51
|
Boisselier L, Gervasoni D, Garcia S, Ferry B, Gervais R. Neuronal dynamics supporting formation and recombination of cross-modal olfactory-tactile association in the rat hippocampal formation. J Neurophysiol 2018; 119:1140-1152. [PMID: 29212919 DOI: 10.1152/jn.00666.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The present study is aimed at describing some aspects of the neural dynamics supporting discrimination of olfactory-tactile paired-associated stimuli during acquisition of new pairs and during recombination of previously learned pairs in the rat. To solve the task, animals have to identify one odor-texture (OT) combination associated with a food reward among three cups with overlapping elements. Previous experiments demonstrated that the lateral entorhinal cortex (LEC) is involved in the processes underlying OT acquisition, whereas the dorsal hippocampus (DH) is selectively involved in the recombination processes. In the present study, local field potentials were recorded form the anterior piriform cortex (aPC), LEC, and DH in freely moving rats performing these tasks. Signal analysis focused on theta (5-12 Hz)- and beta-band (15-40 Hz) oscillatory activities in terms of both amplitude and synchrony. The results show that cue sampling was associated with a significant increase in the beta-band activity during the choice period in both the aPC and the LEC, and is modulated by level of expertise and the animal's decision. In addition, this increase was significantly higher during the recombination compared with the acquisition of the OT task, specifically when animals had to neglect the odor previously associated with the reward. Finally, a significant decrease in coherence in the theta band between LEC and DH was observed in the recombination but not in the acquisition task. These data point to specific neural signatures of simple and complex cross-modal sensory processing in the LEC-DH complex. NEW & NOTEWORTHY This study is the first to describe electrophysiological correlates of cross-modal olfactory-tactile integration in rats. Recordings were sought from the lateral entorhinal cortex and the dorsal hippocampus because previous studies have shown their role in the formation and in the recombination of previously learned associations. We identified specific oscillatory-evoked neural responses in these structures in the theta and beta bands, which characterize acquisition and recombination of cross-modal olfactory-tactile pairs.
Collapse
Affiliation(s)
- Lise Boisselier
- Team CMO: Olfaction from Coding to Memory, Centre de Recherche en Neuroscience de Lyon, CNRS UMR 5292, INSERM U1028, Université Lyon 1, Université de Lyon , Lyon , France
| | - Damien Gervasoni
- Team CMO: Olfaction from Coding to Memory, Centre de Recherche en Neuroscience de Lyon, CNRS UMR 5292, INSERM U1028, Université Lyon 1, Université de Lyon , Lyon , France
| | - Samuel Garcia
- Team CMO: Olfaction from Coding to Memory, Centre de Recherche en Neuroscience de Lyon, CNRS UMR 5292, INSERM U1028, Université Lyon 1, Université de Lyon , Lyon , France
| | - Barbara Ferry
- Team CMO: Olfaction from Coding to Memory, Centre de Recherche en Neuroscience de Lyon, CNRS UMR 5292, INSERM U1028, Université Lyon 1, Université de Lyon , Lyon , France
| | - Rémi Gervais
- Team CMO: Olfaction from Coding to Memory, Centre de Recherche en Neuroscience de Lyon, CNRS UMR 5292, INSERM U1028, Université Lyon 1, Université de Lyon , Lyon , France
| |
Collapse
|
52
|
Cohen Y, Wilson DA. Task-Correlated Cortical Asymmetry and Intra- and Inter-Hemispheric Separation. Sci Rep 2017; 7:14602. [PMID: 29097760 PMCID: PMC5668373 DOI: 10.1038/s41598-017-15109-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/20/2017] [Indexed: 01/31/2023] Open
Abstract
Cerebral lateralization is expressed at both the structural and functional levels, and can exist as either a stable characteristic or as a dynamic feature during behavior and development. The anatomically relatively simple olfactory system demonstrates lateralization in both human and non-human animals. Here, we explored functional lateralization in both primary olfactory cortex - a region critical for odor memory and perception- and orbitofrontal cortex (OFC) - a region involved in reversal learning- in rats performing an odor learning and reversal task. We find significant asymmetry in both olfactory and orbitofrontal cortical odor-evoked activity, which is expressed in a performance- and task-dependent manner. The emergence of learning-dependent asymmetry during reversal learning was associated with decreased functional connectivity both between the bilateral OFC and between the OFC-olfactory cortex. The results suggest an inter-hemispheric asymmetry and olfactory cortical functional separation that may allow multiple, specialized processing circuits to emerge during a reversal task requiring behavioral flexibility.
Collapse
Affiliation(s)
- Yaniv Cohen
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, USA.
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, USA.
| | - Donald A Wilson
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, USA.
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, USA.
| |
Collapse
|
53
|
Fourcaud-Trocmé N, Briffaud V, Thévenet M, Buonviso N, Amat C. In vivo beta and gamma subthreshold oscillations in rat mitral cells: origin and gating by respiratory dynamics. J Neurophysiol 2017; 119:274-289. [PMID: 29021388 DOI: 10.1152/jn.00053.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In mammals, olfactory bulb (OB) dynamics are paced by slow and fast oscillatory rhythms at multiple levels: local field potential, spike discharge, and/or membrane potential oscillations. Interactions between these levels have been well studied for the slow rhythm linked to animal respiration. However, less is known regarding rhythms in the fast beta (10-35 Hz) and gamma (35-100 Hz) frequency ranges, particularly at the membrane potential level. Using a combination of intracellular and extracellular recordings in the OB of freely breathing rats, we show that beta and gamma subthreshold oscillations (STOs) coexist intracellularly and are related to extracellular local field potential (LFP) oscillations in the same frequency range. However, they are differentially affected by changes in cell excitability and by odor stimulation. This leads us to suggest that beta and gamma STOs may rely on distinct mechanisms: gamma STOs would mainly depend on mitral cell intrinsic resonance, while beta STOs could be mainly driven by synaptic activity. In a second study, we find that STO occurrence and timing are constrained by the influence of the slow respiratory rhythm on mitral and tufted cells. First, respiratory-driven excitation seems to favor gamma STOs, while respiratory-driven inhibition favors beta STOs. Second, the respiratory rhythm is needed at the subthreshold level to lock gamma and beta STOs in similar phases as their LFP counterparts and to favor the correlation between STO frequency and spike discharge. Overall, this study helps us to understand how the interaction between slow and fast rhythms at all levels of OB dynamics shapes its functional output. NEW & NOTEWORTHY In the mammalian olfactory bulb of a freely breathing anesthetized rat, we show that both beta and gamma membrane potential fast oscillation ranges exist in the same mitral and tufted (M/T) cell. Importantly, our results suggest they have different origins and that their interaction with the slow subthreshold oscillation (respiratory rhythm) is a key mechanism to organize their dynamics, favoring their functional implication in olfactory bulb information processing.
Collapse
Affiliation(s)
- Nicolas Fourcaud-Trocmé
- INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Equipe CMO, Université Lyon 1, Lyon, France
| | - Virginie Briffaud
- INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Equipe CMO, Université Lyon 1, Lyon, France
| | - Marc Thévenet
- INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Equipe CMO, Université Lyon 1, Lyon, France
| | - Nathalie Buonviso
- INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Equipe CMO, Université Lyon 1, Lyon, France
| | - Corine Amat
- INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Equipe CMO, Université Lyon 1, Lyon, France
| |
Collapse
|
54
|
Samson RD, Lester AW, Duarte L, Venkatesh A, Barnes CA. Emergence of β-Band Oscillations in the Aged Rat Amygdala during Discrimination Learning and Decision Making Tasks. eNeuro 2017; 4:ENEURO.0245-17.2017. [PMID: 29034315 PMCID: PMC5629614 DOI: 10.1523/eneuro.0245-17.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/14/2017] [Accepted: 09/23/2017] [Indexed: 11/21/2022] Open
Abstract
Older adults tend to use strategies that differ from those used by young adults to solve decision-making tasks. MRI experiments suggest that altered strategy use during aging can be accompanied by a change in extent of activation of a given brain region, inter-hemispheric bilateralization or added brain structures. It has been suggested that these changes reflect compensation for less effective networks to enable optimal performance. One way that communication can be influenced within and between brain networks is through oscillatory events that help structure and synchronize incoming and outgoing information. It is unknown how aging impacts local oscillatory activity within the basolateral complex of the amygdala (BLA). The present study recorded local field potentials (LFPs) and single units in old and young rats during the performance of tasks that involve discrimination learning and probabilistic decision making. We found task- and age-specific increases in power selectively within the β range (15-30 Hz). The increased β power occurred after lever presses, as old animals reached the goal location. Periods of high-power β developed over training days in the aged rats, and was greatest in early trials of a session. β Power was also greater after pressing for the large reward option. These data suggest that aging of BLA networks results in strengthened synchrony of β oscillations when older animals are learning or deciding between rewards of different size. Whether this increased synchrony reflects the neural basis of a compensatory strategy change of old animals in reward-based decision-making tasks, remains to be verified.
Collapse
Affiliation(s)
- Rachel D. Samson
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85724
- Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ 85724
| | - Adam W. Lester
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85724
- Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ 85724
| | - Leroy Duarte
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85724
- Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ 85724
| | - Anu Venkatesh
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85724
- Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ 85724
| | - Carol A. Barnes
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85724
- Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ 85724
- Departments of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
55
|
Pardo-Bellver C, Martínez-Bellver S, Martínez-García F, Lanuza E, Teruel-Martí V. Synchronized Activity in The Main and Accessory Olfactory Bulbs and Vomeronasal Amygdala Elicited by Chemical Signals in Freely Behaving Mice. Sci Rep 2017; 7:9924. [PMID: 28855563 PMCID: PMC5577179 DOI: 10.1038/s41598-017-10089-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022] Open
Abstract
Chemosensory processing in mammals involves the olfactory and vomeronasal systems, but how the activity of both circuits is integrated is unknown. In our study, we recorded the electrophysiological activity in the olfactory bulbs and the vomeronasal amygdala in freely behaving mice exploring a battery of neutral and conspecific stimuli. The exploration of stimuli, including a neutral stimulus, induced synchronic activity in the olfactory bulbs characterized by a dominant theta rhythmicity, with specific theta-gamma coupling, distinguishing between vomeronasal and olfactory structures. The correlated activation of the bulbs suggests a coupling between the stimuli internalization in the nasal cavity and the vomeronasal pumping. In the amygdala, male stimuli are preferentially processed in the medial nucleus, whereas female cues induced a differential response in the posteromedial cortical amygdala. Thus, particular theta-gamma patterns in the olfactory network modulates the integration of chemosensory information in the amygdala, allowing the selection of an appropriate behaviour.
Collapse
Affiliation(s)
- Cecília Pardo-Bellver
- Department of de Biologia Cellular, Facultat de Ciències Biològiques, Universitat de València, Burjassot, Spain.,Laboratori de Circuits Neurals, Department of d'Anatomia i Embriologia Humana, Facultat de Medicina, Universitat de València, Valencia, Spain
| | - Sergio Martínez-Bellver
- Laboratori de Circuits Neurals, Department of d'Anatomia i Embriologia Humana, Facultat de Medicina, Universitat de València, Valencia, Spain
| | - Fernando Martínez-García
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I. Castelló de la Plana, Castelló, Spain
| | - Enrique Lanuza
- Department of de Biologia Cellular, Facultat de Ciències Biològiques, Universitat de València, Burjassot, Spain
| | - Vicent Teruel-Martí
- Laboratori de Circuits Neurals, Department of d'Anatomia i Embriologia Humana, Facultat de Medicina, Universitat de València, Valencia, Spain.
| |
Collapse
|
56
|
Nasal Respiration Entrains Human Limbic Oscillations and Modulates Cognitive Function. J Neurosci 2017; 36:12448-12467. [PMID: 27927961 DOI: 10.1523/jneurosci.2586-16.2016] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/24/2016] [Accepted: 10/12/2016] [Indexed: 12/22/2022] Open
Abstract
The need to breathe links the mammalian olfactory system inextricably to the respiratory rhythms that draw air through the nose. In rodents and other small animals, slow oscillations of local field potential activity are driven at the rate of breathing (∼2-12 Hz) in olfactory bulb and cortex, and faster oscillatory bursts are coupled to specific phases of the respiratory cycle. These dynamic rhythms are thought to regulate cortical excitability and coordinate network interactions, helping to shape olfactory coding, memory, and behavior. However, while respiratory oscillations are a ubiquitous hallmark of olfactory system function in animals, direct evidence for such patterns is lacking in humans. In this study, we acquired intracranial EEG data from rare patients (Ps) with medically refractory epilepsy, enabling us to test the hypothesis that cortical oscillatory activity would be entrained to the human respiratory cycle, albeit at the much slower rhythm of ∼0.16-0.33 Hz. Our results reveal that natural breathing synchronizes electrical activity in human piriform (olfactory) cortex, as well as in limbic-related brain areas, including amygdala and hippocampus. Notably, oscillatory power peaked during inspiration and dissipated when breathing was diverted from nose to mouth. Parallel behavioral experiments showed that breathing phase enhances fear discrimination and memory retrieval. Our findings provide a unique framework for understanding the pivotal role of nasal breathing in coordinating neuronal oscillations to support stimulus processing and behavior. SIGNIFICANCE STATEMENT Animal studies have long shown that olfactory oscillatory activity emerges in line with the natural rhythm of breathing, even in the absence of an odor stimulus. Whether the breathing cycle induces cortical oscillations in the human brain is poorly understood. In this study, we collected intracranial EEG data from rare patients with medically intractable epilepsy, and found evidence for respiratory entrainment of local field potential activity in human piriform cortex, amygdala, and hippocampus. These effects diminished when breathing was diverted to the mouth, highlighting the importance of nasal airflow for generating respiratory oscillations. Finally, behavioral data in healthy subjects suggest that breathing phase systematically influences cognitive tasks related to amygdala and hippocampal functions.
Collapse
|
57
|
GABAB Receptors Tune Cortical Feedback to the Olfactory Bulb. J Neurosci 2017; 36:8289-304. [PMID: 27511004 DOI: 10.1523/jneurosci.3823-15.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 06/09/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Sensory perception emerges from the confluence of sensory inputs that encode the composition of external environment and top-down feedback that conveys information from higher brain centers. In olfaction, sensory input activity is initially processed in the olfactory bulb (OB), serving as the first central relay before being transferred to the olfactory cortex. In addition, the OB receives dense connectivity from feedback projections, so the OB has the capacity to implement a wide array of sensory neuronal computation. However, little is known about the impact and the regulation of this cortical feedback. Here, we describe a novel mechanism to gate glutamatergic feedback selectively from the anterior olfactory cortex (AOC) to the OB. Combining in vitro and in vivo electrophysiological recordings, optogenetics, and fiber-photometry-based calcium imaging applied to wild-type and conditional transgenic mice, we explore the functional consequences of circuit-specific GABA type-B receptor (GABABR) manipulation. We found that activation of presynaptic GABABRs specifically depresses synaptic transmission from the AOC to OB inhibitory interneurons, but spares direct excitation to principal neurons. As a consequence, feedforward inhibition of spontaneous and odor-evoked activity of principal neurons is diminished. We also show that tunable cortico-bulbar feedback is critical for generating beta, but not gamma, OB oscillations. Together, these results show that GABABRs on cortico-bulbar afferents gate excitatory transmission in a target-specific manner and thus shape how the OB integrates sensory inputs and top-down information. SIGNIFICANCE STATEMENT The olfactory bulb (OB) receives top-down inputs from the olfactory cortex that produce direct excitation and feedforward inhibition onto mitral and tufted cells, the principal neurons. The functional role of this feedback and the mechanisms regulating the balance of feedback excitation and inhibition remain unknown. We found that GABAB receptors are expressed in cortico-bulbar axons that synapse on granule cells and receptor activation reduces the feedforward inhibition of spontaneous and odor-driven mitral and tufted cells' firing activity. In contrast, direct excitatory inputs to these principal neurons remain unchanged. This study demonstrates that activation of GABAB receptors biases the excitation/inhibition balance provided by cortical inputs to the OB, leading to profound effects on early stages of sensory information processing.
Collapse
|
58
|
Gamma and Beta Oscillations Define a Sequence of Neurocognitive Modes Present in Odor Processing. J Neurosci 2017; 36:7750-67. [PMID: 27445151 DOI: 10.1523/jneurosci.0569-16.2016] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/06/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Olfactory system beta (15-35 Hz) and gamma (40-110 Hz) oscillations of the local field potential in mammals have both been linked to odor learning and discrimination. Gamma oscillations represent the activity of a local network within the olfactory bulb, and beta oscillations represent engagement of a systemwide network. Here, we test whether beta and gamma oscillations represent different cognitive modes using the different demands of go/no-go and two-alternative choice tasks that previously were suggested to favor beta or gamma oscillations, respectively. We reconcile previous studies and show that both beta and gamma oscillations occur in both tasks, with gamma dominating the early odor sampling period (2-4 sniffs) and beta dominating later. The relative power and coherence of both oscillations depend separately on multiple factors within both tasks without categorical differences across tasks. While the early/gamma-associated period occurs in all trials, rats can perform above chance without the later/beta-associated period. Longer sampling, which includes beta oscillations, is associated with better performance. Gamma followed by beta oscillations therefore represents a sequence of cognitive and neural states during odor discrimination, which can be separately modified depending on the demands of a task and odor discrimination. Additionally, fast (85 Hz) and slow (70 Hz) olfactory bulb gamma oscillation sub-bands have been hypothesized to represent tufted and mitral cell networks, respectively (Manabe and Mori, 2013). We find that fast gamma favors the early and slow gamma the later (beta-dominated) odor-sampling period and that the relative contributions of these oscillations are consistent across tasks. SIGNIFICANCE STATEMENT Olfactory system gamma (40-110 Hz) and beta (15-35 Hz) oscillations of the local field potential indicate different neural firing statistics and functional circuits. We show that gamma and beta oscillations occur in stereotyped sequence during odor sampling in associative tasks, with local gamma dominating the first 250 ms of odor sniffing, followed by systemwide beta as behavioral responses are prepared. Oscillations and coupling strength between brain regions are modulated by task, odor, and learning, showing that task features can dramatically adjust the dynamics of a cortical sensory system, which changes state every ∼250 ms. Understanding cortical circuits, even at the biophysical level, depends on careful use of multiple behavioral contexts and stimuli.
Collapse
|
59
|
Zhou Y, Fang FH, Pan P, Liu ZR, Ji YH. Visual deprivation induce cross-modal enhancement of olfactory perception. Biochem Biophys Res Commun 2017; 486:833-838. [DOI: 10.1016/j.bbrc.2017.03.140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 03/26/2017] [Indexed: 10/19/2022]
|
60
|
Jia F, Hu W, Zhang J, Wagle Shukla A, Almeida L, Meng FG, Okun MS, Li L. Variable frequency stimulation of subthalamic nucleus in Parkinson's disease: Rationale and hypothesis. Parkinsonism Relat Disord 2017; 39:27-30. [PMID: 28392298 DOI: 10.1016/j.parkreldis.2017.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/27/2017] [Accepted: 03/19/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Fumin Jia
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Wei Hu
- University of Florida Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA
| | - Jianguo Zhang
- Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Aparna Wagle Shukla
- University of Florida Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA
| | - Leonardo Almeida
- University of Florida Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA
| | - Fan-Gang Meng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Michael S Okun
- University of Florida Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA.
| | - Luming Li
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China; Precision Medicine & Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, China; Man-machine-environment Engineering Institute, School of Aerospace Engineering, Tsinghua University, Beijing, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
61
|
Chelminski Y, Magnan C, Luquet SH, Everard A, Meunier N, Gurden H, Martin C. Odor-Induced Neuronal Rhythms in the Olfactory Bulb Are Profoundly Modified in ob/ob Obese Mice. Front Physiol 2017; 8:2. [PMID: 28154537 PMCID: PMC5244437 DOI: 10.3389/fphys.2017.00002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/03/2017] [Indexed: 01/03/2023] Open
Abstract
Leptin, the product of the Ob(Lep) gene, is a peptide hormone that plays a major role in maintaining the balance between food intake and energy expenditure. In the brain, leptin receptors are expressed by hypothalamic cells but also in the olfactory bulb, the first central structure coding for odors, suggesting a precise function of this hormone in odor-evoked activities. Although olfaction plays a key role in feeding behavior, the ability of the olfactory bulb to integrate the energy-related signal leptin is still missing. Therefore, we studied the fate of odor-induced activity in the olfactory bulb in the genetic context of leptin deficiency using the obese ob/ob mice. By means of an odor discrimination task with concomitant local field potential recordings, we showed that ob/ob mice perform better than wild-type (WT) mice in the early stage of the task. This behavioral gain of function was associated in parallel with profound changes in neuronal oscillations in the olfactory bulb. The distribution of the peaks in the gamma frequency range was shifted toward higher frequencies in ob/ob mice compared to WT mice before learning. More notably, beta oscillatory activity, which has been shown previously to be correlated with olfactory discrimination learning, was longer and stronger in expert ob/ob mice after learning. Since oscillations in the olfactory bulb emerge from mitral to granule cell interactions, our results suggest that cellular dynamics in the olfactory bulb are deeply modified in ob/ob mice in the context of olfactory learning.
Collapse
Affiliation(s)
- Yan Chelminski
- UMR 8165 Centre National de la Recherche Scientifique, IMNC, Paris Sud University, Paris Diderot University Orsay, France
| | - Christophe Magnan
- UMR 8251 Centre National de la Recherche Scientifique, BFA, Paris Diderot University, Sorbonne Paris Cité University Paris, France
| | - Serge H Luquet
- UMR 8251 Centre National de la Recherche Scientifique, BFA, Paris Diderot University, Sorbonne Paris Cité University Paris, France
| | - Amandine Everard
- UMR 8251 Centre National de la Recherche Scientifique, BFA, Paris Diderot University, Sorbonne Paris Cité University Paris, France
| | - Nicolas Meunier
- INRA, UR1197 NeuroBiologie de l'OlfactionJouy-en-Josas, France; Université de Versailles St-Quentin en YvelinesVersailles, France
| | - Hirac Gurden
- UMR 8165 Centre National de la Recherche Scientifique, IMNC, Paris Sud University, Paris Diderot UniversityOrsay, France; UMR 8251 Centre National de la Recherche Scientifique, BFA, Paris Diderot University, Sorbonne Paris Cité UniversityParis, France
| | - Claire Martin
- UMR 8165 Centre National de la Recherche Scientifique, IMNC, Paris Sud University, Paris Diderot UniversityOrsay, France; UMR 8251 Centre National de la Recherche Scientifique, BFA, Paris Diderot University, Sorbonne Paris Cité UniversityParis, France
| |
Collapse
|
62
|
Garagnani M, Lucchese G, Tomasello R, Wennekers T, Pulvermüller F. A Spiking Neurocomputational Model of High-Frequency Oscillatory Brain Responses to Words and Pseudowords. Front Comput Neurosci 2017; 10:145. [PMID: 28149276 PMCID: PMC5241316 DOI: 10.3389/fncom.2016.00145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/26/2016] [Indexed: 12/22/2022] Open
Abstract
Experimental evidence indicates that neurophysiological responses to well-known meaningful sensory items and symbols (such as familiar objects, faces, or words) differ from those to matched but novel and senseless materials (unknown objects, scrambled faces, and pseudowords). Spectral responses in the high beta- and gamma-band have been observed to be generally stronger to familiar stimuli than to unfamiliar ones. These differences have been hypothesized to be caused by the activation of distributed neuronal circuits or cell assemblies, which act as long-term memory traces for learned familiar items only. Here, we simulated word learning using a biologically constrained neurocomputational model of the left-hemispheric cortical areas known to be relevant for language and conceptual processing. The 12-area spiking neural-network architecture implemented replicates physiological and connectivity features of primary, secondary, and higher-association cortices in the frontal, temporal, and occipital lobes of the human brain. We simulated elementary aspects of word learning in it, focussing specifically on semantic grounding in action and perception. As a result of spike-driven Hebbian synaptic plasticity mechanisms, distributed, stimulus-specific cell-assembly (CA) circuits spontaneously emerged in the network. After training, presentation of one of the learned "word" forms to the model correlate of primary auditory cortex induced periodic bursts of activity within the corresponding CA, leading to oscillatory phenomena in the entire network and spontaneous across-area neural synchronization. Crucially, Morlet wavelet analysis of the network's responses recorded during presentation of learned meaningful "word" and novel, senseless "pseudoword" patterns revealed stronger induced spectral power in the gamma-band for the former than the latter, closely mirroring differences found in neurophysiological data. Furthermore, coherence analysis of the simulated responses uncovered dissociated category specific patterns of synchronous oscillations in distant cortical areas, including indirectly connected primary sensorimotor areas. Bridging the gap between cellular-level mechanisms, neuronal-population behavior, and cognitive function, the present model constitutes the first spiking, neurobiologically, and anatomically realistic model able to explain high-frequency oscillatory phenomena indexing language processing on the basis of dynamics and competitive interactions of distributed cell-assembly circuits which emerge in the brain as a result of Hebbian learning and sensorimotor experience.
Collapse
Affiliation(s)
- Max Garagnani
- Department of Computing, Goldsmiths, University of LondonLondon, UK
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität BerlinBerlin, Germany
| | - Guglielmo Lucchese
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität BerlinBerlin, Germany
| | - Rosario Tomasello
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität BerlinBerlin, Germany
- Berlin School of Mind and Brain, Humboldt Universität zu BerlinBerlin, Germany
| | - Thomas Wennekers
- Centre for Robotics and Neural Systems, University of PlymouthPlymouth, UK
| | - Friedemann Pulvermüller
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität BerlinBerlin, Germany
- Berlin School of Mind and Brain, Humboldt Universität zu BerlinBerlin, Germany
| |
Collapse
|
63
|
Peng KY, Mathews PM, Levy E, Wilson DA. Apolipoprotein E4 causes early olfactory network abnormalities and short-term olfactory memory impairments. Neuroscience 2016; 343:364-371. [PMID: 28003161 DOI: 10.1016/j.neuroscience.2016.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 02/08/2023]
Abstract
While apolipoprotein (Apo) E4 is linked to increased incidence of Alzheimer's disease (AD), there is growing evidence that it plays a role in functional brain irregularities that are independent of AD pathology. However, ApoE4-driven functional differences within olfactory processing regions have yet to be examined. Utilizing knock-in mice humanized to ApoE4 versus the more common ApoE3, we examined a simple olfactory perceptual memory that relies on the transfer of information from the olfactory bulb (OB) to the piriform cortex (PCX), the primary cortical region involved in higher order olfaction. In addition, we have recorded in vivo resting and odor-evoked local field potentials (LPF) from both brain regions and measured corresponding odor response magnitudes in anesthetized young (6-month-old) and middle-aged (12-month-old) ApoE mice. Young ApoE4 compared to ApoE3 mice exhibited a behavioral olfactory deficit coinciding with hyperactive odor-evoked response magnitudes within the OB that were not observed in older ApoE4 mice. Meanwhile, middle-aged ApoE4 compared to ApoE3 mice exhibited heightened response magnitudes in the PCX without a corresponding olfactory deficit, suggesting a shift with aging in ApoE4-driven effects from OB to PCX. Interestingly, the increased ApoE4-specific response in the PCX at middle-age was primarily due to a dampening of baseline spontaneous activity rather than an increase in evoked response power. Our findings indicate that early ApoE4-driven olfactory memory impairments and OB network abnormalities may be a precursor to later network dysfunction in the PCX, a region that not only is targeted early in AD, but may be selectively vulnerable to ApoE4 genotype.
Collapse
Affiliation(s)
- Katherine Y Peng
- Department of Neuroscience & Physiology, New York University Langone Medical Center, 560 1st Avenue, 10016 New York, NY, USA; Department of Biochemistry & Molecular Pharmacology, New York University Langone Medical Center, 560 1st Avenue, 10016 New York, NY, USA.
| | - Paul M Mathews
- Department of Psychiatry, New York University Langone Medical Center, 560 1st Avenue, 10016 New York, NY, USA; Center for Dementia Research, Nathan S. Kline Institute, 140 Old Orangeburg Road, Orangeburg, 10962 New York, USA.
| | - Efrat Levy
- Department of Biochemistry & Molecular Pharmacology, New York University Langone Medical Center, 560 1st Avenue, 10016 New York, NY, USA; Department of Psychiatry, New York University Langone Medical Center, 560 1st Avenue, 10016 New York, NY, USA; Center for Dementia Research, Nathan S. Kline Institute, 140 Old Orangeburg Road, Orangeburg, 10962 New York, USA.
| | - Donald A Wilson
- Department of Neuroscience & Physiology, New York University Langone Medical Center, 560 1st Avenue, 10016 New York, NY, USA; Department of Child & Adolescent Psychiatry, New York University Langone Medical Center, 560 1st Avenue, 10016 New York, NY, USA; Emotional Brain Institute, Nathan S. Kline Institute, 140 Old Orangeburg Road, Orangeburg, 10962 New York, USA.
| |
Collapse
|
64
|
Analysis of the Influence of Complexity and Entropy of Odorant on Fractal Dynamics and Entropy of EEG Signal. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5469587. [PMID: 27699169 PMCID: PMC5031905 DOI: 10.1155/2016/5469587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/22/2016] [Indexed: 11/17/2022]
Abstract
An important challenge in brain research is to make out the relation between the features of olfactory stimuli and the electroencephalogram (EEG) signal. Yet, no one has discovered any relation between the structures of olfactory stimuli and the EEG signal. This study investigates the relation between the structures of EEG signal and the olfactory stimulus (odorant). We show that the complexity of the EEG signal is coupled with the molecular complexity of the odorant, where more structurally complex odorant causes less fractal EEG signal. Also, odorant having higher entropy causes the EEG signal to have lower approximate entropy. The method discussed here can be applied and investigated in case of patients with brain diseases as the rehabilitation purpose.
Collapse
|
65
|
Osinski BL, Kay LM. Granule cell excitability regulates gamma and beta oscillations in a model of the olfactory bulb dendrodendritic microcircuit. J Neurophysiol 2016; 116:522-39. [PMID: 27121582 DOI: 10.1152/jn.00988.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/25/2016] [Indexed: 01/03/2023] Open
Abstract
Odors evoke gamma (40-100 Hz) and beta (20-30 Hz) oscillations in the local field potential (LFP) of the mammalian olfactory bulb (OB). Gamma (and possibly beta) oscillations arise from interactions in the dendrodendritic microcircuit between excitatory mitral cells (MCs) and inhibitory granule cells (GCs). When cortical descending inputs to the OB are blocked, beta oscillations are extinguished whereas gamma oscillations become larger. Much of this centrifugal input targets inhibitory interneurons in the GC layer and regulates the excitability of GCs, which suggests a causal link between the emergence of beta oscillations and GC excitability. We investigate the effect that GC excitability has on network oscillations in a computational model of the MC-GC dendrodendritic network with Ca(2+)-dependent graded inhibition. Results from our model suggest that when GC excitability is low, the graded inhibitory current mediated by NMDA channels and voltage-dependent Ca(2+) channels (VDCCs) is also low, allowing MC populations to fire in the gamma frequency range. When GC excitability is increased, the activation of NMDA receptors and other VDCCs is also increased, allowing the slow decay time constants of these channels to sustain beta-frequency oscillations. Our model argues that Ca(2+) flow through VDCCs alone could sustain beta oscillations and that the switch between gamma and beta oscillations can be triggered by an increase in the excitability state of a subpopulation of GCs.
Collapse
Affiliation(s)
- Bolesław L Osinski
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, Illinois; Institute for Mind and Biology, The University of Chicago, Chicago, Illinois; and
| | - Leslie M Kay
- Institute for Mind and Biology, The University of Chicago, Chicago, Illinois; and Department of Psychology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
66
|
|
67
|
Sato K, Hayashi S, Inaji M, Momose-Sato Y. Oscillations in the embryonic chick olfactory bulb: initial expression and development revealed by optical imaging with a voltage-sensitive dye. Eur J Neurosci 2016; 43:1111-21. [PMID: 26833763 DOI: 10.1111/ejn.13189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/31/2015] [Accepted: 01/26/2016] [Indexed: 11/28/2022]
Abstract
In a previous study, we applied a multiple-site optical recording technique with a voltage-sensitive dye to the embryonic chick olfactory system and showed that functional synaptic transmission in the olfactory bulb was expressed at embryonic 6-7-day stages. It is known that oscillations, i.e. stereotyped sinusoidal neural activity, appear in the olfactory system of various species. The focus of the present study is to determine whether the oscillation is also generated in the embryonic chick olfactory bulb and, if this is the case, when the oscillation appears and how its profiles change during embryogenesis. At the early stages of development (embryonic 6- to 8-day stages), postsynaptic response-related optical signals evoked by olfactory nerve stimulation exhibited a simple monophasic waveform that lasted for a few seconds. At embryonic 9-day stage, the optical signal became multi-phasic, and the oscillatory event was detected in some preparations. The oscillation was restricted to the distal half of the olfactory bulb. As development proceeded, the incidence and duration of the oscillation gradually increased, and the waveform became complicated. In some cases at embryonic 12-day stage, the oscillation lasted for nearly a minute. The frequency of the oscillation increased slightly with development, but it remained in the range of theta oscillation during the 9- to 12-day stages. We discuss the ontogenetic dynamics of the oscillation and the significance of this activity in the developing olfactory bulb.
Collapse
Affiliation(s)
- Katsushige Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women's University, Inagi-shi, Tokyo, 206-8511, Japan
| | - Shihori Hayashi
- Department of Neurosurgery, Faculty of Medicine, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Motoki Inaji
- Department of Neurosurgery, Faculty of Medicine, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University, Kanazawa-ku, Yokohama, Japan
| |
Collapse
|
68
|
Competing Mechanisms of Gamma and Beta Oscillations in the Olfactory Bulb Based on Multimodal Inhibition of Mitral Cells Over a Respiratory Cycle. eNeuro 2015; 2:eN-TNC-0018-15. [PMID: 26665163 PMCID: PMC4672204 DOI: 10.1523/eneuro.0018-15.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 11/21/2022] Open
Abstract
Gamma (∼40-90 Hz) and beta (∼15-40 Hz) oscillations and their associated neuronal assemblies are key features of neuronal sensory processing. However, the mechanisms involved in either their interaction and/or the switch between these different regimes in most sensory systems remain misunderstood. Based on in vivo recordings and biophysical modeling of the mammalian olfactory bulb (OB), we propose a general scheme where OB internal dynamics can sustain two distinct dynamic states, each dominated by either a gamma or a beta regime. The occurrence of each regime depends on the excitability level of granule cells, the main OB interneurons. Using this model framework, we demonstrate how the balance between sensory and centrifugal input can control the switch between the two oscillatory dynamic states. In parallel, we experimentally observed that sensory and centrifugal inputs to the rat OB could both be modulated by the respiration of the animal (2-12 Hz) and each one phase shifted with the other. Implementing this phase shift in our model resulted in the appearance of the alternation between gamma and beta rhythms within a single respiratory cycle, as in our experimental results under urethane anesthesia. Our theoretical framework can also account for the oscillatory frequency response, depending on the odor intensity, the odor valence, and the animal sniffing strategy observed under various conditions including animal freely-moving. Importantly, the results of the present model can form a basis to understand how fast rhythms could be controlled by the slower sensory and centrifugal modulations linked to the respiration. Visual Abstract: See Abstract.
Collapse
|
69
|
Control of gamma vs beta competition in olfactory bulb by the balance between sensory input and centrifugal feedback control. BMC Neurosci 2015. [PMCID: PMC4697614 DOI: 10.1186/1471-2202-16-s1-f3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
70
|
Abstract
Neural oscillations at distinct frequencies are increasingly being related to a number of basic and higher cognitive faculties. Oscillations enable the construction of coherently organized neuronal assemblies through establishing transitory temporal correlations. By exploring the elementary operations of the language faculty-labeling, concatenation, cyclic transfer-alongside neural dynamics, a new model of linguistic computation is proposed. It is argued that the universality of language, and the true biological source of Universal Grammar, is not to be found purely in the genome as has long been suggested, but more specifically within the extraordinarily preserved nature of mammalian brain rhythms employed in the computation of linguistic structures. Computational-representational theories are used as a guide in investigating the neurobiological foundations of the human "cognome"-the set of computations performed by the nervous system-and new directions are suggested for how the dynamics of the brain (the "dynome") operate and execute linguistic operations. The extent to which brain rhythms are the suitable neuronal processes which can capture the computational properties of the human language faculty is considered against a backdrop of existing cartographic research into the localization of linguistic interpretation. Particular focus is placed on labeling, the operation elsewhere argued to be species-specific. A Basic Label model of the human cognome-dynome is proposed, leading to clear, causally-addressable empirical predictions, to be investigated by a suggested research program, Dynamic Cognomics. In addition, a distinction between minimal and maximal degrees of explanation is introduced to differentiate between the depth of analysis provided by cartographic, rhythmic, neurochemical, and other approaches to computation.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College LondonLondon, UK
| |
Collapse
|
71
|
Pérez de los Cobos Pallarés F, Stanić D, Farmer D, Dutschmann M, Egger V. An arterially perfused nose-olfactory bulb preparation of the rat. J Neurophysiol 2015; 114:2033-42. [PMID: 26108959 DOI: 10.1152/jn.01048.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/18/2015] [Indexed: 11/22/2022] Open
Abstract
A main feature of the mammalian olfactory bulb network is the presence of various rhythmic activities, in particular, gamma, beta, and theta oscillations, with the latter coupled to the respiratory rhythm. Interactions between those oscillations as well as the spatial distribution of network activation are likely to determine olfactory coding. Here, we describe a novel semi-intact perfused nose-olfactory bulb-brain stem preparation in rats with both a preserved olfactory epithelium and brain stem, which could be particularly suitable for the study of oscillatory activity and spatial odor mapping within the olfactory bulb, in particular, in hitherto inaccessible locations. In the perfused olfactory bulb, we observed robust spontaneous oscillations, mostly in the theta range. Odor application resulted in an increase in oscillatory power in higher frequency ranges, stimulus-locked local field potentials, and excitation or inhibition of individual bulbar neurons, similar to odor responses reported from in vivo recordings. Thus our method constitutes the first viable in situ preparation of a mammalian system that uses airborne odor stimuli and preserves these characteristic features of odor processing. This preparation will allow the use of highly invasive experimental procedures and the application of techniques such as patch-clamp recording, high-resolution imaging, and optogenetics within the entire olfactory bulb.
Collapse
Affiliation(s)
- Fernando Pérez de los Cobos Pallarés
- Systems Neurobiology, Department of Biology II, Ludwigs-Maximilians-Universität München, Martinsried, Germany; Neurophysiology, Zoological Institute, Regensburg University, Regensburg, Germany; and
| | - Davor Stanić
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Victoria, Melbourne, Victoria, Australia
| | - David Farmer
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Victoria, Melbourne, Victoria, Australia
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Victoria, Melbourne, Victoria, Australia
| | - Veronica Egger
- Systems Neurobiology, Department of Biology II, Ludwigs-Maximilians-Universität München, Martinsried, Germany; Neurophysiology, Zoological Institute, Regensburg University, Regensburg, Germany; and
| |
Collapse
|
72
|
Li A, Gire DH, Restrepo D. ϒ spike-field coherence in a population of olfactory bulb neurons differentiates between odors irrespective of associated outcome. J Neurosci 2015; 35:5808-22. [PMID: 25855190 PMCID: PMC4388934 DOI: 10.1523/jneurosci.4003-14.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/30/2015] [Accepted: 02/22/2015] [Indexed: 02/06/2023] Open
Abstract
Studies in different sensory systems indicate that short spike patterns within a spike train that carry items of sensory information can be extracted from the overall train by using field potential oscillations as a reference (Kayser et al., 2012; Panzeri et al., 2014). Here we test the hypothesis that the local field potential (LFP) provides the temporal reference frame needed to differentiate between odors regardless of associated outcome. Experiments were performed in the olfactory system of the mouse (Mus musculus) where the mitral/tufted (M/T) cell spike rate develops differential responses to rewarded and unrewarded odors as the animal learns to associate one of the odors with a reward in a go-no go behavioral task. We found that coherence of spiking in M/T cells with the ϒ LFP (65 to 95 Hz) differentiates between odors regardless of the associated behavioral outcome of odor presentation.
Collapse
Affiliation(s)
- Anan Li
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center and Neuroscience Program, University of Colorado Medical School, Aurora, Colorado 80045, Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Xuzhou, 221004, China
| | - David H Gire
- Department of Psychology, University of Washington, Seattle, Washington 9819, and
| | - Diego Restrepo
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center and Neuroscience Program, University of Colorado Medical School, Aurora, Colorado 80045,
| |
Collapse
|
73
|
Sullivan RM, Wilson DA, Ravel N, Mouly AM. Olfactory memory networks: from emotional learning to social behaviors. Front Behav Neurosci 2015; 9:36. [PMID: 25741259 PMCID: PMC4330889 DOI: 10.3389/fnbeh.2015.00036] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/01/2015] [Indexed: 01/15/2023] Open
Affiliation(s)
- Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute Orangeburg, NY, USA ; Child and Adolescent Psychiatry, The Child Study Center, New York University Langone Medical Center New York, NY, USA
| | - Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute Orangeburg, NY, USA ; Child and Adolescent Psychiatry, The Child Study Center, New York University Langone Medical Center New York, NY, USA ; Neuroscience and Physiology, Sackler Institute, New York University School of Medicine New York, NY, USA
| | - Nadine Ravel
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, University Lyon1 Lyon, France
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, University Lyon1 Lyon, France
| |
Collapse
|
74
|
Cohen Y, Putrino D, Wilson DA. Dynamic cortical lateralization during olfactory discrimination learning. J Physiol 2015; 593:1701-14. [PMID: 25604039 DOI: 10.1113/jphysiol.2014.288381] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 01/14/2015] [Indexed: 11/08/2022] Open
Abstract
Bilateral cortical circuits are not necessarily symmetrical. Asymmetry, or cerebral lateralization, allows functional specialization of bilateral brain regions and has been described in humans for such diverse functions as perception, memory and emotion. There is also evidence for asymmetry in the human olfactory system, although evidence in non-human animal models is lacking. In the present study, we took advantage of the known changes in olfactory cortical local field potentials that occur over the course of odour discrimination training to test for functional asymmetry in piriform cortical activity during learning. Both right and left piriform cortex local field potential activities were recorded. The results obtained demonstrate a robust interhemispheric asymmetry in anterior piriform cortex activity that emerges during specific stages of odour discrimination learning, with a transient bias toward the left hemisphere. This asymmetry is not apparent during error trials. Furthermore, functional connectivity (coherence) between the bilateral anterior piriform cortices is learning- and context-dependent. Steady-state interhemispheric anterior piriform cortex coherence is reduced during the initial stages of learning and then recovers as animals acquire competent performance. The decrease in coherence is seen relative to bilateral coherence expressed in the home cage, which remains stable across conditioning days. Similarly, transient, trial-related interhemispheric coherence increases with task competence. Taken together, the results demonstrate transient asymmetry in piriform cortical function during odour discrimination learning until mastery, suggesting that each piriform cortex may contribute something unique to odour memory.
Collapse
Affiliation(s)
- Yaniv Cohen
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA; Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | | | | |
Collapse
|
75
|
Sadrian B, Lopez-Guzman M, Wilson DA, Saito M. Distinct neurobehavioral dysfunction based on the timing of developmental binge-like alcohol exposure. Neuroscience 2014; 280:204-19. [PMID: 25241068 DOI: 10.1016/j.neuroscience.2014.09.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 12/24/2022]
Abstract
Gestational exposure to alcohol can result in long-lasting behavioral deficiencies generally described as fetal alcohol spectrum disorder (FASD). FASD-modeled rodent studies of acute ethanol exposure typically select one developmental window to simulate a specific context equivalent of human embryogenesis, and study consequences of ethanol exposure within that particular developmental epoch. Exposure timing is likely a large determinant in the neurobehavioral consequence of early ethanol exposure, as each brain region is variably susceptible to ethanol cytotoxicity and has unique sensitive periods in their development. We made a parallel comparison of the long-term effects of single-day binge ethanol at either embryonic day 8 (E8) or postnatal day 7 (P7) in male and female mice, and here demonstrate the differential long-term impacts on neuroanatomy, behavior and in vivo electrophysiology of two systems with very different developmental trajectories. The significant long-term differences in odor-evoked activity, local circuit inhibition, and spontaneous coherence between brain regions in the olfacto-hippocampal pathway that were found as a result of developmental ethanol exposure, varied based on insult timing. Long-term effects on cell proliferation and interneuron cell density were also found to vary by insult timing as well as by region. Finally, spatial memory performance and object exploration were affected in P7-exposed mice, but not E8-exposed mice. Our physiology and behavioral results are conceptually coherent with the neuroanatomical data attained from these same mice. Our results recognize both variable and shared effects of ethanol exposure timing on long-term circuit function and their supported behavior.
Collapse
Affiliation(s)
- B Sadrian
- Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, United States; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States.
| | - M Lopez-Guzman
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - D A Wilson
- Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, United States; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - M Saito
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States; Department of Psychiatry, NYU School of Medicine, New York, NY, United States
| |
Collapse
|