51
|
Baharvand R, Fallah F, Jafari P, Azimi L. Co-colonization of methicillin-resistant Staphylococcus aureus and Candida spp. in children with malignancies. AMB Express 2024; 14:22. [PMID: 38351284 PMCID: PMC10864235 DOI: 10.1186/s13568-024-01667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
This study aimed to evaluate the interaction between methicillin-resistant Staphylococcus aureus(MRSA) and Candida spp. in the oral cavity of children with malignancies under chemotherapy. We evaluated the expression level of Als3p and mecA in Candida spp. and MRSA strains in both single colonization and co-colonization condition. Oral and nasal samples were collected by dry sponge swabs in 10 ml of sterile phosphate-buffered saline. The MRSA and Candida spp. was confirmed using the PCR method and mecA and Als3p genes, respectively. The SYBR Green-based quantitative real-time PCR was used to evaluate the relative expression levels of mecA and Als3p genes in MRSA and Candida spp., respectively. The frequency of S. aureus in oral-only and nasal-only swab samples were 14.1% (n = 24/170). 58.3% (n = 14/24) and 29.2% (n = 7/24) of S. aureus isolated from oral and nasal samples were MRSA, respectively. Among Candida species, C. albicans (n = 28/170; 16.5%) had the highest frequency. The oral co-colonization of MRSA and Candida spp. was detected in 4.7% (n = 8/170) patients. The overall average of gene expression levels among all Candida spp. and MRSA isolates indicated that the mecA and Als3p genes expression increased six and two times in co-colonization conditions compared to single colonization conditions, respectively. Our findings revealed the importance of polymicrobial infection in clinical settings and stated that it is possible that Candida spp. facilitates the infection of S. aureus and can lead to systemic infection in co-colonized patients.
Collapse
Affiliation(s)
- Raziyeh Baharvand
- Department of Microbiology, Faculty of Science, Islamic Azad University, Arak branch, Arak, Iran
| | - Fatemeh Fallah
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvaneh Jafari
- Department of Microbiology, Faculty of Science, Islamic Azad University, Arak branch, Arak, Iran.
| | - Leila Azimi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
52
|
Tuchscherr L, Wendler S, Santhanam R, Priese J, Reissig A, Müller E, Ali R, Müller S, Löffler B, Monecke S, Ehricht R, Guntinas-Lichius O. Reduced Glycolysis and Cytotoxicity in Staphylococcus aureus Isolates from Chronic Rhinosinusitis as Strategies for Host Adaptation. Int J Mol Sci 2024; 25:2229. [PMID: 38396905 PMCID: PMC10888669 DOI: 10.3390/ijms25042229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic rhinosinusitis (CRS) is a multifactorial infection of the nasal cavity and sinuses. In this study, nasal swabs from control donors (N = 128) and patients with CRS (N = 246) were analysed. Culture methods and metagenomics revealed no obvious differences in the composition of the bacterial communities between the two groups. However, at the functional level, several metabolic pathways were significantly enriched in the CRS group compared to the control group. Pathways such as carbohydrate transport metabolism, ATP synthesis, cofactors and vitamins, photosynthesis and transcription were highly enriched in CRS. In contrast, pathways related to lipid metabolism were more representative in the control microbiome. As S. aureus is one of the main species found in the nasal cavity, staphylococcal isolates from control and CRS samples were analysed by microarray and functional assays. Although no significant genetic differences were detected by microarray, S. aureus from CRS induced less cytotoxicity to lung cells and lower rates of glycolysis in host cells than control isolates. These results suggest the differential modulation of staphylococcal virulence by the environment created by other microorganisms and their interactions with host cells in control and CRS samples. These changes were reflected in the differential expression of cytokines and in the expression of Agr, the most important quorum-sensing regulator of virulence in S. aureus. In addition, the CRS isolates remained stable in their cytotoxicity, whereas the cytotoxic activity of S. aureus isolated from control subjects decreased over time during in vitro passage. These results suggest that host factors influence the virulence of S. aureus and promote its adaptation to the nasal environment during CRS.
Collapse
Affiliation(s)
- Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, 07747 Jena, Germany; (S.W.); (R.A.); (B.L.)
| | - Sindy Wendler
- Institute of Medical Microbiology, Jena University Hospital, 07747 Jena, Germany; (S.W.); (R.A.); (B.L.)
| | - Rakesh Santhanam
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, 07745 Jena, Germany;
| | - Juliane Priese
- Department of Otorhinolaryngology, Jena University Hospital, 07747 Jena, Germany; (J.P.); (O.G.-L.)
| | - Annett Reissig
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (A.R.); (E.M.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (A.R.); (E.M.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Rida Ali
- Institute of Medical Microbiology, Jena University Hospital, 07747 Jena, Germany; (S.W.); (R.A.); (B.L.)
| | - Sylvia Müller
- Institute of Immunology, University Hospital Jena, 07743 Jena, Germany;
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, 07747 Jena, Germany; (S.W.); (R.A.); (B.L.)
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (A.R.); (E.M.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (A.R.); (E.M.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller University, 07743 Jena, Germany
| | - Orlando Guntinas-Lichius
- Department of Otorhinolaryngology, Jena University Hospital, 07747 Jena, Germany; (J.P.); (O.G.-L.)
| |
Collapse
|
53
|
Bertrand BP, Shinde D, Thomas VC, Whiteley M, Ibberson CB, Kielian T. Metabolic diversity of human macrophages: potential influence on Staphylococcus aureus intracellular survival. Infect Immun 2024; 92:e0047423. [PMID: 38179975 PMCID: PMC10863412 DOI: 10.1128/iai.00474-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Staphylococcus aureus is a leading cause of medical device-associated biofilm infections. This is influenced by the ability of S. aureus biofilm to evade the host immune response, which is partially driven by the anti-inflammatory cytokine interleukin-10 (IL-10). Here, we show that treatment of human monocyte-derived macrophages (HMDMs) with IL-10 enhanced biofilm formation, suggesting that macrophage anti-inflammatory programming likely plays an important role during the transition from planktonic to biofilm growth. To identify S. aureus genes that were important for intracellular survival in HMDMs and how this was affected by IL-10, transposon sequencing was performed. The size of the S. aureus essential genome was similar between unstimulated HMDMs and the outgrowth control (18.5% vs 18.4%, respectively, with 54.4% overlap) but increased to 22.5% in IL-10-treated macrophages, suggesting that macrophage polarization status exerts differential pressure on S. aureus. Essential genes for S. aureus survival within IL-10-polarized HMDMs were dominated by negative regulatory pathways, including nitrogen and RNA metabolism, whereas S. aureus essential genes within untreated HMDMs were enriched in biosynthetic pathways such as purine and pyrimidine biosynthesis. To explore how IL-10 altered the macrophage intracellular metabolome, targeted metabolomics was performed on HMDMs from six individual donors. IL-10 treatment led to conserved alterations in distinct metabolites that were increased (dihydroxyacetone phosphate, glyceraldehyde-3-phosphate, and acetyl-CoA) or reduced (fructose-6-phosphate, aspartic acid, and ornithine) across donors, whereas other metabolites were variable. Collectively, these findings highlight an important aspect of population-level heterogeneity in human macrophage responsiveness that should be considered when translating results to a patient population.IMPORTANCEOne mechanism that Staphylococcus aureus biofilm elicits in the host to facilitate infection persistence is the production of the anti-inflammatory cytokine interleukin-10 (IL-10). Here, we show that exposure of human monocyte-derived macrophages (HMDMs) to IL-10 promotes S. aureus biofilm formation and programs intracellular bacteria to favor catabolic pathways. Examination of intracellular metabolites in HMDMs revealed heterogeneity between donors that may explain the observed variability in essential genes for S. aureus survival based on nutrient availability for bacteria within the intracellular compartment. Collectively, these studies provide novel insights into how IL-10 polarization affects S. aureus intracellular survival in HMDMs and the importance of considering macrophage heterogeneity between human donors as a variable when examining effector mechanisms.
Collapse
Affiliation(s)
- Blake P. Bertrand
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Dhananjay Shinde
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Vinai C. Thomas
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Carolyn B. Ibberson
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
54
|
Jin T. Exploring the role of bacterial virulence factors and host elements in septic arthritis: insights from animal models for innovative therapies. Front Microbiol 2024; 15:1356982. [PMID: 38410388 PMCID: PMC10895065 DOI: 10.3389/fmicb.2024.1356982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/18/2024] [Indexed: 02/28/2024] Open
Abstract
Septic arthritis, characterized as one of the most aggressive joint diseases, is primarily attributed to Staphylococcus aureus (S. aureus) and often results from hematogenous dissemination. Even with prompt treatment, septic arthritis frequently inflicts irreversible joint damage, leading to sustained joint dysfunction in a significant proportion of patients. Despite the unsatisfactory outcomes, current therapeutic approaches for septic arthritis have remained stagnant for decades. In the clinical context, devising innovative strategies to mitigate joint damage necessitates a profound comprehension of the pivotal disease mechanisms. This entails unraveling how bacterial virulence factors interact with host elements to facilitate bacterial invasion into the joint and identifying the principal drivers of joint damage. Leveraging animal models of septic arthritis emerges as a potent tool to achieve these objectives. This review provides a comprehensive overview of the historical evolution and recent advancements in septic arthritis models. Additionally, we address practical considerations regarding experimental protocols. Furthermore, we delve into the utility of these animal models, such as their contribution to the discovery of novel bacterial virulence factors and host elements that play pivotal roles in the initiation and progression of septic arthritis. Finally, we summarize the latest developments in novel therapeutic strategies against septic arthritis, leveraging insights gained from these unique animal models.
Collapse
Affiliation(s)
- Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
55
|
Patel S, Buller LT. Outpatient Hip and Knee Arthroplasty Can be Safe in Patients With Multiple Medical Comorbidities via Use of Evidence-Based Perioperative Protocols. HSS J 2024; 20:75-82. [PMID: 38356746 PMCID: PMC10863597 DOI: 10.1177/15563316231208431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/02/2023] [Indexed: 02/16/2024]
Affiliation(s)
- Sohum Patel
- Department of Orthopedic Surgery, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Leonard T Buller
- Department of Orthopedic Surgery, School of Medicine, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
56
|
Atchade E, De Tymowski C, Grall N, Tanaka S, Montravers P. Toxic Shock Syndrome: A Literature Review. Antibiotics (Basel) 2024; 13:96. [PMID: 38247655 PMCID: PMC10812596 DOI: 10.3390/antibiotics13010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Toxic shock syndrome (TSS) is a rare, life-threatening, toxin-mediated infectious process linked, in the vast majority of cases, to toxin-producing strains of Staphylococcus aureus or Streptococcus pyogenes. The pathophysiology, epidemiology, clinical presentation, microbiological features, management and outcome of TSS are described in this review. Bacterial superantigenic exotoxins induces unconventional polyclonal lymphocyte activation, which leads to rapid shock, multiple organ failure syndrome, and death. The main described superantigenic exotoxins are toxic shock syndrome toxin-1 (TSST-1) and enterotoxins for Staphylococcus aureus and Streptococcal pyrogenic exotoxins (SpE) A, B, and C and streptococcal superantigen A (SsA) for Streptococcus pyogenes. Staphylococcal TSS can be menstrual or nonmenstrual. Streptococcal TSS is linked to a severe group A streptococcal infection and, most frequently, to a necrotizing soft tissue infection. Management of TSS is a medical emergency and relies on early detection, immediate resuscitation, source control and eradication of toxin production, bactericidal antibiotic treatment, and protein synthesis inhibiting antibiotic administration. The interest of polyclonal intravenous immunoglobulin G administration as an adjunctive treatment for TSS requires further evaluation. Scientific literature on TSS mainly consists of observational studies, clinical cases, and in vitro data; although more data on TSS are required, additional studies will be difficult to conduct due to the low incidence of the disease.
Collapse
Affiliation(s)
- Enora Atchade
- DMU PARABOL, Bichat-Claude Bernard Hospital, AP-HP, 75018 Paris, France; (C.D.T.); (S.T.); (P.M.)
| | - Christian De Tymowski
- DMU PARABOL, Bichat-Claude Bernard Hospital, AP-HP, 75018 Paris, France; (C.D.T.); (S.T.); (P.M.)
- UFR Diderot, Paris Cité University, 75018 Paris, France;
- INSERM UMR 1149, Immunoreceptor and Renal Immunopathology, Bichat-Claude Bernard Hospital, 75018 Paris, France
| | - Nathalie Grall
- UFR Diderot, Paris Cité University, 75018 Paris, France;
- Bacteriology Department, Bichat Claude Bernard Hospital, AP-HP, Paris Cité University, 75018 Paris, France
- INSERM UMR 1137 Infection, Antimicrobials, Modelling, Evolution, 75018 Paris, France
| | - Sébastien Tanaka
- DMU PARABOL, Bichat-Claude Bernard Hospital, AP-HP, 75018 Paris, France; (C.D.T.); (S.T.); (P.M.)
- INSERM, UMR 1188, Diabetes Atherothrombosis Réunion Océan Indien (DéTROI), la Réunion University, 97400 Saint-Denis de la Réunion, France
| | - Philippe Montravers
- DMU PARABOL, Bichat-Claude Bernard Hospital, AP-HP, 75018 Paris, France; (C.D.T.); (S.T.); (P.M.)
- UFR Diderot, Paris Cité University, 75018 Paris, France;
- INSERM UMR 1152 ANR 10—LABX-17, Pathophysiology and Epidemiology of Respiratory Diseases, 75018 Paris, France
| |
Collapse
|
57
|
Miellet WR, Mariman R, van Veldhuizen J, Badoux P, Wijmenga-Monsuur AJ, Litt D, Bosch T, Miller E, Fry NK, van Houten MA, Rots NY, Sanders EAM, Trzciński K. Impact of age on pneumococcal colonization of the nasopharynx and oral cavity: an ecological perspective. ISME COMMUNICATIONS 2024; 4:ycae002. [PMID: 38390521 PMCID: PMC10881297 DOI: 10.1093/ismeco/ycae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/24/2024]
Abstract
Pneumococcal carriage studies have suggested that pneumococcal colonization in adults is largely limited to the oral cavity and oropharynx. In this study, we used total abundance-based β-diversity (dissimilarity) and β-diversity components to characterize age-related differences in pneumococcal serotype composition of respiratory samples. quantitative PCR (qPCR) was applied to detect pneumococcal serotypes in nasopharyngeal samples collected from 946 toddlers and 602 adults, saliva samples collected from a subset of 653 toddlers, and saliva and oropharyngeal samples collected from a subset of 318 adults. Bacterial culture rates from nasopharyngeal samples were used to characterize age-related differences in rates of colonizing bacteria. Dissimilarity in pneumococcal serotype composition was low among saliva and nasopharyngeal samples from children. In contrast, respiratory samples from adults exhibited high serotype dissimilarity, which predominantly consisted of abundance gradients and was associated with reduced nasopharyngeal colonization. Age-related serotype dissimilarity was high among nasopharyngeal samples and relatively low for saliva samples. Reduced nasopharyngeal colonization by pneumococcal serotypes coincided with significantly reduced Moraxella catarrhalis and Haemophilus influenzae and increased Staphylococcus aureus nasopharyngeal colonization rates among adults. Findings from this study suggest that within-host environmental conditions, utilized in the upper airways by pneumococcus and other bacteria, undergo age-related changes. It may result in a host-driven ecological succession of bacterial species colonizing the nasopharynx and lead to competitive exclusion of pneumococcus from the nasopharynx but not from the oral habitat. This explains the poor performance of nasopharyngeal samples for pneumococcal carriage among adults and indicates that in adults saliva more accurately represents the epidemiology of pneumococcal carriage than nasopharyngeal samples.
Collapse
Affiliation(s)
- Willem R Miellet
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht (UMCU), Wilhelmina Children's Hospital, Utrecht, 3584 CX, The Netherlands
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Rob Mariman
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Janieke van Veldhuizen
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Paul Badoux
- Regional Laboratory of Public Health (Streeklab) Haarlem, Haarlem, 2035 RC, The Netherlands
| | - Alienke J Wijmenga-Monsuur
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - David Litt
- Respiratory and Vaccine Preventable Bacterial Reference Unit (RVPBRU) and Immunisation and Vaccine Preventable Diseases Division, UK Health Security Agency, London, NW9 5EQ, United Kingdom
| | - Thijs Bosch
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Elizabeth Miller
- School of Hygiene and Tropical Medicine, Department of Infectious Disease Epidemiology, London, WC1E 7HT, United Kingdom
| | - Norman K Fry
- Respiratory and Vaccine Preventable Bacterial Reference Unit (RVPBRU) and Immunisation and Vaccine Preventable Diseases Division, UK Health Security Agency, London, NW9 5EQ, United Kingdom
| | | | - Nynke Y Rots
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Elisabeth A M Sanders
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht (UMCU), Wilhelmina Children's Hospital, Utrecht, 3584 CX, The Netherlands
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht (UMCU), Wilhelmina Children's Hospital, Utrecht, 3584 CX, The Netherlands
| |
Collapse
|
58
|
Bavaro DF, Belati A, Bussini L, Cento V, Diella L, Gatti M, Saracino A, Pea F, Viale P, Bartoletti M. Safety and effectiveness of fifth generation cephalosporins for the treatment of methicillin-resistant staphylococcus aureus bloodstream infections: a narrative review exploring past, present, and future. Expert Opin Drug Saf 2024; 23:9-36. [PMID: 38145925 DOI: 10.1080/14740338.2023.2299377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infection (BSI) is a major issue in healthcare, since it is often associated with endocarditis or deep site foci. Relevant morbidity and mortality associated with MRSA-BSIs forced the development of new antibiotic strategies; in particular, this review will focus the attention on fifth-generation cephalosporins (ceftaroline/ceftobiprole), that are the only ß-lactams active against MRSA. AREAS COVERED The review discusses the available randomized controlled trials and real-world observational studies conducted on safety and effectiveness of ceftaroline/ceftobiprole for the treatment of MRSA-BSIs. Finally, a proposal of MRSA-BSI treatment flowchart, based on fifth-generation cephalosporins, is described. EXPERT OPINION The use of anti-MRSA cephalosporins is an acceptable choice either in monotherapy or combination therapy for the treatment of MRSA-BSIs due to their relevant effectiveness and safety. Particularly, their use may be advisable in combination therapy in case of severe infections (including endocarditis or persistent bacteriemia) or in monotherapy in subjects at higher risk of drugs-induced toxicity with older regimens. On the contrary, caution should be taken in case of suspected/ascertained central nervous system infections due to inconsistent data regarding penetration of these drugs in cerebrospinal fluid and brain tissues.
Collapse
Affiliation(s)
- Davide Fiore Bavaro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Infectious Disease Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Alessandra Belati
- Department of Biomedical Sciences and Human Oncology, Clinic of Infectious Diseases, University of Bari "Aldo Moro", Bari, Italy
| | - Linda Bussini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Infectious Disease Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Valeria Cento
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Microbiology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Lucia Diella
- Department of Biomedical Sciences and Human Oncology, Clinic of Infectious Diseases, University of Bari "Aldo Moro", Bari, Italy
| | - Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Annalisa Saracino
- Department of Biomedical Sciences and Human Oncology, Clinic of Infectious Diseases, University of Bari "Aldo Moro", Bari, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pierluigi Viale
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Infectious Disease Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Michele Bartoletti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Infectious Disease Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
59
|
Chapman JE, George SE, Wolz C, Olson ME. Biofilms: A developmental niche for vancomycin-intermediate Staphylococcus aureus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 117:105545. [PMID: 38160879 DOI: 10.1016/j.meegid.2023.105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Staphylococcus aureus are gram-positive bacteria responsible for a wide array of diseases, ranging from skin and soft tissue infections to more chronic illnesses such as toxic shock syndrome, osteomyelitis, and endocarditis. Vancomycin is currently one of the most effective antibiotics available in treating patients infected with methicillin-resistant S. aureus (MRSA), however the emergence of vancomycin-resistant S. aureus (VRSA), and more commonly vancomycin-intermediate S. aureus (VISA), threaten the future efficacy of vancomycin. Intermediate resistance to vancomycin occurs due to mutations within the loci of Staphylococcal genes involved in cell wall formation such as rpoB, graS, and yycG. We hypothesized the VISA phenotype may also arise as a result of the natural stress occurring within S. aureus biofilms, and that this phenomenon is mediated by the RecA/SOS response. Wildtype and recA null mutant/lexAG94E strains of S. aureus biofilms were established in biofilm microtiter assays or planktonic cultures with or without the addition of sub-inhibitory concentrations of vancomycin (0.063 mg/l - 0.25 mg/L ciprofloxacin, 0.5 mg/l vancomycin). Efficiency of plating techniques were used to quantify the subpopulation of biofilm-derived S. aureus cells that developed vancomycin-intermediate resistance. The results indicated that a greater subpopulation of cells from wildtype biofilms (4.16 × 102 CFUs) emerged from intermediate-resistant concentrations of vancomycin (4 μg/ml) compared with the planktonic counterpart (1.53 × 101 CFUs). Wildtype biofilms (4.16 × 102 CFUs) also exhibited greater resistance to intermediate-resistant concentrations of vancomycin compared with strains deficient in the recA null mutant (8.15 × 101 CFUs) and lexA genes (8.00 × 101 CFUs). While the VISA phenotype would be an unintended consequence of genetic diversity and potentially gene transfer in the biofilm setting, it demonstrates that mutations occurring within biofilms allow for S. aureus to adapt to new environments, including the presence of widely used antibiotics.
Collapse
Affiliation(s)
- Jenelle E Chapman
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, USA
| | - Shilpa E George
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Germany
| | - Michael E Olson
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, USA.
| |
Collapse
|
60
|
Abdullahi IN, Latorre-Fernández J, Reuben RC, Trabelsi I, González-Azcona C, Arfaoui A, Usman Y, Lozano C, Zarazaga M, Torres C. Beyond the Wild MRSA: Genetic Features and Phylogenomic Review of mecC-Mediated Methicillin Resistance in Non- aureus Staphylococci and Mammaliicocci. Microorganisms 2023; 12:66. [PMID: 38257893 PMCID: PMC10818522 DOI: 10.3390/microorganisms12010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Methicillin resistance, mediated by the mecA gene in staphylococci and mammaliicocci, has caused tremendous setbacks in the use of antibiotics in human and veterinary medicine due to its high potential of presenting the multidrug resistance (MDR) phenotype. Three other mec analogs exist, of which the mecC has evolutionary been associated with methicillin-resistant Staphylococcus aureus (MRSA) in wild animals, thus loosely referred to as the wild MRSA. In this study, we present an epidemiological review and genomic analysis of non-aureus staphylococci and mammaliicocci that carry the mecC-mediated methicillin resistance trait and determine whether this trait has any relevant link with the One Health niches. All previous studies (2007 till 2023) that described the mecC gene in non-aureus staphylococci and mammaliicocci were obtained from bibliometric databases, reviewed, and systematically analyzed to obtain the antimicrobial resistance (AMR) and virulence determinants, mobilome, and other genetic contents. Moreover, core genome single-nucleotide polymorphism analysis was used to assess the relatedness of these strains. Of the 533 articles analyzed, only 16 studies (on livestock, environmental samples, milk bulk tanks, and wild animals) were eligible for inclusion, of which 17 genomes from 6 studies were used for various in silico genetic analyses. Findings from this systematic review show that all mecC-carrying non-aureus staphylococci were resistant to only beta-lactam antibiotics and associated with the classical SCCmec XI of S. aureusLGA251. Similarly, two studies on wild animals reported mecC-carrying Mammaliicoccus stepanovicii associated with SCCmec XI. Nevertheless, most of the mecC-carrying Mammaliicoccus species presented an MDR phenotype (including linezolid) and carried the SCCmec-mecC hybrid associated with mecA. The phylogenetic analysis of the 17 genomes revealed close relatedness (<20 SNPs) and potential transmission of M. sciuri and M. lentus strains in livestock farms in Algeria, Tunisia, and Brazil. Furthermore, closely related M. sciuri strains from Austria, Brazil, and Tunisia (<40 SNPs) were identified. This systematic review enhances our comprehension of the epidemiology and genetic organization of mecC within the non-aureus staphylococci and mammaliicocci. It could be hypothesized that the mecC-carrying non-aureus staphylococci are evolutionarily related to the wild MRSA-mecC. The potential implications of clonal development of a lineage of mecA/mecC carrying strains across multiple dairy farms in a vast geographical region with the dissemination of MDR phenotype is envisaged. It was observed that most mecC-carrying non-aureus staphylococci and mammaliicocci were reported in mastitis cases. Therefore, veterinarians and veterinary microbiology laboratories must remain vigilant regarding the potential existence of mecA/mecC strains originating from mastitis as a potential niche for this resistance trait.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| | - Javier Latorre-Fernández
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| | - Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| | - Islem Trabelsi
- Bioresources, Environment and Biotechnology Laboratory, Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia;
| | - Carmen González-Azcona
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| | - Ameni Arfaoui
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia;
| | - Yahaya Usman
- Department of Medical Laboratory Science, Ahmadu Bello University, Zaria 810107, Nigeria;
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| |
Collapse
|
61
|
Narongpun P, Chanchaithong P, Yamagishi J, Thapa J, Nakajima C, Suzuki Y. Whole-Genome Investigation of Zoonotic Transmission of Livestock-Associated Methicillin-Resistant Staphylococcus aureus Clonal Complex 398 Isolated from Pigs and Humans in Thailand. Antibiotics (Basel) 2023; 12:1745. [PMID: 38136779 PMCID: PMC10741195 DOI: 10.3390/antibiotics12121745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) has been widespread globally in pigs and humans for decades. Nasal colonization of LA-MRSA is regarded as an occupational hazard to people who are regularly involved in livestock production. Our previous study suggested pig-to-human transmission caused by LA-MRSA clonal complex (CC) 398, using traditional molecular typing methods. Instead, this study aimed to investigate the zoonotic transmission of LA-MRSA CC398 using whole genome sequencing (WGS) technologies. A total of 63 LA-MRSA isolates were identified and characterized in Thailand. Further, the 16 representatives of LA-MRSA CC9 and CC398, including porcine and worker isolates, were subjected to WGS on the Illumina Miseq platform. Core-genome single nucleotide polymorphism (SNP)-based analyses verify the zoonotic transmission caused by LA-MRSA CC398 in two farms. WGS-based characterization suggests the emergence of a novel staphylococcal cassette chromosome (SCC) mec type, consisting of multiple cassette chromosome recombinase (ccr) gene complexes via genetic recombination. Additionally, the WGS analyses revealed putative multi-resistant plasmids and several cross-resistance genes, conferring resistance against drugs of last resort used in humans such as quinupristin/dalfopristin and linezolid. Significantly, LA-MRSA isolates, in this study, harbored multiple virulence genes that may become a serious threat to an immunosuppressive population, particularly for persons who are in close contact with LA-MRSA carriers.
Collapse
Affiliation(s)
- Pawarut Narongpun
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (P.N.); (J.T.)
| | - Pattrarat Chanchaithong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Junya Yamagishi
- Division of Collaboration and Education, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan;
| | - Jeewan Thapa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (P.N.); (J.T.)
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (P.N.); (J.T.)
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (P.N.); (J.T.)
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo 001-0020, Japan
| |
Collapse
|
62
|
Diuvenji EV, Nevolina ED, Solovyev ID, Sukhacheva MV, Mart’yanov SV, Novikova AS, Zhurina MV, Plakunov VK, Gannesen AV. A-Type Natriuretic Peptide Alters the Impact of Azithromycin on Planktonic Culture and on (Monospecies and Binary) Biofilms of Skin Bacteria Kytococcus schroeteri and Staphylococcus aureus. Microorganisms 2023; 11:2965. [PMID: 38138110 PMCID: PMC10746058 DOI: 10.3390/microorganisms11122965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
It has been established that the human atrial natriuretic peptide is able to alter the effect of azithromycin on Kytococcus schroeteri H01 and Staphylococcus aureus 209P monospecies and binary biofilms. The effect of the hormone depends on the surface type and cultivation system, and it may have both enhancing and counteracting effects. The antagonistic effect of the hormone was observed mostly on hydrophobic surfaces, whereas the additive effect was observed on hydrophilic surfaces like glass. Also, the effect of the hormone depends on the antibiotic concentration and bacterial species. The combination of azithromycin and ANP led to an amplification of cell aggregation in biofilms, to the potential increase in matrix synthesis, and to a decrease in S. aureus in the binary community. Also, ANP, azithromycin, and their combinations caused the differential expression of genes of resistance to different antibiotics, like macrolides (mostly increasing expression in kytococci), fluoroquinolones, aminoglycosides, and others, in both bacteria.
Collapse
Affiliation(s)
- Ekaterina V. Diuvenji
- Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia; (E.V.D.); (E.D.N.); (M.V.S.); (S.V.M.); (M.V.Z.); (V.K.P.)
| | - Ekaterina D. Nevolina
- Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia; (E.V.D.); (E.D.N.); (M.V.S.); (S.V.M.); (M.V.Z.); (V.K.P.)
| | - Ilya D. Solovyev
- Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia; (E.V.D.); (E.D.N.); (M.V.S.); (S.V.M.); (M.V.Z.); (V.K.P.)
| | - Marina V. Sukhacheva
- Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia; (E.V.D.); (E.D.N.); (M.V.S.); (S.V.M.); (M.V.Z.); (V.K.P.)
| | - Sergey V. Mart’yanov
- Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia; (E.V.D.); (E.D.N.); (M.V.S.); (S.V.M.); (M.V.Z.); (V.K.P.)
| | | | - Marina V. Zhurina
- Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia; (E.V.D.); (E.D.N.); (M.V.S.); (S.V.M.); (M.V.Z.); (V.K.P.)
| | - Vladimir K. Plakunov
- Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia; (E.V.D.); (E.D.N.); (M.V.S.); (S.V.M.); (M.V.Z.); (V.K.P.)
| | - Andrei V. Gannesen
- Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia; (E.V.D.); (E.D.N.); (M.V.S.); (S.V.M.); (M.V.Z.); (V.K.P.)
| |
Collapse
|
63
|
Jayakumar J, Vinod V, Biswas L, Kumar V A, Biswas R. Exploring alternative strategies for Staphylococcus aureus nasal decolonization: insights from preclinical studies. Lett Appl Microbiol 2023; 76:ovad137. [PMID: 38066697 DOI: 10.1093/lambio/ovad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/25/2023]
Abstract
Nasal decolonization of Staphylococcus aureus with the antibiotic mupirocin is a common clinical practice before complex surgical procedures, to prevent hospital acquired infections. However, widespread use of mupirocin has led to the development of resistant S. aureus strains and there is a limited scope for developing new antibiotics for S. aureus nasal decolonization. It is therefore necessary to develop alternative and nonantibiotic nasal decolonization methods. In this review, we broadly discussed the effectiveness of different nonantibiotic antimicrobial agents that are currently not in clinical practice, but are experimentally proved to be efficacious in promoting S. aureus nasal decolonization. These include lytic bacteriophages, bacteriolytic enzymes, tea tree oil, apple vinegar, and antimicrobial peptides. We have also discussed the possibility of using photodynamic therapy for S. aureus nasal decolonization. This article highlights the importance of further large scale clinical studies for selecting the most suitable and alternative nasal decolonizing agent.
Collapse
Affiliation(s)
- Jayalakshmi Jayakumar
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Vivek Vinod
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Lalitha Biswas
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Anil Kumar V
- Department of Microbiology, Amrita Institute of Medical Sciences and Research Center (AIMS), Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Raja Biswas
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| |
Collapse
|
64
|
Zhu F, Ma S, Wen H, Rao M, Zhang P, Peng W, Cui Y, Yang H, Tan C, Chen J, Pan P. Development of a novel circular mRNA vaccine of six protein combinations against Staphylococcus aureus. J Biomol Struct Dyn 2023; 41:10525-10545. [PMID: 36533395 DOI: 10.1080/07391102.2022.2154846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
Staphylococcus aureus is an extraordinarily versatile pathogen, which is currently the most common cause of nosocomial and community infections. Considering that increased antibiotic resistance may hasten the spread of S. aureus, developing an effective vaccine can possibly aid in its control. The RNA vaccine coding immunodominance epitopes from bacteria provide a potential method to induce T and B cell immune responses by translating them into cells. Furthermore, using bioinformatics to create circular RNA vaccines can ensure that the translation of the vaccine is potent and durable. In this study, 7 cytotoxic T lymphocyte (CTL) epitopes, 4 helper T lymphocyte (HTL) epitopes, and 15 B cell epitopes from 6 proteins that are closely associated with the S. aureus virulence and invasion and critical to natural immune responses were mapped. To verify their interactions, all epitopes were docked with the corresponding MHC alleles. The final vaccine was composed of 26 epitopes and the adjuvant β-defencin, and a disulfide bond was also introduced to improve its stability. After the prediction of structure and characteristics, the developed vaccine was docked with TLR2 and TLR4, which induce immunological responses in S. aureus infection. According to the molecular dynamic simulation, the vaccine might interact strongly with TLRs. Meanwhile, it performed well in immunological simulation and population coverage prediction. Finally, the vaccine was converted into a circular RNA using a series of helper sequences to aid in vaccine circulation translation. Hopefully, this proposed structure will be proven to serve a viable vaccine against S. aureus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fei Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Shiyang Ma
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Haicheng Wen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Mingjun Rao
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Peipei Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Wenzhong Peng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Yanhui Cui
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Hang Yang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Caixia Tan
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| |
Collapse
|
65
|
da Silva JD, Melo LDR, Santos SB, Kropinski AM, Xisto MF, Dias RS, da Silva Paes I, Vieira MS, Soares JJF, Porcellato D, da Silva Duarte V, de Paula SO. Genomic and proteomic characterization of vB_SauM-UFV_DC4, a novel Staphylococcus jumbo phage. Appl Microbiol Biotechnol 2023; 107:7231-7250. [PMID: 37741937 PMCID: PMC10638138 DOI: 10.1007/s00253-023-12743-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/03/2023] [Accepted: 08/21/2023] [Indexed: 09/25/2023]
Abstract
Staphylococcus aureus is one of the most relevant mastitis pathogens in dairy cattle, and the acquisition of antimicrobial resistance genes presents a significant health issue in both veterinary and human fields. Among the different strategies to tackle S. aureus infection in livestock, bacteriophages have been thoroughly investigated in the last decades; however, few specimens of the so-called jumbo phages capable of infecting S. aureus have been described. Herein, we report the biological, genomic, and structural proteomic features of the jumbo phage vB_SauM-UFV_DC4 (DC4). DC4 exhibited a remarkable killing activity against S. aureus isolated from the veterinary environment and stability at alkaline conditions (pH 4 to 12). The complete genome of DC4 is 263,185 bp (GC content: 25%), encodes 263 predicted CDSs (80% without an assigned function), 1 tRNA (Phe-tRNA), multisubunit RNA polymerase, and an RNA-dependent DNA polymerase. Moreover, comparative analysis revealed that DC4 can be considered a new viral species belonging to a new genus DC4 and showed a similar set of lytic proteins and depolymerase activity with closely related jumbo phages. The characterization of a new S. aureus jumbo phage increases our understanding of the diversity of this group and provides insights into the biotechnological potential of these viruses. KEY POINTS: • vB_SauM-UFV_DC4 is a new viral species belonging to a new genus within the class Caudoviricetes. • vB_SauM-UFV_DC4 carries a set of RNA polymerase subunits and an RNA-directed DNA polymerase. • vB_SauM-UFV_DC4 and closely related jumbo phages showed a similar set of lytic proteins.
Collapse
Affiliation(s)
- Jéssica Duarte da Silva
- Department of Microbiology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Luís D R Melo
- Centre of Biological Engineering - CEB, University of Minho, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Portugal
| | - Sílvio B Santos
- Centre of Biological Engineering - CEB, University of Minho, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Portugal
| | - Andrew M Kropinski
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Mariana Fonseca Xisto
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Roberto Sousa Dias
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Isabela da Silva Paes
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marcella Silva Vieira
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - José Júnior Ferreira Soares
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Vinícius da Silva Duarte
- Department of Microbiology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway.
| | - Sérgio Oliveira de Paula
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
66
|
Arumugam P, Kielian T. Metabolism Shapes Immune Responses to Staphylococcus aureus. J Innate Immun 2023; 16:12-30. [PMID: 38016430 PMCID: PMC10766399 DOI: 10.1159/000535482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) is a common cause of hospital- and community-acquired infections that can result in various clinical manifestations ranging from mild to severe disease. The bacterium utilizes different combinations of virulence factors and biofilm formation to establish a successful infection, and the emergence of methicillin- and vancomycin-resistant strains introduces additional challenges for infection management and treatment. SUMMARY Metabolic programming of immune cells regulates the balance of energy requirements for activation and dictates pro- versus anti-inflammatory function. Recent investigations into metabolic adaptations of leukocytes and S. aureus during infection indicate that metabolic crosstalk plays a crucial role in pathogenesis. Furthermore, S. aureus can modify its metabolic profile to fit an array of niches for commensal or invasive growth. KEY MESSAGES Here we focus on the current understanding of immunometabolism during S. aureus infection and explore how metabolic crosstalk between the host and S. aureus influences disease outcome. We also discuss how key metabolic pathways influence leukocyte responses to other bacterial pathogens when information for S. aureus is not available. A better understanding of how S. aureus and leukocytes adapt their metabolic profiles in distinct tissue niches may reveal novel therapeutic targets to prevent or control invasive infections.
Collapse
Affiliation(s)
- Prabhakar Arumugam
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
67
|
Lai LY, Satishkumar N, Cardozo S, Hemmadi V, Marques LB, Huang L, Filipe SR, Pinho MG, Chambers HF, Chatterjee SS. Altered PBP4 and GdpP functions synergistically mediate MRSA-like high-level, broad-spectrum β-lactam resistance in Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564222. [PMID: 37961375 PMCID: PMC10634853 DOI: 10.1101/2023.10.26.564222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Infections caused by Staphylococcus aureus are a leading cause of mortality worldwide. S. aureus infections caused by Methicillin-Resistant Staphylococcus aureus (MRSA) are particularly difficult to treat due to their resistance to Next Generation β-lactams (NGB) such as Methicillin, Nafcillin, Oxacillin etc. Resistance to NGBs, which is alternatively known as broad-spectrum β-lactam resistance is classically mediated by PBP2a, a Penicillin-Binding Protein encoded by mecA (or mecC) in MRSA. Thus, presence of mec genes among S. aureus serves as the predictor of resistance to NGBs and facilitates determination of the proper therapeutic strategy for a staphylococcal infection. Although far less appreciated, mecA deficient S. aureus strains can also exhibit NGB resistance. These strains, which are collectively termed as Methicillin-Resistant Lacking mec (MRLM) are currently being identified in increasing numbers among natural resistant isolates of S. aureus. The mechanism/s through which MRLMs produce resistance to NGBs remains unknown. In this study, we demonstrate that mutations that alter PBP4 and GdpP functions, which are often present among MRLMs can synergistically mediate resistance to NGBs. Furthermore, our results unravel that this novel mechanism potentially enables MRLMs to produce resistance towards NGBs at levels comparable to that of MRSAs. Our study, provides a fresh new perspective about alternative mechanisms of NGBs resistance, challenging our current overall understanding of high-level, broad-spectrum β-lactam resistance in S. aureus. It thus suggests reconsideration of the current approach towards diagnosis and treatment of β-lactam resistant S. aureus infections.
Collapse
Affiliation(s)
- Li-Yin Lai
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland Baltimore, USA
- Institute of Marine and Environmental Technology (IMET), Baltimore, USA
| | - Nidhi Satishkumar
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland Baltimore, USA
- Institute of Marine and Environmental Technology (IMET), Baltimore, USA
| | - Sasha Cardozo
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland Baltimore, USA
- Institute of Marine and Environmental Technology (IMET), Baltimore, USA
| | - Vijay Hemmadi
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland Baltimore, USA
- Institute of Marine and Environmental Technology (IMET), Baltimore, USA
| | - Leonor B. Marques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Liusheng Huang
- Drug Research Unit, Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA, USA
| | - Sergio R. Filipe
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Mariana G. Pinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Henry F. Chambers
- Division of Infectious Diseases, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Som S. Chatterjee
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland Baltimore, USA
- Institute of Marine and Environmental Technology (IMET), Baltimore, USA
| |
Collapse
|
68
|
Tsirigotaki M, Galanakis E. Impact of vaccines on Staphylococcus aureus colonization: A systematic review and meta-analysis. Vaccine 2023; 41:6478-6487. [PMID: 37777451 DOI: 10.1016/j.vaccine.2023.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 08/17/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Concerns regarding vaccine effects on microbial ecology have led to interest in the non-targeted effects of vaccinations. OBJECTIVES To systematically review the literature related to the impact of vaccines on S. aureus carriage. METHODS We conducted a systematic search of MEDLINE, Scopus and clinical trials.gov for studies that assessed vaccine effects on S. aureus carriage in children and adults using predefined inclusion and exclusion criteria. Generic inverse variance meta-analysis was done using random-effects models. RESULTS Of 1,686 studies screened, 34 were eligible for inclusion, of which 22 were observational and 12 randomized controlled studies (RCTs). 88.2% (30/34) provided data on pneumococcal conjugate vaccines (PCV), 23.5% on influenza vaccines (8/34), 6% on other vaccines (2/34) and 20.6% on more than one vaccine (7/34). Most studies tested nasopharyngeal specimens (82.3%, 28/34). Among children aged more than 18-24 months, evidence suggested no effect of PCV on S. aureus colonization [2 RCTs, pooled OR 1.09 (95% CI 0.94-1.25), p 0.25; 7 observational studies, pooled OR: 1.02 (95% CI 0.83-1.25), p 0.86]. A transient increase in S. aureus carriage in PCV-vaccinated infants 9-15 months was shown [2 RCTs, pooled OR 1.11 (95% CI 1.00-1.23), p 0.06; 4 observational studies, pooled OR 1.64 (95% CI 1.00-2.68), p 0.05]. A reduction in S. aureus carriage was observed after influenza vaccination [4 observational studies; OR 0.85 (95% CI 0.78-0.94), p 0.0001]. Based on the Grading of Recommendations Assessment, Development and Evaluation, the quality of evidence was considered low for randomized and very low for non-randomized trials. CONCLUSION Evidence did not suggest long-term effects of pneumococcal vaccinations on S. aureus nasopharyngeal carriage in children, however transient niche changes may occur in infants. Influenza vaccination was related to decreased rates of S. aureus carriage. Data regarding other vaccines is scarce. Further research and ongoing surveillance are needed to monitor colonization changes.
Collapse
|
69
|
Deusenbery C, Carneiro O, Oberkfell C, Shukla A. Synergy of Antibiotics and Antibiofilm Agents against Methicillin-Resistant Staphylococcus aureus Biofilms. ACS Infect Dis 2023; 9:1949-1963. [PMID: 37646612 DOI: 10.1021/acsinfecdis.3c00239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections are some of the most common antibiotic-resistant infections, often exacerbated by the formation of biofilms. Here, we evaluated six compounds, three common antibiotics used against MRSA and three antibiofilm compounds, in nine combinations to investigate the mechanisms of synergistic eradication of MRSA biofilms. Using metabolic assessment, colony enumeration, confocal fluorescence microscopy, and scanning electron microscopy, we identified two promising combinations of antibiotics with antibiofilm agents against preformed MRSA biofilms. The broad-spectrum protease, proteinase K, and membrane-targeting antibiotic, daptomycin, worked in synergy against MRSA biofilms by manipulating the protein content, increasing access to the cell membrane of biofilm bacteria. We also found that the combination of cationic peptide, IDR-1018, with the cell wall cross-linking inhibitor, vancomycin, exhibited synergy against MRSA biofilms by causing bacterial damage and preventing repair. Our findings identify synergistic combinations of antibiotics and antibiofilm agents, providing insight into mechanisms that may be explored further for the development of effective treatments against MRSA biofilm.
Collapse
Affiliation(s)
- Carly Deusenbery
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Olivia Carneiro
- Therapeutic Sciences Graduate Program, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Carleigh Oberkfell
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
70
|
Szymankiewicz M, Jarzynka S, Koryszewska-Bagińska A, Nowikiewicz T. The Impact of Nasal Staphylococcus aureus Carriage on Surgical-Site Infections after Immediate Breast Reconstruction: Risk Factors and Biofilm Formation Potential. Med Sci Monit 2023; 29:e940898. [PMID: 37700508 PMCID: PMC10504855 DOI: 10.12659/msm.940898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/07/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Despite the benefits of implant-based breast reconstruction in patients with breast cancer, the procedure can be complicated by surgical site infections (SSI). This study aimed to evaluate the association between nasal carriage of Staphylococcus aureus strains and the incidence of SSI among patients who underwent reconstructive procedures. We also assessed the ability of colonizing S. aureus strains to form biofilm. MATERIAL AND METHODS Medical data from 124 patients with 132 post-mastectomy breast reconstructions performed at the Oncology Center in Bydgoszcz, Poland, between June 2020 and August 2021 were analyzed. A 90-day incidence of SSI was found in 7/132 reconstructions (5.3%). The study group included 132 reconstructions, and was divided into those with infection (n=7) and without infection (n=125). Between-group differences were assessed using the t test for continuous variables and chi-square test for categorical variables. Biofilm formation among 32 S. aureus strains was determined by using quantitative and qualitative assays. RESULTS There were no significant differences in relation to the patients' S. aureus colonization status. Infections occurred both in patients colonized and not colonized with S. aureus. S. aureus nasal carriage did not affect the rate of SSI at 90 days after surgery. About 97.0% of the strains had a strong capacity for biofilm formation. CONCLUSIONS There was no association between nasal carriage of strains of S. aureus and the incidence of SSI. However, further investigations on a larger group of patients and longer observation time are needed to investigate this potential risk factor in detail.
Collapse
Affiliation(s)
- Maria Szymankiewicz
- Department of Microbiology, Prof. F. Łukaszczyk Oncology Centre, Bydgoszcz, Poland
| | - Sylwia Jarzynka
- Department of Medical Biology, Medical University of Warsaw, Warsaw, Poland
| | | | - Tomasz Nowikiewicz
- Department of Surgical Oncology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
- Department of Clinical Breast Cancer and Reconstructive Surgery, Prof. F. Łukaszczyk Oncology Centre, Bydgoszcz, Poland
| |
Collapse
|
71
|
Abdeta A, Beyene D, Negeri AA. Antimicrobial Resistance Patterns of Staphylococcus aureus and Enterococcus Species at the Ethiopian Public Health Institute, Ethiopia: A Five-Year Retrospective Analysis. Infect Drug Resist 2023; 16:6155-6166. [PMID: 37724092 PMCID: PMC10505397 DOI: 10.2147/idr.s429687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023] Open
Abstract
Purpose The study aimed to investigate the antimicrobial resistance patterns of Staphylococcus aureus and Enterococcus species isolated from clinical specimens over a period of five years, including resistance to methicillin and vancomycin. Patients and Methods Bacterial identification and antimicrobial susceptibility testing reports from 2017 to 2021 at the Ethiopian Public Health Institute were used for this retrospective study. The organisms were identified using either BD Phoenix M50, Vitek 2 compact, or conventional biochemical methods, whichever was available at the time of testing. The antimicrobial susceptibility profiles of the isolates were determined using either Kirby-Bauer disc diffusion, BD phoenix M50, or Vitek 2 compact. WHONET software was used to analyze the antimicrobial resistance patterns of both organisms. The p-values of ≤0.05 were considered statistically significant. Results During the study period, a total of 315 Staphylococcus aureus and 92 Enterococcus species were isolated. Out of 315 Staphylococcus aureus isolates, 27% and 5.1% were methicillin and vancomycin resistant, respectively. Staphylococcus aureus showed very high resistance to Penicillin G (86.7%). Out of 92 Enterococcus species recovered, 8.7% were vancomycin-resistant. Enterococcus species showed very high resistance to Penicillin G (71.4%) and tetracyclines (83.3%). Methicillin-resistant Staphylococcus aureus shows 100% resistance to penicillin followed by ciprofloxacin (50%), erythromycin (45.6%), and tetracycline (44.2%) and lower resistance to vancomycin (18.8%). All vancomycin-resistant isolates of both organisms were fully resistant (100%) to all antibiotics tested, except for linezolid and daptomycin, to which they were susceptible. Conclusion This study found a high prevalence of methicillin and vancomycin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus species between 2017 and 2021. However, there were no statistically significant changes in the prevalence of these organisms during the study period. This suggests that larger and more representative nationwide data is needed to show trends of these pathogens.
Collapse
Affiliation(s)
- Abera Abdeta
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Degefu Beyene
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Abebe Aseffa Negeri
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| |
Collapse
|
72
|
Zaghloul SA, Hashem SN, El-Sayed SR, Badawy MSEM, Bukhari SI, Selim HMRM, Riad OKM. Evaluation of the Cariogenic and Anti-Cariogenic Potential of Human Colostrum and Colostrum-Derived Probiotics: Impact on S. mutans Growth, Biofilm Formation, and L. rhamnosus Growth. Life (Basel) 2023; 13:1869. [PMID: 37763274 PMCID: PMC10532731 DOI: 10.3390/life13091869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Human colostrum (HC) is essential for oral health as it is rich in probiotics that could affect the growth of the cariogenic S. mutans and its biofilm formation; hindering dental caries in advance. In this study, HC was collected from 36 healthy mothers 1-3 days postpartum. The effect of HC on oral health was carried out by assessing the impact of HC and its derived probiotics' cell-free supernatants (CFS) on the growth of S. mutans (using modified well diffusion) and its biofilm formation (using microtiter plate assay). Moreover, the effect of whole HC on L. rhamnosus, a probiotic oral bacterium, was examined. Probiotics were isolated and identified phenotypically by API 50 CH carbohydrate fermentation and genotypically by 16S rRNA amplification. The in vitro study revealed that HC has cariogenic activity and is associated with biofilm formation. Biofilm strength was inversely proportional to HC dilution (p-value < 0.0001). Nevertheless, HC and colostrum-derived probiotics improve oral health by inhibiting the growth of caries-inducing S. mutans with lower inhibition to L. rhamnosus probiotics. The CFS of isolated probiotics reduced the biofilm formation via the cariogenic S. mutans. These results are not only promising for caries eradication, but they also highlight the importance of breastfeeding infants from their first hours to shape healthy oral microbiota, protecting them from various diseases including dental caries.
Collapse
Affiliation(s)
- Samaa A. Zaghloul
- Department of Operative Dentistry, Faculty of Dental Medicine for Girls, Al-Azhar University, Cairo 11765, Egypt;
| | - Sara N. Hashem
- Department of Pedodontics and Oral Health, Faculty of Dental Medicine for Girls, Al-Azhar University, Cairo 11651, Egypt;
| | - Safaa R. El-Sayed
- Department of Pedodontics and Oral Health, Faculty of Dental Medicine for Girls, Al-Azhar University, Cairo 11651, Egypt;
| | - Mona Shaban E. M. Badawy
- Department of Microbiology and Immunology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo 11884, Egypt; (M.S.E.M.B.); (O.K.M.R.)
| | - Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Heba Mohammed Refat M. Selim
- Department of Microbiology and Immunology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo 11884, Egypt; (M.S.E.M.B.); (O.K.M.R.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Maarefa University, Diriyah, Riyadh 13713, Saudi Arabia
| | - Omnia Karem M. Riad
- Department of Microbiology and Immunology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo 11884, Egypt; (M.S.E.M.B.); (O.K.M.R.)
| |
Collapse
|
73
|
de Buys M, Moodley K, Cakic JN, Pietrzak JRT. Staphylococcus aureus colonization and periprosthetic joint infection in patients undergoing elective total joint arthroplasty: a narrative review. EFORT Open Rev 2023; 8:680-689. [PMID: 37655845 PMCID: PMC10548302 DOI: 10.1530/eor-23-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Peri-prosthetic joint infections (PJIs) following total joint arthroplasty (TJA) are associated with higher treatment costs, longer hospital admissions and increased morbidity and mortality. Colonization with Staphylococcus aureus is an independent and modifiable risk factor for PJIs and carriers of S. aureus are ten times more likely than non-carriers for post-operative infections. Screening and targeted decolonization, vs universal decolonization without screening, remains a controversial topic. We recommend a tailored approach, based on local epidemiological patterns, resource availability and logistical capacity. Universal decolonization is associated with lower rates of SSI and may reduce treatment costs.
Collapse
Affiliation(s)
- Michael de Buys
- Orthopaedic Surgery, University of Witswatersrand, Johannesburg, South Africa
| | | | - Josip Nenad Cakic
- Department Orthopaedic Surgery, Life Fourways Hospital, Johannesburg, South Africa
| | - Jurek R T Pietrzak
- Orthopaedic Surgery, University of Witswatersrand, Johannesburg, South Africa
| |
Collapse
|
74
|
Naimi HM, Tristan A, Bes M, Vandenesch F, Nazari QA, Laurent F, Dupieux C. Molecular characterization and antimicrobial resistance of nasal Staphylococcus aureus in the community of Kabul. J Glob Antimicrob Resist 2023; 34:18-22. [PMID: 37321392 DOI: 10.1016/j.jgar.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/24/2023] [Accepted: 06/04/2023] [Indexed: 06/17/2023] Open
Abstract
OBJECTIVES This study aimed to investigate the prevalence and molecular characteristics of community methicillin-resistant Staphylococcus aureus (MRSA) nasal carriage among students at Kabul University. METHODS Nasal swabs were collected from anterior nares of 150 healthy non-medical students at Kabul University. Antimicrobial susceptibility testing was performed on all S. aureus isolates, and all detected MRSA isolates were then confirmed by mecA/mecC polymerase chain reaction and characterized using DNA microarray. RESULTS A total of 50 S. aureus strains were isolated from the anterior nares of the 150 participants. The prevalence of S. aureus and MRSA nasal carriage among Kabul students was 33.3% and 12.7%, respectively. Seven (36.8%) MRSA isolates and 8 (25.8%) methicillin-susceptible S. aureus (MSSA) isolates were multidrug-resistant (i.e. resistant to at least three different antimicrobials tested). All MRSA isolates (n = 19) were susceptible to linezolid, rifampicin, and fusidic acid. Seven MRSA clones, belonging to four clonal complexes (CCs), were identified. The most commonly identified clone was CC22-MRSA-IV TSST-1-positive, which accounted for 63.2% (12/19) of MRSA isolates. SCCmec typing showed that most MRSA strains harboured SCCmec type IV (94.7%). Thirteen (68.4%) MRSA isolates carried the TSST-1 and 5 (26.3%) PVL genes. CONCLUSION Our findings revealed the relatively high prevalence of MRSA nasal carriers in the community in Kabul, with the predominance of the CC22-MRSA-IV TSST-1-positive clone and frequent multidrug resistance among these isolates.
Collapse
Affiliation(s)
- Haji Mohammad Naimi
- Department of Microbiology, Faculty of Pharmacy, Kabul University, Kabul, Afghanistan; CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Anne Tristan
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France; Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Michèle Bes
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France; Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - François Vandenesch
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France; Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Qand Agha Nazari
- Department of Microbiology, Faculty of Pharmacy, Kabul University, Kabul, Afghanistan
| | - Frédéric Laurent
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France; Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Céline Dupieux
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France; Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France.
| |
Collapse
|
75
|
Gebre HA, Wami AA, Kebede ES, Yidnekachew M, Gebre M, Negash AA. Nasopharyngeal Staphylococcus aureus colonization among HIV-infected children in Addis Ababa, Ethiopia: antimicrobial susceptibility pattern and association with Streptococcus pneumoniae colonization. Access Microbiol 2023; 5:acmi000557.v3. [PMID: 37691838 PMCID: PMC10484314 DOI: 10.1099/acmi.0.000557.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023] Open
Abstract
Background Staphylococcus aureus and Streptococcus pneumoniae are common inhabitants of the nasopharynx of children. HIV-infected children have higher risk of invasive diseases caused by these pathogens. With widespread use of pneumococcal conjugate vaccines and the emergence of methicillin-resistant S. aureus , the interaction between S. aureus and S. pneumoniae is of a particular significance. We sought to determine the magnitude of colonization by methicillin-sensitive and -resistant S. aureus and colonization by S. pneumoniae ; associated risk factors and antimicrobial susceptibility pattern among HIV-infected children in Addis Ababa, Ethiopia. Method A prospective observational study was conducted among 183 HIV-infected children at ALERT hospital Addis Ababa, Ethiopia from September 2016 to August 2018. S. aureus and S. pneumoniae were identified using standard bacteriological techniques, antimicrobial susceptibility testing was performed on S. aureus and screening for methicillin resistance was carried out by amplifying the mecA gene. Risk factors were analysed by using binary logistic regression. Results The prevalence of nasopharyngeal S. aureus , MRSA and S. pneumoniae colonization were 27.3, 2.7 and 43.2 %, respectively. Multivariable analysis indicated an inverse association between S. aureus and S. pneumoniae nasopharyngeal colonization [aOR, 0.49; CI, (0.24, 0.99); P=0.046]. The highest level of resistance in both methicillin-sensitive S. aureus (MSSA) and MRSA was observed against tetracycline. Conclusions . We found an inverse association between S. aureus and S. pneumoniae colonization among HIV-infected children. Continued assessment of the impact of pneumococcal conjugate vaccines and antiretroviral therapy on nasopharyngeal bacterial ecology is warranted.
Collapse
Affiliation(s)
| | | | | | | | - Meseret Gebre
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Abel Abera Negash
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
- Department of Microbiology, Immunology and Parasitology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
76
|
Nocera FP, Pizzano F, Masullo A, Cortese L, De Martino L. Antimicrobial Resistant Staphylococcus Species Colonization in Dogs, Their Owners, and Veterinary Staff of the Veterinary Teaching Hospital of Naples, Italy. Pathogens 2023; 12:1016. [PMID: 37623976 PMCID: PMC10457731 DOI: 10.3390/pathogens12081016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
This study aimed to identify Staphylococcus species isolated from nasal swabs of both healthy and diseased dogs, and those of human origin, obtained from nasal swabs of both owners and veterinary staff. Firstly, pet owners were requested to complete a questionnaire relating to the care and relationship with their pets, whose results mainly showed a statistically significant higher frequency of hand washing in diseased dogs' owners than in healthy dogs' owners. Canine nasal swabs were obtained from 43 diseased dogs and 28 healthy dogs, while human nasal swabs were collected from the respective dogs' owners (71 samples) and veterinary staff (34 samples). The isolation and identification of Staphylococcus spp. were followed by disk diffusion method to define the antimicrobial resistance profiles against 18 different molecules. Staphylococcus pseudintermedius was the most frequent isolated strain in both diseased (33.3%) and healthy (46.1%) dogs. Staphylococcus epidermidis was the most frequent isolated bacterium in diseased dogs' owners (66.6%), while in nasal samples of healthy dogs' owners, the same frequency of isolation (38.4%) was observed for both Staphylococcus epidermidis and Staphylococcus aureus. All the isolated strains showed good susceptibility levels to the tested antimicrobials; however, the carriage of oxacillin-resistant strains was significantly higher in diseased dogs than in healthy ones (71% and 7.7%, respectively). Only in three cases the presence of the same bacterial species with similar antimicrobial resistance profiles in dogs and their owners was detected, suggesting the potential bacterial transmission. In conclusion, this study suggests potential transmission risk of staphylococci from dogs to humans or vice versa, and highlights that the clinical relevance of Staphylococcus pseudintermedius transmission from dog to human should not be underestimated, as well as the role of Staphylococcus aureus from human to dog transmission.
Collapse
Affiliation(s)
- Francesca Paola Nocera
- Department of Veterinary Medicine and Animal Production, University of Naples ‘Federico II’, Via F. Delpino 1, 80137 Naples, Italy
| | - Francesca Pizzano
- Department of Veterinary Medicine and Animal Production, University of Naples ‘Federico II’, Via F. Delpino 1, 80137 Naples, Italy
| | - Angelo Masullo
- Department of Veterinary Medicine and Animal Production, University of Naples ‘Federico II’, Via F. Delpino 1, 80137 Naples, Italy
| | - Laura Cortese
- Department of Veterinary Medicine and Animal Production, University of Naples ‘Federico II’, Via F. Delpino 1, 80137 Naples, Italy
| | - Luisa De Martino
- Department of Veterinary Medicine and Animal Production, University of Naples ‘Federico II’, Via F. Delpino 1, 80137 Naples, Italy
- Task Force on Microbiome Studies, University of Naples ‘Federico II’, 80137 Naples, Italy
| |
Collapse
|
77
|
Nicholas-Haizelden K, Murphy B, Hoptroff M, Horsburgh MJ. Bioprospecting the Skin Microbiome: Advances in Therapeutics and Personal Care Products. Microorganisms 2023; 11:1899. [PMID: 37630459 PMCID: PMC10456854 DOI: 10.3390/microorganisms11081899] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Bioprospecting is the discovery and exploration of biological diversity found within organisms, genetic elements or produced compounds with prospective commercial or therapeutic applications. The human skin is an ecological niche which harbours a rich and compositional diversity microbiome stemming from the multifactorial interactions between the host and microbiota facilitated by exploitable effector compounds. Advances in the understanding of microbial colonisation mechanisms alongside species and strain interactions have revealed a novel chemical and biological understanding which displays applicative potential. Studies elucidating the organismal interfaces and concomitant understanding of the central processes of skin biology have begun to unravel a potential wealth of molecules which can exploited for their proposed functions. A variety of skin-microbiome-derived compounds display prospective therapeutic applications, ranging from antioncogenic agents relevant in skin cancer therapy to treatment strategies for antimicrobial-resistant bacterial and fungal infections. Considerable opportunities have emerged for the translation to personal care products, such as topical agents to mitigate various skin conditions such as acne and eczema. Adjacent compound developments have focused on cosmetic applications such as reducing skin ageing and its associated changes to skin properties and the microbiome. The skin microbiome contains a wealth of prospective compounds with therapeutic and commercial applications; however, considerable work is required for the translation of in vitro findings to relevant in vivo models to ensure translatability.
Collapse
Affiliation(s)
- Keir Nicholas-Haizelden
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK;
| | - Barry Murphy
- Unilever Research & Development, Port Sunlight, Wirral CH63 3JW, UK; (B.M.); (M.H.)
| | - Michael Hoptroff
- Unilever Research & Development, Port Sunlight, Wirral CH63 3JW, UK; (B.M.); (M.H.)
| | - Malcolm J. Horsburgh
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK;
| |
Collapse
|
78
|
Bastakoti S, Ajayi C, Julin K, Johannessen M, Hanssen AM. Exploring differentially expressed genes of Staphylococcus aureus exposed to human tonsillar cells using RNA sequencing. BMC Microbiol 2023; 23:185. [PMID: 37438716 PMCID: PMC10337072 DOI: 10.1186/s12866-023-02919-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND The nose and the throat are the most predominant colonizing sites of Staphylococcus aureus, and colonization is a risk factor for infection. Nasal colonization is well described; however, we have limited knowledge about S. aureus throat colonization. The main objective of this study was to explore differentially expressed genes (DEGs) in S. aureus throat isolate TR145 exposed to human tonsil epithelial cells (HTEpiC) by using RNA sequencing (RNA-seq) and pathway analysis. DEGs in S. aureus at 1 or 3 hours (h) interaction with its host were explored. RESULTS S. aureus was co-cultured in absence and presence of tonsillar cells at 1 or 3 h. Over the 3 h time frame, the bacteria multiplied, but still caused only minor cytotoxicity. Upon exposure to tonsillar cell line, S. aureus changed its transcriptomic profile. A total of 508 DEGs were identified including unique (1 h, 160 DEGs and 3 h, 78 DEGs) and commonly shared genes (1 and 3 h, 270 DEGs). Among the DEGs, were genes encoding proteins involved in adhesion and immune evasion, as well as iron acquisition and transport. Reverse transcription qPCR was done on selected genes, and the results correlated with the RNA-seq data. CONCLUSION We have shown the suitability of using HTEpiC as an in vitro model for investigating key determinants in S. aureus during co-incubation with host cells. Several DEGs were unique after 1 or 3 h exposure to host cells, while others were commonly expressed at both time points. As their expression is induced upon meeting with the host, they might be explored further for future targets for intervention to prevent either colonization or infection in the throat.
Collapse
Affiliation(s)
- Srijana Bastakoti
- Department of Medical Biology, Host-Microbe Interaction (HMI) research group, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Clement Ajayi
- Department of Medical Biology, Host-Microbe Interaction (HMI) research group, UiT - The Arctic University of Norway, Tromsø, Norway
- Center for Research and Education, University Hospital of North Norway (UNN), Tromsø, Norway
| | - Kjersti Julin
- Department of Medical Biology, Host-Microbe Interaction (HMI) research group, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Mona Johannessen
- Department of Medical Biology, Host-Microbe Interaction (HMI) research group, UiT - The Arctic University of Norway, Tromsø, Norway
- Center for Research and Education, University Hospital of North Norway (UNN), Tromsø, Norway
| | - Anne-Merethe Hanssen
- Department of Medical Biology, Host-Microbe Interaction (HMI) research group, UiT - The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
79
|
Lensmire JM, Wischer MR, Kraemer-Zimpel C, Kies PJ, Sosinski L, Ensink E, Dodson JP, Shook JC, Delekta PC, Cooper CC, Havlichek DH, Mulks MH, Lunt SY, Ravi J, Hammer ND. The glutathione import system satisfies the Staphylococcus aureus nutrient sulfur requirement and promotes interspecies competition. PLoS Genet 2023; 19:e1010834. [PMID: 37418503 PMCID: PMC10355420 DOI: 10.1371/journal.pgen.1010834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
Sulfur is an indispensable element for bacterial proliferation. Prior studies demonstrated that the human pathogen Staphylococcus aureus utilizes glutathione (GSH) as a source of nutrient sulfur; however, mechanisms of GSH acquisition are not defined. Here, we identify a five-gene locus comprising a putative ABC-transporter and predicted γ-glutamyl transpeptidase (ggt) that promotes S. aureus proliferation in medium supplemented with either reduced or oxidized GSH (GSSG) as the sole source of nutrient sulfur. Based on these phenotypes, we name this transporter operon the glutathione import system (gisABCD). Ggt is encoded within the gisBCD operon, and we show that the enzyme is capable of liberating glutamate using either GSH or GSSG as substrates, demonstrating it is a bona fide γ-glutamyl transpeptidase. We also determine that Ggt is expressed in the cytoplasm, representing only the second example of cytoplasmic Ggt localization, the other being Neisseria meningitidis. Bioinformatic analyses revealed that Staphylococcus species closely related to S. aureus encode GisABCD-Ggt homologs. However, homologous systems were not detected in Staphylococcus epidermidis. Consequently, we establish that GisABCD-Ggt provides a competitive advantage for S. aureus over S. epidermidis in a GSH- and GSSG-dependent manner. Overall, this study describes the discovery of a nutrient sulfur acquisition system in S. aureus that targets GSSG in addition to GSH and promotes competition against other staphylococci commonly associated with the human microbiota.
Collapse
Affiliation(s)
- Joshua M Lensmire
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Michael R Wischer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Cristina Kraemer-Zimpel
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Paige J Kies
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Lo Sosinski
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, United States of America
| | - Elliot Ensink
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Jack P Dodson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - John C Shook
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Phillip C Delekta
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Christopher C Cooper
- Department of Medicine, Division of Infectious Disease, Michigan State University, East Lansing, Michigan, United States of America
| | - Daniel H Havlichek
- Department of Medicine, Division of Infectious Disease, Michigan State University, East Lansing, Michigan, United States of America
| | - Martha H Mulks
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan, United States of America
| | - Janani Ravi
- Department of Biomedical Informatics, Center for Health Artificial Intelligence, University of Colorado Anschutz, Aurora, Colorado, United States of America
| | - Neal D Hammer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
80
|
Mohamad EA, Ramadan MA, Mostafa MM, Elneklawi MS. Enhancing the antibacterial effect of iron oxide and silver nanoparticles by extremely low frequency electric fields (ELF-EF) against S. aureus. Electromagn Biol Med 2023; 42:99-113. [PMID: 37154170 DOI: 10.1080/15368378.2023.2208610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/05/2023] [Indexed: 05/10/2023]
Abstract
Staphylococcus aureus is the cause of many infectious and inflammatory diseases and a lot of studies aim to discover alternative ways for infection control and treatment rather than antibiotics. This work attempts to reduce bacterial activity and growth characteristics of Staphylococcus aureus using nanoparticles (iron oxide nanoparticles and silver nanoparticles) and extremely low frequency electric fields (ELF-EF). Bacterial suspensions of Staphylococcus aureus were used to prepare the samples, which were evenly divided into groups. Control group, 10 groups were exposed to ELF-EF in the frequency range (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 Hz), iron oxide NPs treated group, iron oxide NPs exposed to 0.8 Hz treated group, silver NPs treated group and the last group was treated with silver NPs and 0.8 Hz. Antibiotic sensitivity testing, dielectric relaxation, and biofilm development for the living microbe were used to evaluate morphological and molecular alterations. Results showed that combination of nanoparticles with ELF-EF at 0.8 Hz enhanced the bacterial inhibition efficiency, which may be due to structural changes. These were supported by the dielectric measurement results which indicated the differences in the dielectric increment and electrical conductivity for the treated samples compared with control samples. This was also confirmed by biofilm formation measurements obtained. We may conclude that the exposure of Staphylococcus aureus bacteria to ELF-EF and NPs affected its cellular activity and structure. This technique is nondestructive, safe and fast and could be considered as a mean to reduce the use of antibiotics.
Collapse
Affiliation(s)
- Ebtesam A Mohamad
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa A Ramadan
- Department of laser application in metrology photochemistry and agriculture, National institute of laser Enhanced science NILES Cairo University Egypt, Giza, Egypt
| | - Marwa M Mostafa
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mona S Elneklawi
- Department of Biomedical Equipments & Systems, Faculty of Applied Medical Sciences, October 6 University, Giza, Egypt
| |
Collapse
|
81
|
Kost Y, Deutsch A, Mieczkowska K, Nazarian R, Muskat A, Hosgood HD, Lin J, Daily JP, Ohri N, Kabarriti R, Shinoda K, McLellan BN. Bacterial Decolonization for Prevention of Radiation Dermatitis: A Randomized Clinical Trial. JAMA Oncol 2023; 9:940-945. [PMID: 37140904 PMCID: PMC10160991 DOI: 10.1001/jamaoncol.2023.0444] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/01/2023] [Indexed: 05/05/2023]
Abstract
Importance Evidence-based approaches for the prevention of acute radiation dermatitis (ARD) are limited, and additional strategies are necessary to optimize care. Objective To determine the efficacy of bacterial decolonization (BD) to reduce ARD severity compared with standard of care. Design, Setting, and Participants This phase 2/3 randomized clinical trial was conducted from June 2019 to August 2021 with investigator blinding at an urban academic cancer center and enrolled patients with breast cancer or head and neck cancer receiving radiation therapy (RT) with curative intent. Analysis was performed on January 7, 2022. Interventions Intranasal mupirocin ointment twice daily and chlorhexidine body cleanser once daily for 5 days prior to RT and repeated for 5 days every 2 weeks through RT. Main Outcomes and Measures The primary outcome as planned prior to data collection was the development of grade 2 or higher ARD. Based on wide clinical variability of grade 2 ARD, this was refined to grade 2 ARD with moist desquamation (grade 2-MD). Results Of 123 patients assessed for eligibility via convenience sampling, 3 were excluded, and 40 refused to participate, with 80 patients in our final volunteer sample. Of 77 patients with cancer (75 patients with breast cancer [97.4%] and 2 patients with head and neck cancer [2.6%]) who completed RT, 39 were randomly assigned BC, and 38 were randomly assigned standard of care; the mean (SD) age of the patients was 59.9 (11.9) years, and 75 (97.4%) were female. Most patients were Black (33.7% [n = 26]) or Hispanic (32.5% [n = 25]). Among patients with breast cancer and patients with head and neck cancer (N = 77), none of the 39 patients treated with BD and 9 of the 38 patients (23.7%) treated with standard of care developed ARD grade 2-MD or higher (P = .001). Similar results were observed among the 75 patients with breast cancer (ie, none treated with BD and 8 [21.6%] receiving standard of care developed ARD grade ≥2-MD; P = .002). The mean (SD) ARD grade was significantly lower for patients treated with BD (1.2 [0.7]) compared with patients receiving standard of care (1.6 [0.8]) (P = .02). Of the 39 patients randomly assigned to BD, 27 (69.2%) reported regimen adherence, and only 1 patient (2.5%) experienced an adverse event related to BD (ie, itch). Conclusions and Relevance The results of this randomized clinical trial suggest that BD is effective for ARD prophylaxis, specifically for patients with breast cancer. Trial Registration ClinicalTrials.gov Identifier: NCT03883828.
Collapse
Affiliation(s)
- Yana Kost
- Division of Dermatology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Alana Deutsch
- Division of Dermatology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Karolina Mieczkowska
- Division of Dermatology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Roya Nazarian
- Division of Dermatology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Ahava Muskat
- Division of Dermatology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - H. Dean Hosgood
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- Department of Epidemiology and Population Health (Biostatistics), Albert Einstein College of Medicine, Bronx, New York
| | - Juan Lin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- Department of Epidemiology and Population Health (Biostatistics), Albert Einstein College of Medicine, Bronx, New York
| | - Johanna P. Daily
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Nitin Ohri
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Rafi Kabarriti
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Kosaku Shinoda
- Division of Endocrinology and Diabetes, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Beth N. McLellan
- Division of Dermatology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
82
|
Chang J, Tasellari A, Wagner JL, Scheetz MH. Contemporary pharmacologic treatments of MRSA for hospitalized adults: rationale for vancomycin versus non-vancomycin therapies as first line agents. Expert Rev Anti Infect Ther 2023; 21:1309-1325. [PMID: 37876291 DOI: 10.1080/14787210.2023.2275663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) remains an important pathogen in the hospital setting and causes significant morbidity and mortality each year. Since the initial discovery over 60 years ago, vancomycin has remained a first-line treatment for many different types of MRSA infections. However, significant concerns related to target attainment and nephrotoxicity have spurred efforts to develop more effective agents in the last two decades. AREAS COVERED Newer anti-MRSA antibiotics that have been approved since 2000 include linezolid, daptomycin, and ceftaroline. As clinical evidence has accumulated, these newer agents have become more frequently used, and some are now recommended as co-first-line options (along with vancomycin) in clinical practice guidelines. For this review, a scoping review of the literature was conducted to support our findings and recommendations. EXPERT OPINION Vancomycin remains an important standard of care for MRSA infections but is limited with respect to nephrotoxicity and rapid target attainment. Newer agents such as linezolid, daptomycin, and ceftaroline have specific indications for treating different types of MRSA infections; however, newer agents also have unique attributes which require consideration during therapy.
Collapse
Affiliation(s)
- Jack Chang
- Department of Pharmacy Practice, Midwestern University College of Pharmacy, Downers Grove, IL, USA
- Pharmacometrics Center of Excellence, Midwestern University College of Pharmacy, Downers Grove, IL, USA
- Northwestern Memorial Hospital, Department of Pharmacy, Chicago, IL, USA
| | - Ardita Tasellari
- Department of Pharmacy Practice, Midwestern University College of Pharmacy, Downers Grove, IL, USA
| | - Jamie L Wagner
- School of Pharmacy, University of Mississippi, Jackson, MS, USA
| | - Marc H Scheetz
- Department of Pharmacy Practice, Midwestern University College of Pharmacy, Downers Grove, IL, USA
- Pharmacometrics Center of Excellence, Midwestern University College of Pharmacy, Downers Grove, IL, USA
- Northwestern Memorial Hospital, Department of Pharmacy, Chicago, IL, USA
| |
Collapse
|
83
|
Congdon ST, Guaglione JA, Ricketts OMA, Murphy KV, Anderson MG, Trowbridge DA, Al-Abduladheem Y, Phillips AM, Beausoleil AM, Stanley AJ, Becker TJ, Silver AC. Prevalence and antibiotic resistance of Staphylococcus aureus associated with a college-aged cohort: life-style factors that contribute to nasal carriage. Front Cell Infect Microbiol 2023; 13:1195758. [PMID: 37441241 PMCID: PMC10333693 DOI: 10.3389/fcimb.2023.1195758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Staphylococcus aureus is an opportunistic human pathogen that can frequently be found at various body locations, such as the upper respiratory tract, nostrils, skin, and perineum. S. aureus is responsible for causing a variety of conditions, which range from minor skin infections and food poisoning to life-threatening sepsis and endocarditis. Furthermore, S. aureus has developed resistance to numerous antimicrobial agents, which has made treatment of S. aureus infections difficult. In the present study, we examined lifestyle factors that could increase the likelihood of S. aureus carriage, the overall prevalence of S. aureus, as well as assessed the antibiotic resistance profiles of the S. aureus isolates among a population of college students. Five hundred nasal samples were collected and analyzed via selective growth media, coagulase and protein A testing, as well as polymerase chain reaction and DNA sequencing. One hundred four out of the 500 samples collected (21%) were identified as containing S. aureus. The S. aureus isolates were resistant to penicillin (74%), azithromycin (34%), cefoxitin (5%), ciprofloxacin (5%), tetracycline (4%), and trimethoprim (1%), but sensitive to gentamicin and rifampin. Lastly, we identified several lifestyle factors (i.e., pet exposure, time spent at the university recreational facility, musical instrument usage, and tobacco usage) positively correlated with S. aureus nasal colonization.
Collapse
Affiliation(s)
- Sean T. Congdon
- Department of Biology, University of Hartford, West Hartford, CT, United States
| | - John A. Guaglione
- Department of Biology, University of Hartford, West Hartford, CT, United States
| | | | - Kyle V. Murphy
- Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Megan G. Anderson
- Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Darby A. Trowbridge
- Department of Biology, University of Hartford, West Hartford, CT, United States
| | | | | | | | - Alexus J. Stanley
- Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Timothy J. Becker
- Department of Computing Sciences, University of Hartford, West Hartford, CT, United States
| | - Adam C. Silver
- Department of Biology, University of Hartford, West Hartford, CT, United States
| |
Collapse
|
84
|
Wolde W, Mitiku H, Sarkar R, Shume T. Nasal Carriage Rate of Staphylococcus aureus, Its Associated Factors, and Antimicrobial Susceptibility Pattern Among Health Care Workers in Public Hospitals, Harar, Eastern Ethiopia. Infect Drug Resist 2023; 16:3477-3486. [PMID: 37287547 PMCID: PMC10243340 DOI: 10.2147/idr.s396570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/25/2023] [Indexed: 06/09/2023] Open
Abstract
Background Staphylococcus aureus is the bacteria that colonizes the nasal nares of health-care workers and serves as a reservoir for the spread of pathogen for subsequent infections, mainly Methicillin-resistant Staphylococcus aureus. However, there is a limited study conducted regarding this topic in Harar, Eastern Ethiopia. Objective The main objective of this study was to determine the prevalence of nasal carriage of Staphylococcus aureus, associated factors and antimicrobial susceptibility patterns among health-care workers of public hospitals in Harar, Eastern Ethiopia from May 15 to July 30, 2021. Methods A hospital-based cross-sectional study was conducted on 295 health-care workers. A simple random sampling technique was used to select the participant. Nasal swabs were collected and cultured at 35°C for 24hrs. S. aureus was identified using the coagulase test and catalase test. Methicillin resistance S. aureus (MRSA) was screened using a cefoxitin disc on Muller Hinton agar using the Kirby-Bauer disc diffusion method. Data were entered into EPI-Info version-7 and transferred to SPSS-20 for analysis. Factors associated with nasal carriage of Staphylococcus aureus were determined by using chi-square analysis. A p-value of less than 0.05 was considered statistically significant. Results The prevalence of Staphylococcus aureus in this study was 15.6% (95% CI: 11.7%, 20.3%) and methicillin-resistant Staphylococcus aureus was 11.2% (95% CI: 7.8%, 15.4%), respectively. Age (P < 0.001), work experience (p < 0.001), working unit (p < 0.02), antibiotic use within 3 months (p < 0.001), hand washing habit (p < 0.01), hand rub use (p < 0.001), living with smokers (p < 0.001), living with pets (p < 0.001) and having chronic diseases (p < 0.001) were found significantly associated with Staphylococcus aureus nasal carriage. Conclusion The prevalence of Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus are high in our study. The study emphasizes the need for regular surveillance among hospital staff and the environment to prevent MRSA transmission among health-care personnel.
Collapse
Affiliation(s)
- Wondimagegn Wolde
- Department of Medical Microbiology and Immunology, College of Health and Medical Science, Haramaya University, Harar, Ethiopia
| | - Habtamu Mitiku
- Department of Tropical and Infectious Disease and Parasitology, College of Health and Medical Science, Haramaya University, Harar, Ethiopia
| | - Rajesh Sarkar
- Department of Medical Microbiology and Immunology, College of Health and Medical Science, Haramaya University, Harar, Ethiopia
| | - Tadesse Shume
- Department of Medical Microbiology and Immunology, College of Health and Medical Science, Haramaya University, Harar, Ethiopia
| |
Collapse
|
85
|
Hsieh MS, Chen MY, Hsu CW, Tsai YW, Chiu FF, Hsu CL, Lin CL, Wu CC, Tu LL, Chiang CY, Liu SJ, Liao CL, Chen HW. Recombinant lipidated FLIPr effectively enhances mucosal and systemic immune responses for various vaccine types. NPJ Vaccines 2023; 8:82. [PMID: 37268688 DOI: 10.1038/s41541-023-00680-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Formyl peptide receptor-like 1 inhibitor protein (FLIPr) is an immune evasion protein produced by Staphylococcus aureus, and FLIPr is a potential vaccine candidate for reducing Staphylococcus aureus virulence and biofilm formation. We produced recombinant lipidated FLIPr (rLF) to increase the immunogenicity of FLIPr and showed that rLF alone elicited potent anti-FLIPr antibody responses to overcome the FLIPr-mediated inhibition of phagocytosis. In addition, rLF has potent immunostimulatory properties. We demonstrated that rLF is an effective adjuvant. When an antigen is formulated with rLF, it can induce long-lasting antigen-specific immune responses and enhance mucosal and systemic antibody responses as well as broad-spectrum T-cell responses in mice. These findings support further exploration of rLF in the clinic as an adjuvant for various vaccine types with extra benefits to abolish FLIPr-mediated immunosuppressive effects.
Collapse
Affiliation(s)
- Ming-Shu Hsieh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Yu Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chia-Wei Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Wen Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Fang-Feng Chiu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Cheng-Lung Hsu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Chang-Ling Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chiao-Chieh Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Ling-Ling Tu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chen-Yi Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Len Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
86
|
Gordon-Lipkin EM, Banerjee P, Thompson E, Kruk S, Franco JLM, McGuire PJ. Epitope-level profiling in children with mitochondrial disease reveals limitations in the antibacterial antibody repertoire. Mol Genet Metab 2023; 139:107581. [PMID: 37104980 PMCID: PMC10330363 DOI: 10.1016/j.ymgme.2023.107581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
INTRODUCTION Immunometabolic studies in mice have suggested the importance of oxidative phosphorylation (OXPHOS) in humoral immunity. However, there are important distinctions between murine and human immunity. Furthermore, translational studies on the role of OXPHOS in humoral immunity are nearly absent from the biomedical literature. Children with primary OXPHOS deficiency (i.e., mitochondrial disease, MtD), are an important patient population for demonstrating the functional effects of this bioenergetic defect on humoral immunity. METHODS To define whether OXPHOS deficiency extended to human B cells, we performed extracellular flux analysis on lymphoblastoid B cell lines from children with MtD and controls (N = 4/group). To expand the immune phenotype of B cell OXPHOS deficiency, we conducted a cross-sectional multiplex serology study of the antibacterial antibody repertoire in children with MtD (N = 16) and controls (N = 16) using phage display and immunoprecipitation sequencing (PhIPseq). The PhIPseq library contained >3000 peptides (i.e., epitopes) covering >40 genera and > 150 species of bacteria that infect humans. RESULTS B cell lymphoblastoid cell lines from children with MtD displayed depressed baseline oxygen consumption, ATP production and reserve capacity, indicating that OXPHOS deficiency extended to these key cells in humoral immunity. Characterization of the bacterial exposome revealed comparable bacterial species between the two groups, mostly Streptococcus and Staphylococcus. The most common species of bacteria was S. pneumoniae. By interrogating the antibacterial antibody repertoire, we found that children with MtD had less robust antibody fold changes to common epitopes. Furthermore, we also found that children with MtD failed to show a direct relationship between the number of bacterial epitopes recognized and age, unlike controls. OXPHOS deficiency extends to B cells in children with MtD, leading to limitations in the antibacterial antibody repertoire. Furthermore, the timing of bacterial exposures was asynchronous, suggesting different periods of increased exposure or susceptibility. CONCLUSIONS Overall, the antibacterial humoral response is distinctive in children with MtD, suggesting an important role for OXPHOS in B cell function.
Collapse
Affiliation(s)
- Eliza M Gordon-Lipkin
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Payal Banerjee
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Elizabeth Thompson
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Shannon Kruk
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Jose Luis Marin Franco
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Peter J McGuire
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America.
| |
Collapse
|
87
|
Amati F, Bindo F, Stainer A, Gramegna A, Mantero M, Nigro M, Bussini L, Bartoletti M, Blasi F, Aliberti S. Identify Drug-Resistant Pathogens in Patients with Community-Acquired Pneumonia. Adv Respir Med 2023; 91:224-238. [PMID: 37366804 PMCID: PMC10295768 DOI: 10.3390/arm91030018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/27/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
A substantial increase in broad-spectrum antibiotics as empirical therapy in patients with community-acquired pneumonia (CAP) has occurred over the last 15 years. One of the driving factors leading to that has been some evidence showing an increased incidence of drug-resistant pathogens (DRP) in patients from a community with pneumonia, including methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. Research has been published attempting to identify DRP in CAP through the implementation of probabilistic approaches in clinical practice. However, recent epidemiological data showed that the incidence of DRP in CAP varies significantly according to local ecology, healthcare systems and countries where the studies were performed. Several studies also questioned whether broad-spectrum antibiotic coverage might improve outcomes in CAP, as it is widely documented that broad-spectrum antibiotics overuse is associated with increased costs, length of hospital stay, drug adverse events and resistance. The aim of this review is to analyze the different approaches used to identify DRP in CAP patients as well as the outcomes and adverse events in patients undergoing broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Francesco Amati
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Francesco Bindo
- Respiratory Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Anna Stainer
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Andrea Gramegna
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Marco Mantero
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Mattia Nigro
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Linda Bussini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Infectious Diseases Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, 20089 Milan, Italy
| | - Michele Bartoletti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Infectious Diseases Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, 20089 Milan, Italy
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| |
Collapse
|
88
|
Campos J, Pires MF, Sousa M, Campos C, da Costa CFFA, Sampaio-Maia B. Unveiling the Relevance of the Oral Cavity as a Staphylococcus aureus Colonization Site and Potential Source of Antimicrobial Resistance. Pathogens 2023; 12:765. [PMID: 37375455 DOI: 10.3390/pathogens12060765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Staphylococcus aureus is both a human commensal and a pathogen, that causes serious nosocomial and community-acquired infections. Despite nostrils being considered its preferred host habitat, the oral cavity has been demonstrated to be an ideal starting point for auto-infection and transmission. The antibiotic resistance assessment of S. aureus is a priority and is often reported in clinical settings. This study aimed to explore the prevalence and antimicrobial susceptibility of S. aureus in the oral and nasal cavities of healthy individuals. The participants (n = 101) were subjected to a demographic and clinical background survey, a caries evaluation, and to oral and nasal swabbing. Swabs were cultured in differential/selective media and S. aureus isolates were identified (MALDI-TOF MS) and tested for antibiotic susceptibility (EUCAST/CLSI). Similar S. aureus prevalence was found exclusively on nasal (13.9%) or oral (12.0%) habitats, whereas 9.9% of the population were simultaneous nasal and oral carriers. In oro-nasal cavities, similar antibiotic resistance rates (83.3-81.5%), including MDR (20.8-29.6%), were observed. Notably, 60% (6/10) of the simultaneous nasal and oral carriers exhibited different antibiotic resistance profiles between cavities. This study demonstrates the relevance of the oral cavity as an independent colonization site for S. aureus and as a potential source of antimicrobial resistance, a role which has been widely neglected so far.
Collapse
Affiliation(s)
- Joana Campos
- INEB-Instituto Nacional de Engenharia Biomédica, 4200-135 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Mariana Faria Pires
- Faculdade de Medicina Dentária, Universidade do Porto, 4200-393 Porto, Portugal
| | - Marta Sousa
- Faculdade de Medicina Dentária, Universidade do Porto, 4200-393 Porto, Portugal
| | - Carla Campos
- Instituto Português de Oncologia do Porto Francisco Gentil, 4200-072 Porto, Portugal
- Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| | - Carolina Fernandes Ferreira Alves da Costa
- INEB-Instituto Nacional de Engenharia Biomédica, 4200-135 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Benedita Sampaio-Maia
- INEB-Instituto Nacional de Engenharia Biomédica, 4200-135 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Medicina Dentária, Universidade do Porto, 4200-393 Porto, Portugal
| |
Collapse
|
89
|
Nurxat N, Wang L, Wang Q, Li S, Jin C, Shi Y, Wulamu A, Zhao N, Wang Y, Wang H, Li M, Liu Q. Commensal Staphylococcus epidermidis Defends against Staphylococcus aureus through SaeRS Two-Component System. ACS OMEGA 2023; 8:17712-17718. [PMID: 37251147 PMCID: PMC10210170 DOI: 10.1021/acsomega.3c00263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
Staphylococcus aureus is a high-virulent Gram-positive pathogen that is responsible for a serious of diseases. The emergence of antibiotic-resistant S. aureus poses a significant challenge in terms of treatment. The recent research on the human microbiome suggested that the application of commensal bacteria is a new strategy for combating pathogenic infections. Staphylococcus epidermidis, one of the most abundant species in the nasal microbiome, is able to inhibit the colonization of S. aureus. However, during bacterial competition, S. aureus undergoes evolutionary changes to adapt to the diverse environment. Our study has demonstrated that the nasal colonized S. epidermidis possesses the ability to inhibit the hemolytic activity of S. aureus. Moreover, we deciphered another layer of mechanism to inhibit S. aureus colonization by S. epidermidis. The active component present in the cell-free culture of S. epidermidis was found to significantly reduce the hemolytic activity of S. aureus in SaeRS- and Agr-dependent manner. Specifically, the hemolytic inhibition on the S. aureus Agr-I type by S. epidermidis is primarily dependent on the SaeRS two-component system. The active component is characterized as a small molecule that is heat sensitive and protease resistant. Critically, S. epidermidis significantly inhibit the virulence of S. aureus in a mouse skin abscess model, suggesting that the active compound could potentially be used as a therapeutic agent for managing S. aureus infections.
Collapse
Affiliation(s)
- Nadira Nurxat
- Department
of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Lili Wang
- Department
of Stomatology, Tongji Hospital, Tongji
University, Shanghai 200065, China
| | - Qichen Wang
- Department
of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Shujing Li
- Faculty
of Medical Laboratory Science, Shanghai
Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Chen Jin
- Faculty
of Medical Laboratory Science, Shanghai
Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Yaran Shi
- Faculty
of Medical Laboratory Science, Shanghai
Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Ayjiamali Wulamu
- Faculty
of Medical Laboratory Science, Shanghai
Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Na Zhao
- Department
of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yanan Wang
- Department
of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Hua Wang
- Department
of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Min Li
- Department
of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Faculty
of Medical Laboratory Science, Shanghai
Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Qian Liu
- Department
of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
90
|
Metzcar C, Leyva Gutierrez F, Ownley BH, Johnson JG, Wakim M, Ye XP, Wang T. Synthesis and Evaluation of Antimicrobial Biobased Waxes as Coating Materials. ACS APPLIED BIO MATERIALS 2023. [PMID: 37205783 DOI: 10.1021/acsabm.3c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The objective of this study was to synthesize and evaluate the efficacy of antimicrobial waxes to be used as both physical and biological protection to perishable fruits and vegetables. The existing wax materials used in postharvest coating applications do not provide this antimicrobial functionality. One class of such waxes was obtained by covalently linking quaternary ammonium compounds (QACs) featuring alkyl, benzyl, and stearyl ester hydrophobic side groups to the terminal position of a bromo stearyl ester. A second class was obtained by linking these QACs to the pendant hydroxyl group of an aliphatic diamide made of 12-hydroxystearic acid, stearic acid, and ethylene diamine. In total, six distinct structures having three different QAC groups were synthesized. Compounds containing QACs with C8 alkyl groups exhibited potent inhibition toward the growth of both bacteria and fungi. Notably, the complete inhibition of Penicillium italicum and Geotrichum candidum, two fungi detrimental to the postharvest quality of fruits, as well as the complete destruction of viable cells for Gram-positive and Gram-negative bacteria was observed when these organisms were incubated in contact with QAC waxes or dispersed in an aqueous system at a concentration of 1.0 mM. Comparatively, benzalkonium chloride with an alkyl chain length of 10 carbon can completely inhibit Staphylococcus aureus at a concentration of 1.44 mM. The properties of the attached hydrophobic groups appeared to exert a strong influence on antimicrobial activity presumably due to differences in molecular orientation, size, and differences among microbial cellular structures.
Collapse
Affiliation(s)
- Caleb Metzcar
- Department of Food Science, The University of Tennessee, 207 Food Science Building, Knoxville, Tennessee 37996, United States
| | - Francisco Leyva Gutierrez
- Department of Food Science, The University of Tennessee, 207 Food Science Building, Knoxville, Tennessee 37996, United States
| | - Bonnie H Ownley
- Department of Entomology and Plant Pathology, The University of Tennessee, 414 Plant Biotechnology Building, Knoxville, Tennessee 37996, United States
| | - Jeremiah Gene Johnson
- Department of Microbiology, The University of Tennessee, 516 Ken and Blaire Mossman Building, Knoxville, Tennessee 37996, United States
| | - Mary Wakim
- Department of Microbiology, The University of Tennessee, 516 Ken and Blaire Mossman Building, Knoxville, Tennessee 37996, United States
| | - Xiaofei Philip Ye
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, 101 Biosystems Engineering and Soil Sciences Office Building, Knoxville, Tennessee 37996, United States
| | - Tong Wang
- Department of Food Science, The University of Tennessee, 207 Food Science Building, Knoxville, Tennessee 37996, United States
| |
Collapse
|
91
|
Anderson EE, Dyzenhaus S, Ilmain JK, Sullivan MJ, van Bakel H, Torres VJ. SarS Is a Repressor of Staphylococcus aureus Bicomponent Pore-Forming Leukocidins. Infect Immun 2023; 91:e0053222. [PMID: 36939325 PMCID: PMC10112191 DOI: 10.1128/iai.00532-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/20/2023] [Indexed: 03/21/2023] Open
Abstract
Staphylococcus aureus is a successful pathogen that produces a wide range of virulence factors that it uses to subvert and suppress the immune system. These include the bicomponent pore-forming leukocidins. How the expression of these toxins is regulated is not completely understood. Here, we describe a screen to identify transcription factors involved in the regulation of leukocidins. The most prominent discovery from this screen is that SarS, a known transcription factor which had previously been described as a repressor of alpha-toxin expression, was found to be a potent repressor of leukocidins LukED and LukSF-PV. We found that inactivating sarS resulted in increased virulence both in an ex vivo model using primary human neutrophils and in an in vivo infection model in mice. Further experimentation revealed that SarS represses leukocidins by serving as an activator of Rot, a critical repressor of toxins, as well as by directly binding and repressing the leukocidin promoters. By studying contemporary clinical isolates, we identified naturally occurring mutations in the sarS promoter that resulted in overexpression of sarS and increased repression of leukocidins in USA300 bloodstream clinical isolates. Overall, these data establish SarS as an important repressor of leukocidins and expand our understanding of how these virulence factors are being regulated in vitro and in vivo by S. aureus.
Collapse
Affiliation(s)
- Exene E. Anderson
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Sophie Dyzenhaus
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Juliana K. Ilmain
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Mitchell J. Sullivan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
92
|
Tarabichi S, Parvizi J. Prevention of surgical site infection: a ten-step approach. ARTHROPLASTY 2023; 5:21. [PMID: 37029444 PMCID: PMC10082525 DOI: 10.1186/s42836-023-00174-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/20/2023] [Indexed: 04/09/2023] Open
Abstract
Surgical site infection (SSI) is a common cause of morbidity and mortality in patients undergoing surgery. Similarly, periprosthetic joint infection (PJI), is a major cause of failure after total joint arthroplasty (TJA). As the annual volume of TJA procedures is projected to rise, so will the rate of subsequent SSI and PJI. Currently, prevention has been identified as the single most important strategy for combating SSI/PJI. Hence, the present article will serve as a summary of an evidence-based ten-step approach for SSI/PJI prevention that may help orthopedic surgeons with their infection prevention strategies.
Collapse
Affiliation(s)
- Saad Tarabichi
- Rothman Orthopaedic Institute at Thomas Jefferson University Hospital, Philadelphia, PA, 19107, USA.
| | - Javad Parvizi
- Rothman Orthopaedic Institute at Thomas Jefferson University Hospital, Philadelphia, PA, 19107, USA
| |
Collapse
|
93
|
Serbanescu MA, Apple CG, Fernandez-Moure JS. Role of Resident Microbial Communities in Biofilm-Related Implant Infections: Recent Insights and Implications. Surg Infect (Larchmt) 2023; 24:258-264. [PMID: 37010966 PMCID: PMC11074437 DOI: 10.1089/sur.2023.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
The use of medical implants continues to grow as the population ages. Biofilm-related implant infection is the leading cause of medical implant failure and remains difficult to diagnose and treat. Recent technologies have enhanced our understanding of the composition and complex functions of microbiota occupying various body site niches. In this review, we leverage data from molecular sequencing technologies to explore how silent changes in microbial communities from various sites can influence the development of biofilm-related infections. Specifically, we address biofilm formation and recent insights of the organisms involved in biofilm-related implant infections; how composition of microbiomes from skin, nasopharyngeal, and nearby tissue can impact biofilm-formation, and infection; the role of the gut microbiome in implant-related biofilm formation; and therapeutic strategies to mitigate implant colonization.
Collapse
Affiliation(s)
- Mara A. Serbanescu
- Department of Anesthesia, Acute Care Surgery, and Surgical Critical Care, Department of Surgery, Duke University Medical Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Camille G. Apple
- Division of Trauma, Acute Care Surgery, and Surgical Critical Care, Department of Surgery, Duke University Medical Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joseph S. Fernandez-Moure
- Division of Trauma, Acute Care Surgery, and Surgical Critical Care, Department of Surgery, Duke University Medical Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
94
|
Taki E, Jabalameli F, Tehrani MRM, Feizabadi MM, Halimi S, Sanjari M, Amini MR, Beigverdi R, Emaneini M. Molecular Characteristics of Staphylococcus aureus Strains Isolated from Nasal Cavity and Wound Infections Among Diabetic Patients. Curr Microbiol 2023; 80:147. [PMID: 36961628 DOI: 10.1007/s00284-023-03262-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/07/2023] [Indexed: 03/25/2023]
Abstract
Staphylococcus aureus is the most common pathogen contributing to diabetic foot infections (DFI). Nasal transmission of S. aureus potentially increases the risk of endogenous infection. The aim of this study was to determine the genetic diversity and antibiotic resistance profile of S. aureus isolates in nasal and wound samples from diabetic patients. A cross-sectional study was conducted from July 2018 to September 2019. S. aureus was isolated from the anterior nares and wounds of diabetic patients. All S. aureus isolates were characterized by detection of resistance and virulence genes (mecA, ermA, ermC, hla, hlb, hlg, sea, lukDE, pvl), staphylococcal cassette chromosome mec (SCCmec)-typing and staphylococcal protein A (spa)-typing. A total of 34 S. aureus were isolated from the wounds of 115 diabetic patients with DFI. Twenty-four S. aureus isolates were collected from the anterior nares of patients, and thirteen patients had concurrent S. aureus in nasal and wound specimens. The prevalence of methicillin-resistant S. aureus (MRSA) in nasal specimens was noticeable (41.7%), and the most common spa-type in nasal and wound specimens was t14870. Nearly half of the patients with concurrent S. aureus in wound and nasal specimens had similar isolates from both sites. Our data suggest that detection and screening of S. aureus colonization in the nasal cavity may prevent subsequent endogenous infections, particularly with MRSA strains.
Collapse
Affiliation(s)
- Elahe Taki
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Building No. 7, 100 Poursina St., Keshavarz Blvd, Tehran, 14167-53955, Iran
| | - Fereshteh Jabalameli
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Building No. 7, 100 Poursina St., Keshavarz Blvd, Tehran, 14167-53955, Iran
| | - Mohammad Reza Mohajeri Tehrani
- Diabetes Research Center, Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Science Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Building No. 7, 100 Poursina St., Keshavarz Blvd, Tehran, 14167-53955, Iran
| | - Shahnaz Halimi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Building No. 7, 100 Poursina St., Keshavarz Blvd, Tehran, 14167-53955, Iran
| | - Mahnaz Sanjari
- Diabetes Research Center, Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Science Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Amini
- Diabetes Research Center, Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Science Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Beigverdi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Building No. 7, 100 Poursina St., Keshavarz Blvd, Tehran, 14167-53955, Iran
| | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Building No. 7, 100 Poursina St., Keshavarz Blvd, Tehran, 14167-53955, Iran.
| |
Collapse
|
95
|
Toh SC, Lihan S, Bunya SR, Leong SS. In vitro antimicrobial efficacy of Cassia alata (Linn.) leaves, stem, and root extracts against cellulitis causative agent Staphylococcus aureus. BMC Complement Med Ther 2023; 23:85. [PMID: 36934252 PMCID: PMC10024395 DOI: 10.1186/s12906-023-03914-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 06/07/2022] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND Cellulitis is a common skin disease encountered in medical emergencies in hospitals. It can be treated using a combination of antibiotics therapy; however, the causative agent Staphylococcus aureus has been reported to develop resistance towards the currently used antibiotics. Therefore, the search for more alternative herbal origin antimicrobial agents is critical. AIM In this study, maceration and Soxhlet extraction of the whole plant of Cassia alata Linn. (leaves, roots, and stem) were performed using four solvents with different polarities, namely n-hexane, ethyl acetate, ethanol and distilled water. The crude extracts were screened using agar well diffusion, colorimetric broth microdilution, grid culture and bacterial growth curve analysis against Staphylococcus aureus. The phytochemicals in the crude extracts were identified using Gas Chromatography-Mass Spectrometry (GC-MS). RESULTS Agar-well diffusion analysis revealed that extraction using ethyl acetate showed the largest inhibition zone with an average diameter of 15.30 mm (root Soxhlet extract) followed by 14.70 mm (leaf Soxhlet extract) and 13.70 mm (root maceration extract). The lowest minimum inhibitory and minimum bactericidal concentration in root Soxhlet extract using ethyl acetate was 0.313 and 0.625 µg µL-1, respectively. Our study proved that crude extract of the plant suppressed the growth of S. aureus as evidenced from a significant regression extension (p < 0.06, p = 0.00003) of lag phase for 6 h after the treatment with increased concentration. Based on the GC-MS analysis, 88 phytochemicals consist of fatty acids, esters, alkanes, phenols, fatty alcohols, sesquiterpenoids and macrocycle that possibly contributed to the antimicrobial properties were identified, 32 of which were previously characterized for their antimicrobial, antioxidant, and anti-inflammatory activities. CONCLUSION Ethyl acetate crude extract was better than the other investigated solvents. The root and stem of C. alata showed significant antimicrobial efficacy against S. aureus in this study. The remaining 56 out of 88 phytochemicals of the plant should be intensively studied for more medicinal uses.
Collapse
Affiliation(s)
- Seng Chiew Toh
- Department of Animal Science and Fishery, Faculty of Agricultural Science and Forestry, Universiti Putra Malaysia Bintulu Sarawak Campus, Nyabau Road, 97008, Bintulu, Sarawak, Malaysia
| | - Samuel Lihan
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Scholastica Ramih Bunya
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Sui Sien Leong
- Department of Animal Science and Fishery, Faculty of Agricultural Science and Forestry, Universiti Putra Malaysia Bintulu Sarawak Campus, Nyabau Road, 97008, Bintulu, Sarawak, Malaysia.
- Institute of Ecosystem Science Borneo, Universiti Putra Malaysia Bintulu Sarawak Campus, Nyabau Road, 97008, Bintulu, Sarawak, Malaysia.
| |
Collapse
|
96
|
Jin X, Hu X, Jiang S, Zhao T, Zha Y, Wei S, Zhao J, Wang M, Zhang Y. Temporin-GHb-Derived Peptides Exhibit Potent Antibacterial and Antibiofilm Activities against Staphylococcus aureus In Vitro and Protect Mice from Acute Infectious Pneumonia. ACS Infect Dis 2023; 9:840-855. [PMID: 36862073 DOI: 10.1021/acsinfecdis.2c00544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
With the continuous development of drug resistance in bacteria to traditional antibiotics, the demand for novel antibacterial agents is urgent. Antimicrobial peptides (AMPs) are promising candidates because of their unique mechanism of action and low tendency to induce drug resistance. Previously, we cloned temporin-GHb (hereafter referred to simply as "GHb") from Hylarana guentheri. In this study, a series of derived peptides were designed, namely, GHbR, GHbK, GHb3K, GHb11K, and GHbK4R. The five derived peptides had stronger antibacterial activities against Staphylococcus aureus than the parent peptide GHb and could effectively inhibit the formation of biofilms and eradicate mature biofilms in vitro. GHbR, GHbK, GHb3K, and GHbK4R exerted bactericidal effects by disrupting membrane integrity. However, GHb11K exhibited bacteriostatic efficacy with toroidal pore formation on the cell membrane. In comparison to GHbK4R, GHb3K showed much lower cytotoxicity against A549 alveolar epithelial cells, with an IC50 > 200 μM, which was much higher than its minimal inhibitory concentration (MIC = 3.1 μM) against S. aureus. The anti-infection potential of GHbK4R and GHb3K was investigated in vivo. Compared with vancomycin, the two peptides displayed significant efficacy in a mouse model of acute pneumonia infected with S. aureus. Both GHbK4R and GHb3K also had no obvious toxicity to normal mice after intraperitoneal administration (15 mg/kg) for 8 days. Our results indicate that GHb3K and GHbK4R might be promising candidates for the treatment of bacterial pneumonia infected with S. aureus.
Collapse
|
97
|
Abdullahi IN, Juárez-Fernández G, Höfle Ú, Cardona-Cabrera T, Mínguez D, Pineda-Pampliega J, Lozano C, Zarazaga M, Torres C. Nasotracheal Microbiota of Nestlings of Parent White storks with Different Foraging Habits in Spain. ECOHEALTH 2023; 20:105-121. [PMID: 37060390 DOI: 10.1007/s10393-023-01626-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/11/2023] [Indexed: 06/11/2023]
Abstract
Migratory storks could be vectors of transmission of bacteria of public health concern mediated by the colonization, persistence and excretion of such bacteria. This study aims to determine genera/species diversity, prevalence, and co-colonization indices of bacteria obtained from tracheal (T) and nasal (N) samples from storks in relation to exposure to point sources through foraging. One-hundred and thirty-six samples from 87 nestlings of colonies of parent white storks with different foraging habits (natural habitat and landfills) were obtained (84 T-samples and 52 N-samples) and processed. Morphologically distinct colonies (up to 12/sample) were randomly selected and identified by MALDI-TOF-MS. About 87.2% of the total 806 isolates recovered were identified: 398 from T-samples (56.6%) and 305 from N-samples (43.4%). Among identified isolates, 17 genera and 46 species of Gram-positive and Gram-negative bacteria were detected, Staphylococcus (58.0%) and Enterococcus (20.5%) being the most prevalent genera. S. sciuri was the most prevalent species from T (36.7%) and N (34.4%) cavities of total isolates, followed by E. faecalis (11.1% each from T and N), and S. aureus [T (6.5%), N (13.4%)]. Of N-samples, E. faecium was significantly associated with nestlings of parent storks foraging in landfills (p = 0.018). S. sciuri (p = 0.0034) and M. caseolyticus (p = 0.032) from T-samples were significantly higher among nestlings of parent storks foraging in natural habitats. More than 80% of bacterial species in the T and N cavities showed 1-10% co-colonization indices with one another, but few had ≥ 40% indices. S. sciuri and E. faecalis were the most frequent species identified in the stork nestlings. Moreover, they were highly colonized by other diverse and potentially pathogenic bacteria. Thus, storks could be sentinels of point sources and vehicles of bacterial transmission across the "One Health" ecosystems.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- OneHealth-UR Research Group, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Guillermo Juárez-Fernández
- OneHealth-UR Research Group, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Úrsula Höfle
- SaBio (Health and Biotechnology) Research Group, Game and Wildlife Research Institute (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Teresa Cardona-Cabrera
- SaBio (Health and Biotechnology) Research Group, Game and Wildlife Research Institute (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - David Mínguez
- OneHealth-UR Research Group, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Javier Pineda-Pampliega
- Department of Biology, Lund University, Lund, Sweden
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Carmen Lozano
- OneHealth-UR Research Group, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Myriam Zarazaga
- OneHealth-UR Research Group, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Carmen Torres
- OneHealth-UR Research Group, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain.
| |
Collapse
|
98
|
Khairullah AR, Sudjarwo SA, Effendi MH, Ramandinianto SC, Gelolodo MA, Widodo A, Riwu KHP, Kurniawati DA. Pet animals as reservoirs for spreading methicillin-resistant Staphylococcus aureus to human health. J Adv Vet Anim Res 2023; 10:1-13. [PMID: 37155545 PMCID: PMC10122942 DOI: 10.5455/javar.2023.j641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 05/10/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a strain of pathogenic bacteria that is a major problem in the world's health. Due to their frequent interaction with humans, pets are one of the main risk factors for the spread of MRSA. The possibility for zoonotic transmission exists since frequently kept dogs and cats are prone to contract MRSA and act as reservoirs for spreading MRSA. The mouth, nose, and perineum are the primary locations of MRSA colonization, according to the findings of MRSA identification tests conducted on pets. The types of MRSA clones identified in cats and dogs correlated with MRSA clones infecting humans living in the same geographic area. A significant risk factor for the colonization or transmission of MRSA is human-pet contact. An essential step in preventing the spread of MRSA from humans to animals and from animals to humans is to keep hands, clothing, and floor surfaces clean.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sri Agus Sudjarwo
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Mustofa Helmi Effendi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Maria Aega Gelolodo
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Kupang, Indonesia
| | - Agus Widodo
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | | |
Collapse
|
99
|
Freitas JKGR, Assis CFD, Oliveira TRMD, Maia CMDM, de Sousa BJ, Medeiros GCBSD, Seabra LMJ, Chaves Damasceno KSFDS. Prevalence of staphylococcal toxin in food contaminated by Staphylococcus spp.: Protocol for a systematic review with meta-analysis. PLoS One 2023; 18:e0282111. [PMID: 36809532 PMCID: PMC9942949 DOI: 10.1371/journal.pone.0282111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/01/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Food contamination by Staphylococcus spp. enterotoxigenic strains is quite common and despite underreporting caused by the short duration of clinical symptoms and lack of medical care, staphylococcal food poisoning is one of the most common Foodborne Diseases (FBD) in the world. This study describes a systematic review protocol with meta-analysis on the prevalence and types of staphylococcal enterotoxins in food, and the profile of contaminated foods. METHODS The research will be conducted through the selection of studies reporting the analysis of staphylococcal enterotoxins in food contaminated by Staphylococcus spp. Searches will happen on the following databases: Medline (OVID), GALE, Science Direct, CAB Direct (CABI), Google Scholar, in addition to manual search in the list of references of articles, directory of theses and dissertations, and countries' health agencies. Reports will be imported into the application Rayyan. Two researchers will independently select studies and extract data, and a third reviewer will solve conflicting decisions. The primary outcome will be the identification of staphylococcal enterotoxins in food, and the secondary outcomes will include staphylococcal enterotoxin types and foods involved. To assess the risk of bias in the studies, the tool developed by the Joanna Briggs Institute (JBI) will be used. For data synthesis, a meta-analysis will be performed. However, in case that is not possible, a narrative synthesis of the most relevant results will be carried out. DISCUSSION This protocol will serve as the basis for a systematic review that aims to relate the results of existing studies on the staphylococcal enterotoxin prevalence and types in food, and the profile of the contaminated foods. The results will broaden the perception of food safety risks, highlight existing literature gaps, contribute to the study of the epidemiological profile and may guide the allocation of health resources for the development of preventive measures related. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number: CRD42021258223.
Collapse
Affiliation(s)
| | - Cristiane Fernandes de Assis
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | | | - Bruno Jonatan de Sousa
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Gidyenne Christiane Bandeira Silva de Medeiros
- Department of Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
- Systematic Review and Meta-Analysis Laboratory (Lab-SYS) CNPq-UFRN, Natal, RN, Brazil
| | - Larissa Mont'Alverne Jucá Seabra
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
- Department of Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Karla Suzanne Florentino da Silva Chaves Damasceno
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
- Department of Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| |
Collapse
|
100
|
Jin Q, Xie X, Zhai Y, Zhang H. Mechanisms of folate metabolism-related substances affecting Staphylococcus aureus infection. Int J Med Microbiol 2023; 313:151577. [PMID: 36841056 DOI: 10.1016/j.ijmm.2023.151577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/28/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the critical clinical pathogens which can cause multiple diseases ranging from skin infections to fatal sepsis. S. aureus is generally considered to be an extracellular pathogen. However, more and more evidence has shown that S. aureus can survive inside various cells. Folate plays an essential role in multiple life activities, including the conversion of serine and glycine, the remethylation of homocysteine to methionine, and the de novo synthesis of purine /dTMP, et al. More and more studies reported that S. aureus intracellular infection requires the involvement of folate metabolism. This review focused on the mechanisms of folate metabolism and related substances affecting S. aureus infection. Loss of tetrahydrofolic acid (THF)-dependent dTMP directly inhibits the nucleotide synthesis pathway of the S. aureus due to pabA deficiency. Besides, trimethoprim-sulfamethoxazole (TMP/SMX), a potent antibiotic that treats S. aureus infections, interferes in the process of the folate mechanism and leads to the production of thymidine-dependent small-colony variants (TD-SCVs). In addition, S. aureus is resistant to lysostaphin in the presence of serine hydroxymethyltransferase (SHMT). We provide new insights for understanding the molecular pathogenesis of S. aureus infection.
Collapse
Affiliation(s)
- Qiyuan Jin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaolu Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yaxuan Zhai
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|