51
|
Bittar A, Bhatt N, Kayed R. Advances and considerations in AD tau-targeted immunotherapy. Neurobiol Dis 2019; 134:104707. [PMID: 31841678 PMCID: PMC6980703 DOI: 10.1016/j.nbd.2019.104707] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/27/2019] [Accepted: 12/08/2019] [Indexed: 12/18/2022] Open
Abstract
The multifactorial and complex nature of Alzheimer’s disease (AD) has made it difficult to identify therapeutic targets that are causally involved in the disease process. However, accumulating evidence from experimental and clinical studies that investigate the early disease process point towards the required role of tau in AD etiology. Importantly, a large number of studies investigate and characterize the plethora of pathological forms of tau protein involved in disease onset and propagation. Immunotherapy is one of the most clinical approaches anticipated to make a difference in the field of AD therapeutics. Tau –targeted immunotherapy is the new direction after the failure of amyloid beta (Aß)-targeted immunotherapy and the growing number of studies that highlight the Aß-independent disease process. It is now well established that immunotherapy alone will most likely be insufficient as a monotherapy. Therefore, this review discusses updates on tau-targeted immunotherapy studies, AD-relevant tau species, updates on promising biomarkers and a prospect on combination therapies to surround the disease propagation in an efficient and timely manner.
Collapse
Affiliation(s)
- Alice Bittar
- Department of Neurology, The Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States of America.
| | - Nemil Bhatt
- Department of Neuroscience, Cell Biology and Anatomy, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States of America.
| | - Rakez Kayed
- Department of Neurology, The Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States of America.
| |
Collapse
|
52
|
Guix FX. The interplay between aging‐associated loss of protein homeostasis and extracellular vesicles in neurodegeneration. J Neurosci Res 2019; 98:262-283. [DOI: 10.1002/jnr.24526] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 12/11/2022]
|
53
|
Commins S, Kirby BP. The complexities of behavioural assessment in neurodegenerative disorders: A focus on Alzheimer’s disease. Pharmacol Res 2019; 147:104363. [DOI: 10.1016/j.phrs.2019.104363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/12/2019] [Accepted: 07/19/2019] [Indexed: 01/21/2023]
|
54
|
Orta-Salazar E, Feria-Velasco A, Díaz-Cintra S. Primary motor cortex alterations in Alzheimer disease: a study in the 3xTg-AD model. NEUROLOGÍA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.nrleng.2019.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
55
|
Weisová P, Cehlár O, Škrabana R, Žilková M, Filipčík P, Kováčech B, Prčina M, Wojčiaková Ľ, Fialová Ľ, Smolek T, Kontseková E, Žilka N, Novák M. Therapeutic antibody targeting microtubule-binding domain prevents neuronal internalization of extracellular tau via masking neuron surface proteoglycans. Acta Neuropathol Commun 2019; 7:129. [PMID: 31391090 PMCID: PMC6685285 DOI: 10.1186/s40478-019-0770-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 02/04/2023] Open
Abstract
Pathologically altered tau protein is a common denominator of neurodegenerative disorders including Alzheimer's disease (AD) and other tauopathies. Therefore, promising immunotherapeutic approaches target and eliminate extracellular pathogenic tau species, which are thought to be responsible for seeding and propagation of tau pathology. Tau isoforms in misfolded states can propagate disease pathology in a template-dependent manner, proposed to be mediated by the release and internalization of extracellular tau. Monoclonal antibody DC8E8, binding four highly homologous and independent epitopes in microtubule-binding domain (MTBD) of diseased tau, inhibits tau-tau interaction, discriminates between healthy and pathologically truncated tau and reduces tau pathology in animal model in vivo. Here, we show that DC8E8 antibody acts via extracellular mechanism and does not influence viability and physiological functions of neurons. Importantly, in vitro functional assays showed that DC8E8 recognises pathogenic tau proteins of different size and origin, and potently blocks their entry into neurons. Next, we examined the mechanisms by which mouse antibody DC8E8 and its humanized version AX004 effectively block the neuronal internalization of extracellular AD tau species. We determined a novel mode of action of a therapeutic candidate antibody, which potently inhibits neuronal internalization of AD tau species by masking of epitopes present in MTBD important for interaction with neuron surface Heparan Sulfate Proteoglycans (HSPGs). We show that interference of tau-heparane sulfate interaction with DC8E8 antibody via steric hindrance represents an efficient and important therapeutic approach halting tau propagation.
Collapse
Affiliation(s)
- Petronela Weisová
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic.
| | - Ondrej Cehlár
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Rostislav Škrabana
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Monika Žilková
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Peter Filipčík
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Branislav Kováčech
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Michal Prčina
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Ľubica Wojčiaková
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Ľubica Fialová
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Tomáš Smolek
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Eva Kontseková
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Norbert Žilka
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Michal Novák
- Axon Neuroscience SE, Arch. Makariou & Kalogreon 4, Larnaca, Cyprus
| |
Collapse
|
56
|
Berrocal M, Caballero-Bermejo M, Gutierrez-Merino C, Mata AM. Methylene Blue Blocks and Reverses the Inhibitory Effect of Tau on PMCA Function. Int J Mol Sci 2019; 20:ijms20143521. [PMID: 31323781 PMCID: PMC6678728 DOI: 10.3390/ijms20143521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/05/2019] [Accepted: 07/11/2019] [Indexed: 12/24/2022] Open
Abstract
Methylene blue (MB) is a synthetic phenothiazine dye that, in the last years, has generated much debate about whether it could be a useful therapeutic drug for tau-related pathologies, such as Alzheimer’s disease (AD). However, the molecular mechanism of action is far from clear. Recently we reported that MB activates the plasma membrane Ca2+-ATPase (PMCA) in membranes from human and pig tissues and from cells cultures, and that it could protect against inactivation of PMCA by amyloid β-peptide (Aβ). The purpose of the present study is to further examine whether the MB could also modulate the inhibitory effect of tau, another key molecular marker of AD, on PMCA activity. By using kinetic assays in membranes from several tissues and cell cultures, we found that this phenothiazine was able to block and even to completely reverse the inhibitory effect of tau on PMCA. The results of this work point out that MB could mediate the toxic effect of tau related to the deregulation of calcium homeostasis by blocking the impairment of PMCA activity by tau. We then could conclude that MB could interfere with the toxic effects of tau by restoring the function of PMCA pump as a fine tuner of calcium homeostasis.
Collapse
Affiliation(s)
- Maria Berrocal
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura and Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Montaña Caballero-Bermejo
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura and Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Carlos Gutierrez-Merino
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura and Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Ana M Mata
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura and Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain.
| |
Collapse
|
57
|
Wu H, Dunnett S, Ho YS, Chang RCC. The role of sleep deprivation and circadian rhythm disruption as risk factors of Alzheimer's disease. Front Neuroendocrinol 2019; 54:100764. [PMID: 31102663 DOI: 10.1016/j.yfrne.2019.100764] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 12/25/2022]
Abstract
Emerging evidence suggests that sleep deprivation (SD) and circadian rhythm disruption (CRD) may interact and increase the risk for the development of Alzheimer's disease (AD). This review inspects different pathophysiological aspects of SD and CRD, and shows that the two may impair the glymphatic-vascular-lymphatic clearance of brain macromolecules (e.g., β-amyloid and microtubule associated protein tau), increase local brain oxidative stress and diminish circulatory melatonin levels. Lastly, this review looks into the potential association between sleep and circadian rhythm with stress granule formation, which might be a new mechanism along the AD pathogenic pathway. In summary, SD and CRD is likely to be associated with a positive risk in developing Alzheimer's disease in humans.
Collapse
Affiliation(s)
- Hao Wu
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Sophie Dunnett
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yuen-Shan Ho
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
58
|
Perea JR, López E, Díez-Ballesteros JC, Ávila J, Hernández F, Bolós M. Extracellular Monomeric Tau Is Internalized by Astrocytes. Front Neurosci 2019; 13:442. [PMID: 31118883 PMCID: PMC6504834 DOI: 10.3389/fnins.2019.00442] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/17/2019] [Indexed: 01/21/2023] Open
Abstract
Tau is a microtubule-associated protein that is expressed in neurons. However, in a group of neurodegenerative diseases named tauopathies – characterized by an increase in aggregated and/or hyperphosphorylated Tau – the protein accumulates inside other cells, such as astrocytes and microglia. Given that these glial cells do not produce Tau, its presence can be explained by internalization from the extracellular medium and consequent formation of Tau aggregates. Among internalization mechanisms, heparan sulfate proteoglycans (HSPGs) have been proposed to be responsible for fibrillary Tau uptake in various cell types. Here we studied whether monomeric Tau, which has been observed to be internalized by glial cells such as microglia, was also taken up by astrocytes. Although this Tau form was internalized from the extracellular medium by these cells, the mechanism of uptake was found to be independent of HSPGs.
Collapse
Affiliation(s)
- Juan Ramón Perea
- Department of Molecular Neuropathology, Centre for Molecular Biology "Severo Ochoa", CSIC, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases, Madrid, Spain
| | - Esther López
- Department of Molecular Neuropathology, Centre for Molecular Biology "Severo Ochoa", CSIC, Madrid, Spain
| | | | - Jesús Ávila
- Department of Molecular Neuropathology, Centre for Molecular Biology "Severo Ochoa", CSIC, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases, Madrid, Spain
| | - Félix Hernández
- Department of Molecular Neuropathology, Centre for Molecular Biology "Severo Ochoa", CSIC, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases, Madrid, Spain
| | - Marta Bolós
- Department of Molecular Neuropathology, Centre for Molecular Biology "Severo Ochoa", CSIC, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases, Madrid, Spain
| |
Collapse
|
59
|
Delpech JC, Herron S, Botros MB, Ikezu T. Neuroimmune Crosstalk through Extracellular Vesicles in Health and Disease. Trends Neurosci 2019; 42:361-372. [PMID: 30926143 DOI: 10.1016/j.tins.2019.02.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
The dynamics of CNS function rely upon omnidirectional communication among CNS cell types. Extracellular vesicles (EVs) have emerged as key mediators of this communication and are actively involved in response to CNS injury, mediating inflammatory response and inflammation-related neuroprotection as they display dual beneficial and detrimental roles. Neuroimmune interactions include communication between neurons and microglia, the resident macrophages within the CNS, and these interactions are a critical mediator of healthy brain functions, mounting an inflammatory response, and disease pathogenesis. This review aims to organize recent research highlighting the role of EVs in health and neurodegenerative disorders, with a specific focus on neuroimmune interactions between neurons and glia in Alzheimer's disease.
Collapse
Affiliation(s)
- Jean-Christophe Delpech
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Shawn Herron
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mina B Botros
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; Neurology, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
60
|
Ondrejcak T, Hu NW, Qi Y, Klyubin I, Corbett GT, Fraser G, Perkinton MS, Walsh DM, Billinton A, Rowan MJ. Soluble tau aggregates inhibit synaptic long-term depression and amyloid β-facilitated LTD in vivo. Neurobiol Dis 2019; 127:582-590. [PMID: 30910746 DOI: 10.1016/j.nbd.2019.03.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/01/2019] [Accepted: 03/21/2019] [Indexed: 01/29/2023] Open
Abstract
Soluble synaptotoxic aggregates of the main pathological proteins of Alzheimer's disease, amyloid β-protein (Aß) and tau, have rapid and potent inhibitory effects on long-term potentiation (LTP). Although the promotion of synaptic weakening mechanisms, including long-term depression (LTD), is posited to mediate LTP inhibition by Aß, little is known regarding the action of exogenous tau on LTD. The present study examined the ability of different assemblies of full-length human tau to affect LTD in the dorsal hippocampus of the anaesthetized rat. Unlike Aß, intracerebroventricular injection of soluble aggregates of tau (SτAs), but not monomers or fibrils, potently increased the threshold for LTD induction in a manner that required cellular prion protein. However, MTEP, an antagonist of the putative prion protein coreceptor metabotropic glutamate receptor 5, did not prevent the disruption of synaptic plasticity by SτAs. In contrast, systemic treatment with Ro 25-6981, a selective antagonist at GluN2B subunit-containing NMDA receptors, reduced SτA-mediated inhibition of LTD, but not LTP. Intriguingly, SτAs completely blocked Aß-facilitated LTD, whereas a subthreshold dose of SτAs facilitated Aß-mediated inhibition of LTP. Overall, these findings support the importance of cellular prion protein in mediating a range of, sometimes opposing, actions of soluble Aß and tau aggregates with different effector mechanisms on synaptic plasticity.
Collapse
Affiliation(s)
- Tomas Ondrejcak
- Department of Pharmacology & Therapeutics, Institute of Neuroscience, Trinity College, Dublin 2, Ireland.
| | - Neng-Wei Hu
- Department of Pharmacology & Therapeutics, Institute of Neuroscience, Trinity College, Dublin 2, Ireland; Department of Physiology and Neurobiology, Zhengzhou University School of Medicine, Zhengzhou 450001, China
| | - Yingjie Qi
- Department of Pharmacology & Therapeutics, Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics, Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Grant T Corbett
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Graham Fraser
- Neuroscience, IMED Biotech Unit, AstraZeneca, Cambridge CB21 6GH, UK
| | | | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Billinton
- Neuroscience, IMED Biotech Unit, AstraZeneca, Cambridge CB21 6GH, UK
| | - Michael J Rowan
- Department of Pharmacology & Therapeutics, Institute of Neuroscience, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
61
|
Barragán Martínez D, García Soldevilla M, Parra Santiago A, Tejeiro Martínez J. Enfermedad de Alzheimer. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.med.2019.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
62
|
Winsky-Sommerer R, de Oliveira P, Loomis S, Wafford K, Dijk DJ, Gilmour G. Disturbances of sleep quality, timing and structure and their relationship with other neuropsychiatric symptoms in Alzheimer’s disease and schizophrenia: Insights from studies in patient populations and animal models. Neurosci Biobehav Rev 2019; 97:112-137. [DOI: 10.1016/j.neubiorev.2018.09.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 08/31/2018] [Accepted: 09/30/2018] [Indexed: 02/06/2023]
|
63
|
Shi M, Sheng L, Stewart T, Zabetian CP, Zhang J. New windows into the brain: Central nervous system-derived extracellular vesicles in blood. Prog Neurobiol 2019; 175:96-106. [PMID: 30685501 DOI: 10.1016/j.pneurobio.2019.01.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/18/2018] [Accepted: 01/23/2019] [Indexed: 12/28/2022]
Abstract
Extracellular vesicles (EVs), including exosomes and (shedding) microvesicles, are released by nearly all cell types and carry a cargo of proteins and nucleic acids that varies by the cell of origin. They are thought to play critical roles in normal central nervous system (CNS) function and neurological disorders. A recently revealed key characteristic of EVs is that they may travel between the CNS and peripheral circulation. This property has led to intense interest in how EVs might serve as a vehicle for toxic protein clearance and as a readily accessible source of biomarkers for CNS disorders. Furthermore, by bypassing the blood-brain barrier, modified EVs could serve as a unique drug delivery system that targets specific neuronal populations. Further work is necessary to develop and optimize techniques that enable high-yield capture of relevant EV populations, analyze individual EVs and their cargos, and validate preliminary results of EV-derived biomarkers in independent cohorts.
Collapse
Affiliation(s)
- Min Shi
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Lifu Sheng
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Tessandra Stewart
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Cyrus P Zabetian
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Parkinson's Disease Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jing Zhang
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98104, USA; Beijing Key Laboratory of Research and Transformation on Neurodegenerative Diseases Biomarkers, Department of Pathology, Peking University Third Hospital/Institute of Basic Science, Peking University Health Science Center, Beijing 100083, China.
| |
Collapse
|
64
|
Role of tau N-terminal motif in the secretion of human tau by End Binding proteins. PLoS One 2019; 14:e0210864. [PMID: 30668577 PMCID: PMC6342323 DOI: 10.1371/journal.pone.0210864] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 01/03/2019] [Indexed: 11/19/2022] Open
Abstract
For unknown reasons, humans appear to be particular susceptible to developing tau pathology leading to neurodegeneration. Transgenic mice are still undoubtedly the most popular and extensively used animal models for studying Alzheimer’s disease and other tauopathies. While these murine models generally overexpress human tau in the mouse brain or specific brain regions, there are differences between endogenous mouse tau and human tau protein. Among them, a main difference between human and mouse tau is the presence of a short motif spanning residues 18 to 28 in the human tau protein that is missing in murine tau, and which could be at least partially responsible for that different susceptibility across species. Here we report novel data using affinity chromatography analysis indicating that the sequence containing human tau residues 18 to 28 acts a binding motif for End Binding proteins and that this interaction could facilitate tau secretion to the extracellular space.
Collapse
|
65
|
Cellular Prion Protein Mediates the Disruption of Hippocampal Synaptic Plasticity by Soluble Tau In Vivo. J Neurosci 2018; 38:10595-10606. [PMID: 30355631 DOI: 10.1523/jneurosci.1700-18.2018] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/20/2022] Open
Abstract
Intracellular neurofibrillary tangles (NFTs) composed of tau protein are a neuropathological hallmark of several neurodegenerative diseases, the most common of which is Alzheimer's disease (AD). For some time NFTs were considered the primary cause of synaptic dysfunction and neuronal death, however, more recent evidence suggests that soluble aggregates of tau are key drivers of disease. Here we investigated the effect of different tau species on synaptic plasticity in the male rat hippocampus in vivo Intracerebroventricular injection of soluble aggregates formed from either wild-type or P301S human recombinant tau potently inhibited hippocampal long-term potentiation (LTP) at CA3-to-CA1 synapses. In contrast, tau monomers and fibrils appeared inactive. Neither baseline synaptic transmission, paired-pulse facilitation nor burst response during high-frequency conditioning stimulation was affected by the soluble tau aggregates. Similarly, certain AD brain soluble extracts inhibited LTP in a tau-dependent manner that was abrogated by either immunodepletion with, or coinjection of, a mid-region anti-tau monoclonal antibody (mAb), Tau5. Importantly, this tau-mediated block of LTP was prevented by administration of mAbs selective for the prion protein (PrP). Specifically, mAbs to both the mid-region (6D11) and N-terminus (MI-0131) of PrP prevented inhibition of LTP by both recombinant and brain-derived tau. These findings indicate that PrP is a mediator of tau-induced synaptic dysfunction.SIGNIFICANCE STATEMENT Here we report that certain soluble forms of tau selectively disrupt synaptic plasticity in the live rat hippocampus. Further, we show that monoclonal antibodies to cellular prion protein abrogate the impairment of long-term potentiation caused both by recombinant and Alzheimer's disease brain-derived soluble tau. These findings support a critical role for cellular prion protein in the deleterious synaptic actions of extracellular soluble tau in tauopathies, including Alzheimer's disease. Thus, approaches targeting cellular prion protein, or downstream pathways, might provide an effective strategy for developing therapeutics.
Collapse
|
66
|
Szepesi Z, Manouchehrian O, Bachiller S, Deierborg T. Bidirectional Microglia-Neuron Communication in Health and Disease. Front Cell Neurosci 2018; 12:323. [PMID: 30319362 PMCID: PMC6170615 DOI: 10.3389/fncel.2018.00323] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Microglia are ramified cells that exhibit highly motile processes, which continuously survey the brain parenchyma and react to any insult to the CNS homeostasis. Although microglia have long been recognized as a crucial player in generating and maintaining inflammatory responses in the CNS, now it has become clear, that their function are much more diverse, particularly in the healthy brain. The innate immune response and phagocytosis represent only a little segment of microglia functional repertoire that also includes maintenance of biochemical homeostasis, neuronal circuit maturation during development and experience-dependent remodeling of neuronal circuits in the adult brain. Being equipped by numerous receptors and cell surface molecules microglia can perform bidirectional interactions with other cell types in the CNS. There is accumulating evidence showing that neurons inform microglia about their status and thus are capable of controlling microglial activation and motility while microglia also modulate neuronal activities. This review addresses the topic: how microglia communicate with other cell types in the brain, including fractalkine signaling, secreted soluble factors and extracellular vesicles. We summarize the current state of knowledge of physiological role and function of microglia during brain development and in the mature brain and further highlight microglial contribution to brain pathologies such as Alzheimer’s and Parkinson’s disease, brain ischemia, traumatic brain injury, brain tumor as well as neuropsychiatric diseases (depression, bipolar disorder, and schizophrenia).
Collapse
Affiliation(s)
- Zsuzsanna Szepesi
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Oscar Manouchehrian
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sara Bachiller
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
67
|
Wang P, Lo Cascio F, Gao J, Kayed R, Huang X. Binding and neurotoxicity mitigation of toxic tau oligomers by synthetic heparin like oligosaccharides. Chem Commun (Camb) 2018; 54:10120-10123. [PMID: 30128457 PMCID: PMC6193484 DOI: 10.1039/c8cc05072d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Well-defined heparin like oligosaccharides up to decasaccharides were synthesized. It was discovered for the first time that heparin oligosaccharides, as short as tetrasaccharides, can bind with the most toxic tau species, i.e., tau oligomers with nM KD. The binding significantly reduced the cellular uptake of toxic tau oligomers and protected the cells from tau oligomer induced cytotoxicity.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.
| | - Filippa Lo Cascio
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, 77555, USA.
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, 90127, Palermo, Italy
| | - Jia Gao
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, 77555, USA.
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
68
|
Lajarín-Cuesta R, Arribas RL, Nanclares C, García-Frutos EM, Gandía L, de los Ríos C. Design and synthesis of multipotent 3-aminomethylindoles and 7-azaindoles with enhanced protein phosphatase 2A-activating profile and neuroprotection. Eur J Med Chem 2018; 157:294-309. [DOI: 10.1016/j.ejmech.2018.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 02/02/2023]
|
69
|
Franco R, Aguinaga D, Reyes I, Canela EI, Lillo J, Tarutani A, Hasegawa M, Del Ser-Badia A, Del Rio JA, Kreutz MR, Saura CA, Navarro G. N-Methyl-D-Aspartate Receptor Link to the MAP Kinase Pathway in Cortical and Hippocampal Neurons and Microglia Is Dependent on Calcium Sensors and Is Blocked by α-Synuclein, Tau, and Phospho-Tau in Non-transgenic and Transgenic APP Sw,Ind Mice. Front Mol Neurosci 2018; 11:273. [PMID: 30233307 PMCID: PMC6127644 DOI: 10.3389/fnmol.2018.00273] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/18/2018] [Indexed: 11/14/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) respond to glutamate to allow the influx of calcium ions and the signaling to the mitogen-activated protein kinase (MAPK) cascade. Both MAPK- and Ca2+-mediated events are important for both neurotransmission and neural cell function and fate. Using a heterologous expression system, we demonstrate that NMDAR may interact with the EF-hand calcium-binding proteins calmodulin, calneuron-1, and NCS1 but not with caldendrin. NMDARs were present in primary cultures of both neurons and microglia from cortex and hippocampus. Calmodulin in microglia, and calmodulin and NCS1 in neurons, are necessary for NMDA-induced MAP kinase pathway activation. Remarkably, signaling to the MAP kinase pathway was blunted in primary cultures of cortical and hippocampal neurons and microglia from wild-type animals by proteins involved in neurodegenerative diseases: α-synuclein, Tau, and p-Tau. A similar blockade by pathogenic proteins was found using samples from the APPSw,Ind transgenic Alzheimer’s disease model. Interestingly, a very marked increase in NMDAR–NCS1 complexes was identified in neurons and a marked increase of both NMDAR–NCS1 and NMDAR–CaM complexes was identified in microglia from the transgenic mice. The results show that α-synuclein, Tau, and p-Tau disrupt the signaling of NMDAR to the MAPK pathway and that calcium sensors are important for NMDAR function both in neurons and microglia. Finally, it should be noted that the expression of receptor–calcium sensor complexes, specially those involving NCS1, is altered in neural cells from APPSw,Ind mouse embryos/pups.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - David Aguinaga
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Reyes
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Enric I Canela
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Jaume Lillo
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Airi Tarutani
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Anna Del Ser-Badia
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - José A Del Rio
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group Dendritic Organelles and Synaptic Function, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carlos A Saura
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
70
|
A Closer Look into the Role of Protein Tau in the Identification of Promising Therapeutic Targets for Alzheimer's Disease. Brain Sci 2018; 8:brainsci8090162. [PMID: 30149687 PMCID: PMC6162660 DOI: 10.3390/brainsci8090162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 01/09/2023] Open
Abstract
One of the most commonly known chronic neurodegenerative disorders, Alzheimer's disease (AD), manifests the common type of dementia in 60⁻80% of cases. From a clinical standpoint, a patent cognitive decline and a severe change in personality, as caused by a loss of neurons, is usually evident in AD with about 50 million people affected in 2016. The disease progression in patients is distinguished by a gradual plummet in cognitive functions, eliciting symptoms such as memory loss, and eventually requiring full-time medical care. From a histopathological standpoint, the defining characteristics are intracellular aggregations of hyper-phosphorylated tau protein, known as neurofibrillary tangles (NFT), and depositions of amyloid β-peptides (Aβ) in the brain. The abnormal phosphorylation of tau protein is attributed to a wide gamut of neurological disorders known as tauopathies. In addition to the hyperphosphorylated tau lesions, neuroinflammatory processes could occur in a sustained manner through astro-glial activation, resulting in the disease progression. Recent findings have suggested a strong interplay between the mechanism of Tau phosphorylation, disruption of microtubules, and synaptic loss and pathology of AD. The mechanisms underlying these interactions along with their respective consequences in Tau pathology are still ill-defined. Thus, in this review: (1) we highlight the interplays existing between Tau pathology and AD; and (2) take a closer look into its role while identifying some promising therapeutic advances including state of the art imaging techniques.
Collapse
|
71
|
Perea JR, Ávila J, Bolós M. Dephosphorylated rather than hyperphosphorylated Tau triggers a pro-inflammatory profile in microglia through the p38 MAPK pathway. Exp Neurol 2018; 310:14-21. [PMID: 30138606 DOI: 10.1016/j.expneurol.2018.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/04/2018] [Accepted: 08/15/2018] [Indexed: 01/24/2023]
Abstract
Tauopathies are a broad set of neurodegenerative dementias characterized by the aggregation of Tau protein. Activated microglia and elevated levels of pro-inflammatory molecules are also pathological hallmarks of tauopathies. In these diseases, intracellular Tau is secreted to the extracellular space, where it interacts with other cells, such as neurons and glia, promoting inflammation. However, the mechanism through which extracellular Tau triggers pro-inflammatory responses in microglia remains unknown. Primary microglia cultures were treated with extracellular Tau in its hyperphosphorylated, dephosphorylated or non-phosphorylated form. Protein cytokine arrays, real-time PCR, inhibition of the p38 MAPK pathway, phosphatase assays, and quantification of proteins through immunoblotting were used to analyze the effect of extracellular Tau on the pro-inflammatory response of microglia. The main finding of this work is that extracellular non-phosphorylated and dephosphorylated forms of Tau, rather than hyperphosphorylated Tau, activate the p38 MAPK pathway in microglia, thus triggering a pro-inflammatory response in these cells.
Collapse
Affiliation(s)
- Juan Ramón Perea
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSIC, Madrid, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jesús Ávila
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSIC, Madrid, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Bolós
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSIC, Madrid, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
72
|
Wiciński M, Wódkiewicz E, Słupski M, Walczak M, Socha M, Malinowski B, Pawlak-Osińska K. Neuroprotective Activity of Sitagliptin via Reduction of Neuroinflammation beyond the Incretin Effect: Focus on Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6091014. [PMID: 30186862 PMCID: PMC6116461 DOI: 10.1155/2018/6091014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/22/2018] [Accepted: 07/26/2018] [Indexed: 12/25/2022]
Abstract
Sitagliptin is a member of a class of drugs that inhibit dipeptidyl peptidase (DPP-4). It increases the levels of the active form of incretins such as GLP-1 (glucagon-like peptide-1) or GIP (gastric inhibitory polypeptide) and by their means positively affects glucose metabolism. It is successfully applied in the treatment of diabetes mellitus type 2. The most recent scientific reports suggest beneficial effect of sitagliptin on diseases in which neuron damage occurs. Result of experimental studies may indicate a reducing influence of sitagliptin on inflammatory response within encephalon area. Sitagliptin decreased the levels of proinflammatory factors: TNF-α (tumor necrosis factor-α), IL-6 (interleukin-6), IL-17 (interleukin-17), and CD-163 (cluster of differentiation 163), and contributed to an increase in levels of anti-inflammatory factors: IL-10 (interleukin-10) and TGF-β (transforming growth factor β). Moreover, sitagliptin demonstrated antioxidative and antiapoptotic properties by modifying glutamate and glutathione levels within the region of hippocampus in mice. It has been observed that sitagliptin decreases accumulation of β-amyloid within encephalon structures in experimental models of Alzheimer's dementia. This effect may be connected with SDF-1α (stromal cell-derived factor 1α) concentration. Administration of sitagliptin caused a significant improvement in MMSE (Mini-Mental State Examination) tests used for assessment of dementias. The paper presents potential mechanisms of sitagliptin activity in conditions connected with neuroinflammation with special emphasis on Alzheimer's disease.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Eryk Wódkiewicz
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Maciej Słupski
- Department of Hepatobiliary and General Surgery, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Maciej Walczak
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Maciej Socha
- Department of Obstetrics, Gynecology and Gynecological Oncology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Ujejskiego 75, 85-168 Bydgoszcz, Poland
| | - Bartosz Malinowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Katarzyna Pawlak-Osińska
- Department of Pathophysiology of Hearing and Balance System, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| |
Collapse
|
73
|
Perea JR, Llorens-Martín M, Ávila J, Bolós M. The Role of Microglia in the Spread of Tau: Relevance for Tauopathies. Front Cell Neurosci 2018; 12:172. [PMID: 30042659 PMCID: PMC6048186 DOI: 10.3389/fncel.2018.00172] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/01/2018] [Indexed: 01/01/2023] Open
Abstract
Tauopathies are neurodegenerative diseases which course with the accumulation of Tau, mainly in neurons. In addition, Tau accumulates in a hyperphosphorylated and aggregated form. This protein is released into the extracellular space and spreads following a stereotypical pattern, inducing the development of the disease through connected regions of the brain. Microglia-the macrophages of the brain-are involved in maintaining brain homeostasis. They perform a variety of functions related to the surveillance and clearance of pathological proteins, among other dead cells and debris, from the extracellular space that could compromise brain equilibrium. This review focuses on the role played by microglia in tauopathies, specifically in Alzheimer's disease (AD), and how the uncoupling of activation/phagocytosis functions can have fatal consequences leading to the development of the pathology.
Collapse
Affiliation(s)
- Juan R Perea
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSIC, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSIC, Madrid, Spain.,Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Ávila
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSIC, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Bolós
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSIC, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
74
|
Pérez MJ, Jara C, Quintanilla RA. Contribution of Tau Pathology to Mitochondrial Impairment in Neurodegeneration. Front Neurosci 2018; 12:441. [PMID: 30026680 PMCID: PMC6041396 DOI: 10.3389/fnins.2018.00441] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022] Open
Abstract
Tau is an essential protein that physiologically promotes the assembly and stabilization of microtubules, and participates in neuronal development, axonal transport, and neuronal polarity. However, in a number of neurodegenerative diseases, including Alzheimer’s disease (AD), tau undergoes pathological modifications in which soluble tau assembles into insoluble filaments, leading to synaptic failure and neurodegeneration. Mitochondria are responsible for energy supply, detoxification, and communication in brain cells, and important evidence suggests that mitochondrial failure could have a pivotal role in the pathogenesis of AD. In this context, our group and others investigated the negative effects of tau pathology on specific neuronal functions. In particular, we observed that the presence of these tau forms could affect mitochondrial function at three different levels: (i) mitochondrial transport, (ii) morphology, and (iii) bioenergetics. Therefore, mitochondrial dysfunction mediated by anomalous tau modifications represents a novel mechanism by which these forms contribute to the pathogenesis of AD. In this review, we will discuss the main results reported on pathological tau modifications and their effects on mitochondrial function and their importance for the synaptic communication and neurodegeneration.
Collapse
Affiliation(s)
- María J Pérez
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
| | - Claudia Jara
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
| |
Collapse
|
75
|
Abstract
Alzheimer disease (AD) is the most common form of dementia. Pathologically, AD is characterized by amyloid plaques and neurofibrillary tangles in the brain, with associated loss of synapses and neurons, resulting in cognitive deficits and eventually dementia. Amyloid-β (Aβ) peptide and tau protein are the primary components of the plaques and tangles, respectively. In the decades since Aβ and tau were identified, development of therapies for AD has primarily focused on Aβ, but tau has received more attention in recent years, in part because of the failure of various Aβ-targeting treatments in clinical trials. In this article, we review the current status of tau-targeting therapies for AD. Initially, potential anti-tau therapies were based mainly on inhibition of kinases or tau aggregation, or on stabilization of microtubules, but most of these approaches have been discontinued because of toxicity and/or lack of efficacy. Currently, the majority of tau-targeting therapies in clinical trials are immunotherapies, which have shown promise in numerous preclinical studies. Given that tau pathology correlates better with cognitive impairments than do Aβ lesions, targeting of tau is expected to be more effective than Aβ clearance once the clinical symptoms are evident. With future improvements in diagnostics, these two hallmarks of the disease might be targeted prophylactically.
Collapse
Affiliation(s)
- Erin E Congdon
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
76
|
Paolicelli RC, Bergamini G, Rajendran L. Cell-to-cell Communication by Extracellular Vesicles: Focus on Microglia. Neuroscience 2018; 405:148-157. [PMID: 29660443 DOI: 10.1016/j.neuroscience.2018.04.003] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles, including exosomes and microvesicles, are small, nano-to-micrometer vesicles that are released from cells. While initially observed in immune cells and reticulocytes as vesicles meant to remove archaic proteins, now they have been observed in almost all cell types of multicellular organisms. Growing evidence indicates that extracellular vesicles, containing lipids, proteins and RNAs, represent an efficient way to transfer functional cargoes from one cell to another. In the central nervous system, the extensive cross-talk ongoing between neurons and glia, including microglia, the immune cells of the brain, takes advantage of secreted vesicles, which mediate intercellular communication over long range distance. Recent literature supports a critical role for extracellular vesicles in mediating complex and coordinated communication among neurons, astrocytes and microglia, both in the healthy and in the diseased brain. In this review, we focus on the biogenesis and function of microglia-related extracellular vesicles and focus on their putative role in Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Rosa C Paolicelli
- Systems and Cell Biology of Neurodegeneration, IREM - Institute for Regenerative Medicine, University of Zurich, Switzerland.
| | - Giorgio Bergamini
- Preclinical Laboratory for Translational Research into Affective Disorders (PLaTRAD), Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Switzerland
| | - Lawrence Rajendran
- Systems and Cell Biology of Neurodegeneration, IREM - Institute for Regenerative Medicine, University of Zurich, Switzerland
| |
Collapse
|
77
|
Medina M. An Overview on the Clinical Development of Tau-Based Therapeutics. Int J Mol Sci 2018; 19:ijms19041160. [PMID: 29641484 PMCID: PMC5979300 DOI: 10.3390/ijms19041160] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 01/25/2023] Open
Abstract
Tauopathies such as Alzheimer's disease (AD), frontotemporal lobar degeneration, or progressive supranuclear palsy constitute a group of brain disorders defined by neurodegeneration and the presence of tau aggregates in the affected brains regions. Tau is a microtubule-associated protein that accumulates in the cytosol under pathological conditions, steering the formation of aggregates or inclusions thought to be involved in the degeneration and neuronal death associated with these diseases. Despite a substantial and unmet medical need for novel, more effective disease-modifying therapies for the treatment of AD and tauopathies, the last couple of decades have seen numerous drug development undertakings primarily focused on β-amyloid, with disappointing results to date. On the other hand, tau-focused approaches have not received much attention until recently, notwithstanding that the presence of extensive tau pathology is fundamental for the disease and tau pathology shows a better correlation with impaired cognitive function than with amyloid pathology in AD patients. The last few years have brought us advances in our comprehension of tau biological functions beyond its well-established role as a microtubule-associated protein, unveiling novel physiological tau functions that may also be involved in pathogenesis and thus provide novel targets for therapeutic intervention. This review describes several emerging, encouraging therapeutic approaches aimed at tackling the underlying causes of tau pathology in AD and other tauopathies that have recently reached the clinical development stage.
Collapse
Affiliation(s)
- Miguel Medina
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Queen Sofia Foundation Alzheimer Center, CIEN Foundation, Carlos III Institute of Health, 28031 Madrid, Spain.
| |
Collapse
|
78
|
The Neurotoxic Role of Extracellular Tau Protein. Int J Mol Sci 2018; 19:ijms19040998. [PMID: 29584657 PMCID: PMC5979432 DOI: 10.3390/ijms19040998] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 12/31/2022] Open
Abstract
Tauopathies are a class of neurodegenerative diseases associated with the microtubule-associated protein tau, with Alzheimer’s disease (AD) being the most prevalent related disorder. Neurofibrillary tangles (NFTs) are one of the neuropathological hallmarks present in the brains of AD patients. Because NFTs are aberrant intracellular inclusions formed by hyperphosphorylated tau, it was initially proposed that phosphorylated and/or aggregated intracellular tau protein was causative of neuronal death. However, recent studies suggest a toxic role for non-phosphorylated and non-aggregated tau when it is located in the brain extracellular space. In this work, we will discuss the neurotoxic role of extracellular tau as well its involvement in the spreading of tau pathologies.
Collapse
|
79
|
Walton EL. For better or worse: Immune system involvement in Alzheimer's Disease. Biomed J 2018; 41:1-4. [PMID: 29673548 PMCID: PMC6138778 DOI: 10.1016/j.bj.2018.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 11/03/2022] Open
Abstract
In this issue of the Biomedical Journal, we explore the key role of the immune system in the development of Alzheimer's disease. We also learn more about the link between two disorders related to metabolic imbalances, with findings that could help to inform future screening programs. Finally, we would like to highlight some big news for our journal: the Biomedical Journal will be indexed in the Science Citation Index and receive its first official impact factor from this year.
Collapse
Affiliation(s)
- Emma L Walton
- Staff Writer at the Biomedical Journal, 56 Dronningens gate, 7012 Trondheim, Norway.
| |
Collapse
|
80
|
Tau and neuroinflammation: What impact for Alzheimer's Disease and Tauopathies? Biomed J 2018; 41:21-33. [PMID: 29673549 PMCID: PMC6138617 DOI: 10.1016/j.bj.2018.01.003] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 01/03/2023] Open
Abstract
Alzheimer's Disease (AD) is a chronic neurodegenerative disorder and the most common type of dementia (60–80% of cases). In 2016, nearly 44 million people were affected by AD or related dementia. AD is characterized by progressive neuronal damages leading to subtle and latter obvious decline in cognitive functions including symptoms such as memory loss or confusion, which ultimately require full-time medical care. Its neuropathology is defined by the extracellular accumulation of amyloid-β (Aβ) peptide into amyloid plaques, and intraneuronal neurofibrillary tangles (NFT) consisting of aggregated hyper- and abnormal phosphorylation of tau protein. The latter, identified also as Tau pathology, is observed in a broad spectrum of neurological diseases commonly referred to as “Tauopathies”. Besides these lesions, sustained neuroinflammatory processes occur, involving notably micro- and astro-glial activation, which contribute to disease progression. Recent findings from genome wide association studies further support an instrumental role of neuroinflammation. While the interconnections existing between this innate immune response and the amyloid pathogenesis are widely characterized and described as complex, elaborated and evolving, only few studies focused on Tau pathology. An adaptive immune response takes place conjointly during the disease course, as indicated by the presence of vascular and parenchymal T-cell in AD patients' brain. The underlying mechanisms of this infiltration and its consequences with regards to Tau pathology remain understudied so far. In the present review, we highlight the interplays existing between Tau pathology and the innate/adaptive immune responses.
Collapse
|
81
|
Guix FX, Corbett GT, Cha DJ, Mustapic M, Liu W, Mengel D, Chen Z, Aikawa E, Young-Pearse T, Kapogiannis D, Selkoe DJ, Walsh DM. Detection of Aggregation-Competent Tau in Neuron-Derived Extracellular Vesicles. Int J Mol Sci 2018; 19:E663. [PMID: 29495441 PMCID: PMC5877524 DOI: 10.3390/ijms19030663] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/10/2018] [Accepted: 02/20/2018] [Indexed: 11/17/2022] Open
Abstract
Progressive cerebral accumulation of tau aggregates is a defining feature of Alzheimer's disease (AD). A popular theory that seeks to explain the apparent spread of neurofibrillary tangle pathology proposes that aggregated tau is passed from neuron to neuron. Such a templated seeding process requires that the transferred tau contains the microtubule binding repeat domains that are necessary for aggregation. While it is not clear how a protein such as tau can move from cell to cell, previous reports have suggested that this may involve extracellular vesicles (EVs). Thus, measurement of tau in EVs may both provide insights on the molecular pathology of AD and facilitate biomarker development. Here, we report the use of sensitive immunoassays specific for full-length (FL) tau and mid-region tau, which we applied to analyze EVs from human induced pluripotent stem cell (iPSC)-derived neuron (iN) conditioned media, cerebrospinal fluid (CSF), and plasma. In each case, most tau was free-floating with a small component inside EVs. The majority of free-floating tau detected by the mid-region assay was not detected by our FL assays, indicating that most free-floating tau is truncated. Inside EVs, the mid-region assay also detected more tau than the FL assay, but the ratio of FL-positive to mid-region-positive tau was higher inside exosomes than in free solution. These studies demonstrate the presence of minute amounts of free-floating and exosome-contained FL tau in human biofluids. Given the potential for FL tau to aggregate, we conclude that further investigation of these pools of extracellular tau and how they change during disease is merited.
Collapse
Affiliation(s)
- Francesc X. Guix
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (F.X.G.); (G.T.C.); (D.J.C.); (W.L.); (D.M.); (Z.C.); (T.Y.-P.); (D.J.S.)
| | - Grant T. Corbett
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (F.X.G.); (G.T.C.); (D.J.C.); (W.L.); (D.M.); (Z.C.); (T.Y.-P.); (D.J.S.)
| | - Diana J. Cha
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (F.X.G.); (G.T.C.); (D.J.C.); (W.L.); (D.M.); (Z.C.); (T.Y.-P.); (D.J.S.)
| | - Maja Mustapic
- Laboratory of Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (M.M.); (D.K.)
| | - Wen Liu
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (F.X.G.); (G.T.C.); (D.J.C.); (W.L.); (D.M.); (Z.C.); (T.Y.-P.); (D.J.S.)
| | - David Mengel
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (F.X.G.); (G.T.C.); (D.J.C.); (W.L.); (D.M.); (Z.C.); (T.Y.-P.); (D.J.S.)
| | - Zhicheng Chen
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (F.X.G.); (G.T.C.); (D.J.C.); (W.L.); (D.M.); (Z.C.); (T.Y.-P.); (D.J.S.)
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Tracy Young-Pearse
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (F.X.G.); (G.T.C.); (D.J.C.); (W.L.); (D.M.); (Z.C.); (T.Y.-P.); (D.J.S.)
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (M.M.); (D.K.)
| | - Dennis J. Selkoe
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (F.X.G.); (G.T.C.); (D.J.C.); (W.L.); (D.M.); (Z.C.); (T.Y.-P.); (D.J.S.)
| | - Dominic M. Walsh
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (F.X.G.); (G.T.C.); (D.J.C.); (W.L.); (D.M.); (Z.C.); (T.Y.-P.); (D.J.S.)
| |
Collapse
|
82
|
Tau Spreading Mechanisms; Implications for Dysfunctional Tauopathies. Int J Mol Sci 2018; 19:ijms19030645. [PMID: 29495325 PMCID: PMC5877506 DOI: 10.3390/ijms19030645] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/14/2022] Open
Abstract
Tauopathies comprise a group of progressive age-associated neurodegenerative diseases where tau protein deposits are found as the predominant pathological signature (primary tauopathies) or in combination with the presence of other toxic aggregates (secondary tauopathies). In recent years, emerging evidence suggests that abnormal tau accumulation is mediated through spreading of seeds of the protein from cell to cell, favouring the hypothesis of a prion-like transmission of tau to explain the propagation of the pathology. This would also support the concept that the pathology initiates in a very small part of the brain before becoming symptomatic and spreads across the brain over time. To date, many key questions still remain unclear, such as the nature of the tau species involved in the spreading, the precise seeding/template and uptaking mechanisms or the selectivity explaining why certain neurons are affected and some others are not. A better understanding of the tau spreading machinery will contribute to the development of new therapeutic approaches focused on halting the abnormal propagation, offering also new perspectives for early diagnosis and preventive therapies. In this review, we will cover the most recent advances in tau spreading mechanisms as well as the implications of these findings for dysfunctional tauopathies.
Collapse
|
83
|
Phos-tau peptide immunization of amyloid-tg-mice reduced non-mutant phos-tau pathology, improved cognition and reduced amyloid plaques. Exp Neurol 2018; 303:48-58. [PMID: 29432723 DOI: 10.1016/j.expneurol.2018.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 01/12/2023]
Abstract
Tau-immumotherapy has shown promising results in tangle/tauopathy-tg animal models. Here we immunized amyloid-mice (APPSwe/PSEN1dE9-tg, presenting amyloid-plaques, not neurofibrillary-tangles) with phos-tau peptides, previously shown by us to have high efficacy in mutant-tau tauopathy-mice. These amyloid-mice allowed us to test the effect of the vaccine in a model of familial AD patients with mutant amyloid plaque pathology, where tau pathology - once develops - is of non-mutant tau. Fourteen-month-old amyloid-mice were immunized with phos-tau peptides or vehicle. Eight weeks later, amelioration of cognitive impairment was noticed. Histological analysis revealed that the phos (non-mutant)-tau pathology (detected by us in these aged amyloid-mice while not in non-tg-mice), was lower in the phos-tau immunized amyloid-mice than in the non-immunized mice. Interestingly, we detected a decrease in amyloid plaque pathology, probably associated with the increased microglial burden, which surrounded both tau and amyloid pathology. These results point to the added value of immunizing AD-mice with the phos-tau-vaccine, targeting both tau and amyloid pathology, which may have clinical relevance. It also points to the multifaceted interplay between tau/amyloid pathologies.
Collapse
|
84
|
Bolós M, Pallas-Bazarra N, Terreros-Roncal J, Perea JR, Jurado-Arjona J, Ávila J, Llorens-Martín M. Soluble Tau has devastating effects on the structural plasticity of hippocampal granule neurons. Transl Psychiatry 2017; 7:1267. [PMID: 29217824 PMCID: PMC5802513 DOI: 10.1038/s41398-017-0013-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/03/2017] [Accepted: 07/30/2017] [Indexed: 12/26/2022] Open
Abstract
Tau is a neuronal microtubule-associated protein with countless physiological functions. Although the detrimental effects of insoluble aggregated Tau have been widely studied, recent evidence supports the notion that soluble Tau (composed mostly of monomers and dimers) is also toxic for neurons. Here we evaluated the long-term impact of a single stereotaxic injection of human soluble Tau on hippocampal granule neurons in mice. At the ultrastructural level, soluble Tau reduced the number of afferent synapses and caused a dramatic depletion of synaptic vesicles both in afferent and efferent synapses. Furthermore, the use of an RFP-expressing retrovirus revealed that soluble Tau altered the morphology of newborn granule neurons and reduced their afferent (dendritic spines) and efferent (mossy fiber terminals) connectivity. Finally, soluble Tau caused specific impairment of behavioral pattern separation capacity. Our results thus demonstrate for the first time that soluble Tau causes long-term detrimental effects on the morphology and connectivity of newborn granule neurons and that these effects correlate with impaired behavioral pattern separation skills. These data might be relevant for the field of neurodegenerative disorders, since they contribute to reinforcing the pathological roles played by distinct Tau species in vivo.
Collapse
Affiliation(s)
- M Bolós
- grid.465524.4Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa”, CBMSO, CSICUAM, Madrid, Spain ,0000 0004 1762 4012grid.418264.dNetwork Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - N Pallas-Bazarra
- grid.465524.4Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa”, CBMSO, CSICUAM, Madrid, Spain ,0000 0004 1762 4012grid.418264.dNetwork Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - J Terreros-Roncal
- grid.465524.4Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa”, CBMSO, CSICUAM, Madrid, Spain ,0000 0004 1762 4012grid.418264.dNetwork Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - JR Perea
- grid.465524.4Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa”, CBMSO, CSICUAM, Madrid, Spain ,0000 0004 1762 4012grid.418264.dNetwork Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - J Jurado-Arjona
- grid.465524.4Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa”, CBMSO, CSICUAM, Madrid, Spain ,0000 0004 1762 4012grid.418264.dNetwork Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - J Ávila
- grid.465524.4Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa”, CBMSO, CSICUAM, Madrid, Spain ,0000 0004 1762 4012grid.418264.dNetwork Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - M Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSICUAM, Madrid, Spain. .,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain. .,Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
85
|
Croese T, Furlan R. Extracellular vesicles in neurodegenerative diseases. Mol Aspects Med 2017; 60:52-61. [PMID: 29137922 DOI: 10.1016/j.mam.2017.11.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 12/22/2022]
Abstract
Extracellular vesicles (EVs) are released by all neural cells, including neurons, oligodendrocytes, astrocytes, and microglia. The lack of adequate technology has not halted neuroscientists from investigating EVs as a mean to decipher neurodegenerative disorders, still in search of comprehensible pathogenic mechanisms and efficient treatment. EVs are thought to be one of ways neurodegenerative pathologies spread in the brain, but also one of the ways the brain tries to displace toxic proteins, making their meaning in pathogenesis uncertain. EVs, however do reach biological fluids where they can be analyzed, and might therefore constitute clinically decisive biomarkers for neurodegenerative diseases in the future. Finally, if they constitute a physiological inter-cell communication system, they may represent also a very specific drug delivery tool for a difficult target such as the brain. We try to resume here available information on the role of EVs in neurodegeneration, with a special focus on Alzheimer's disease, progressive multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease.
Collapse
Affiliation(s)
- Tommaso Croese
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
86
|
Cisbani G, Maxan A, Kordower JH, Planel E, Freeman TB, Cicchetti F. Presence of tau pathology within foetal neural allografts in patients with Huntington's and Parkinson's disease. Brain 2017; 140:2982-2992. [PMID: 29069396 DOI: 10.1093/brain/awx255] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/05/2017] [Indexed: 11/12/2022] Open
Abstract
Cell replacement has been explored as a therapeutic strategy to repair the brain in patients with Huntington's and Parkinson's disease. Post-mortem evaluations of healthy grafted tissue in such cases have revealed the development of Huntington- or Parkinson-like pathology including mutant huntingtin aggregates and Lewy bodies. An outstanding question remains if tau pathology can also be seen in patients with Huntington's and Parkinson's disease who had received foetal neural allografts. This was addressed by immunohistochemical/immunofluorescent stainings performed on grafted tissue of two Huntington's disease patients, who came to autopsy 9 and 12 years post-transplantation, and two patients with Parkinson's disease who came to autopsy 18 months and 16 years post-transplantation. We show that grafts also contain tau pathology in both types of transplanted patients. In two patients with Huntington's disease, the grafted tissue showed the presence of hyperphosphorylated tau [both AT8 (phospho-tau Ser202 and Thr205) and CP13 (pSer202) immunohistochemical stainings] pathological inclusions, neurofibrillary tangles and neuropil threads. In patients with Parkinson's disease, the grafted tissue was characterized by hyperphosphorylated tau (AT8; immunofluorescent staining) pathological inclusions, neurofibrillary tangles and neuropil threads but only in the patient who came to autopsy 16 years post-transplantation. Abundant tau-related pathology was observed in the cortex and striatum of all cases studied. While the striatum of the grafted Huntington's disease patient revealed an equal amount of 3-repeat and 4-repeat isoforms of tau, the grafted tissue showed elevated 4-repeat isoforms by western blot. This suggests that transplants may have acquired tau pathology from the host brain, although another possibility is that this was due to acceleration of ageing. This finding not only adds to the recent reports that tau pathology is a feature of these neurodegenerative diseases, but also that tau pathology can manifest in healthy neural tissue transplanted into the brains of patients with two distinct neurodegenerative disorders.
Collapse
Affiliation(s)
- Giulia Cisbani
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada
| | - Alexander Maxan
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada
| | - Jeffrey H Kordower
- Department of Neurological Sciences and Center for Brain Repair, Rush University Medical Center, Chicago, IL 60612, USA
| | - Emmanuel Planel
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada.,Département de Psychiatrie and Neurosciences, Université Laval, Québec, QC, Canada
| | - Thomas B Freeman
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33606-3571, USA.,Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL 33606-3571, USA
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada.,Département de Psychiatrie and Neurosciences, Université Laval, Québec, QC, Canada
| |
Collapse
|
87
|
Kulbe JR, Hall ED. Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology. Prog Neurobiol 2017; 158:15-44. [PMID: 28851546 PMCID: PMC5671903 DOI: 10.1016/j.pneurobio.2017.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022]
Abstract
In recent years, a new neurodegenerative tauopathy labeled Chronic Traumatic Encephalopathy (CTE), has been identified that is believed to be primarily a sequela of repeated mild traumatic brain injury (TBI), often referred to as concussion, that occurs in athletes participating in contact sports (e.g. boxing, American football, Australian football, rugby, soccer, ice hockey) or in military combatants, especially after blast-induced injuries. Since the identification of CTE, and its neuropathological finding of deposits of hyperphosphorylated tau protein, mechanistic attention has been on lumping the disorder together with various other non-traumatic neurodegenerative tauopathies. Indeed, brains from suspected CTE cases that have come to autopsy have been confirmed to have deposits of hyperphosphorylated tau in locations that make its anatomical distribution distinct for other tauopathies. The fact that these individuals experienced repetitive TBI episodes during their athletic or military careers suggests that the secondary injury mechanisms that have been extensively characterized in acute TBI preclinical models, and in TBI patients, including glutamate excitotoxicity, intracellular calcium overload, mitochondrial dysfunction, free radical-induced oxidative damage and neuroinflammation, may contribute to the brain damage associated with CTE. Thus, the current review begins with an in depth analysis of what is known about the tau protein and its functions and dysfunctions followed by a discussion of the major TBI secondary injury mechanisms, and how the latter have been shown to contribute to tau pathology. The value of this review is that it might lead to improved neuroprotective strategies for either prophylactically attenuating the development of CTE or slowing its progression.
Collapse
Affiliation(s)
- Jacqueline R Kulbe
- Spinal Cord & Brain Injury Research Center, University of Kentucky College of Medicine, United States; Department of Neuroscience, University of Kentucky College of Medicine, United States
| | - Edward D Hall
- Spinal Cord & Brain Injury Research Center, University of Kentucky College of Medicine, United States; Department of Neuroscience, University of Kentucky College of Medicine, United States.
| |
Collapse
|
88
|
Tau-based therapies in neurodegeneration: opportunities and challenges. Nat Rev Drug Discov 2017; 16:863-883. [DOI: 10.1038/nrd.2017.155] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
89
|
Bolós M, Llorens-Martín M, Perea JR, Jurado-Arjona J, Rábano A, Hernández F, Avila J. Absence of CX3CR1 impairs the internalization of Tau by microglia. Mol Neurodegener 2017; 12:59. [PMID: 28810892 PMCID: PMC5558740 DOI: 10.1186/s13024-017-0200-1] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/07/2017] [Indexed: 12/22/2022] Open
Abstract
Background Extracellular Tau is toxic for neighboring cells, and it contributes to the progression of AD. The CX3CL1/CX3CR1 axis is an important neuron/microglia communication mechanism. Methods We studied Tau clearance by microglia both in vitro (microglia primary cultures treated with Cy5-Tau, affinity chromatography to study the binding of Tau to CX3CR1, and Tau-CX3CL1 competition assays) and in vivo (stereotaxic injection of Cy5-Tau into WT and CX3CR1−/− mice). The expression of CX3CR1, CX3CL1 and the microglial phagocytic phenotype were studied in brain tissue samples from AD patients. Results Tau binding to CX3CR1 triggers the internalization of the former by microglia, whereas S396 Tau phosphorylation decreases the binding affinity of this protein to CX3CR1. Of note, the progressive increase in the levels of phosho-Tau occurred in parallel with an increase in CX3CR1. In addition, our studies suggest that the phagocytic capacity of microglia in brain tissue samples from AD patients is decreased. Furthermore, the CX3CR1/CX3CL1 axis may be impaired in late stages of the disease. Conclusions Our data suggest that the CX3CR1/CX3CL1 axis plays a key role in the phagocytosis of Tau by microglia in vitro and in vivo and that it is affected as AD progresses. Taken together, our results reveal CX3CR1 as a novel target for the clearance of extracellular Tau. Electronic supplementary material The online version of this article (doi:10.1186/s13024-017-0200-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta Bolós
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28041, Madrid, Spain. .,Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, Universidad Autónoma de Madrid, C/ Nicolás Cabrera 1, 28049, Madrid, Spain.
| | - María Llorens-Martín
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28041, Madrid, Spain.,Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, Universidad Autónoma de Madrid, C/ Nicolás Cabrera 1, 28049, Madrid, Spain.,Department for Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Ramón Perea
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28041, Madrid, Spain.,Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, Universidad Autónoma de Madrid, C/ Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Jerónimo Jurado-Arjona
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28041, Madrid, Spain.,Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, Universidad Autónoma de Madrid, C/ Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Alberto Rábano
- Neuropathology Department, CIEN Foundation, Madrid, Spain
| | - Félix Hernández
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28041, Madrid, Spain.,Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, Universidad Autónoma de Madrid, C/ Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Jesús Avila
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28041, Madrid, Spain. .,Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, Universidad Autónoma de Madrid, C/ Nicolás Cabrera 1, 28049, Madrid, Spain.
| |
Collapse
|
90
|
Rojas-Gutierrez E, Muñoz-Arenas G, Treviño S, Espinosa B, Chavez R, Rojas K, Flores G, Díaz A, Guevara J. Alzheimer's disease and metabolic syndrome: A link from oxidative stress and inflammation to neurodegeneration. Synapse 2017. [PMID: 28650104 DOI: 10.1002/syn.21990] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and one of the most important causes of morbidity and mortality among the aging population. AD diagnosis is made post-mortem, and the two pathologic hallmarks, particularly evident in the end stages of the illness, are amyloid plaques and neurofibrillary tangles. Currently, there is no curative treatment for AD. Additionally, there is a strong relation between oxidative stress, metabolic syndrome, and AD. The high levels of circulating lipids and glucose imbalances amplify lipid peroxidation that gradually diminishes the antioxidant systems, causing high levels of oxidative metabolism that affects cell structure, leading to neuronal damage. Accumulating evidence suggests that AD is closely related to a dysfunction of both insulin signaling and glucose metabolism in the brain, leading to an insulin-resistant brain state. Four drugs are currently used for this pathology: Three FDA-approved cholinesterase inhibitors and one NMDA receptor antagonist. However, wide varieties of antioxidants are promissory to delay or prevent the symptoms of AD and may help in treating the disease. Therefore, therapeutic efforts to achieve attenuation of oxidative stress could be beneficial in AD treatment, attenuating Aβ-induced neurotoxicity and improve neurological outcomes in AD. The term inflammaging characterizes a widely accepted paradigm that aging is accompanied by a low-grade chronic up-regulation of certain pro-inflammatory responses in the absence of overt infection, and is a highly significant risk factor for both morbidity and mortality in the elderly.
Collapse
Affiliation(s)
- Eduardo Rojas-Gutierrez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Guadalupe Muñoz-Arenas
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Blanca Espinosa
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias-INER, Ciudad de México, Mexico
| | - Raúl Chavez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Karla Rojas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Jorge Guevara
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
91
|
Piacentini R, Puma DDL, Mainardi M, Lazzarino G, Tavazzi B, Arancio O, Grassi C. Reduced gliotransmitter release from astrocytes mediates tau-induced synaptic dysfunction in cultured hippocampal neurons. Glia 2017; 65:1302-1316. [PMID: 28519902 PMCID: PMC5520670 DOI: 10.1002/glia.23163] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 01/19/2023]
Abstract
Tau is a microtubule-associated protein exerting several physiological functions in neurons. In Alzheimer's disease (AD) misfolded tau accumulates intraneuronally and leads to axonal degeneration. However, tau has also been found in the extracellular medium. Recent studies indicated that extracellular tau uploaded from neurons causes synaptic dysfunction and contributes to tau pathology propagation. Here we report novel evidence that extracellular tau oligomers are abundantly and rapidly accumulated in astrocytes where they disrupt intracellular Ca2+ signaling and Ca2+ -dependent release of gliotransmitters, especially ATP. Consequently, synaptic vesicle release, the expression of pre- and postsynaptic proteins, and mEPSC frequency and amplitude were reduced in neighboring neurons. Notably, we found that tau uploading from astrocytes required the amyloid precursor protein, APP. Collectively, our findings suggests that astrocytes play a critical role in the synaptotoxic effects of tau via reduced gliotransmitter availability, and that astrocytes are major determinants of tau pathology in AD.
Collapse
Affiliation(s)
- Roberto Piacentini
- Institute of Human Physiology, Medical School, Università Cattolica, Largo F. Vito 1, 00168, Rome, Italy
| | - Domenica Donatella Li Puma
- Institute of Human Physiology, Medical School, Università Cattolica, Largo F. Vito 1, 00168, Rome, Italy
| | - Marco Mainardi
- Institute of Human Physiology, Medical School, Università Cattolica, Largo F. Vito 1, 00168, Rome, Italy
| | - Giacomo Lazzarino
- Institute of Biochemistry and Clinical Biochemistry, Medical School, Università Cattolica, Largo F. Vito 1, 00168, Rome, Italy
| | - Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Medical School, Università Cattolica, Largo F. Vito 1, 00168, Rome, Italy
| | - Ottavio Arancio
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, 630 W 168th St., NY 10032 USA
| | - Claudio Grassi
- Institute of Human Physiology, Medical School, Università Cattolica, Largo F. Vito 1, 00168, Rome, Italy
| |
Collapse
|
92
|
Sepulcre J, Grothe MJ, Sabuncu M, Chhatwal J, Schultz AP, Hanseeuw B, El Fakhri G, Sperling R, Johnson KA. Hierarchical Organization of Tau and Amyloid Deposits in the Cerebral Cortex. JAMA Neurol 2017; 74:813-820. [PMID: 28558094 DOI: 10.1001/jamaneurol.2017.0263] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Importance Abnormal accumulation of tau and amyloid-β (Aβ) proteins in the human brain are 2 pathologic hallmarks of Alzheimer disease (AD). Because pathologic processes begin decades before the onset of the clinical manifestations, the study of the cortical distribution of early-stage pathologic alterations is critical in understanding the underpinnings of the disease. Objectives To identify the in vivo brain spatial distributions of tau and Aβ deposits in a sample of cognitively normal participants in the Harvard Aging Brain Study, determine spatial patterns of pathologic alterations, and provide means for improved individual in vivo staging. Design, Setting, and Participants Eighty-eight individuals from the general community underwent flortaucipir 18 T807 (18F-T807) and carbon 11-labeled Pittsburgh Compound B (11C-PiB) positron emission tomographic (PET) imaging. A voxel-level hierarchical clustering approach was used to obtain the main clustering partitions corresponding to the cortical distribution maps of 18F-T807 and 11C-PiB. Hierarchical relationships between areas of distinctive pathologic deposits were then studied. Using cerebellar gray reference, 18F-T807 data were expressed as standardized uptake value ratio, and 11C-PiB were given as distribution volume ratio. Main Outcomes and Measures Main in vivo and hierarchically organized tau and Aβ deposits in the elderly brain. Results Of the 88 study participants, 39 (44%) were men, with a mean (SD) age of 76.2 (6.2) years. The tau and Aβ maps both displayed optimal cortical partitions at 4 clusters. The tau deposits were grouped in the temporal lobe, distributed in heteromodal areas, medial and visual regions, and primary somatomotor cortex; the Aβ deposits were clustered in the heteromodal areas and rather patchy in distributed regions involving the primary cortices, medial structures, and temporal areas. Moreover, tau deposits in the temporal lobe and distributed heteromodal areas were tightly nested. Conclusions and Relevance Tau and Aβ deposits in the elderly brain generally display well-defined hierarchical cortical relationships as well as overlaps between the principal clusters of both pathologic alterations in the heteromodal association regions. These findings represent systematic, large-scale mechanisms of early AD pathology.
Collapse
Affiliation(s)
- Jorge Sepulcre
- Gordon Center for Medical Imaging, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts2Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
| | - Michel J Grothe
- German Center for Neurodegenerative Diseases, Rostock, Germany
| | - Mert Sabuncu
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
| | - Jasmeer Chhatwal
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
| | - Aaron P Schultz
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
| | - Bernard Hanseeuw
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Reisa Sperling
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts4Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts5Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Keith A Johnson
- Gordon Center for Medical Imaging, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts4Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts5Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
93
|
In Vivo Tau, Amyloid, and Gray Matter Profiles in the Aging Brain. J Neurosci 2017; 36:7364-74. [PMID: 27413148 DOI: 10.1523/jneurosci.0639-16.2016] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/19/2016] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED We provide a comparative in vivo examination of the brain network-based distribution of two hallmarks of Alzheimer's disease (AD) pathology in cognitively normal individuals: (1) Tau, detected with a novel positron emission tomography (PET) tracer known as (18)F-AV-1451; and (2) amyloid-β, quantified with (11)C-PiB PET. We used a high-resolution graph-based approach to investigate local-to-local and local-to-distributed cortical associations between the maps of Tau, amyloid-β, and gray matter intensity. Our study shows that Tau and amyloid-β deposits are associated with distinctive spatial patterns of brain tissue loss. Moreover, Tau and amyloid-β accumulations have strong network interdigitations in heteromodal and associative areas of the cortical mantle, particularly the inferior-lateral temporal lobe. These findings contribute significantly to our understanding of how these two main hallmarks of AD pathology propagate across the elderly human brain. SIGNIFICANCE STATEMENT It has been postulated that Alzheimer's disease (AD) pathology interacts and resides within system-level circuits of the human brain, long before the onset of cognitive symptoms. However, a side-by-side comparison of tissue loss, amyloid-β, and Tau deposition in early stages of the disease has been precluded until the recent advent of Tau tracer-based neuroimaging. In this study, we used Tau positron emission tomography and network analyses to disentangle these pathological relationships. We found that Tau and amyloid-β deposits are associated with distinctive spatial patterns of brain tissue loss. Moreover, we uncovered the network interdigitations of Tau and amyloid-β in the cortical mantle. These findings contribute significantly to our understanding of how two main hallmarks of AD pathology propagate across the elderly human brain.
Collapse
|
94
|
Tau Accumulation, Altered Phosphorylation, and Missorting Promote Neurodegeneration in Glaucoma. J Neurosci 2017; 36:5785-98. [PMID: 27225768 DOI: 10.1523/jneurosci.3986-15.2016] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/13/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Glaucoma, the leading cause of irreversible blindness worldwide, is characterized by the selective death of retinal ganglion cells (RGCs). Ocular hypertension is the most significant known risk factor for developing the disease, but the mechanism by which elevated pressure damages RGCs is currently unknown. The axonal-enriched microtubule-associated protein tau is a key mediator of neurotoxicity in Alzheimer's disease and other tauopathies. Using a well characterized in vivo rat glaucoma model, we show an age-related increase in endogenous retinal tau that was markedly exacerbated by ocular hypertension. Early alterations in tau phosphorylation, characterized by epitope-dependent hyperphosphorylation and hypophosphorylation, correlated with the appearance of tau oligomers in glaucomatous retinas. Our data demonstrate the mislocalization of tau in the somatodendritic compartment of RGCs subjected to high intraocular pressure. In contrast, tau was depleted from RGC axons in the optic nerve of glaucomatous eyes. Importantly, intraocular administration of short interfering RNA against tau effectively reduced retinal tau accumulation and promoted robust survival of RGC somas and axons, supporting a critical role for tau alterations in ocular hypertension-induced neuronal damage. Our study reveals that glaucoma displays signature pathological features of tauopathies, including tau accumulation, altered phosphorylation, and missorting; and identifies tau as a novel target to counter RGC neurodegeneration in glaucoma and prevalent optic neuropathies. SIGNIFICANCE STATEMENT In this study, we investigated the role of tau in retinal ganglion cell (RGC) damage in glaucoma. We demonstrate that high intraocular pressure leads to a rapid increase in endogenous retinal tau with altered phosphorylation profile and the formation of tau oligomers. Tau accumulation was primarily observed in RGC dendrites, while tau in RGC axons within the optic nerve was depleted. Attenuation of endogenous retinal tau using a targeted siRNA led to striking protection of RGC somas and axons from hypertension-induced damage. Our study identifies novel and substantial alterations of endogenous tau protein in glaucoma, including abnormal subcellular distribution, an altered phosphorylation profile, and neurotoxicity.
Collapse
|
95
|
Kaniyappan S, Chandupatla RR, Mandelkow EM, Mandelkow E. Extracellular low-n oligomers of tau cause selective synaptotoxicity without affecting cell viability. Alzheimers Dement 2017; 13:1270-1291. [PMID: 28528849 DOI: 10.1016/j.jalz.2017.04.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/27/2017] [Accepted: 04/11/2017] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Tau-mediated toxicity in Alzheimer's disease is thought to operate through low-n oligomers, rather than filamentous aggregates. However, the nature of oligomers and pathways of toxicity are poorly understood. Therefore, we investigated structural and functional aspects of highly purified oligomers of a pro-aggregant tau species. METHODS Purified oligomers of the tau repeat domain were characterized by biophysical and structural methods. Functional aspects were investigated by cellular assays ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay of cell viability, lactate dehydrogenase release assay [for cell toxicity], reactive oxygen species production, and calcium assay), combined with analysis of neuronal dendritic spines exposed to oligomers. RESULTS Purified low-n oligomers are roughly globular, with sizes around 1.6 to 5.4 nm, exhibit an altered conformation, but do not have substantial β-structure. Treatment of primary neurons with oligomers impairs spine morphology and density, accompanied by increased reactive oxygen species and intracellular calcium, but without affecting cell viability (by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay of cell viability and lactate dehydrogenase release assay [for cell toxicity]). DISCUSSION Tau oligomers are toxic to synapses but not lethal to cells.
Collapse
Affiliation(s)
- Senthilvelrajan Kaniyappan
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany; MPI for Metabolism Research, Hamburg, Germany.
| | - Ram Reddy Chandupatla
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany; MPI for Metabolism Research, Hamburg, Germany
| | - Eva-Maria Mandelkow
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany; MPI for Metabolism Research, Hamburg, Germany; CAESAR Research Center, Bonn, Germany
| | - Eckhard Mandelkow
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany; MPI for Metabolism Research, Hamburg, Germany; CAESAR Research Center, Bonn, Germany.
| |
Collapse
|
96
|
Primary motor cortex alterations in Alzheimer disease: A study in the 3xTg-AD model. Neurologia 2017; 34:429-436. [PMID: 28433262 DOI: 10.1016/j.nrl.2017.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/04/2017] [Accepted: 02/07/2017] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION In humans and animal models, Alzheimer disease (AD) is characterised by accumulation of amyloid-β peptide (Aβ) and hyperphosphorylated tau protein, neuronal degeneration, and astrocytic gliosis, especially in vulnerable brain regions (hippocampus and cortex). These alterations are associated with cognitive impairment (loss of memory) and non-cognitive impairment (motor impairment). The purpose of this study was to identify cell changes (neurons and glial cells) and aggregation of Aβ and hyperphosphorylated tau protein in the primary motor cortex (M1) in 3xTg-AD mouse models at an intermediate stage of AD. METHODS We used female 3xTg-AD mice aged 11 months and compared them to non-transgenic mice of the same age. In both groups, we assessed motor performance (open field test) and neuronal damage in M1 using specific markers: BAM10 (extracellular Aβ aggregates), tau 499 (hyperphosphorylated tau protein), GFAP (astrocytes), and Klüver-Barrera staining (neurons). RESULTS Female 3xTg-AD mice in intermediate stages of the disease displayed motor and cellular alterations associated with Aβ and hyperphosphorylated tau protein deposition in M1. CONCLUSIONS Patients with AD display signs and symptoms of functional impairment from early stages. According to our results, M1 cell damage in intermediate-stage AD affects motor function, which is linked to progression of the disease.
Collapse
|
97
|
Shafiei SS, Guerrero-Muñoz MJ, Castillo-Carranza DL. Tau Oligomers: Cytotoxicity, Propagation, and Mitochondrial Damage. Front Aging Neurosci 2017; 9:83. [PMID: 28420982 PMCID: PMC5378766 DOI: 10.3389/fnagi.2017.00083] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/16/2017] [Indexed: 11/13/2022] Open
Abstract
Aging has long been considered as the main risk factor for several neurodegenerative disorders including a large group of diseases known as tauopathies. Even though neurofibrillary tangles (NFTs) have been examined as the main histopathological hallmark, they do not seem to play a role as the toxic entities leading to disease. Recent studies suggest that an intermediate form of tau, prior to NFT formation, the tau oligomer, is the true toxic species. However, the mechanisms by which tau oligomers trigger neurodegeneration remain unknown. This review summarizes recent findings regarding the role of tau oligomers in disease, including release from cells, propagation from affected to unaffected brain regions, uptake into cells, and toxicity via mitochondrial dysfunction. A greater understanding of tauopathies may lead to future advancements in regards to prevention and treatment.
Collapse
Affiliation(s)
- Scott S Shafiei
- Department of Neurology, Neuroscience and Cell Biology, University of Texas Medical BranchGalveston, TX, USA
| | | | | |
Collapse
|
98
|
Does neuroinflammation drive the relationship between tau hyperphosphorylation and dementia development following traumatic brain injury? Brain Behav Immun 2017; 60:369-382. [PMID: 27686843 DOI: 10.1016/j.bbi.2016.09.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/06/2016] [Accepted: 09/25/2016] [Indexed: 12/14/2022] Open
Abstract
A history of traumatic brain injury (TBI) is linked to an increased risk for the later development of dementia. This encompasses a variety of neurodegenerative diseases including Alzheimer's Disease (AD) and chronic traumatic encephalopathy (CTE), with AD linked to history of moderate-severe TBI and CTE to a history of repeated concussion. Of note, both AD and CTE are characterized by the abnormal accumulation of hyperphosphorylated tau aggregates, which are thought to play an important role in the development of neurodegeneration. Hyperphosphorylation of tau leads to destabilization of microtubules, interrupting axonal transport, whilst tau aggregates are associated with synaptic dysfunction. The exact mechanisms via which TBI may promote the later tauopathy and its role in the later development of dementia are yet to be fully determined. Following TBI, it is proposed that axonal injury may provide the initial perturbation of tau, by promoting its dissociation from microtubules, facilitating its phosphorylation and aggregation. Altered tau dynamics may then be exacerbated by the chronic persistent inflammatory response that has been shown to persist for decades following the initial impact. Importantly, immune activation has been shown to play a role in accelerating disease progression in other tauopathies, with pro-inflammatory cytokines, like IL-1β, shown to activate kinases that promote tau hyperphosphorylation. Thus, targeting the inflammatory response in the sub-acute phase following TBI may represent a promising target to halt the alterations in tau dynamics that may precede overt neurodegeneration and later development of dementia.
Collapse
|
99
|
Dinkins MB, Wang G, Bieberich E. Sphingolipid-Enriched Extracellular Vesicles and Alzheimer's Disease: A Decade of Research. J Alzheimers Dis 2017; 60:757-768. [PMID: 27662306 PMCID: PMC5360538 DOI: 10.3233/jad-160567] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs), particularly exosomes, have emerged in the last 10 years as a new player in the progression of Alzheimer's disease (AD) with high potential for being useful as a diagnostic and treatment tool. Exosomes and other EVs are enriched with the sphingolipid ceramide as well as other more complex glycosphingolipids such as gangliosides. At least a subpopulation of exosomes requires neutral sphingomyelinase activity for their biogenesis and secretion. As ceramide is often elevated in AD, exosome secretion may be affected as well. Here, we review the available data showing that exosomes regulate the aggregation and clearance of amyloid-beta (Aβ) and discuss the differences in data from laboratories regarding Aβ binding, induction of aggregation, and glial clearance. We also summarize available data on the role of exosomes in extracellular tau propagation, AD-related exosomal mRNA/miRNA cargo, and the use of exosomes as biomarker and gene therapy vehicles for diagnosis and potential treatment.
Collapse
Affiliation(s)
- Michael B. Dinkins
- Department of Neuroscience and Regenerative Medicine, The Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| | - Guanghu Wang
- Department of Neuroscience and Regenerative Medicine, The Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| | - Erhard Bieberich
- Department of Neuroscience and Regenerative Medicine, The Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| |
Collapse
|
100
|
Mulloy B, Hogwood J, Gray E, Lever R, Page CP. Pharmacology of Heparin and Related Drugs. Pharmacol Rev 2016; 68:76-141. [PMID: 26672027 DOI: 10.1124/pr.115.011247] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heparin has been recognized as a valuable anticoagulant and antithrombotic for several decades and is still widely used in clinical practice for a variety of indications. The anticoagulant activity of heparin is mainly attributable to the action of a specific pentasaccharide sequence that acts in concert with antithrombin, a plasma coagulation factor inhibitor. This observation has led to the development of synthetic heparin mimetics for clinical use. However, it is increasingly recognized that heparin has many other pharmacological properties, including but not limited to antiviral, anti-inflammatory, and antimetastatic actions. Many of these activities are independent of its anticoagulant activity, although the mechanisms of these other activities are currently less well defined. Nonetheless, heparin is being exploited for clinical uses beyond anticoagulation and developed for a wide range of clinical disorders. This article provides a "state of the art" review of our current understanding of the pharmacology of heparin and related drugs and an overview of the status of development of such drugs.
Collapse
Affiliation(s)
- Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Rebecca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| |
Collapse
|