen-fixing genes and may contribute to the nitrogen budget of sponges. Leptothoe spongobia TAU-MAC 1115 isolated from Acanthella acuta was shown to produce microcystin-RR indicating that microcystin production among marine cyanobacteria could be more widespread than previously determined.
Collapse
Affiliation(s)
- Despoina Konstantinou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, GR-541 24, Greece
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, GR-541 124, Greece
| | - Eleni Voultsiadou
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, GR-541 124, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, GR-541 24, Greece
| | - Sevasti-Kiriaki Zervou
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Athens, GR-153 10, Greece
| | - Anastasia Hiskia
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Athens, GR-153 10, Greece
| | - Spyros Gkelis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, GR-541 24, Greece
| |
Collapse
|
87
|
In situ determination of Si, N, and P utilization by the demosponge Tethya citrina: A benthic-chamber approach. PLoS One 2019; 14:e0218787. [PMID: 31283799 PMCID: PMC6613687 DOI: 10.1371/journal.pone.0218787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/11/2019] [Indexed: 11/23/2022] Open
Abstract
Sponges consume dissolved silicon (DSi) to build their skeletons. Few studies have attempted to quantify DSi utilization by these organisms and all available determinations come from laboratory measurements. Here we measured DSi consumption rates of the sponge Tethya citrina in its natural habitat, conducting 24h incubations in benthic chambers. Sponges consumed DSi at an average rate of 0.046 ± 0.018 μmol h-1 mL-1 when DSi availability in its habitat was 8.3 ± 1.8 μM. Such DSi consumption rates significantly matched the values predicted by a kinetic model elsewhere developed previously for this species through laboratory incubations. These results support the use of laboratory incubations as a suitable approach to learn about DSi consumption. During the field incubations, utilization of other dissolved inorganic nutrients by this low-microbial-abundance (LMA) sponge was also measured. The sponges were net sources of ammonium (-0.043 ± 0.031 μmol h-1 mL-1), nitrate (-0.063 ± 0.031 μmol h-1 mL-1), nitrite (-0.007 ± 0.003 μmol h-1 mL-1), and phosphate (-0.004 ± 0.005 μmol h-1 mL-1), in agreement with the general pattern in other LMA species. The detected effluxes were among the lowest reported for sponges, which agreed with the low respiration rates characterizing this species (0.35 ± 0.11 μmol-O2 h-1 mL-1). Despite relatively low flux, the dense population of T. citrina modifies the availability of dissolved inorganic nutrients in the demersal water of its habitat, contributing up to 14% of nitrate and nitrite stocks. Through these effects, the bottom layer contacting the benthic communities where siliceous LMA sponges abound can be partially depleted in DSi, but can benefit from inputs of N and P dissolved inorganic nutrients that are critical to primary producers.
Collapse
|
88
|
Astudillo-García C, Hermans SM, Stevenson B, Buckley HL, Lear G. Microbial assemblages and bioindicators as proxies for ecosystem health status: potential and limitations. Appl Microbiol Biotechnol 2019; 103:6407-6421. [DOI: 10.1007/s00253-019-09963-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/04/2023]
|
89
|
Zhou YH, Gallins P. A Review and Tutorial of Machine Learning Methods for Microbiome Host Trait Prediction. Front Genet 2019; 10:579. [PMID: 31293616 PMCID: PMC6603228 DOI: 10.3389/fgene.2019.00579] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 06/04/2019] [Indexed: 12/19/2022] Open
Abstract
With the growing importance of microbiome research, there is increasing evidence that host variation in microbial communities is associated with overall host health. Advancement in genetic sequencing methods for microbiomes has coincided with improvements in machine learning, with important implications for disease risk prediction in humans. One aspect specific to microbiome prediction is the use of taxonomy-informed feature selection. In this review for non-experts, we explore the most commonly used machine learning methods, and evaluate their prediction accuracy as applied to microbiome host trait prediction. Methods are described at an introductory level, and R/Python code for the analyses is provided.
Collapse
Affiliation(s)
- Yi-Hui Zhou
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Paul Gallins
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
90
|
Rubin-Blum M, Antony CP, Sayavedra L, Martínez-Pérez C, Birgel D, Peckmann J, Wu YC, Cardenas P, MacDonald I, Marcon Y, Sahling H, Hentschel U, Dubilier N. Fueled by methane: deep-sea sponges from asphalt seeps gain their nutrition from methane-oxidizing symbionts. THE ISME JOURNAL 2019; 13:1209-1225. [PMID: 30647460 PMCID: PMC6474228 DOI: 10.1038/s41396-019-0346-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/16/2018] [Accepted: 12/20/2018] [Indexed: 01/26/2023]
Abstract
Sponges host a remarkable diversity of microbial symbionts, however, the benefit their microbes provide is rarely understood. Here, we describe two new sponge species from deep-sea asphalt seeps and show that they live in a nutritional symbiosis with methane-oxidizing (MOX) bacteria. Metagenomics and imaging analyses revealed unusually high amounts of MOX symbionts in hosts from a group previously assumed to have low microbial abundances. These symbionts belonged to the Marine Methylotrophic Group 2 clade. They are host-specific and likely vertically transmitted, based on their presence in sponge embryos and streamlined genomes, which lacked genes typical of related free-living MOX. Moreover, genes known to play a role in host-symbiont interactions, such as those that encode eukaryote-like proteins, were abundant and expressed. Methane assimilation by the symbionts was one of the most highly expressed metabolic pathways in the sponges. Molecular and stable carbon isotope patterns of lipids confirmed that methane-derived carbon was incorporated into the hosts. Our results revealed that two species of sponges, although distantly related, independently established highly specific, nutritional symbioses with two closely related methanotrophs. This convergence in symbiont acquisition underscores the strong selective advantage for these sponges in harboring MOX bacteria in the food-limited deep sea.
Collapse
Affiliation(s)
- Maxim Rubin-Blum
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany.
- Israel Limnology and Oceanography Research, Tel Shikmona, 3108000, Haifa, Israel.
| | - Chakkiath Paul Antony
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany
| | - Lizbeth Sayavedra
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Clara Martínez-Pérez
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany
| | - Daniel Birgel
- Institute for Geology, Center for Earth System Research and Sustainability, University of Hamburg, 20146, Hamburg, Germany
| | - Jörn Peckmann
- Institute for Geology, Center for Earth System Research and Sustainability, University of Hamburg, 20146, Hamburg, Germany
| | - Yu-Chen Wu
- GEOMAR Helmholtz Centre for Ocean Research, RD3 Marine Microbiology and Christian-Albrechts University of Kiel, Düsternbrooker Weg 20, D-24105, Kiel, Germany
| | - Paco Cardenas
- Department of Medicinal Chemistry, Pharmacognosy, BioMedical Centre, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - Ian MacDonald
- Florida State University, POB 3064326, Tallahassee, FL, 32306, USA
| | - Yann Marcon
- Wegener Institute Helmholtz Centre for Polar and Marine Research, HGF-MPG Group for Deep Sea Ecology and Technology, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Heiko Sahling
- MARUM, Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research, RD3 Marine Microbiology and Christian-Albrechts University of Kiel, Düsternbrooker Weg 20, D-24105, Kiel, Germany
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany.
- MARUM, Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany.
| |
Collapse
|
91
|
Qu K, Guo F, Liu X, Lin Y, Zou Q. Application of Machine Learning in Microbiology. Front Microbiol 2019; 10:827. [PMID: 31057526 PMCID: PMC6482238 DOI: 10.3389/fmicb.2019.00827] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/01/2019] [Indexed: 02/01/2023] Open
Abstract
Microorganisms are ubiquitous and closely related to people's daily lives. Since they were first discovered in the 19th century, researchers have shown great interest in microorganisms. People studied microorganisms through cultivation, but this method is expensive and time consuming. However, the cultivation method cannot keep a pace with the development of high-throughput sequencing technology. To deal with this problem, machine learning (ML) methods have been widely applied to the field of microbiology. Literature reviews have shown that ML can be used in many aspects of microbiology research, especially classification problems, and for exploring the interaction between microorganisms and the surrounding environment. In this study, we summarize the application of ML in microbiology.
Collapse
Affiliation(s)
- Kaiyang Qu
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Fei Guo
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Xiangrong Liu
- School of Information Science and Technology, Xiamen University, Xiamen, China
| | - Yuan Lin
- School of Information Science and Technology, Xiamen University, Xiamen, China
- Department of System Integration, Sparebanken Vest, Bergen, Norway
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
92
|
Yang Q, Franco CMM, Zhang W. Uncovering the hidden marine sponge microbiome by applying a multi-primer approach. Sci Rep 2019; 9:6214. [PMID: 30996336 PMCID: PMC6470215 DOI: 10.1038/s41598-019-42694-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/05/2019] [Indexed: 02/07/2023] Open
Abstract
Marine sponges (phylum Porifera) are hosts to microorganisms that make up to 40–60% of the mesohyl volume. The challenge is to characterise this microbial diversity more comprehensively. To accomplish this, a new method was for the first time proposed to obtain sequence coverage of all the variable regions of the 16S rRNA gene to analyze the amplicon-based microbiomes of four representative sponge species belonging to different orders. The five primer sets targeting nine variable regions of the 16S rRNA gene revealed a significant increase in microbiome coverage of 29.5% of phylum level OTUs and 35.5% class level OTUs compared to the community revealed by the commonly used V4 region-specific primer set alone. Among the resulting OTUs, 52.6% and 61.3% were unaffiliated, including candidate OTUs, at the phylum and class levels, respectively, which demonstrated a substantially superior performance in uncovering taxonomic ‘blind spots’. Overall, a more complete sponge microbiome profile was achieved by this multi-primer approach, given the significant improvement of microbial taxonomic coverage and the enhanced capacity to uncover novel microbial taxa. This multi-primer approach represents a fundamental and practical change from the conventional single primer set amplicon-based microbiome approach, and can be broadly applicable to other microbiome studies.
Collapse
Affiliation(s)
- Qi Yang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5042, Australia.,Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Christopher M M Franco
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5042, Australia
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5042, Australia. .,Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
93
|
Cleary DFR, Swierts T, Coelho FJRC, Polónia ARM, Huang YM, Ferreira MRS, Putchakarn S, Carvalheiro L, van der Ent E, Ueng JP, Gomes NCM, de Voogd NJ. The sponge microbiome within the greater coral reef microbial metacommunity. Nat Commun 2019; 10:1644. [PMID: 30967538 PMCID: PMC6456735 DOI: 10.1038/s41467-019-09537-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 03/18/2019] [Indexed: 02/03/2023] Open
Abstract
Much recent marine microbial research has focused on sponges, but very little is known about how the sponge microbiome fits in the greater coral reef microbial metacommunity. Here, we present an extensive survey of the prokaryote communities of a wide range of biotopes from Indo-Pacific coral reef environments. We find a large variation in operational taxonomic unit (OTU) richness, with algae, chitons, stony corals and sea cucumbers housing the most diverse prokaryote communities. These biotopes share a higher percentage and number of OTUs with sediment and are particularly enriched in members of the phylum Planctomycetes. Despite having lower OTU richness, sponges share the greatest percentage (>90%) of OTUs with >100 sequences with the environment (sediment and/or seawater) although there is considerable variation among sponge species. Our results, furthermore, highlight that prokaryote microorganisms are shared among multiple coral reef biotopes, and that, although compositionally distinct, the sponge prokaryote community does not appear to be as sponge-specific as previously thought.
Collapse
Affiliation(s)
- Daniel F R Cleary
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- Tropical Island Sustainable Development Research Center, National Penghu University of Science and Technology, 300 Liu-Ho Rd., Magong City, Penghu 880, Taiwan.
| | - Thomas Swierts
- Marine Biodiversity, Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, The Netherlands
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, The Netherlands
| | - Francisco J R C Coelho
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Ana R M Polónia
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Yusheng M Huang
- Tropical Island Sustainable Development Research Center, National Penghu University of Science and Technology, 300 Liu-Ho Rd., Magong City, Penghu 880, Taiwan
- Department of Marine Recreation, National Penghu University of Science and Technology, 300 Liu-Ho Rd., Magong City, Penghu 880, Taiwan
| | - Marina R S Ferreira
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Sumaitt Putchakarn
- Institute of Marine Science, Burapha University, Chon Buri, 20131, Thailand
| | - Luis Carvalheiro
- CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Esther van der Ent
- Marine Biodiversity, Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, The Netherlands
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, The Netherlands
| | - Jinn-Pyng Ueng
- Tropical Island Sustainable Development Research Center, National Penghu University of Science and Technology, 300 Liu-Ho Rd., Magong City, Penghu 880, Taiwan
- Department of Aquaculture, National Penghu University of Science and Technology, 300 Liu-Ho Rd., Magong City, Penghu 880, Taiwan
| | - Newton C M Gomes
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Nicole J de Voogd
- Marine Biodiversity, Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, The Netherlands
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
94
|
Sacristán‐Soriano O, Winkler M, Erwin P, Weisz J, Harriott O, Heussler G, Bauer E, West Marsden B, Hill A, Hill M. Ontogeny of symbiont community structure in two carotenoid-rich, viviparous marine sponges: comparison of microbiomes and analysis of culturable pigmented heterotrophic bacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:249-261. [PMID: 30761773 PMCID: PMC6850349 DOI: 10.1111/1758-2229.12739] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
Marine sponges harbour diverse communities of microbes. Mechanisms used to establish microbial symbioses in sponges are poorly understood, and the relative contributions of horizontal and vertical transmission are unknown for most species. We examined microbial communities in adults and larvae of carotenoid-rich Clathria prolifera and Halichondria bowerbanki from the mid-Atlantic region of the eastern United States. We sequenced microbiomes from larvae and their mothers and seawater (16S rRNA gene sequencing), and compared microbial community characteristics between species and ambient seawater. The microbial communities in sponges were significantly different than those found in seawater, and each species harboured a distinctive microbiome. Larval microbiomes exhibited significantly lower richness compared with adults, with both sponges appearing to transfer to larvae a particular subset of the adult microbiome. We also surveyed culturable bacteria isolated from larvae of both species. Due to conspicuous coloration of adults and larvae, we focused on pigmented heterotrophic bacteria. We found that the densities of bacteria, in terms of colony-forming units and pigmented heterotrophic bacteria, were higher in larvae than in seawater. We identified a common mode of transmission (vertical and horizontal) of microbes in both sponges that might differ between species.
Collapse
Affiliation(s)
- Oriol Sacristán‐Soriano
- Department of BiologyUniversity of RichmondRichmondVAUSA
- Marine Ecology DepartmentCentro de Estudios Avanzados de Blanes (CEAB, CSIC)BlanesSpain
| | - Marina Winkler
- Department of BiologyUniversity of RichmondRichmondVAUSA
| | - Patrick Erwin
- Department of Biology and Marine Biology, Center for Marine ScienceUniversity of North CarolinaWilmingtonNCUSA
| | - Jeremy Weisz
- Department of BiologyLinfield CollegeMcMinnvilleORUSA
| | | | - Gary Heussler
- Department of BiologyFairfield UniversityFairfieldCTUSA
| | - Emily Bauer
- Department of BiologyUniversity of RichmondRichmondVAUSA
| | | | - April Hill
- Department of BiologyUniversity of RichmondRichmondVAUSA
| | - Malcolm Hill
- Department of BiologyUniversity of RichmondRichmondVAUSA
| |
Collapse
|
95
|
Lurgi M, Thomas T, Wemheuer B, Webster NS, Montoya JM. Modularity and predicted functions of the global sponge-microbiome network. Nat Commun 2019; 10:992. [PMID: 30824706 PMCID: PMC6397258 DOI: 10.1038/s41467-019-08925-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 02/08/2019] [Indexed: 11/10/2022] Open
Abstract
Defining the organisation of species interaction networks and unveiling the processes behind their assembly is fundamental to understanding patterns of biodiversity, community stability and ecosystem functioning. Marine sponges host complex communities of microorganisms that contribute to their health and survival, yet the mechanisms behind microbiome assembly are largely unknown. We present the global marine sponge-microbiome network and reveal a modular organisation in both community structure and function. Modules are linked by a few sponge species that share microbes with other species around the world. Further, we provide evidence that abiotic factors influence the structuring of the sponge microbiome when considering all microbes present, but biotic interactions drive the assembly of more intimately associated 'core' microorganisms. These findings suggest that both ecological and evolutionary processes are at play in host-microbe network assembly. We expect mechanisms behind microbiome assembly to be consistent across multicellular hosts throughout the tree of life.
Collapse
Affiliation(s)
- Miguel Lurgi
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS-Paul Sabatier University, 09200, Moulis, France.
| | - Torsten Thomas
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bernd Wemheuer
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, 4816, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jose M Montoya
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS-Paul Sabatier University, 09200, Moulis, France
| |
Collapse
|
96
|
Neave MJ, Apprill A, Aeby G, Miyake S, Voolstra CR. Microbial Communities of Red Sea Coral Reefs. CORAL REEFS OF THE RED SEA 2019. [DOI: 10.1007/978-3-030-05802-9_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
97
|
García-Bonilla E, Brandão PFB, Pérez T, Junca H. Stable and Enriched Cenarchaeum symbiosum and Uncultured Betaproteobacteria HF1 in the Microbiome of the Mediterranean Sponge Haliclona fulva (Demospongiae: Haplosclerida). MICROBIAL ECOLOGY 2019; 77:25-36. [PMID: 29766224 DOI: 10.1007/s00248-018-1201-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Sponges harbor characteristic microbiomes derived from symbiotic relationships shaping their lifestyle and survival. Haliclona fulva is encrusting marine sponge species dwelling in coralligenous accretions or semidark caves of the Mediterranean Sea and the near Atlantic Ocean. In this work, we characterized the abundance and core microbial community composition found in specimens of H. fulva by means of electron microscopy and 16S amplicon Illumina sequencing. We provide evidence of its low microbial abundance (LMA) nature. We found that the H. fulva core microbiome is dominated by sequences belonging to the orders Nitrosomonadales and Cenarchaeales. Seventy percent of the reads assigned to these phylotypes grouped in a very small number of high-frequency operational taxonomic units, representing niche-specific species Cenarchaeum symbiosum and uncultured Betaproteobacteria HF1, a new eubacterial ribotype variant found in H. fulva. The microbial composition of H. fulva is quite distinct from those reported in sponge species of the same Haliclona genus. We also detected evidence of an excretion/capturing loop between these abundant microorganisms and planktonic microbes by analyzing shifts in seawater planktonic microbial content exposed to healthy sponge specimens maintained in aquaria. Our results suggest that horizontal transmission is very likely the main mechanism for symbionts' acquisition by H. fulva. So far, this is the first shallow water sponge species harboring such a specific and predominant assemblage composed of these eubacterial and archaeal ribotypes. Our data suggests that this symbiotic relationship is very stable over time, indicating that the identified core microbial symbionts may play key roles in the holobiont functioning.
Collapse
Affiliation(s)
- Erika García-Bonilla
- RG Microbial Ecology: Metabolism, Genomics & Evolution, Div Ecogenomics & Holobionts, Microbiomas Foundation, LT 11, Chía, 250008, Colombia
| | - Pedro F B Brandão
- Laboratorio de Microbiología Ambiental y Aplicada, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Avenida Carrera 30 No. 45-03, Bogotá, Colombia
| | - Thierry Pérez
- Station Marine d'Endoume SME - IMBE, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, UMR 7263 CNRS, Aix-Marseille Université, IRD, Avignon Université, Rue Batterie des Lions, 13007, Marseille, France
| | - Howard Junca
- RG Microbial Ecology: Metabolism, Genomics & Evolution, Div Ecogenomics & Holobionts, Microbiomas Foundation, LT 11, Chía, 250008, Colombia.
| |
Collapse
|
98
|
Marine Sponges as Chloroflexi Hot Spots: Genomic Insights and High-Resolution Visualization of an Abundant and Diverse Symbiotic Clade. mSystems 2018; 3:mSystems00150-18. [PMID: 30637337 PMCID: PMC6306507 DOI: 10.1128/msystems.00150-18] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/29/2018] [Indexed: 01/25/2023] Open
Abstract
Chloroflexi represent a widespread, yet enigmatic bacterial phylum with few cultivated members. We used metagenomic and single-cell genomic approaches to characterize the functional gene repertoire of Chloroflexi symbionts in marine sponges. The results of this study suggest clade-specific metabolic specialization and that Chloroflexi symbionts have the genomic potential for dissolved organic matter (DOM) degradation from seawater. Considering the abundance and dominance of sponges in many benthic environments, we predict that the role of sponge symbionts in biogeochemical cycles is larger than previously thought. Members of the widespread bacterial phylum Chloroflexi can dominate high-microbial-abundance (HMA) sponge microbiomes. In the Sponge Microbiome Project, Chloroflexi sequences amounted to 20 to 30% of the total microbiome of certain HMA sponge genera with the classes/clades SAR202, Caldilineae, and Anaerolineae being the most prominent. We performed metagenomic and single-cell genomic analyses to elucidate the functional gene repertoire of Chloroflexi symbionts of Aplysina aerophoba. Eighteen draft genomes were reconstructed and placed into phylogenetic context of which six were investigated in detail. Common genomic features of Chloroflexi sponge symbionts were related to central energy and carbon converting pathways, amino acid and fatty acid metabolism, and respiration. Clade-specific metabolic features included a massively expanded genomic repertoire for carbohydrate degradation in Anaerolineae and Caldilineae genomes, but only amino acid utilization by SAR202. While Anaerolineae and Caldilineae import cofactors and vitamins, SAR202 genomes harbor genes encoding components involved in cofactor biosynthesis. A number of features relevant to symbiosis were further identified, including CRISPR-Cas systems, eukaryote-like repeat proteins, and secondary metabolite gene clusters. Chloroflexi symbionts were visualized in the sponge extracellular matrix at ultrastructural resolution by the fluorescence in situ hybridization-correlative light and electron microscopy (FISH-CLEM) method. Carbohydrate degradation potential was reported previously for “Candidatus Poribacteria” and SAUL, typical symbionts of HMA sponges, and we propose here that HMA sponge symbionts collectively engage in degradation of dissolved organic matter, both labile and recalcitrant. Thus, sponge microbes may not only provide nutrients to the sponge host, but they may also contribute to dissolved organic matter (DOM) recycling and primary productivity in reef ecosystems via a pathway termed the sponge loop. IMPORTANCEChloroflexi represent a widespread, yet enigmatic bacterial phylum with few cultivated members. We used metagenomic and single-cell genomic approaches to characterize the functional gene repertoire of Chloroflexi symbionts in marine sponges. The results of this study suggest clade-specific metabolic specialization and that Chloroflexi symbionts have the genomic potential for dissolved organic matter (DOM) degradation from seawater. Considering the abundance and dominance of sponges in many benthic environments, we predict that the role of sponge symbionts in biogeochemical cycles is larger than previously thought.
Collapse
|
99
|
Knobloch S, Jóhannsson R, Marteinsson V. Bacterial diversity in the marine spongeHalichondria paniceafrom Icelandic waters and host-specificity of its dominant symbiont “CandidatusHalichondribacter symbioticus”. FEMS Microbiol Ecol 2018; 95:5173036. [DOI: 10.1093/femsec/fiy220] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/07/2018] [Indexed: 01/05/2023] Open
Affiliation(s)
- Stephen Knobloch
- Microbiology Group, Department of Research and Innovation, Matís ohf., Vinlandsleid 12, 113 Reykjavik, Iceland
- Faculty of Life and Environmental Sciences, University of Iceland, Saemundargata 2, 101 Reykjavík, Iceland
| | - Ragnar Jóhannsson
- Marine and Freshwater Research Institute, Hafrannsóknastofnun, Skúlagata 4, 101 Reykjavik, Iceland
| | - Viggó Marteinsson
- Microbiology Group, Department of Research and Innovation, Matís ohf., Vinlandsleid 12, 113 Reykjavik, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Saemundargata 2, 101 Reykjavik, Iceland
| |
Collapse
|
100
|
Pita L, Hoeppner MP, Ribes M, Hentschel U. Differential expression of immune receptors in two marine sponges upon exposure to microbial-associated molecular patterns. Sci Rep 2018; 8:16081. [PMID: 30382170 PMCID: PMC6208332 DOI: 10.1038/s41598-018-34330-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
The innate immune system helps animals to navigate the microbial world. The response to microbes relies on the specific recognition of microbial-associated molecular patterns (MAMPs) by immune receptors. Sponges (phylum Porifera), as early-diverging animals, provide insights into conserved mechanisms for animal-microbe crosstalk. However, experimental data is limited. We adopted an experimental approach followed by RNA-Seq and differential gene expression analysis in order to characterise the sponge immune response. Two Mediterranean species, Aplysina aerophoba and Dysidea avara, were exposed to a “cocktail” of MAMPs (lipopolysaccharide and peptidoglycan) or to sterile artificial seawater (control) and sampled 1 h, 3 h, and 5 h post-treatment for RNA-Seq. The response involved, first and foremost, a higher number of differentially-expressed genes in A. aerophoba than D. avara. Secondly, while both species constitutively express a diverse repertoire of immune receptors, they differed in their expression profiles upon MAMP challenge. The response in D. avara was mediated by increased expression of two NLR genes, whereas the response in A. aerophoba involved SRCR and GPCR genes. From the set of annotated genes we infer that both species activated apoptosis in response to MAMPs while in A. aerophoba phagocytosis was additionally stimulated. Our study assessed for the first time the transcriptomic responses of sponges to MAMPs and revealed conserved and species-specific features of poriferan immunity as well as genes potentially relevant to animal-microbe interactions.
Collapse
Affiliation(s)
- Lucía Pita
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.
| | - Marc P Hoeppner
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Marta Ribes
- Institute of Marine Science, CSIC, Barcelona, Spain
| | - Ute Hentschel
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Christian-Albrechts-University of Kiel (CAU), Kiel, Germany
| |
Collapse
|