51
|
Helal DS, El-Khawas H, Elsayed TR. Molecular characterization of endophytic and ectophytic plant growth promoting bacteria isolated from tomato plants (Solanum lycopersicum L.) grown in different soil types. J Genet Eng Biotechnol 2022; 20:79. [PMID: 35608711 PMCID: PMC9130443 DOI: 10.1186/s43141-022-00361-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/02/2022] [Indexed: 11/24/2022]
Abstract
Background Successful rhizosphere colonization by plant growth promoting rhizobacteria (PGPR) is of crucial importance to perform the desired plant growth promoting activities. Since rhizocompetence is a dynamic process influenced by surrounding environmental conditions. In the present study, we hypothesized that bacterial isolates obtained from different tomato plant microhabitats (balk soil, rhizosphere, endorhiza, phyllosphere, and endoshoot) grown in different soils (sand, clay, and peat moss) will show different rhizocompetence abilities. Results To evaluate this hypothesis, bacterial isolates were obtained from different plant microhabitats and screened for their phosphate solubilizing and nitrogen fixing activates. BOX-PCR fingerprint profiles showed high genotypic diversity among the tested isolates and that same genotypes were shared between different soils and/or plant microhabitats. 16S rRNA gene sequences of 25 PGP isolates, representing different plant spheres and soil types, were affiliated to eight genera: Enterobacter, Paraburkholderia, Klebsiella, Bacillus, Paenibacillus, Stenotrophomonas, Pseudomonas, and Kosakonia. The rhizocompetence of each isolate was evaluated in the rhizosphere of tomato plants grown on a mixture of the three soils. Different genotypes of the same bacterial species displayed different rhizocompetence potentials. However, isolates obtained from the above-ground parts of the plant showed high rhizocompetence. In addition, biological control-related genes, ituD and srfC, were detected in the obtained spore forming bacterial isolates. Conclusion This study evaluates, for the first time, the relationship between plant microhabitat and the rhizocompetence ability in tomato rhizosphere. The results indicated that soil type and plant sphere can influence both the genotypic diversity and rhizocompetence ability of the same bacterial species. Bacterial isolates obtained in this study are promising to be used as an environmentally friendly substitution of chemical fertilizers. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00361-0.
Collapse
Affiliation(s)
- Donia S Helal
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Hussein El-Khawas
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Tarek R Elsayed
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Cairo, Egypt.
| |
Collapse
|
52
|
Al-Shwaiman HA, Shahid M, Elgorban AM, Siddique KHM, Syed A. Beijerinckia fluminensis BFC-33, a novel multi-stress-tolerant soil bacterium: Deciphering the stress amelioration, phytopathogenic inhibition and growth promotion in Triticum aestivum (L.). CHEMOSPHERE 2022; 295:133843. [PMID: 35122822 DOI: 10.1016/j.chemosphere.2022.133843] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 05/16/2023]
Abstract
Environmental challenges like drought, salinity, heavy metals and pesticides directly/indirectly influence the environment and decreased the agricultural output. During its long developmental stages, cereal crops including wheat is exposed to a variety of abiotic/biotic stressors. Certain beneficial soil bacteria that can ameliorate environmental stresses can be exploited as crop growth promoters/enhancers under adverse situations. In this study, Beijerinckia fluminensis BFC-33 (accession no. MT672580) isolated from potato rhizosphere tolerated variousabiotic (drought, salinity, temperature, heavy metals, and fungicides) stresses. Strain BFC-33 demonstrated multifarious plant-growth-promoting (PGP) characteristics, such as the production of indole-3-acetic acid, P-solubilization, ACC deaminase, ammonia, siderophore, HCN, EPS, and extracellular enzymes. The antagonistic potential of BFC-33 against major fungal pathogens was ranked: Alternaria alternata (79.2%)>Rhizoctonia solani (69%)>Fusarium oxysporum (23.5%)>Ustilaginoidea virens (17%). Furthermore, bacterization of wheat seeds witha multi-stress-tolerant strain revealed B. fluminensis as a plant growth enhancer and biocontrol agent. For instance, increase in root length (cm) in BFC-33 inoculated wheat exposed to abiotic and biotic stresses at the seedling stage was ranked: B. fluminensis (24.2)>B. fluminensis + 100μgTBZLmL-1 (21.3) = B. fluminensis + 2%PEG (21.3)>B. fluminensis + 100 mM NaCl (19.7)>B. fluminensis + 100μgPbmL-1 (19) = B. fluminensis 100μgMNZBmL-1 (19)>B. fluminensis + A. alternata (17.4)>B. fluminensis + 100μgCdmL-1 (17)>B. fluminensis + F. oxysporum (13.4). In addition, increase in carotenoid accumulation (mg g-1FW) in the foliage of BFC-33 inoculated wheat exposed to fungal infection was ranked: BFC-33 (3.88)>BFC-33+ A. alternata (3.0)>BFC-33+ R. solani (2.78)>BFC-33+ F. oxysporum (2.44). Moreover, BFC-33 inoculation significantly (p ≤ 0.05) reduced stress-induced stressor molecules (proline and TBARS) and electrolyte leakage. Furthermore, B. fluminensis BFC-33 potentially enhanced the defense responses in wheat seedlings by increasing phenylalanine ammonia lyase (PAL), β-1,3 glucanase, and polyphenol oxidase (PPO), which play a significant role in protecting plants from phytopathogens. Even so, by successfully establishing a product with the requisite effects under field settings, selecting multi-stress-tolerant and antagonistic plant growth promoting rhizobacteria (PGPRs) would be helpful to end-users. Future use of native multi-stress-tolerant bacteria as biocontrol agents in conjunction with existing drought, salinity, heavy metal, and pesticide tolerance might contribute to global food security.
Collapse
Affiliation(s)
- Hind A Al-Shwaiman
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture and School of Agriculture & Environment, The University of Western Australia, Perth, WA, 6001, Australia
| | - Asad Syed
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
53
|
Ilyas N, Akhtar N, Yasmin H, Sahreen S, Hasnain Z, Kaushik P, Ahmad A, Ahmad P. Efficacy of citric acid chelate and Bacillus sp. in amelioration of cadmium and chromium toxicity in wheat. CHEMOSPHERE 2022; 290:133342. [PMID: 34922965 DOI: 10.1016/j.chemosphere.2021.133342] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Heavy metals contamination in agricultural soil is a major issue having drastic effects on plants and human health. To solve this issue, we have formulated and tested a new approach of fusion of inorganic (citric acid chelate) and organic (Bacillus sp.) amelioration methods for heavy metals. The Bacillus sp. was heavy metal tolerant and showed plant growth-promoting characteristics including phosphate solubilization, siderophore production, hydrogen cyanide production, indole acetic acid production, and 1-Aminocyclopropane-1-carboxylate deaminase production. The analysis of data showed that plants receiving the combined application of citric acid (CA) chelate and Bacillus sp. mitigated heavy metal toxicity. They augmented the biomass production and amount of photosynthetic pigments in plant cells. They suppressed the negative effects of Cadmium (Cd) and Chromium (Cr) on plants' metabolic systems. A considerable increase was also observed in the activity of enzymatic and non-enzymatic antioxidants which reduced the damaging effects of reactive oxygen species and maintained internal structures of cells. The decrease in the content of Cr and Cd in wheat grains by the treatment of CA chelate and Bacillus sp. was 51%, and 27% respectively. The bioaccumulation of metals was also reduced to 49% (Cr) and 57% (Cd). This approach can be tested and applied in field conditions for soils with heavy metals contamination.
Collapse
Affiliation(s)
- Noshin Ilyas
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan.
| | - Nosheen Akhtar
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Humaira Yasmin
- Department of Bio-Sciences, COMSATS University, Islamabad, 45550, Pakistan
| | - Sumaira Sahreen
- Principle Scientific Officer, Pakistan Museum of Natural History/ Pakistan Science Foundation, Islamabad, Pakistan
| | - Zuhair Hasnain
- Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022, Valencia, Spain
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
54
|
Mellidou I, Karamanoli K. Unlocking PGPR-Mediated Abiotic Stress Tolerance: What Lies Beneath. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.832896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the forthcoming era of climate change and ecosystem degradation, fostering the use of beneficial microbiota in agroecosystems represents a major challenge toward sustainability. Some plant-associated bacteria, called Plant Growth Promoting Rhizobacteria (PGPR), may confer growth-promoting advantages to the plant host, through enhancing nutrient uptake, altering hormone homeostasis, and/or improving tolerance to abiotic stress factors and phytopathogens. In this regard, exploring the key ecological and evolutionary interactions between plants and their microbiomes is perquisite to develop innovative approaches and novel natural products that will complement conventional farming techniques. Recently, details of the molecular aspects of PGPR-mediated tolerance to various stress factors have come to light. At the same time the integration of the recent advances in the field of plant-microbiome crosstalk with novel -omic approaches will soon allow us to develop a holistic approach to “prime” plants against unfavorable environments. This mini review highlights the current state of the art on seed biopriming, focusing on the identification and application of novel PGPR in cultivated plant species under conditions where crop productivity is limited. The potential challenges of commercializing these PGPR as biostimulants to improve crop production under multiple environmental constraints of plant growth, as well as concerns about PGPR application and their impact on ecosystems, are also discussed.
Collapse
|
55
|
Mir MI, Hameeda B, Quadriya H, Kumar BK, Ilyas N, Kee Zuan AT, El Enshasy HA, Dailin DJ, Kassem HS, Gafur A, Sayyed RZ. Multifarious Indigenous Diazotrophic Rhizobacteria of Rice ( Oryza sativa L.) Rhizosphere and Their Effect on Plant Growth Promotion. Front Nutr 2022; 8:781764. [PMID: 35096930 PMCID: PMC8793879 DOI: 10.3389/fnut.2021.781764] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
A diverse group of rhizobacteria persists in the rhizospheric soil, on the surface of roots, or in association with rice plants. These bacteria colonize plant root systems, enhance plant growth and crop yield. Indigenous rhizobacteria are known to promote soil health, grain production quality and serve as sustainable bioinoculant. The present study was aimed to isolate, identify and characterize indigenous plant growth promoting (PGP) diazotrophic bacteria associated with the rhizosphere of rice fields from different areas of Jammu and Kashmir, India. A total of 15 bacteria were isolated and evaluated for various PGP traits, antagonistic activity against phytopathogens, production of hydrolytic enzymes and biofilm formation under in-vitro conditions. The majority of the isolated bacteria were Gram-negative. Out of 15 bacterial isolates, nine isolates produced IAA (12.24 ± 2.86 to 250.3 ± 1.15 μg/ml), 6 isolates exhibited phosphate solubilization activity (36.69 ± 1.63 to 312.4 ± 1.15 μg/ml), 7 isolates exhibited rock phosphate solubilization while 5 isolates solubilized zinc (10-18 mm), 7 isolates showed siderophore production, 8 isolates exhibited HCN production, 6 isolates exhibited aminocyclopropane-1-carboxylate (ACC) deaminase activity, 13 isolates exhibited cellulase activity, nine isolates exhibited amylase and lipase activity and six isolates exhibited chitinase activity. In addition, 5 isolates showed amplification with the nifH gene and showed a significant amount of nitrogenase activity in a range of 0.127-4.39 μmol C2H4/mg protein/h. Five isolates viz., IHK-1, IHK-3, IHK-13, IHK-15 and IHK-25 exhibited most PGP attributes and successfully limited the mycelial growth of Rhizoctonia solani and Fusarium oxysporum in-vitro. All the five bacterial isolates were identified based on morphological, biochemical and 16S rDNA gene sequencing study, as Stenotrophomonas maltophilia, Enterobacter sp., Bacillus sp., Ochrobactrum haematophilum and Pseudomonas aeruginosa. Rice plants developed from seeds inoculated with these PGP strains individually had considerably higher germination percentage, seed vigor index and total dry biomass when compared to control. These findings strongly imply that the PGP diazotrophic bacteria identified in this work could be employed as plant growth stimulators in rice.
Collapse
Affiliation(s)
- Mohammad Imran Mir
- Department of Botany, University College of Science, Osmania University, Hyderabad, India
| | - Bee Hameeda
- Department of Microbiology, University College of Science, Osmania University, Hyderabad, India
| | - Humera Quadriya
- Department of Microbiology, University College of Science, Osmania University, Hyderabad, India
| | - B. Kiran Kumar
- Department of Botany, University College of Science, Osmania University, Hyderabad, India
| | - Noshin Ilyas
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Ali Tan Kee Zuan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hesham Ali El Enshasy
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
- City of Scientific Research and Technology Applications, New Burg Al Arab, Alexandria, Egypt
| | - Daniel Joe Dailin
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Hazem S. Kassem
- Department of Agricultural Extension and Rural Society, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Gafur
- Sinarmas Forestry Corporate Research and Development, Perawang, Indonesia
| | - R. Z. Sayyed
- Asian Plant Growth Promoting Rhizobacteria Society (PGPR) for Sustainable Agriculture, Auburn University, Auburn, AL, United States
| |
Collapse
|
56
|
The rhizosphere of Sulla spinosissima growing in abandoned mining soils is a reservoir of heavy metals tolerant plant growth-promoting rhizobacteria. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
57
|
Ji C, Wang X, Song X, Zhou Q, Li C, Chen Z, Gao Q, Li H, Li J, Zhang P, Cao H. Effect of Bacillus velezensis JC-K3 on Endophytic Bacterial and Fungal Diversity in Wheat Under Salt Stress. Front Microbiol 2021; 12:802054. [PMID: 34987493 PMCID: PMC8722765 DOI: 10.3389/fmicb.2021.802054] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/22/2021] [Indexed: 01/04/2023] Open
Abstract
Plant growth-promoting bacteria (PGPB) can effectively reduce salt damage in plants. Currently, there are many studies on the effects of PGPB on the microbial community structure of rhizosphere soil under salt stress, but fewer studies on the community structure of endophytic bacteria and fungi. We propose that inoculation of endophytic bacteria into the rhizosphere of plants can significantly affect the microbial community structure of the plant's above-ground and underground parts, which may be the cause of the plant's "Induced Systemic Tolerance." The isolated endophytes were re-inoculated into the rhizosphere under salinity stress. We found that, compared with the control group, inoculation with endophytic Bacillus velezensis JC-K3 not only increased the accumulation of wheat biomass, but also increased the content of soluble sugar and chlorophyll in wheat, and reduced the absorption of Na in wheat shoots and leaves. The abundance of bacterial communities in shoots and leaves increased and the abundance of fungal communities decreased after inoculation with JC-K3. The fungal community richness of wheat rhizosphere soil was significantly increased. The diversity of bacterial communities in shoots and leaves increased, and the richness of fungal communities decreased. JC-K3 strain improved wheat's biomass accumulation ability, osmotic adjustment ability, and ion selective absorption ability. In addition, JC-K3 significantly altered the diversity and abundance of endophytic and rhizosphere microorganisms in wheat. PGPB can effectively reduce plant salt damage. At present, there are many studies on the effect of PGPB on the microbial community structure in rhizosphere soil under salt stress, but there are few studies on the community structure changes of endophytic bacteria and fungi in plants.
Collapse
Affiliation(s)
- Chao Ji
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, China
- College of Biological and Agricultural Engineering, Weifang University, Weifang, China
- College of Forestry, Shandong Agriculture University, Taian, China
| | - Xiaohui Wang
- College of Forestry, Shandong Agriculture University, Taian, China
- Key Laboratory of National Forestry and Grassland Administration on Silviculture of the Lower Yellow River, Shandong Agricultural University, Taian, China
- Ministry of Agriculture Key Laboratory of Seaweed Fertilizers, Qingdao, China
| | - Xin Song
- College of Forestry, Shandong Agriculture University, Taian, China
- Key Laboratory of National Forestry and Grassland Administration on Silviculture of the Lower Yellow River, Shandong Agricultural University, Taian, China
| | - Qisheng Zhou
- Animal Husbandry and Veterinary Service Center of Xintai City, Taian, China
| | - Chaohui Li
- College of Forestry, Shandong Agriculture University, Taian, China
| | - Zhizhang Chen
- College of Foreign Languages, Weifang University, Weifang, China
| | - Qixiong Gao
- College of Forestry, Shandong Agriculture University, Taian, China
| | - Huying Li
- College of Forestry, Shandong Agriculture University, Taian, China
- Key Laboratory of National Forestry and Grassland Administration on Silviculture of the Lower Yellow River, Shandong Agricultural University, Taian, China
| | - Jintai Li
- College of Forestry, Shandong Agriculture University, Taian, China
| | - Pengcheng Zhang
- College of Forestry, Shandong Agriculture University, Taian, China
| | - Hui Cao
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, China
- College of Biological and Agricultural Engineering, Weifang University, Weifang, China
| |
Collapse
|
58
|
Performance of halotolerant bacteria associated with Sahara-inhabiting halophytes Atriplex halimus L. and Lygeum spartum L. ameliorate tomato plant growth and tolerance to saline stress: from selective isolation to genomic analysis of potential determinants. World J Microbiol Biotechnol 2021; 38:16. [PMID: 34897563 DOI: 10.1007/s11274-021-03203-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 12/05/2021] [Indexed: 11/25/2022]
Abstract
The use of halotolerant beneficial plant-growth-promoting (PGP) bacteria is considered as a promising eco-friendly approach to improve the salt tolerance of cash crops. One strategy to enhance the possibility of obtaining stress-alleviating bacteria is to screen salt impacted soils. In this study, amongst the 40 endophytic bacteria isolated from the roots of Sahara-inhabiting halophytes Atriplex halimus L. and Lygeum spartum L., 8 showed interesting NaCl tolerance in vitro. Their evaluation, through different tomato plant trials, permitted the isolate IS26 to be distinguished as the most effective seed inoculum for both plant growth promotion and mitigation of salt stress. On the basis of 16S rRNA gene sequence, the isolate was closely related to Stenotrophomonas rhizophila. It was then screened in vitro for multiple PGP traits and the strain-complete genome was sequenced and analysed to further decipher the genomic basis of the putative mechanisms underlying its osmoprotective and plant growth abilities. A remarkable number of genes putatively involved in mechanisms responsible for rhizosphere colonization, plant association, strong competition for nutrients, and the production of important plant growth regulator compounds, such as AIA and spermidine, were highlighted, as were substances protecting against stress, including different osmolytes like trehalose, glucosylglycerol, proline, and glycine betaine. By having genes related to complementary mechanisms of osmosensing, osmoregulation and osmoprotection, the strain confirmed its great capacity to adapt to highly saline environments. Moreover, the presence of various genes potentially related to multiple enzymatic antioxidant processes, able to reduce salt-induced overproduction of ROS, was also detected.
Collapse
|
59
|
Adeleke BS, Ayangbenro AS, Babalola OO. Genomic assessment of Stenotrophomonas indicatrix for improved sunflower plant. Curr Genet 2021. [PMID: 34195871 DOI: 10.1007/s00294-00021-01199-00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Diverse agriculturally important microbes have been studied with known potential in plant growth promotion. Providing several opportunities, Stenotrophomonas species are characterized as promising plant enhancers, inducers, and protectors against environmental stressors. The S. indicatrix BOVIS40 isolated from the sunflower root endosphere possessed unique features, as genome insights into the Stenotrophomonas species isolated from oilseed crops in Southern Africa have not been reported. Plant growth-promotion screening and genome analysis of S. indicatrix BOVIS40 were presented in this study. The genomic information reveals various genes underlining plant growth promotion and resistance to environmental stressors. The genome of S. indicatrix BOVIS40 harbors genes involved in the degradation and biotransformation of organic molecules. Also, other genes involved in biofilm production, chemotaxis, and flagellation that facilitate bacterial colonization in the root endosphere and phytohormone genes that modulate root development and stress response in plants were detected in strain BOVIS40. IAA activity of the bacterial strain may be a factor responsible for root formation. A measurable approach to the S. indicatrix BOVIS40 lifestyle can strategically provide several opportunities in their use as bioinoculants in developing environmentally friendly agriculture sustainably. The findings presented here provide insights into the genomic functions of S. indicatrix BOVIS40, which has set a foundation for future comparative studies for a better understanding of the synergism among microbes inhabiting plant endosphere. Hence, highlighting the potential of S. indicatrix BOVIS40 upon inoculation under greenhouse experiment, thus suggesting its application in enhancing plant and soil health sustainably.
Collapse
Affiliation(s)
- Bartholomew Saanu Adeleke
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Ayansina Segun Ayangbenro
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
60
|
Tulumello J, Chabert N, Rodriguez J, Long J, Nalin R, Achouak W, Heulin T. Rhizobium alamii improves water stress tolerance in a non-legume. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:148895. [PMID: 34346368 DOI: 10.1016/j.scitotenv.2021.148895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
With the increasing demand for alternative solutions to replace or optimize the use of synthetic fertilizers and pesticides, the inoculation of bacteria that can contribute to the growth and health of plants (PGPR) is essential. The properties classically sought in PGPR are the production of phytohormones and other growth-promoting molecules, and more rarely the production of exopolysaccharides. We compared the effect of two strains of exopolysaccharide-producing Rhizobium alamii on rapeseed grown in a calcareous silty-clay soil under water stress conditions or not. The effect of factors 'water stress' and 'inoculation' were evaluated on plant growth parameters and the diversity of microbiota associated to root and root-adhering soil compartments. Water stress resulted in a significant decrease in leaf area, shoot biomass and RAS/RT ratio (root-adhering soil/root tissues), as well as overall beta-diversity. Inoculation with R. alamii YAS34 and GBV030 under water-stress conditions produced the same shoot dry biomass compared to uninoculated treatment in absence of water stress, and both strains increased shoot biomass under water-stressed conditions (+7% and +15%, respectively). Only R. alamii GBV030 significantly increased shoot biomass under unstressed or water-stressed conditions compared to the non-inoculated control (+39% and +15%, respectively). Alpha-diversity of the root-associated microbiota after inoculation with R. alamii YAS34 was significantly reduced. Beta-diversity was significantly modified after inoculation with R. alamii GBV030 under unstressed conditions. LEfSe analysis identified characteristic bacterial families, Flavobacteriaceae and Comamonadaceae, in the RT and RAS compartments for the treatment inoculated by R. alamii GBV030 under unstressed conditions, as well as Halomonadaceae (RT) and several species belonging to Actinomycetales (RAS). We showed that R. alamii GBV030 had a PGPR effect on rapeseed growth, increasing its tolerance to water stress, probably involving its capacity to produce exopolysaccharides, and other plant growth-promoting (PGP) traits.
Collapse
Affiliation(s)
- Joris Tulumello
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, Saint Paul-Lez-Durance F-13108, France; BioIntrant 139, Rue Philippe de Girard, Pertuis F-84120, France.
| | - Nicolas Chabert
- BioIntrant 139, Rue Philippe de Girard, Pertuis F-84120, France.
| | - Julie Rodriguez
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, Saint Paul-Lez-Durance F-13108, France; BioIntrant 139, Rue Philippe de Girard, Pertuis F-84120, France.
| | - Justine Long
- BioIntrant 139, Rue Philippe de Girard, Pertuis F-84120, France.
| | - Renaud Nalin
- BioIntrant 139, Rue Philippe de Girard, Pertuis F-84120, France.
| | - Wafa Achouak
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, Saint Paul-Lez-Durance F-13108, France.
| | - Thierry Heulin
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, Saint Paul-Lez-Durance F-13108, France.
| |
Collapse
|
61
|
Kumar M, Giri VP, Pandey S, Gupta A, Patel MK, Bajpai AB, Jenkins S, Siddique KHM. Plant-Growth-Promoting Rhizobacteria Emerging as an Effective Bioinoculant to Improve the Growth, Production, and Stress Tolerance of Vegetable Crops. Int J Mol Sci 2021; 22:ijms222212245. [PMID: 34830124 PMCID: PMC8622033 DOI: 10.3390/ijms222212245] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Vegetable cultivation is a promising economic activity, and vegetable consumption is important for human health due to the high nutritional content of vegetables. Vegetables are rich in vitamins, minerals, dietary fiber, and several phytochemical compounds. However, the production of vegetables is insufficient to meet the demand of the ever-increasing population. Plant-growth-promoting rhizobacteria (PGPR) facilitate the growth and production of vegetable crops by acquiring nutrients, producing phytohormones, and protecting them from various detrimental effects. In this review, we highlight well-developed and cutting-edge findings focusing on the role of a PGPR-based bioinoculant formulation in enhancing vegetable crop production. We also discuss the role of PGPR in promoting vegetable crop growth and resisting the adverse effects arising from various abiotic (drought, salinity, heat, heavy metals) and biotic (fungi, bacteria, nematodes, and insect pests) stresses.
Collapse
Affiliation(s)
- Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
- Correspondence: (M.K.); (K.H.M.S.)
| | - Ved Prakash Giri
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow 226001, India;
| | - Shipra Pandey
- Department of Chemical Engineering, Indian Institute of Technology, Bombay 400076, India;
| | - Anmol Gupta
- Department of Biosciences, Faculty of Sciences, Integral University, Lucknow 226026, India;
| | - Manish Kumar Patel
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | | | - Sasha Jenkins
- The UWA Institute of Agriculture and UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia;
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture and UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia;
- Correspondence: (M.K.); (K.H.M.S.)
| |
Collapse
|
62
|
Mehmood S, Muneer MA, Tahir M, Javed MT, Mahmood T, Afridi MS, Pakar NP, Abbasi HA, Munis MFH, Chaudhary HJ. Deciphering distinct biological control and growth promoting potential of multi-stress tolerant Bacillus subtilis PM32 for potato stem canker. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2101-2114. [PMID: 34629781 PMCID: PMC8484416 DOI: 10.1007/s12298-021-01067-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/02/2021] [Accepted: 09/08/2021] [Indexed: 05/27/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) represent a set of microorganisms that play significant role in improving plant growth and controlling the phytopathogens. Unpredictable performance after the application of PGPR has been observed when these were shifted from in-vitro to in-vivo conditions due to the prevalence of various abiotic stress conditions. During growing period, the potato crop is subjected to a combination of biotic and abiotic stresses. Rhizoctonia solani, a soil-borne plant pathogen, causes reduced vigor and yield of potato crop worldwide. In the current study, multi-stress-tolerant rhizobacterial strain, Bacillus subtilis PM32, was isolated from field-grown potato with various plant growth promoting (PGP) traits including zinc and potassium solubilization, biological nitrogen fixation, ammonia and siderophore, as well as extracellular enzyme productions (cellulase, catalase, amylase, protease, pectinase, and chitinase). The strain PM32 exhibited a distinct potential to support plant growth by demonstrating production of indole-3-acetic acid (102.6 μM/mL), ACC-deaminase activity (1.63 μM of α-ketobutyrate/h/mg protein), and exopolysaccharides (2.27 mg/mL). By retarding mycelial growth of R. solani the strain PM32 drastically reduced pathogenicity of R. solani. The strain PM32 also suppressed the pathogenic activity significantly by impeding mycelial expansion of R. solani with inhibition co-efficient of 49.87. The B. subtilis PM32 also depicted significant tolerance towards salt, heavy metal (Pb), heat and drought stress. PCR based amplification of ituC and acds genes coding for iturin and ACC-deaminase activity respectively indicated potential of strain PM32 for lipopeptides production and ACC deaminase enzyme activity. Results of both in-vitro and pot experiments under greenhouse conditions depicted the efficiency of B. subtilis PM32 as a promising bio-control agent for R. solani infection together with enhanced growth of potato plants as deciphered from biomass accumulation, chlorophyll a, b, and carotenoid contents. Therefore, it was envisioned that application of indigenous multi-stress tolerant PGPR may serve to induce biotic and abiotic stress tolerance in crops/plants for pathogen control and sustainable global food supply. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01067-2.
Collapse
Affiliation(s)
- Shehzad Mehmood
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320 Pakistan
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100 Pakistan
| | - Muhammad Atif Muneer
- International Magnesium Institute, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou City, China
| | - Muhammad Tahir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100 Pakistan
| | - Muhammad Tariq Javed
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000 Pakistan
| | - Tariq Mahmood
- Department of Agriculture, Hazara University, Mansehra, Pakistan
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras, CP3037,37200-900 Lavras M.G, Brazil
| | - Najeeba Paree Pakar
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320 Pakistan
| | - Hina Ali Abbasi
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320 Pakistan
| | | | | |
Collapse
|
63
|
Fiodor A, Singh S, Pranaw K. The Contrivance of Plant Growth Promoting Microbes to Mitigate Climate Change Impact in Agriculture. Microorganisms 2021; 9:1841. [PMID: 34576736 PMCID: PMC8472176 DOI: 10.3390/microorganisms9091841] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/14/2021] [Accepted: 08/27/2021] [Indexed: 01/07/2023] Open
Abstract
Combating the consequences of climate change is extremely important and critical in the context of feeding the world's population. Crop simulation models have been extensively studied recently to investigate the impact of climate change on agricultural productivity and food security. Drought and salinity are major environmental stresses that cause changes in the physiological, biochemical, and molecular processes in plants, resulting in significant crop productivity losses. Excessive use of chemicals has become a severe threat to human health and the environment. The use of beneficial microorganisms is an environmentally friendly method of increasing crop yield under environmental stress conditions. These microbes enhance plant growth through various mechanisms such as production of hormones, ACC deaminase, VOCs and EPS, and modulate hormone synthesis and other metabolites in plants. This review aims to decipher the effect of plant growth promoting bacteria (PGPB) on plant health under abiotic soil stresses associated with global climate change (viz., drought and salinity). The application of stress-resistant PGPB may not only help in the combating the effects of abiotic stressors, but also lead to mitigation of climate change. More thorough molecular level studies are needed in the future to assess their cumulative influence on plant development.
Collapse
Affiliation(s)
- Angelika Fiodor
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India;
| | - Kumar Pranaw
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| |
Collapse
|
64
|
Kaur C, Gupta M, Garai S, Mishra SK, Chauhan PS, Sopory S, Singla-Pareek SL, Adlakha N, Pareek A. Microbial methylglyoxal metabolism contributes towards growth promotion and stress tolerance in plants. Environ Microbiol 2021; 24:2817-2836. [PMID: 34435423 DOI: 10.1111/1462-2920.15743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022]
Abstract
Plant growth promotion by microbes is a cumulative phenomenon involving multiple traits, many of which are not explored yet. Hence, to unravel microbial mechanisms underlying growth promotion, we have analysed the genomes of two potential growth-promoting microbes, viz., Pseudomonas sp. CK-NBRI-02 (P2) and Bacillus marisflavi CK-NBRI-03 (P3) for the presence of plant-beneficial traits. Besides known traits, we found that microbes differ in their ability to metabolize methylglyoxal (MG), a ubiquitous cytotoxin regarded as general consequence of stress in plants. P2 exhibited greater tolerance to MG and possessed better ability to sustain plant growth under dicarbonyl stress. However, under salinity, only P3 showed a dose-dependent induction in MG detoxification activity in accordance with concomitant increase in MG levels, contributing to enhanced salt tolerance. Furthermore, salt-stressed transcriptomes of both the strains showed differences with respect to MG, ion and osmolyte homeostasis, with P3 being more responsive to stress. Importantly, application of either strain altered MG levels and subsequently MG detoxification machinery in Arabidopsis, probably to strengthen plant defence response and growth. We therefore, suggest a crucial role of microbial MG resistance in plant growth promotion and that it should be considered as a beneficial trait while screening microbes for stress mitigation in plants.
Collapse
Affiliation(s)
- Charanpreet Kaur
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.,International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mayank Gupta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shashank K Mishra
- Microbial Technologies Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Puneet Singh Chauhan
- Microbial Technologies Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Sudhir Sopory
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sneh L Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nidhi Adlakha
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Ashwani Pareek
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
65
|
Kurniawan A, Chuang HW. Rhizobacterial Bacillus mycoides functions in stimulating the antioxidant defence system and multiple phytohormone signalling pathways to regulate plant growth and stress tolerance. J Appl Microbiol 2021; 132:1260-1274. [PMID: 34365711 DOI: 10.1111/jam.15252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022]
Abstract
AIMS To analyse effects and mechanisms of plant growth promotion mediated by Bacillus mycoides strain A3 (BmA3), in Arabidopsis thaliana seedlings. METHODS AND RESULTS Bacillus mycoides strain A3 (BmA3) isolated from the bamboo rhizosphere produced phytohormones, including indole-3-acetic acid (IAA) and gibberellic acid (GA), and exhibited phosphate solubilization and radical scavenging activities. A. thaliana seedlings inoculated with BmA3 exhibited an altered root architecture including an increased number of lateral roots and root hairs. Likewise, enhanced photosynthetic efficiency through the accumulation of higher levels of chlorophyll and starch, and increased plant size and fresh weight were observed in the BmA3-treated seedlings. This bacterial inoculation stimulated the antioxidant defence system by increasing the activities of catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) and phenylalanine ammonia-lyase (PAL). Secondary metabolites, including phenolic compounds, flavonoids and glucosinolates, were induced to higher levels in the BmA3-treated plants. Under drought and heat stresses, lower levels of H2 O2 , malondialdehyde (MDA) and electrolyte leakage were noticed in the treated seedlings. Genes involved in the signalling pathway of jasmonic acid (JA) including MYC2 and lipoxygenase 1 (LOX1) and salicylic acid (SA) including SAR DEFICIENT 1 (SARD1) and CAM-BINDING PROTEIN 60-LIKE G (CBP60G), and the antioxidant defence system including Ascorbate peroxidase (AtAPX) and alternative oxidase (AOX) were upregulated in BmA3-treated plants. Moreover, pathogenesis-related protein 1 (PR-1) and PR-2, marker genes for disease resistance, as well as DREB2A and HsFA2, which function in abiotic stress regulation, were also upregulated. CONCLUSIONS BmA3 was able to activate JA and SA signalling pathways to induce plant growth and abiotic stress tolerance in A. thaliana seedlings. SIGNIFICANCE AND IMPACT OF STUDY The plant growth promotion and increased stress tolerance induced by BmA3 were the result of the combined effects of microbial metabolites and activated host plant responses, including phytohormone signalling pathways and antioxidant defence systems.
Collapse
Affiliation(s)
- Andi Kurniawan
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Huey-Wen Chuang
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
66
|
Jhuma TA, Rafeya J, Sultana S, Rahman MT, Karim MM. Isolation of Endophytic Salt-Tolerant Plant Growth-Promoting Rhizobacteria From Oryza sativa and Evaluation of Their Plant Growth-Promoting Traits Under Salinity Stress Condition. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.687531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The application of plant growth-promoting rhizobacteria (PGPR) as vital components for plant growth promotion against biotic and abiotic stresses could be a promising strategy to improve crop production in areas vulnerable to increasing salinity. Here, we isolated Seventy-five endophytic bacteria from roots of healthy Oryza sativa grown in a saline environment of the southern coastal region of Bangladesh. The endophytes in a culture of ~108 CFU/ml showed arrays of plant growth-promoting (PGP) activities: phytohormone (Indole acetic acid) production (1.20–60.13 μg/ ml), nutrient (phosphate) solubilization (0.02–1.81 μg/ml) and nitrogen fixation (70.24–198.70 μg/ml). Four genomically diverse groups were identified namely, Enterobacter, Achromobacter, Bacillus, and Stenotrophomonas using amplified ribosomal DNA restriction analysis followed by their respective 16S rDNA sequence analyses with that of the data available in NCBI GenBank. These four specific isolates showed tolerance to NaCl ranging from 1.37 to 2.57 mol/L in the nutrient agar medium. Under a 200 mmol/L salt stress in vitro, the bacteria in a culture of 108 CFU/ml exhibited competitive exopolysaccharide (EPS) production: Stenotrophomonas (65 μg/ml) and Bacillus (28 μg/ml), when compared to the positive control, Pseudomonas spp. (23.65 μg/ml), a phenomenon ably supported by their strong biofilm-producing abilities both in a microtiter plate assay, and in soil condition; and demonstrated by images of the scanning electron microscope (SEM). Overall, the isolated endophytic microorganisms revealed potential PGP activities that could be supported by their biofilm-forming ability under salinity stress, thereby building up a sustainable solution for ensuring food security in coastal agriculture under changing climate conditions.
Collapse
|
67
|
Lephatsi MM, Meyer V, Piater LA, Dubery IA, Tugizimana F. Plant Responses to Abiotic Stresses and Rhizobacterial Biostimulants: Metabolomics and Epigenetics Perspectives. Metabolites 2021; 11:457. [PMID: 34357351 PMCID: PMC8305699 DOI: 10.3390/metabo11070457] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/14/2023] Open
Abstract
In response to abiotic stresses, plants mount comprehensive stress-specific responses which mediate signal transduction cascades, transcription of relevant responsive genes and the accumulation of numerous different stress-specific transcripts and metabolites, as well as coordinated stress-specific biochemical and physiological readjustments. These natural mechanisms employed by plants are however not always sufficient to ensure plant survival under abiotic stress conditions. Biostimulants such as plant growth-promoting rhizobacteria (PGPR) formulation are emerging as novel strategies for improving crop quality, yield and resilience against adverse environmental conditions. However, to successfully formulate these microbial-based biostimulants and design efficient application programs, the understanding of molecular and physiological mechanisms that govern biostimulant-plant interactions is imperatively required. Systems biology approaches, such as metabolomics, can unravel insights on the complex network of plant-PGPR interactions allowing for the identification of molecular targets responsible for improved growth and crop quality. Thus, this review highlights the current models on plant defence responses to abiotic stresses, from perception to the activation of cellular and molecular events. It further highlights the current knowledge on the application of microbial biostimulants and the use of epigenetics and metabolomics approaches to elucidate mechanisms of action of microbial biostimulants.
Collapse
Affiliation(s)
- Motseoa M. Lephatsi
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
| | - Vanessa Meyer
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa;
| | - Lizelle A. Piater
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
| | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
- International Research and Development Division, Omnia Group, Ltd., Johannesburg 2021, South Africa
| |
Collapse
|
68
|
Katiyar P, Dubey RC, Maheshwari DK. ACC deaminase-producing Ensifer adhaerens KS23 enhances proximate nutrient of Pisum sativum L. cultivated in high altitude. Arch Microbiol 2021; 203:2689-2698. [PMID: 33715029 DOI: 10.1007/s00203-021-02250-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/30/2020] [Accepted: 02/16/2021] [Indexed: 10/21/2022]
Abstract
A phytohormone producing, N2-fixing and 1-aminocyclopropane-1-carboxylate (ACC) deaminase synthesizing bacterium Ensifer adhaerens KS23 effectively increased the yield and nutritional contents of Pisum sativum var. Arkel. The isolate KS23 showed positive ACC deaminase activity with 174.2 (nmol of α-ketobutyrate/g-1 biomass½ h-1) a 9.7-fold increase in glutathione S-transferase activity. The proximate analysis exhibited an increased yield of protein (21.45%), carbohydrate (38.90%), sulphur (29.94%) starch (27.52%), total ash (35.57%), fat content (27.5%), nitrogen (24.06%) and hydrogen (17.91%) in treated seeds of P. sativum as compared to untreated crop seeds in field trials at Srikot village, Srinagar-246,174 (Garhwal) India. The most desirable essential and non-essential amino-acids content was also enhanced simultaneously by E. adhaerens KS23 as compared to non-treated crop seeds. This study revealed the enhancement of various nutritional contents resulting in quality improvement and an increase in growth productivity of pea. This study provides an encouraging result that may benefit the marginal income of farmers belonging mainly to hilly regions who are dependent on traditional methods of farming and thus improving their economy.
Collapse
Affiliation(s)
- Prashant Katiyar
- Department of Botany and Microbiology, Gurukula Kangri (Deemed To Be University), Haridwar, 249404, Uttarakhand, India.
| | - R C Dubey
- Department of Botany and Microbiology, Gurukula Kangri (Deemed To Be University), Haridwar, 249404, Uttarakhand, India
| | - Dinesh Kumar Maheshwari
- Department of Botany and Microbiology, Gurukula Kangri (Deemed To Be University), Haridwar, 249404, Uttarakhand, India
| |
Collapse
|
69
|
Adeleke BS, Ayangbenro AS, Babalola OO. Genomic assessment of Stenotrophomonas indicatrix for improved sunflower plant. Curr Genet 2021; 67:891-907. [PMID: 34195871 DOI: 10.1007/s00294-021-01199-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 11/29/2022]
Abstract
Diverse agriculturally important microbes have been studied with known potential in plant growth promotion. Providing several opportunities, Stenotrophomonas species are characterized as promising plant enhancers, inducers, and protectors against environmental stressors. The S. indicatrix BOVIS40 isolated from the sunflower root endosphere possessed unique features, as genome insights into the Stenotrophomonas species isolated from oilseed crops in Southern Africa have not been reported. Plant growth-promotion screening and genome analysis of S. indicatrix BOVIS40 were presented in this study. The genomic information reveals various genes underlining plant growth promotion and resistance to environmental stressors. The genome of S. indicatrix BOVIS40 harbors genes involved in the degradation and biotransformation of organic molecules. Also, other genes involved in biofilm production, chemotaxis, and flagellation that facilitate bacterial colonization in the root endosphere and phytohormone genes that modulate root development and stress response in plants were detected in strain BOVIS40. IAA activity of the bacterial strain may be a factor responsible for root formation. A measurable approach to the S. indicatrix BOVIS40 lifestyle can strategically provide several opportunities in their use as bioinoculants in developing environmentally friendly agriculture sustainably. The findings presented here provide insights into the genomic functions of S. indicatrix BOVIS40, which has set a foundation for future comparative studies for a better understanding of the synergism among microbes inhabiting plant endosphere. Hence, highlighting the potential of S. indicatrix BOVIS40 upon inoculation under greenhouse experiment, thus suggesting its application in enhancing plant and soil health sustainably.
Collapse
Affiliation(s)
- Bartholomew Saanu Adeleke
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Ayansina Segun Ayangbenro
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
70
|
Ulrich K, Kube M, Becker R, Schneck V, Ulrich A. Genomic Analysis of the Endophytic Stenotrophomonas Strain 169 Reveals Features Related to Plant-Growth Promotion and Stress Tolerance. Front Microbiol 2021; 12:687463. [PMID: 34220780 PMCID: PMC8245107 DOI: 10.3389/fmicb.2021.687463] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/20/2021] [Indexed: 11/15/2022] Open
Abstract
Plant-associated Stenotrophomonas isolates have great potential for plant growth promotion, especially under stress conditions, due to their ability to promote tolerance to abiotic stresses such as salinity or drought. The endophytic strain Stenotrophomonas sp. 169, isolated from a field-grown poplar, increased the growth of inoculated in vitro plants, with a particular effect on root development, and was able to stimulate the rooting of poplar cuttings in the greenhouse. The strain produced high amounts of the plant growth-stimulating hormone auxin under in vitro conditions. The comparison of the 16S rRNA gene sequences and the phylogenetic analysis of the core genomes showed a close relationship to Stenotrophomonas chelatiphaga and a clear separation from Stenotrophomonas maltophilia. Whole genome sequence analysis revealed functional genes potentially associated with attachment and plant colonization, growth promotion, and stress protection. In detail, an extensive set of genes for twitching motility, chemotaxis, flagella biosynthesis, and the ability to form biofilms, which are connected with host plant colonization, could be identified in the genome of strain 169. The production of indole-3-acetic acid and the presence of genes for auxin biosynthesis pathways and the spermidine pathway could explain the ability to promote plant growth. Furthermore, the genome contained genes encoding for features related to the production of different osmoprotective molecules and enzymes mediating the regulation of stress tolerance and the ability of bacteria to quickly adapt to changing environments. Overall, the results of physiological tests and genome analysis demonstrated the capability of endophytic strain 169 to promote plant growth. In contrast to related species, strain 169 can be considered non-pathogenic and suitable for biotechnology applications.
Collapse
Affiliation(s)
- Kristina Ulrich
- Johann Heinrich von Thünen Institute, Institute of Forest Genetics, Waldsieversdorf, Germany
| | | | - Regina Becker
- Leibniz Center for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Volker Schneck
- Johann Heinrich von Thünen Institute, Institute of Forest Genetics, Waldsieversdorf, Germany
| | - Andreas Ulrich
- Leibniz Center for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| |
Collapse
|
71
|
Ullah A, Bano A, Khan N. Climate Change and Salinity Effects on Crops and Chemical Communication Between Plants and Plant Growth-Promoting Microorganisms Under Stress. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.618092] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
During the last two decades the world has experienced an abrupt change in climate. Both natural and artificial factors are climate change drivers, although the effect of natural factors are lesser than the anthropogenic drivers. These factors have changed the pattern of precipitation resulting in a rise in sea levels, changes in evapotranspiration, occurrence of flood overwintering of pathogens, increased resistance of pests and parasites, and reduced productivity of plants. Although excess CO2 promotes growth of C3 plants, high temperatures reduce the yield of important agricultural crops due to high evapotranspiration. These two factors have an impact on soil salinization and agriculture production, leading to the issue of water and food security. Farmers have adopted different strategies to cope with agriculture production in saline and saline sodic soil. Recently the inoculation of halotolerant plant growth promoting rhizobacteria (PGPR) in saline fields is an environmentally friendly and sustainable approach to overcome salinity and promote crop growth and yield in saline and saline sodic soil. These halotolerant bacteria synthesize certain metabolites which help crops in adopting a saline condition and promote their growth without any negative effects. There is a complex interkingdom signaling between host and microbes for mutual interaction, which is also influenced by environmental factors. For mutual survival, nature induces a strong positive relationship between host and microbes in the rhizosphere. Commercialization of such PGPR in the form of biofertilizers, biostimulants, and biopower are needed to build climate resilience in agriculture. The production of phytohormones, particularly auxins, have been demonstrated by PGPR, even the pathogenic bacteria and fungi which also modulate the endogenous level of auxins in plants, subsequently enhancing plant resistance to various stresses. The present review focuses on plant-microbe communication and elaborates on their role in plant tolerance under changing climatic conditions.
Collapse
|
72
|
Amini Hajiabadi A, Mosleh Arani A, Ghasemi S, Rad MH, Etesami H, Shabazi Manshadi S, Dolati A. Mining the rhizosphere of halophytic rangeland plants for halotolerant bacteria to improve growth and yield of salinity-stressed wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:139-153. [PMID: 33845330 DOI: 10.1016/j.plaphy.2021.03.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
In this study, the effects of three halotolerant rhizobacterial isolates AL, HR, and SB, which are able to grow at a salinity level of 1600 mM NaCl, with multiple plant growth promoting (PGP) traits on some seed and forage quality attributes, and vegetative, reproductive, biochemical and physiological characteristics of wheat plant irrigated with saline water (0, 40, 80, and 160 mM NaCl) were investigated. The ability of halotolerant bacterial isolates to produce PGP traits was affected by salinity levels, depending upon the bacterial isolates. Salinity stress significantly affected the yield, quality, and growth of wheat by modifying the morpho-physiological and biochemical traits of the exposed plants. However, all three bacterial isolates, especially isolate AL, significantly improved the biochemical (an increase in K+/Na+ ratio by 55%, plant P content by 50%, and plant Ca content by 31%), morphological (an increase in stem dry weight by 52%, root dry weight by 44%, spike dry weight by 34%, and grain dry weight by 43%), and physiological (an increase in leaf proline content by 50% and total phenol in leaf by 42%) attributes of wheat and aided the plant to tolerate salinity stress in contrast to un-inoculated plant. Plants inoculated with bacterial isolates showed significantly improved seed amylose by 36%, leaf crude protein by 30%, leaf metabolic energy by 37%, and leaf water-soluble sugar content by 34%. Among the measured PGP and plant attributes, bacterial auxin and plant K content were of key importance in increasing reproductive performance of wheat. The bacterial isolates AL, HR, and SB were identified as Bacillus safensis, B. pumilus, and Zhihengliuella halotolerans, respectively, based on 16 S rDNA sequence. The study reveals that application of halotolerant plant growth-promoting rhizobacteria isolated from halophytic rangeland plants can be a cost effective and ecological sustainable method to improve wheat productivity, especially the attributes related to seed and forage quality, under salinity stress conditions.
Collapse
Affiliation(s)
| | - Asghar Mosleh Arani
- Department of Environmental Sciences, Faculty of Natural Resources, Yazd University, Yazd, Iran.
| | - Somayeh Ghasemi
- Department of Soil Sciences, Faculty of Natural Resources, Yazd University, Yazd, Iran
| | - Mohammad Hadi Rad
- Forest and Rangeland Division, Yazd Agricultural and Natural Resource Research and Education Center, Yazd, Iran
| | - Hassan Etesami
- Department of Soil Science, University of Tehran, Karaj, Iran.
| | | | - Ali Dolati
- Faculty of Mathematics, Department of Statistics, Yazd University, Yazd, Iran
| |
Collapse
|
73
|
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen of significant concern to susceptible patient populations. This pathogen can cause nosocomial and community-acquired respiratory and bloodstream infections and various other infections in humans. Sources include water, plant rhizospheres, animals, and foods. Studies of the genetic heterogeneity of S. maltophilia strains have identified several new genogroups and suggested adaptation of this pathogen to its habitats. The mechanisms used by S. maltophilia during pathogenesis continue to be uncovered and explored. S. maltophilia virulence factors include use of motility, biofilm formation, iron acquisition mechanisms, outer membrane components, protein secretion systems, extracellular enzymes, and antimicrobial resistance mechanisms. S. maltophilia is intrinsically drug resistant to an array of different antibiotics and uses a broad arsenal to protect itself against antimicrobials. Surveillance studies have recorded increases in drug resistance for S. maltophilia, prompting new strategies to be developed against this opportunist. The interactions of this environmental bacterium with other microorganisms are being elucidated. S. maltophilia and its products have applications in biotechnology, including agriculture, biocontrol, and bioremediation.
Collapse
|
74
|
Agbodjato NA, Adoko MY, Babalola OO, Amogou O, Badé FT, Noumavo PA, Adjanohoun A, Baba-Moussa L. Efficacy of Biostimulants Formulated With Pseudomonas putida and Clay, Peat, Clay-Peat Binders on Maize Productivity in a Farming Environment in Southern Benin. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.666718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Maize plays a vital role in Benin's agricultural production systems. However, at the producer-level, yields are still low, although the production of this cereal is necessary for food security. The aims of this study were to assess the efficacy of solid biostimulants formulated from the rhizobacteria Pseudomonas putida and different binders on maize cultivation in the farming environment in three (03) study areas in South Benin. For this purpose, three (03) biostimulants were formulated based on Pseudomonas putida and the clay, peat and clay-peat combinations binders. The experimental design was a randomized block of four (04) treatments with 11 replicates per study area. Each replicate represented one producer. The trials were set up at 33 producers in the study areas of Adakplamè, Hayakpa and Zouzouvou in Southern Benin. The results obtained show that the best height, stem diameter, leaf area as obtained by applying biostimulants based on P. putida and half dose of NPK and Urea with respective increases of 15.75, 15.93, and 15.57% as compared to the full dose of NPK and Urea. Regarding maize yield, there was no significant difference between treatments and the different study areas. Taken together, the different biostimulants formulations were observed to be better than the farmers' practice in all the zones and for all the parameters evaluated, with the formulation involving Pseudomonas putida on the clay binder, and the half-dose of NPK and Urea showing the best result. The biostimulant formulated based on clay + Pseudomonas putida could be used in agriculture for a more sustainable and environmentally friendly maize production in Benin.
Collapse
|
75
|
Muindi MM, Muthini M, Njeru EM, Maingi J. Symbiotic efficiency and genetic characterization of rhizobia and non rhizobial endophytes associated with cowpea grown in semi-arid tropics of Kenya. Heliyon 2021; 7:e06867. [PMID: 33997399 PMCID: PMC8093882 DOI: 10.1016/j.heliyon.2021.e06867] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/08/2020] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cowpea (Vigna unguiculata (L.) Walp) is an important multipurpose legume crop grown in arid and semi-arid areas of sub-Saharan Africa. The crop associates with a wide diversity of high ecological value rhizobia bacteria, improving biological soil fertility and crop production. Here, we evaluated the symbiotic efficiency (SE) and genetic diversity of native rhizobia isolated from root nodules of cowpea genotypes cultivated in semi-arid areas of lower Eastern Kenya. Rhizobia trapping and SE experiments were done in the greenhouse while genetic diversity was evaluated based on 16S rRNA gene sequencing. Twenty morphologically distinct isolates representing a total of 94 isolates were used for genetic analysis. After 16S rRNA gene sequencing, the isolates closely resembled bacteria belonging to the genus Rhizobium, Paraburkholderia and non-rhizobial endophytes (Enterobacter, Strenotrophomonas and Pseudomonas). This study also reports for the first time the presence of an efficient native cowpea nodulating Beta-Rhizobia (Paraburkholderia phenoliruptrix BR3459a) in Africa. Symbiotic efficiency of the native rhizobia isolates varied (p < 0.0001) significantly. Remarkably, two isolates, M2 and M3 recorded higher SE of 82.49 % and 72.76 % respectively compared to the commercial strain Bradyrhizobium sp. USDA 3456 (67.68 %). Our results form an important step in the development of efficient microbial inoculum and sustainable food production.
Collapse
Affiliation(s)
- Mercy Martha Muindi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - Morris Muthini
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - Ezekiel Mugendi Njeru
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - John Maingi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| |
Collapse
|
76
|
Ha-Tran DM, Nguyen TTM, Hung SH, Huang E, Huang CC. Roles of Plant Growth-Promoting Rhizobacteria (PGPR) in Stimulating Salinity Stress Defense in Plants: A Review. Int J Mol Sci 2021; 22:3154. [PMID: 33808829 PMCID: PMC8003591 DOI: 10.3390/ijms22063154] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
To date, soil salinity becomes a huge obstacle for food production worldwide since salt stress is one of the major factors limiting agricultural productivity. It is estimated that a significant loss of crops (20-50%) would be due to drought and salinity. To embark upon this harsh situation, numerous strategies such as plant breeding, plant genetic engineering, and a large variety of agricultural practices including the applications of plant growth-promoting rhizobacteria (PGPR) and seed biopriming technique have been developed to improve plant defense system against salt stress, resulting in higher crop yields to meet human's increasing food demand in the future. In the present review, we update and discuss the advantageous roles of beneficial PGPR as green bioinoculants in mitigating the burden of high saline conditions on morphological parameters and on physio-biochemical attributes of plant crops via diverse mechanisms. In addition, the applications of PGPR as a useful tool in seed biopriming technique are also updated and discussed since this approach exhibits promising potentials in improving seed vigor, rapid seed germination, and seedling growth uniformity. Furthermore, the controversial findings regarding the fluctuation of antioxidants and osmolytes in PGPR-treated plants are also pointed out and discussed.
Collapse
Affiliation(s)
- Dung Minh Ha-Tran
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei 11529, Taiwan;
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (T.T.M.N.); (S.-H.H.)
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Trinh Thi My Nguyen
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (T.T.M.N.); (S.-H.H.)
| | - Shih-Hsun Hung
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (T.T.M.N.); (S.-H.H.)
- Department of Horticulture, National Chung Hsing University, Taichung 40227, Taiwan
| | - Eugene Huang
- College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (T.T.M.N.); (S.-H.H.)
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
77
|
Liu H, Li J, Carvalhais LC, Percy CD, Prakash Verma J, Schenk PM, Singh BK. Evidence for the plant recruitment of beneficial microbes to suppress soil-borne pathogens. THE NEW PHYTOLOGIST 2021; 229:2873-2885. [PMID: 33131088 DOI: 10.1111/nph.17057] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/27/2020] [Indexed: 05/27/2023]
Abstract
An emerging experimental framework suggests that plants under biotic stress may actively seek help from soil microbes, but empirical evidence underlying such a 'cry for help' strategy is limited. We used integrated microbial community profiling, pathogen and plant transcriptive gene quantification and culture-based methods to systematically investigate a three-way interaction between the wheat plant, wheat-associated microbiomes and Fusarium pseudograminearum (Fp). A clear enrichment of a dominant bacterium, Stenotrophomonas rhizophila (SR80), was observed in both the rhizosphere and root endosphere of Fp-infected wheat. SR80 reached 3.7 × 107 cells g-1 in the rhizosphere and accounted for up to 11.4% of the microbes in the root endosphere. Its abundance had a positive linear correlation with the pathogen load at base stems and expression of multiple defence genes in top leaves. Upon re-introduction in soils, SR80 enhanced plant growth, both the below-ground and above-ground, and induced strong disease resistance by boosting plant defence in the above-ground plant parts, but only when the pathogen was present. Together, the bacterium SR80 seems to have acted as an early warning system for plant defence. This work provides novel evidence for the potential protection of plants against pathogens by an enriched beneficial microbe via modulation of the plant immune system.
Collapse
Affiliation(s)
- Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
- School of Agriculture and Food Sciences, The University of Queensland, Saint Lucia, Qld, 4072, Australia
| | - Jiayu Li
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
| | - Lilia C Carvalhais
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Saint Lucia, Qld, 4102, Australia
| | - Cassandra D Percy
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Qld, 4350, Australia
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Peer M Schenk
- School of Agriculture and Food Sciences, The University of Queensland, Saint Lucia, Qld, 4072, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, 2753, Australia
| |
Collapse
|
78
|
Akimoto-Tomiyama C. Multiple endogenous seed-born bacteria recovered rice growth disruption caused by Burkholderia glumae. Sci Rep 2021; 11:4177. [PMID: 33603062 PMCID: PMC7892555 DOI: 10.1038/s41598-021-83794-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/08/2021] [Indexed: 11/09/2022] Open
Abstract
Burkholderia glumae is a causal agent of bacterial grain and seedling rot in rice, and is a threat to stable global food supply. The virulence of B. glumae was suppressed when it was inoculated on budding seed rather than on non-budding seed. To clarify the phenomena, pathogen titer inside the rice plant was measured by serial dilution plating of lysates from budding rice seedlings. Surprisingly, morphologically different types of colonies were observed on the plates. These 'contaminated' rice seed-born bacteria (RSB) were identified by sequencing 16S rRNA genes as three strains of Pseudomonas putida (RSB1, RSB10, RSB15) and Stenotrophomonas maltophilia (RSB2). All bacteria and B. glumae were simultaneously inoculated onto rice seeds, and all three P. putida RSBs suppressed the growth disruption caused by B. glumae, whereas RSB2 had no effect. Thus, the virulence was synergistically suppressed when co-treated with RSBs. The effect could be dependent on the high biofilm formation ability of RSB2. By comprehensive microbiota analysis, endogenous rice flora were changed by RSBs treatment. These results suggest the possibility of novel pathogen control through pre-treatment with endogenous beneficial microorganisms. The method would contribute substantially to the implementation of sustainable agriculture stated in Sustainable Development Goals of United Nations.
Collapse
Affiliation(s)
- Chiharu Akimoto-Tomiyama
- Plant and Microbial Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8518, Japan.
| |
Collapse
|
79
|
Kumawat KC, Sharma P, Nagpal S, Gupta RK, Sirari A, Nair RM, Bindumadhava H, Singh S. Dual Microbial Inoculation, a Game Changer? - Bacterial Biostimulants With Multifunctional Growth Promoting Traits to Mitigate Salinity Stress in Spring Mungbean. Front Microbiol 2021; 11:600576. [PMID: 33584566 PMCID: PMC7874087 DOI: 10.3389/fmicb.2020.600576] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
Soil microbes play a vital role in improving plant growth, soil health, ameliorate biotic/abiotic stress and enhance crop productivity. The present study was aimed to investigate a coordinated effect of compatible consortium [salt tolerating Rhizobium and rhizobacterium with 1-aminocyclopropane-1-carboxylate (ACC) deaminase] in enhancing plant growth promoting (PGP) traits, symbiotic efficiency, nutrient acquisition, anti-oxidative enzymes, grain yield and associated profitability in spring mungbean. We identified a non-pathogenic compatible Rhizobium sp. LSMR-32 (MH644039.1) and Enterococcus mundtii LSMRS-3 (MH644178.1) from salt affected areas of Punjab, India and the same were assessed to develop consortium biofertilizer based on salt tolerance, multifarious PGP traits, antagonistic defense activities and presence of nifH, acds, pqq, and ipdc genes. Indole Acetic acid (IAA), P-solubilization, biofilm formation, exo-polysaccharides, siderophore, salt tolerance, ACC deaminase activities were all found highly significant in dual inoculant (LSMR-32 + LSMRS-3) treatment compared to LSMR-32 alone. Under saline soil conditions, dual inoculant showed a higher seed germination, plant height, biomass, chlorophyll content and macro and micro-nutrient uptake, than un-inoculated control. However, symbiotic (nodulation, nodule biomass and leghaemoglobin content) and soil quality parameters (phosphatase and soil dehydrogenase enzymes) increased numerically with LSMR-32 + LSMRS-3 over Rhizobium sp. LSMR-32 alone. Dual bacterial inoculation (LSMR-32 + LSMRS-3) increased the proline content (2.05 fold), anti-oxidative enzymes viz., superoxide dismutase (1.50 fold), catalase (1.43 fold) and peroxidase (3.88 folds) in contrast to control treatment. Decreased Na+ accumulation and increased K+ uptake resulted in favorable K+/Na+ ratio through ion homeostasis. Co-inoculation of Rhizobium sp. LSMR-32 and Enterococcus mundtii LSMRS-3 significantly improved the grain yield by 8.92% and led to superior B: C ratio over Rhizobium sp. alone under salt stress. To best of our knowledge this is perhaps the first field report from Indian soils that largely describes dual inoculation of Rhizobium sp. LSMR-32 and Enterococcus mundtii LSMRS-3 and the same can be considered as a game-changer approach to simultaneously induce salt tolerance and improve productivity in spring mungbean under saline stress conditions.
Collapse
Affiliation(s)
| | - Poonam Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Sharon Nagpal
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
| | - R K Gupta
- Department of Soil Science, Punjab Agricultural University, Ludhiana, India
| | - Asmita Sirari
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | | | | | - Sudeep Singh
- Regional Research Station, Punjab Agricultural University, Bathinda, India
| |
Collapse
|
80
|
Yuan Y, Chu D, Fan J, Zou P, Qin Y, Geng Y, Cui Z, Wang X, Zhang C, Li X, Clark J, Li Y, Wang X. Ecofriendly conversion of algal waste into valuable plant growth-promoting rhizobacteria (PGPR) biomass. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 120:576-584. [PMID: 33129652 DOI: 10.1016/j.wasman.2020.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/22/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
With the development of marine biorefinery concept, utilisation of algal waste during industrial processing as well as some "green tide" waste biomass has become an important research topic. In this work, a single-step microwave process was used to hydrolyse Laminaria japonica processing waste (LJW) and Enteromorpha prolifera (EP), producing a growth medium suitable for microbial cultivation. The medium contained a range of mono- and polysaccharides as well as macro- and micronutrients that could be used by the microbes. The cultivation behavior of three plant growth-promoting rhizobacteria (PGPR) strains (Bacillus subtilis strain Tpb55, Bacillus amyloliquefaciens strain Cas02, and Burkholderia pyrrocinia strain Lyc2) in the two media were investigated. LJW hydrolysate from 180 °C and EP hydrolysate from 150 °C performed better cultivation efficiency than those hydrolysates from other microwave conditions. Saccharide analysis showed that microbes metabolized some monosaccharide such as glucose, mannose during cultivation, leaving polysaccharide unused in the medium. Furthermore, hydrolysate-strain cultivation mixtures were applied to pepper growth. The EP hydrolysate-Cas02 broth showed better plant growth-promoting effect compared to other treatments, which might be attributed to the higher indole-3-acetic acid (IAA) production of Cas02 in the EP hydrolysate. This work shed lights on the conversion of algal waste to PGPR biomass as well as the co-application of algal hydrolysates- strains cultivation broth for a better plant growth promotion.
Collapse
Affiliation(s)
- Yuan Yuan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Depeng Chu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Jiajun Fan
- Green Chemistry Centre of Excellence, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Ping Zou
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yimin Qin
- Ministry of Agriculture Key Laboratory of Seaweed Fertilizers, Qingdao Brightmoon Seaweed Group Co Ltd, Qingdao 266400, China
| | - Yuting Geng
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Zhenzhen Cui
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiaohui Wang
- Ministry of Agriculture Key Laboratory of Seaweed Fertilizers, Qingdao Brightmoon Seaweed Group Co Ltd, Qingdao 266400, China
| | - Chengsheng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiangdong Li
- College of Plant Protection, Shandong Agricultural University, Taian 271000,China
| | - James Clark
- Green Chemistry Centre of Excellence, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Yiqiang Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Xiaoqiang Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
81
|
Mitigation of NaCl Stress in Wheat by Rhizosphere Engineering Using Salt Habitat Adapted PGPR Halotolerant Bacteria. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031034] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is a great interest in mitigating soil salinity that limits plant growth and productivity. In this study, eighty-nine strains were isolated from the rhizosphere and endosphere of two halophyte species (Suaeda mollis and Salsola tetrandra) collected from three chotts in Algeria. They were screened for diverse plant growth-promoting traits, antifungal activity and tolerance to different physico-chemical conditions (pH, PEG, and NaCl) to evaluate their efficiency in mitigating salt stress and enhancing the growth of Arabidopsis thaliana and durum wheat under NaCl–stress conditions. Three bacterial strains BR5, OR15, and RB13 were finally selected and identified as Bacillus atropheus. The Bacterial strains (separately and combined) were then used for inoculating Arabidopsis thaliana and durum wheat during the seed germination stage under NaCl stress conditions. Results indicated that inoculation of both plant spp. with the bacterial strains separately or combined considerably improved the growth parameters. Three soils with different salinity levels (S1 = 0.48, S2 = 3.81, and S3 = 2.80 mS/cm) were used to investigate the effects of selected strains (BR5, OR15, and RB13; separately and combined) on several growth parameters of wheat plants. The inoculation (notably the multi-strain consortium) proved a better approach to increase the chlorophyll and carotenoid contents as compared to control plants. However, proline content, lipid peroxidation, and activities of antioxidant enzymes decreased after inoculation with the plant growth-promoting rhizobacteria (PGPR) that can attenuate the adverse effects of salt stress by reducing the reactive oxygen species (ROS) production. These results indicated that under saline soil conditions, halotolerant PGPR strains are promising candidates as biofertilizers under salt stress conditions.
Collapse
|
82
|
Bonatelli ML, Lacerda-Júnior GV, dos Reis Junior FB, Fernandes-Júnior PI, Melo IS, Quecine MC. Beneficial Plant-Associated Microorganisms From Semiarid Regions and Seasonally Dry Environments: A Review. Front Microbiol 2021; 11:553223. [PMID: 33519722 PMCID: PMC7845453 DOI: 10.3389/fmicb.2020.553223] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Semiarid regions are apparently low biodiversity environments; however, these environments may host a phylogenetically diverse microbial community associated with plants. Their microbial inhabitants are often recruited to withstand stressful settings and improve plant growth under harsh conditions. Thus, plant-associated microorganisms isolated from semiarid and seasonally dry environments will be detailed in the present review, focusing on plant growth promotion potential and the microbial ability to alleviate plant abiotic stress. Initially, we explored the role of microbes from dry environments around the world, and then, we focused on seasonally dry Brazilian biomes, the Caatinga and the Cerrado. Cultivable bacteria from semiarid and seasonally dry environments have demonstrated great plant growth promotion traits such as plant hormone production, mobilization of insoluble nutrients, and mechanisms related to plant abiotic stress alleviation. Several of these isolates were able to improve plant growth under stressful conditions commonly present in typical semiarid regions, such as high salinity and drought. Additionally, we highlight the potential of plants highly adapted to seasonal climates from the Caatinga and Cerrado biomes as a suitable pool of microbial inoculants to maintain plant growth under abiotic stress conditions. In general, we point out the potential for the exploitation of new microbial inoculants from plants growing in dry environments to ensure a sustainable increase in agricultural productivity in a future climate change scenario.
Collapse
Affiliation(s)
- Maria Leticia Bonatelli
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | | | | | - Itamar Soares Melo
- Brazilian Agricultural Research Corporation, Embrapa Meio Ambiente, Jaguariúna, Brazil
| | - Maria Carolina Quecine
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
83
|
Grover M, Bodhankar S, Sharma A, Sharma P, Singh J, Nain L. PGPR Mediated Alterations in Root Traits: Way Toward Sustainable Crop Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.618230] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The above ground growth of the plant is highly dependent on the belowground root system. Rhizosphere is the zone of continuous interplay between plant roots and soil microbial communities. Plants, through root exudates, attract rhizosphere microorganisms to colonize the root surface and internal tissues. Many of these microorganisms known as plant growth promoting rhizobacteria (PGPR) improve plant growth through several direct and indirect mechanisms including biological nitrogen fixation, nutrient solubilization, and disease-control. Many PGPR, by producing phytohormones, volatile organic compounds, and secondary metabolites play important role in influencing the root architecture and growth, resulting in increased surface area for nutrient exchange and other rhizosphere effects. PGPR also improve resource use efficiency of the root system by improving the root system functioning at physiological levels. PGPR mediated root trait alterations can contribute to agroecosystem through improving crop stand, resource use efficiency, stress tolerance, soil structure etc. Thus, PGPR capable of modulating root traits can play important role in agricultural sustainability and root traits can be used as a primary criterion for the selection of potential PGPR strains. Available PGPR studies emphasize root morphological and physiological traits to assess the effect of PGPR. However, these traits can be influenced by various external factors and may give varying results. Therefore, it is important to understand the pathways and genes involved in plant root traits and the microbial signals/metabolites that can intercept and/or intersect these pathways for modulating root traits. The use of advanced tools and technologies can help to decipher the mechanisms involved in PGPR mediated determinants affecting the root traits. Further identification of PGPR based determinants/signaling molecules capable of regulating root trait genes and pathways can open up new avenues in PGPR research. The present review updates recent knowledge on the PGPR influence on root architecture and root functional traits and its benefits to the agro-ecosystem. Efforts have been made to understand the bacterial signals/determinants that can play regulatory role in the expression of root traits and their prospects in sustainable agriculture. The review will be helpful in providing future directions to the researchers working on PGPR and root system functioning.
Collapse
|
84
|
Pahlavan Yali M, Hajmalek M. Interactions Between Brassicae napus and Pseudomonas putida (Strain ATCC12633) and Characterization of Volatile Organic Compounds Produced by the Bacterium. Curr Microbiol 2021; 78:679-687. [PMID: 33403487 DOI: 10.1007/s00284-020-02335-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 12/14/2020] [Indexed: 11/25/2022]
Abstract
Brassica napus L. is a main oilseed crop cultivated around the world. Plant growth-promoting rhizobacteria (PGPR) are generally applied to a wide range of agricultural crops for the growth enhancement. In this study, an I-plate technique was used to investigate the plant growth-promoting activity of Pseudomonas putida (strain ATCC12633) on B. napus plants. The volatile organic compounds (VOCs) produced by P. putida were determined by gas chromatography-mass spectrometric (GC-MS) analysis. Furthermore, P. putida were evaluated for its efficacy to induce resistance-related enzymes like peroxidase (POD), phenylalanine ammonia-lyase (PAL), catalase (CAT), and other biochemical compounds such as proline (Pro) and hydrogen peroxide (H2O2) in B. napus plants. According to the results, P. putida significantly increased the growth of B. napus compared to control. The major VOCs released by P. putida were 2-Butynedioic acid, dimethyl ester, Dimethyl ester of 4,7-dimethylnaphthalene-1,2-dicarboxylic acid, N-[3-Methylaminopropyl]aziridine, Cyclododecane, and Hexadecanoic acid. B. napus seeds treatment with P. putida caused enhanced activities of POD, PAL, CAT, Pro, and H2O2 compared to control. So, the results of the present study showed that inoculation of B. napus with P. putida could serve as a useful tool for promoting the plant growth and inducing systemic resistance.
Collapse
Affiliation(s)
- Maryam Pahlavan Yali
- Faculty of Agriculture, Department of Plant Protection, Shahid Bahonar University, Kerman, Iran.
| | - Maryam Hajmalek
- Faculty of Agriculture, Department of Plant Protection, Tehran University, Tehran, Iran
| |
Collapse
|
85
|
Wang R, Wang HL, Tang RP, Sun MY, Chen TM, Duan XC, Lu XF, Liu D, Shi XC, Laborda P, Wang SY. Pseudomonas putida Represses JA- and SA-Mediated Defense Pathways in Rice and Promotes an Alternative Defense Mechanism Possibly through ABA Signaling. PLANTS 2020; 9:plants9121641. [PMID: 33255501 PMCID: PMC7760693 DOI: 10.3390/plants9121641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 12/05/2022]
Abstract
The signaling pathways induced by Pseudomonas putida in rice plants at the early plant–rhizobacteria interaction stages, with and without inoculation of Xanthomonas oryzae pv. oryzae, were studied. In the absence of pathogen, P. putida reduced ethylene (ET) production, and promoted root and stem elongation. Interestingly, gene OsHDA702, which plays an important role in root formation, was found significantly up-regulated in the presence of the rhizobacterium. Although X. oryzae pv. oryzae inoculation enhanced ET production in rice plants, P. putida treatment repressed ET-, jasmonic acid (JA)- and salicylic acid (SA)-mediated defense pathways, and induced the biosynthesis of abscisic acid (ABA), and the overexpression of OsHDA705 and some pathogenesis-related proteins (PRs), which in turn increased the susceptibility of the rice plants against the pathogen. Collectively, this is the first work on the defense signaling induced by plant growth-promoting rhizobacteria in plants at the early interaction stages, and suggests that rhizobacteria stimulate an alternative defense mechanism in plants based on ABA accumulation and OsHDA705 signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xin-Chi Shi
- Correspondence: (X.-C.S.); (P.L.); (S.-Y.W.)
| | | | - Su-Yan Wang
- Correspondence: (X.-C.S.); (P.L.); (S.-Y.W.)
| |
Collapse
|
86
|
Ma Y, Dias MC, Freitas H. Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:591911. [PMID: 33281852 DOI: 10.3389/fpls.2020.591911molazem] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/19/2020] [Indexed: 05/25/2023]
Abstract
Drought and salinity are among the most important environmental factors that hampered agricultural productivity worldwide. Both stresses can induce several morphological, physiological, biochemical, and metabolic alterations through various mechanisms, eventually influencing plant growth, development, and productivity. The responses of plants to these stress conditions are highly complex and depend on other factors, such as the species and genotype, plant age and size, the rate of progression as well as the intensity and duration of the stresses. These factors have a strong effect on plant response and define whether mitigation processes related to acclimation will occur or not. In this review, we summarize how drought and salinity extensively affect plant growth in agriculture ecosystems. In particular, we focus on the morphological, physiological, biochemical, and metabolic responses of plants to these stresses. Moreover, we discuss mechanisms underlying plant-microbe interactions that confer abiotic stress tolerance.
Collapse
Affiliation(s)
- Ying Ma
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Coimbra, Portugal
| | - Maria Celeste Dias
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Coimbra, Portugal
| | - Helena Freitas
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Coimbra, Portugal
| |
Collapse
|
87
|
Alexander A, Singh VK, Mishra A. Halotolerant PGPR Stenotrophomonas maltophilia BJ01 Induces Salt Tolerance by Modulating Physiology and Biochemical Activities of Arachis hypogaea. Front Microbiol 2020; 11:568289. [PMID: 33162950 PMCID: PMC7591470 DOI: 10.3389/fmicb.2020.568289] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/22/2020] [Indexed: 01/25/2023] Open
Abstract
Arachis hypogaea (Peanut) is one of the most important cash crops grown for food and oil production. Salinity is a major constraint for loss of peanut productivity, and halotolerant plant growth promoting bacteria not only enhance plant-growth but also provide tolerance against salt stress. The potential of halotolerant bacterium Stenotrophomonas maltophilia BJ01 isolated from saline-soil was explored to enhance the growth of peanut plants under salt stress conditions. Interaction of S. maltophilia BJ01 enhances the growth of the peanut plants and protects photosynthetic pigments under salt stress. Lower electrolyte leakage (about 20%), lipid peroxidation (2.1 μmol g-1 Fw), proline (2.9 μg mg-1 Fw) content and H2O2 (55 μmol g-1 Fw) content were observed in plants, co-cultivated with PGPR compared to untreated plants under stress condition. The growth hormone auxin (0.4 mg g-1 Fw) and total amino acid content (0.3 mg g-1 Fw) were enhanced in plants co-cultivated with PGPR under stress conditions. Overall, these results indicate the beneficial effect of S. maltophilia BJ01 on peanut plants under salt (100 mM NaCl) stress conditions. In conclusion, bacterium S. maltophilia BJ01 could be explored further as an efficient PGPR for growing legumes especially peanuts under salt stress conditions. However, a detailed agronomic study would be needed to ascertain its commercial role.
Collapse
Affiliation(s)
- Ankita Alexander
- Division of Applied Phycology and Biotechnology, CSIR – Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad, India
| | - Vijay K. Singh
- Division of Applied Phycology and Biotechnology, CSIR – Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
| | - Avinash Mishra
- Division of Applied Phycology and Biotechnology, CSIR – Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad, India
| |
Collapse
|
88
|
Current Advances in Plant Growth Promoting Bacteria Alleviating Salt Stress for Sustainable Agriculture. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Humanity in the modern world is confronted with diverse problems at several levels. The environmental concern is probably the most important as it threatens different ecosystems, food, and farming as well as humans, animals, and plants. More specifically, salinization of agricultural soils is a global concern because of on one side, the permanent increase of the areas affected, and on the other side, the disastrous damage caused to various plants affecting hugely crop productivity and yields. Currently, great attention is directed towards the use of Plant Growth Promoting Bacteria (PGPB). This alternative method, which is healthy, safe, and ecological, seems to be very promising in terms of simultaneous salinity alleviation and improving crop productivity. This review attempts to deal with different aspects of the current advances concerning the use of PGPBs for saline stress alleviation. The objective is to explain, discuss, and present the current progress in this area of research. We firstly discuss the implication of PGPB on soil desalinization. We present the impacts of salinity on crops. We look for the different salinity origin and its impacts on plants. We discuss the impacts of salinity on soil. Then, we review various recent progress of hemophilic PGPB for sustainable agriculture. We categorize the mechanisms of PGPB toward salinity tolerance. We discuss the use of PGPB inoculants under salinity that can reduce chemical fertilization. Finally, we present some possible directions for future investigation. It seems that PGPBs use for saline stress alleviation gain more importance, investigations, and applications. Regarding the complexity of the mechanisms implicated in this domain, various aspects remain to be elucidated.
Collapse
|
89
|
Evaluation of plant growth promotion properties and induction of antioxidative defense mechanism by tea rhizobacteria of Darjeeling, India. Sci Rep 2020; 10:15536. [PMID: 32968101 PMCID: PMC7511344 DOI: 10.1038/s41598-020-72439-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
A total of 120 rhizobacteria were isolated from seven different tea estates of Darjeeling, West Bengal, India. Based on a functional screening of in vitro plant growth-promoting (PGP) activities, thirty potential rhizobacterial isolates were selected for in-planta evaluation of PGP activities in rice and maize crops. All the thirty rhizobacterial isolates were identified using partial 16S rRNA gene sequencing. Out of thirty rhizobacteria, sixteen (53.3%) isolates belong to genus Bacillus, five (16.6%) represent genus Staphylococcus, three (10%) represent genus Ochrobactrum, and one (3.3%) isolate each belongs to genera Pseudomonas, Lysinibacillus, Micrococcus, Leifsonia, Exiguobacterium, and Arthrobacter. Treatment of rice and maize seedlings with these thirty rhizobacterial isolates resulted in growth promotion. Besides, rhizobacterial treatment in rice triggered enzymatic [ascorbate peroxidase (APX), catalase (CAT), chitinase, and phenylalanine ammonia-lyase (PAL)], and non-enzymatic [proline and polyphenolics] antioxidative defense reactions indicating their possible role in the reduction of reactive oxygen species (ROS) burden and thereby priming of plants towards stress mitigation. To understand such a possibility, we tested the effect of rhizobacterial consortia on biotic stress tolerance of rice against necrotrophic fungi, Rhizoctonia solani AG1-IA. Our results indicated that the pretreatment with rhizobacterial consortia increased resistance of the rice plants towards the common foliar pathogen like R. solani AG1-IA. This study supports the idea of the application of plant growth-promoting rhizobacterial consortia in sustainable crop practice through the management of biotic stress under field conditions.
Collapse
|
90
|
Bai Y, Ren P, Feng P, Yan H, Li W. Shift in rhizospheric and endophytic bacterial communities of tomato caused by salinity and grafting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139388. [PMID: 32470659 DOI: 10.1016/j.scitotenv.2020.139388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/24/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Saline water has to be used as an alternative resource in modern agriculture due to the increasing lack of fresh water. Approaches that promote the growth of crops under saline conditions have, therefore, become crucial. Grafting has been reported to be effective for this; however, the associated bacterial community remains unclear. To obtain a deeper understanding of the underlying microbial mechanisms, both grafted and non-grafted tomatoes were irrigated with three types of water having different electrical conductivity values. The experiment lasted 2.5 months, after which, the soil chemical properties and tomato heights were assessed. The rhizospheric and endophytic bacterial communities of samples from the different treatments were assessed by Illumina sequencing. The results showed that saline water significantly affected leaf-associated endophytic bacterial communities, whereas rhizosphere and root- and stem-associated bacterial communities were not affected. Increasing salinity increased the abundance of Gammaproteobacteria, but decreased the abundance of Actinobacteria, Alphaproteobacteria, Bacilli, and Acidobacteria at the class level of the leaf-associated bacterial community. Moreover, under higher salinity levels, grafting increased the diversity of the leaf-endophytic bacterial community. Overall, this study provides a comprehensive understanding of the rhizosphere and endophytic bacterial communities of tomato under saline conditions. The results highlight the importance of leaf-endophytic bacteria for salt response in plants. This is an important complementary finding to previous studies on the effect of salinity, which mainly focused on plant rhizosphere and root bacterial communities.
Collapse
Affiliation(s)
- Yani Bai
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, China; Enzyme Engineering Research Center of Shaanxi, Xi'an 710600, China
| | - Ping Ren
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, China; Key Laboratory of Plant Nematode of Shaanxi Province, Xi'an 710043, China.
| | - Puyang Feng
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, China; Enzyme Engineering Research Center of Shaanxi, Xi'an 710600, China
| | - Hong Yan
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, China; Enzyme Engineering Research Center of Shaanxi, Xi'an 710600, China
| | - Wenxiao Li
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, China; Enzyme Engineering Research Center of Shaanxi, Xi'an 710600, China
| |
Collapse
|
91
|
Wei J, Zhang Y, Wang X, Chen H, Yuan Y, Yue T. Distribution of cold‐resistant bacteria in quick‐frozen dumpling and its inhibition by different antibacterial agents. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jianping Wei
- College of Food Science and Engineering Northwest A&F University Yangling China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling China
- National Engineering Research Center of Agriculture Integration Test (Yangling) Yangling China
| | - Yuxiang Zhang
- College of Food Science and Engineering Northwest A&F University Yangling China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling China
- National Engineering Research Center of Agriculture Integration Test (Yangling) Yangling China
| | - Xin Wang
- College of Food Science and Engineering Northwest A&F University Yangling China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling China
- National Engineering Research Center of Agriculture Integration Test (Yangling) Yangling China
| | - Hong Chen
- College of Food Science and Engineering Northwest A&F University Yangling China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling China
- National Engineering Research Center of Agriculture Integration Test (Yangling) Yangling China
| | - Yahong Yuan
- College of Food Science and Engineering Northwest A&F University Yangling China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling China
- National Engineering Research Center of Agriculture Integration Test (Yangling) Yangling China
| | - Tianli Yue
- College of Food Science and Engineering Northwest A&F University Yangling China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling China
- National Engineering Research Center of Agriculture Integration Test (Yangling) Yangling China
- College of Food Science and Technology Northwest University Xi'an China
| |
Collapse
|
92
|
Kaushal M. Insights Into Microbially Induced Salt Tolerance and Endurance Mechanisms (STEM) in Plants. Front Microbiol 2020; 11:1518. [PMID: 32982994 PMCID: PMC7479176 DOI: 10.3389/fmicb.2020.01518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/11/2020] [Indexed: 11/13/2022] Open
Abstract
Salt stress threatens the achievement of sustainable global food security goals by inducing secondary stresses, such as osmotic, ionic, and oxidative stress, that are detrimental to plant growth and productivity. Various studies have reported the beneficial roles of microbes in ameliorating salt stress in plants. This review emphasizes salt tolerance and endurance mechanisms (STEM) in microbially inoculated (MI) plants that ensure plant growth and survival. Well-established STEM have been documented in MI plants and include conglomeration of osmolytes, antioxidant barricading, recuperating nutritional status, and ionic homeostasis. This is achieved via involvement of P solubilization, siderophore production, nitrogen fixation, selective ion absorption, volatile organic compound production, exopolysaccharide production, modifications to plant physiological processes (photosynthesis, transpiration, and stomatal conductance), and molecular alterations to alter various biochemical and physiological processes. Salt tolerance and endurance mechanism in MI plants ensures plant growth by improving nutrient uptake and maintaining ionic homeostasis, promoting superior water use efficiency and osmoprotection, enhancing photosynthetic efficiency, preserving cell ultrastructure, and reinforcing antioxidant metabolism. Molecular research in MI plants under salt stress conditions has found variations in the expression profiles of genes such as HKT1, NHX, and SOS1 (ion transporters), PIPs and TIPs (aquaporins), RBCS, RBCL (RuBisCo subunits), Lipoxygenase2 [jasmonic acid (JA) signaling], ABA (abscisic acid)-responsive gene, and APX, CAT, and POD (involved in antioxidant defense). Proteomic analysis in arbuscular mycorrhizal fungi-inoculated plants revealed upregulated expression of signal transduction proteins, including Ca2+ transporter ATPase, calcium-dependent protein kinase, calmodulin, and energy-related proteins (NADH dehydrogenase, iron-sulfur protein NADH dehydrogenase, cytochrome C oxidase, and ATP synthase). Future research should focus on the role of stress hormones, such as JA, salicylic acid, and brassinosteroids, in salt-stressed MI plants and how MI affects the cell wall, secondary metabolism, and signal transduction in host plants.
Collapse
Affiliation(s)
- Manoj Kaushal
- Plant Production and Plant Health, International Institute of Tropical Agriculture (IITA), Dar es Salaam, Tanzania
| |
Collapse
|
93
|
Meena M, Swapnil P, Divyanshu K, Kumar S, Harish, Tripathi YN, Zehra A, Marwal A, Upadhyay RS. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. J Basic Microbiol 2020; 60:828-861. [PMID: 32815221 DOI: 10.1002/jobm.202000370] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 12/14/2022]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are diverse groups of plant-associated microorganisms, which can reduce the severity or incidence of disease during antagonism among bacteria and soil-borne pathogens, as well as by influencing a systemic resistance to elicit defense response in host plants. An amalgamation of various strains of PGPR has improved the efficacy by enhancing the systemic resistance opposed to various pathogens affecting the crop. Many PGPR used with seed treatment causes structural improvement of the cell wall and physiological/biochemical changes leading to the synthesis of proteins, peptides, and chemicals occupied in plant defense mechanisms. The major determinants of PGPR-mediated induced systemic resistance (ISR) are lipopolysaccharides, lipopeptides, siderophores, pyocyanin, antibiotics 2,4-diacetylphoroglucinol, the volatile 2,3-butanediol, N-alkylated benzylamine, and iron-regulated compounds. Many PGPR inoculants have been commercialized and these inoculants consequently aid in the improvement of crop growth yield and provide effective reinforcement to the crop from disease, whereas other inoculants are used as biofertilizers for native as well as crops growing at diverse extreme habitat and exhibit multifunctional plant growth-promoting attributes. A number of applications of PGPR formulation are needed to maintain the resistance levels in crop plants. Several microarray-based studies have been done to identify the genes, which are associated with PGPR-induced systemic resistance. Identification of these genes associated with ISR-mediating disease suppression and biochemical changes in the crop plant is one of the essential steps in understanding the disease resistance mechanisms in crops. Therefore, in this review, we discuss the PGPR-mediated innovative methods, focusing on the mode of action of compounds authorized that may be significant in the development contributing to enhance plant growth, disease resistance, and serve as an efficient bioinoculants for sustainable agriculture. The review also highlights current research progress in this field with a special emphasis on challenges, limitations, and their environmental and economic advantages.
Collapse
Affiliation(s)
- Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India.,Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prashant Swapnil
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India.,Department of Botany, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Kumari Divyanshu
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sunil Kumar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Harish
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Yashoda Nandan Tripathi
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Andleeb Zehra
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Avinash Marwal
- Department of Biotechnology, Vigyan Bhawan-Block B, New Campus, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Ram Sanmukh Upadhyay
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
94
|
Trifolium repens-Associated Bacteria as a Potential Tool to Facilitate Phytostabilization of Zinc and Lead Polluted Waste Heaps. PLANTS 2020; 9:plants9081002. [PMID: 32781790 PMCID: PMC7466184 DOI: 10.3390/plants9081002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022]
Abstract
Heavy metals in soil, as selective agents, can change the structure of plant-associated bacterial communities and their metabolic properties, leading to the selection of the most-adapted strains, which might be useful in phytoremediation. Trifolium repens, a heavy metal excluder, naturally occurs on metal mine waste heaps in southern Poland characterized by high total metal concentrations. The purpose of the present study was to assess the effects of toxic metals on the diversity and metabolic properties of the microbial communities in rhizospheric soil and vegetative tissues of T. repens growing on three 70–100-years old Zn–Pb mine waste heaps in comparison to Trifolium-associated bacteria from a non-polluted reference site. In total, 113 cultivable strains were isolated and used for 16S rRNA gene Sanger sequencing in order to determine their genetic affiliation and for in vitro testing of their plant growth promotion traits. Taxa richness and phenotypic diversity in communities of metalliferous origin were significantly lower (p < 0.0001) compared to those from the reference site. Two strains, Bacillus megaterium BolR EW3_A03 and Stenotrophomonas maltophilia BolN EW3_B03, isolated from a Zn–Pb mine waste heap which tested positive for all examined plant growth promoting traits and which showed co-tolerance to Zn, Cu, Cd, and Pb can be considered as potential facilitators of phytostabilization.
Collapse
|
95
|
Buffalo dung-inhabiting bacteria enhance the nutrient enrichment of soil and proximate contents of Foeniculum vulgare Mill. Arch Microbiol 2020; 202:2461-2470. [PMID: 32607724 DOI: 10.1007/s00203-020-01969-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/31/2020] [Accepted: 06/24/2020] [Indexed: 10/24/2022]
Abstract
The present study was aimed to study the effect of bacteria inhabiting in buffalo dung on nutritional properties of soil and plant. Three beneficial bacteria Proteus mirabilis, Pseudomonas aeruginosa, and Enterobacter xiangfangensis were isolated from buffalo dung to evaluate for their effects individually as well as in consortium. The combined effect of P. mirabilis and P. aeruginosa showed a significant enhancement in different biological parameters of Foeniculum vulgare such as primary branch (99.32%), secondary branch (98.32%), number of umbels (87.62%), number of umbellets (99.85%), number of seeds (104.94%), grain yield (62.38%), biological yield (35.99%), and harvest index (19.48%). Consortium of these potent bacteria also enhanced proximate constituents such as total ash (49.79%), ether extract (63.06%), crude fibre (48.91%), moisture content (33.40%), dry matter (31.45%), acid insoluble ash (33.20%), and crude protein (40.73%). A highly significant correlation (p ≤ 0.01) was found between nitrogen (r = 0.97), phosphorous (r = 0.95), and potassium (r = 0.97) contents of soil. This research enhances the knowledge of the effect of plant growth-promoting bacteria on nutrient properties of soil and fennel which deliver a new index for healthier use in organic agricultural practices.
Collapse
|
96
|
Carril P, da Silva AB, Tenreiro R, Cruz C. An Optimized in situ Quantification Method of Leaf H 2O 2 Unveils Interaction Dynamics of Pathogenic and Beneficial Bacteria in Wheat. FRONTIERS IN PLANT SCIENCE 2020; 11:889. [PMID: 32714347 PMCID: PMC7344315 DOI: 10.3389/fpls.2020.00889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/29/2020] [Indexed: 06/01/2023]
Abstract
Hydrogen peroxide (H2O2) functions as an important signaling molecule in plants during biotic interactions. However, the extent to which H2O2 accumulates during these interactions and its implications in the development of disease symptoms is unclear. In this work, we provide a step-by-step optimized protocol for in situ quantification of relative H2O2 concentrations in wheat leaves infected with the pathogenic bacterium Pseudomonas syringae pv. atrofaciens (Psa), either alone or in the presence of the beneficial bacterium Herbaspirillum seropedicae (RAM10). This protocol involved the use of 3-3'diaminobenzidine (DAB) staining method combined with image processing to conduct deconvolution and downstream analysis of the digitalized leaf image. The application of a linear regression model allowed to relate the intensity of the pixels resulting from DAB staining with a given concentration of H2O2. Decreasing H2O2 accumulation patterns were detected at increasing distances from the site of pathogen infection, and H2O2 concentrations were different depending on the bacterial combinations tested. Notably, Psa-challenged plants in presence of RAM10 accumulated less H2O2 in the leaf and showed reduced necrotic symptoms, pointing to a potential role of RAM10 in reducing pathogen-triggered H2O2 levels in young wheat plants.
Collapse
Affiliation(s)
- Pablo Carril
- Plant-Soil Ecology Laboratory, Center for Ecology, Evolution and Environmental Changes (CE3C), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- BioISI – Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Anabela Bernardes da Silva
- BioISI – Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Rogério Tenreiro
- BioISI – Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Cristina Cruz
- Plant-Soil Ecology Laboratory, Center for Ecology, Evolution and Environmental Changes (CE3C), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
97
|
De Hita D, Fuentes M, Zamarreño AM, Ruiz Y, Garcia-Mina JM. Culturable Bacterial Endophytes From Sedimentary Humic Acid-Treated Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:837. [PMID: 32636861 PMCID: PMC7316998 DOI: 10.3389/fpls.2020.00837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 05/25/2020] [Indexed: 05/14/2023]
Abstract
The global decrease in soil fertility leads to a new agricultural scenario where eco-friendly solutions play an important role. The plant growth promotion through the use of microbes, especially endophytes and rhizosphere microbiota, has been proposed as a useful solution. Several studies have shown that humic substances are suitable vehicles for the inoculation of plant growth promoting bacteria, and that this combination has an enhanced effect on the stimulation of plant development. In this work, cucumber plants grown hydroponically have been pre-treated with a sedimentary humic acid (SHA) with known plant growth-enhancing effects, and culturable bacterial endophytes have been isolated from these plants. The hypothesis was that this pre-treatment with SHA could lead to the isolation of certain endophytic taxa whose proliferation within the plant could have been promoted as a result of the effects of the treatment with SHA, and that could eventually reinforce a potential synergistic effect of a combined application of those endophytic bacteria and SHA. The culturable endophytes that have been isolated from humic acid-treated cucumber plants have been identified as members of four main phyla: Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Isolates were characterized according to the following plant growth-promoting traits: nitrogen fixation/scavenging, phosphate solubilization, siderophore production and plant hormone production. Most of the isolates were able to fix/scavenge nitrogen and to produce plant hormones (indole-3-acetic acid and several cytokinins), whereas few isolates were able to solubilize phosphate and/or produce siderophores. The most promising endophyte isolates for its use in futures investigations as plant growth-promoting bacterial inocula were Pseudomonas sp. strains (that showed all traits), Sphingomonas sp., Stenotrophomonas sp. strains, or some Arthrobacter sp. and Microbacterium sp. isolates.
Collapse
Affiliation(s)
- David De Hita
- Department of Environmental Biology, Biological and Agricultural Chemistry Group (BACh), University of Navarra, Pamplona, Spain
| | - Marta Fuentes
- Department of Environmental Biology, Biological and Agricultural Chemistry Group (BACh), University of Navarra, Pamplona, Spain
| | - Angel M. Zamarreño
- Department of Environmental Biology, Biological and Agricultural Chemistry Group (BACh), University of Navarra, Pamplona, Spain
| | - Yaiza Ruiz
- Department of Environmental Biology, Biological and Agricultural Chemistry Group (BACh), University of Navarra, Pamplona, Spain
| | - Jose M. Garcia-Mina
- Department of Environmental Biology, Biological and Agricultural Chemistry Group (BACh), University of Navarra, Pamplona, Spain
- Centre Mondial de I’lnnovation (CMI) – Groupe Roullier, Saint-Malo, France
| |
Collapse
|
98
|
Xiong YW, Li XW, Wang TT, Gong Y, Zhang CM, Xing K, Qin S. Root exudates-driven rhizosphere recruitment of the plant growth-promoting rhizobacterium Bacillus flexus KLBMP 4941 and its growth-promoting effect on the coastal halophyte Limonium sinense under salt stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110374. [PMID: 32120174 DOI: 10.1016/j.ecoenv.2020.110374] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/31/2020] [Accepted: 02/24/2020] [Indexed: 05/23/2023]
Abstract
Halophytes play an important role in the bioremediation of saline soils. Increased evidence has revealed that plant growth-promoting rhizobacteria (PGPR) have colonized the halophytic rhizosphere, and they have evolved the capacity to reduce salt stress damage to the host. However, the mechanism by which halophytes attract and recruit beneficial PGPR has rarely been reported. This study reports the interaction between the halophyte Limonium sinense and its rhizosphere PGPR strain Bacillus flexus KLBMP 4941, as well as the mechanism by which KLBMP 4941 promotes host plant growth under salt stress. After salt stress treatment, we collected the root exudates (REs) of L. sinense and found that the REs could promote the growth and chemotaxis of the bacterium KLBMP 4941. In addition, the components of the REs under salt stress were analyzed, and some organic acids (2-methylbutyric acid, stearic acid, palmitic acid, palmitoleic acid, and oleic acid) were detected as the major components. Further assessment showed that each of these components had positive effects on the growth, motility, chemotaxis, and root colonization of strain KLBMP 4941. Further pot experiments revealed the potential PGP mechanisms induced by strain KLBMP 4941 on the host plant under salt stress. Inoculation with KLBMP 4941 promoted the accumulation of chlorophyll to enhance photosynthesis, increased osmotic regulator contents, enhanced flavonoid and antioxidant enzymes, and regulated Na+/K+ homeostasis to help the host ameliorate salinity stress damage. Our findings indicate that the halophyte L. sinense can attract and recruit beneficial rhizosphere bacteria by REs under salt stress, and the recruited B. flexus KLBMP 4941 elicited PGP effects under salinity stress through complex plant physiological regulatory mechanisms. This study provides a foundation for the enhancement of the rhizosphere colonization ability of the PGP strain KLBMP 4941, which shows potential applications in phytoremediation of saline soils.
Collapse
Affiliation(s)
- You-Wei Xiong
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Xue-Wei Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Tian-Tian Wang
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Yuan Gong
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Chun-Mei Zhang
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Ke Xing
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Sheng Qin
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China.
| |
Collapse
|
99
|
Li X, Li B, Cai S, Zhang Y, Xu M, Zhang C, Yuan B, Xing K, Qin S. Identification of Rhizospheric Actinomycete Streptomyces lavendulae SPS-33 and the Inhibitory Effect of its Volatile Organic Compounds against Ceratocystis Fimbriata in Postharvest Sweet Potato ( Ipomoea Batatas (L.) Lam.). Microorganisms 2020; 8:microorganisms8030319. [PMID: 32106520 PMCID: PMC7143269 DOI: 10.3390/microorganisms8030319] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/03/2022] Open
Abstract
Black spot disease, which is caused by the pathogenic fungal Ceratocystis fimbriata, seriously affects the production of sweet potato and its quality during postharvest storage. In this study, the preliminary identification of the rhizosphere actinomycete strain SPS-33, and its antifungal activity of volatiles in vitro and in vivo was investigated. Based on morphological identification and phylogenetic analysis of the 16S rRNA gene sequence, strain SPS-33 was identified as Streptomyces lavendulae. Volatile organic compounds (VOCs) emitted by SPS-33 inhibited mycelial growth and sporulation of C. fimbriatain vitro and also induced a series of observable hyphae morphological changes. In an in vivo pathogenicity assay, exposure to SPS-33 significantly decreased the lesion diameter and water loss rate in sweet potato tuberous roots (TRs) inoculated with C. fimbriata. It increased the antioxidant enzymes’ activities of peroxidase, catalase, and superoxide dismutase as well as decreased malondialdehyde and increased total soluble sugar. In the VOC profile of SPS-33 detected by a headspace solid-phase micro extraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS), heptadecane, tetradecane, and 3-methyl-1-butanol were the most abundant compounds. 2-Methyl-1-butanol, 3-methyl-1-butanol, pyridine, and phenylethyl alcohol showed strong antifungal effects against C. fimbriata. These findings suggest that VOCs from S. lavendulae SPS-33 have the potential for pathogen C. fimbriata control in sweet potato postharvest storage by fumigant action.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ke Xing
- Correspondence: (K.X.); (S.Q.); Tel.: +86-0516-8350-0033 (K.X.)
| | - Sheng Qin
- Correspondence: (K.X.); (S.Q.); Tel.: +86-0516-8350-0033 (K.X.)
| |
Collapse
|
100
|
Grossi CEM, Fantino E, Serral F, Zawoznik MS, Fernandez Do Porto DA, Ulloa RM. Methylobacterium sp. 2A Is a Plant Growth-Promoting Rhizobacteria That Has the Potential to Improve Potato Crop Yield Under Adverse Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:71. [PMID: 32127795 PMCID: PMC7038796 DOI: 10.3389/fpls.2020.00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/17/2020] [Indexed: 05/11/2023]
Abstract
A Gram-negative pink-pigmented bacillus (named 2A) was isolated from Solanum tuberosum L. cv. Desirée plants that were strikingly more developed, presented increased root hair density, and higher biomass than other potato lines of the same age. The 16S ribosomal DNA sequence, used for comparative gene sequence analysis, indicated that strain 2A belongs to the genus Methylobacterium. Nucleotide identity between Methylobacterium sp. 2A sequenced genome and the rest of the species that belong to the genus suggested that this species has not been described so far. In vitro, potato plants inoculated with Methylobacterium sp. 2A had a better performance when grown under 50 mM NaCl or when infected with Phytophthora infestans. We inoculated Methylobacterium sp. 2A in Arabidopsis thaliana roots and exposed these plants to salt stress (75 mM NaCl). Methylobacterium sp. 2A-inoculated plants, grown in control or salt stress conditions, displayed a higher density of lateral roots (p < 0.05) compared to noninoculated plants. Moreover, under salt stress, they presented a higher number of leaves and larger rosette diameter. In dual confrontation assays, Methylobacterium sp. 2A displayed biocontrol activity against P. infestans, Botrytis cinerea, and Fusarium graminearum, but not against Rhizoctonia solani, and Pythium dissotocum. In addition, we observed that Methylobacterium sp. 2A diminished the size of necrotic lesions and reduced chlorosis when greenhouse potato plants were infected with P. infestans. Methylobacterium sp. 2A produces indole acetic acid, solubilizes mineral phosphate and is able to grow in a N2 free medium. Whole-genome sequencing revealed metabolic pathways associated with its plant growth promoter capacity. Our results suggest that Methylobacterium sp. 2A is a plant growth-promoting rhizobacteria (PGPR) that can alleviate salt stress, and restricts P. infestans infection in potato plants, emerging as a potential strategy to improve crop management.
Collapse
Affiliation(s)
- Cecilia Eugenia María Grossi
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Elisa Fantino
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Federico Serral
- Plataforma de Bioinformática Argentina, Instituto de Cálculo, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Myriam Sara Zawoznik
- Cátedra de Química Biológica Vegetal, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Darío Augusto Fernandez Do Porto
- Plataforma de Bioinformática Argentina, Instituto de Cálculo, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Rita María Ulloa
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Química Biológica, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|