51
|
The molecular mechanisms controlling morphogenesis and wiring of the habenula. Pharmacol Biochem Behav 2017; 162:29-37. [PMID: 28843424 DOI: 10.1016/j.pbb.2017.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 07/07/2017] [Accepted: 08/21/2017] [Indexed: 11/22/2022]
Abstract
The habenula is an evolutionarily conserved brain region comprising bilaterally paired nuclei that plays a key role in processing reward information and mediating aversive responses to negative stimuli. An important aspect underlying habenula function is relaying information between forebrain and mid- and hindbrain areas. This is mediated by its complex organization into multiple subdomains and corresponding complexity in circuit organization. Additionally, in many species habenular nuclei display left-right differences at the anatomical and functional level. In order to ensure proper functional organization of habenular circuitry, sophisticated molecular programs control the morphogenesis and wiring of the habenula during development. Knowledge of how these mechanisms shape the habenula is crucial for obtaining a complete understanding of this brain region and can provide invaluable tools to study habenula evolution and function. In this review we will discuss how these molecular mechanisms pattern the early embryonic nervous system and control the formation of the habenula, how they shape its asymmetric organization, and how these mechanisms ensure proper wiring of the habenular circuit. Finally, we will address unexplored aspects of habenula development and how these may direct future research.
Collapse
|
52
|
Mendoza J. Circadian neurons in the lateral habenula: Clocking motivated behaviors. Pharmacol Biochem Behav 2017; 162:55-61. [PMID: 28666896 DOI: 10.1016/j.pbb.2017.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/30/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022]
Abstract
The main circadian clock in mammals is located in the hypothalamic suprachiasmatic nucleus (SCN), however, central timing mechanisms are also present in other brain structures beyond the SCN. The lateral habenula (LHb), known for its important role in the regulation of the monoaminergic system, contains such a circadian clock whose molecular and cellular mechanisms as well as functional role are not well known. However, since monoaminergic systems show circadian activity, it is possible that the LHb-clock's role is to modulate the rhythmic activity of the dopamine, serotonin and norephinephrine systems, and associated behaviors. Moreover, the LHb is involved in different pathological states such as depression, addiction and schizophrenia, states in which sleep and circadian alterations have been reported. Thus, perturbations of circadian activity in the LHb might, in part, be a cause of these rhythmic alterations in psychiatric ailments. In this review the current state of the LHb clock and its possible implications in the control of monoaminergic systems rhythms, motivated behaviors (e.g., feeding, drug intake) and depression (with circadian disruptions and altered motivation) will be discussed.
Collapse
Affiliation(s)
- Jorge Mendoza
- Institute of Cellular and Integrative Neuroscience, CNRS-UPR 3212 Strasbourg France, 5 rue Blaise Pascal, 67084 cedex Strasbourg, France.
| |
Collapse
|
53
|
Roberson S, Halpern ME. Convergence of signaling pathways underlying habenular formation and axonal outgrowth in zebrafish. Development 2017; 144:2652-2662. [PMID: 28619821 DOI: 10.1242/dev.147751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/07/2017] [Indexed: 12/20/2022]
Abstract
The habenular nuclei are a conserved integrating center in the vertebrate epithalamus, where they modulate diverse behaviors. Despite their importance, our understanding of habenular development is incomplete. Time-lapse imaging and fate mapping demonstrate that the dorsal habenulae (dHb) of zebrafish are derived from dbx1b-expressing (dbx1b+ ) progenitors, which transition into cxcr4b-expressing neuronal precursors. The precursors give rise to differentiated neurons, the axons of which innervate the midbrain interpeduncular nucleus (IPN). Formation of the dbx1b+ progenitor population relies on the activity of the Shh, Wnt and Fgf signaling pathways. Wnt and Fgf function additively to generate dHb progenitors. Surprisingly, Wnt signaling also negatively regulates fgf8a, confining expression to a discrete dorsal diencephalic domain. Moreover, the Wnt and Fgf pathways have opposing roles in transcriptional regulation of components of the Cxcr4-chemokine signaling pathway. The chemokine pathway, in turn, directs the posterior outgrowth of dHb efferents toward the IPN and, when disrupted, results in ectopic, anteriorly directed axonal projections. The results define a signaling network underlying the generation of dHb neurons and connectivity with their midbrain target.
Collapse
Affiliation(s)
- Sara Roberson
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| | - Marnie E Halpern
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA .,Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| |
Collapse
|
54
|
Torrisi S, Nord CL, Balderston NL, Roiser JP, Grillon C, Ernst M. Resting state connectivity of the human habenula at ultra-high field. Neuroimage 2017; 147:872-879. [PMID: 27780778 PMCID: PMC5303669 DOI: 10.1016/j.neuroimage.2016.10.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/03/2016] [Accepted: 10/20/2016] [Indexed: 11/24/2022] Open
Abstract
The habenula, a portion of the epithalamus, is implicated in the pathophysiology of depression, anxiety and addiction disorders. Its small size and connection to other small regions prevent standard human imaging from delineating its structure and connectivity with confidence. Resting state functional connectivity is an established method for mapping connections across the brain from a seed region of interest. The present study takes advantage of 7T fMRI to map, for the first time, the habenula resting state network with very high spatial resolution in 32 healthy human participants. Results show novel functional connections in humans, including functional connectivity with the septum and bed nucleus of the stria terminalis (BNST). Results also show many habenula connections previously described only in animal research, such as with the nucleus basalis of Meynert, dorsal raphe, ventral tegmental area (VTA), and periaqueductal grey (PAG). Connectivity with caudate, thalamus and cortical regions such as the anterior cingulate, retrosplenial cortex and auditory cortex are also reported. This work, which demonstrates the power of ultra-high field for mapping human functional connections, is a valuable step toward elucidating subcortical and cortical regions of the habenula network.
Collapse
Affiliation(s)
- Salvatore Torrisi
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, United States
| | - Camilla L Nord
- Neuroscience and Cognitive Neuropsychiatry group, University of College, London, UK
| | - Nicholas L Balderston
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, United States
| | - Jonathan P Roiser
- Neuroscience and Cognitive Neuropsychiatry group, University of College, London, UK
| | - Christian Grillon
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, United States
| | - Monique Ernst
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, United States
| |
Collapse
|
55
|
Boulos LJ, Darcq E, Kieffer BL. Translating the Habenula-From Rodents to Humans. Biol Psychiatry 2017; 81:296-305. [PMID: 27527822 PMCID: PMC5143215 DOI: 10.1016/j.biopsych.2016.06.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/28/2016] [Accepted: 06/01/2016] [Indexed: 12/21/2022]
Abstract
The habenula (Hb) is a central structure connecting forebrain to midbrain regions. This microstructure regulates monoaminergic systems, notably dopamine and serotonin, and integrates cognitive with emotional and sensory processing. Early preclinical data have described Hb as a brain nucleus activated in anticipation of aversive outcomes. Evidence has now accumulated to show that the Hb encodes both rewarding and aversive aspects of external stimuli, thus driving motivated behaviors and decision making. Human Hb research is still nascent but develops rapidly, alongside with the growth of neuroimaging and deep brain stimulation techniques. Not surprisingly, Hb dysfunction has been associated with psychiatric disorders, and studies in patients have established evidence for Hb involvement in major depression, addiction, and schizophrenia, as well as in pain and analgesia. Here, we summarize current knowledge from animal research and overview the existing human literature on anatomy and function of the Hb. We also discuss challenges and future directions in targeting this small brain structure in both rodents and humans. By combining animal data and human experimental studies, this review addresses the translational potential of preclinical Hb research.
Collapse
Affiliation(s)
- Laura-Joy Boulos
- Douglas Hospital Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Emmanuel Darcq
- Douglas Hospital Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Brigitte Lina Kieffer
- Douglas Hospital Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
56
|
Duboué ER, Halpern ME. Genetic and Transgenic Approaches to Study Zebrafish Brain Asymmetry and Lateralized Behavior. LATERALIZED BRAIN FUNCTIONS 2017. [DOI: 10.1007/978-1-4939-6725-4_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
57
|
Loonen AJM, Ivanova SA. Circuits Regulating Pleasure and Happiness-Mechanisms of Depression. Front Hum Neurosci 2016; 10:571. [PMID: 27891086 PMCID: PMC5102894 DOI: 10.3389/fnhum.2016.00571] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 10/27/2016] [Indexed: 01/22/2023] Open
Abstract
According to our model of the regulation of appetitive-searching vs. distress-avoiding behaviors, the motivation to display these essential conducts is regulated by two parallel cortico-striato-thalamo-cortical, re-entry circuits, including the core and the shell parts of the nucleus accumbens, respectively. An entire series of basal ganglia, running from the caudate nucleus on one side, to the centromedial amygdala on the other side, controls the intensity of these reward-seeking and misery-fleeing behaviors by stimulating the activity of the (pre)frontal and limbic cortices. Hyperactive motivation to display behavior that potentially results in reward induces feelings of hankering (relief leads to pleasure). Hyperactive motivation to exhibit behavior related to avoidance of misery results in dysphoria (relief leads to happiness). These two systems collaborate in a reciprocal fashion. In clinical depression, a mismatch exists between the activities of these two circuits: the balance is shifted to the misery-avoiding side. Five theories have been developed to explain the mechanism of depressive mood disorders, including the monoamine, biorhythm, neuro-endocrine, neuro-immune, and kindling/neuroplasticity theories. This paper describes these theories in relationship to the model (described above) of the regulation of reward-seeking vs. misery-avoiding behaviors. Chronic stress that leads to structural changes may induce the mismatch between the two systems. This mismatch leads to lack of pleasure, low energy, and indecisiveness, on one hand, and dysphoria, continuous worrying, and negative expectations on the other hand. The neuroplastic effects of monoamines, cortisol, and cytokines may mediate the induction of these structural alterations. Long-term exposure to stressful situations (particularly experienced during childhood) may lead to increased susceptibility for developing this condition. This hypothesis opens up the possibility of treating depression with psychotherapy. Genetic and other biological factors (toxic, infectious, or traumatic) may increase sensitivity to the induction of relevant neuroplastic changes. Reversal or compensation of these neuroplastic adjustments may explain the effects of biological therapies in treating depression.
Collapse
Affiliation(s)
- Anton J. M. Loonen
- Department of Pharmacy, University of GroningenGroningen, Netherlands
- GGZ WNB, Mental Health HospitalBergen op Zoom, Netherlands
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of SciencesTomsk, Russia
- National Research Tomsk Polytechnic UniversityTomsk, Russia
| |
Collapse
|
58
|
Hartung H, Tan SKH, Temel Y, Sharp T. High-frequency stimulation of the subthalamic nucleus modulates neuronal activity in the lateral habenula nucleus. Eur J Neurosci 2016; 44:2698-2707. [PMID: 27623306 DOI: 10.1111/ejn.13397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/09/2016] [Accepted: 09/10/2016] [Indexed: 11/27/2022]
Abstract
High-frequency stimulation (HFS) of the subthalamic nucleus (STN) is often used to treat movement disability in advanced Parkinson's disease, but some patients experience debilitating psychiatric effects including depression. Interestingly, HFS of the STN modulates 5-HT neurons in the dorsal raphe nucleus (DRN) which are linked to depression, but the neural substrate of this effect is unknown. Here, we tested the effect of STN stimulation on neuronal activity in the lateral habenula nucleus (LHb), an important source of input to DRN 5-HT neurons and also a key controller of emotive behaviours. LHb neurons were monitored in anaesthetized rats using single-unit extracellular recording, and localization within the LHb was confirmed by juxtacellular labelling. HFS of the STN (130 Hz) evoked rapid changes in the firing rate of the majority of LHb neurons tested (38 of 68). Some LHb neurons (19/68) were activated by HFS, while others (19/68), distinguished by a higher basal firing rate, were inhibited. LHb neurons that project to the DRN were identified using antidromic activation and collision testing (n = 17 neurons). Some of these neurons (5/17) were also excited by HFS of the STN, and others (7/17) were inhibited although this was only a statistical trend. In summary, HFS of the STN modulated the firing of LHb neurons, including those projecting to the DRN. The data identify that the STN impacts on the LHb-DRN pathway. Moreover, this pathway may be part of the circuitry mediating the psychiatric effects of STN stimulation experienced by patients with Parkinson's disease.
Collapse
Affiliation(s)
- Henrike Hartung
- University Department of Pharmacology, Mansfield Road, Oxford, OX1 3QT, UK
| | - Sonny K H Tan
- Departments of Neuroscience and Neurosurgery, Maastricht University, Maastricht, The Netherlands.,Department of Neurosurgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Yasin Temel
- Departments of Neuroscience and Neurosurgery, Maastricht University, Maastricht, The Netherlands
| | - Trevor Sharp
- University Department of Pharmacology, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
59
|
Optogenetic activation of septal GABAergic afferents entrains neuronal firing in the medial habenula. Sci Rep 2016; 6:34800. [PMID: 27703268 PMCID: PMC5050514 DOI: 10.1038/srep34800] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/20/2016] [Indexed: 01/01/2023] Open
Abstract
The medial habenula (MHb) plays an important role in nicotine-related behaviors such as nicotine aversion and withdrawal. The MHb receives GABAergic input from the medial septum/diagonal band of Broca (MS/DB), yet the synaptic mechanism that regulates MHb activity is unclear. GABA (γ -aminobutyric acid) is a major inhibitory neurotransmitter activating both GABAA receptors and GABAB receptors. Depending on intracellular chloride concentration, however, GABAA receptors also function in an excitatory manner. In the absence of various synaptic inputs, we found that MHb neurons displayed spontaneous tonic firing at a rate of about ~4.4 Hz. Optogenetic stimulation of MS/DB inputs to the MHb evoked GABAA receptor-mediated synaptic currents, which produced stimulus-locked neuronal firing. Subsequent delayed yet lasting activation of GABAB receptors attenuated the intrinsic tonic firing. Consequently, septal GABAergic input alone orchestrates both excitatory GABAA and inhibitory GABAB receptors, thereby entraining the firing of MHb neurons.
Collapse
|
60
|
Nagalski A, Puelles L, Dabrowski M, Wegierski T, Kuznicki J, Wisniewska MB. Molecular anatomy of the thalamic complex and the underlying transcription factors. Brain Struct Funct 2016; 221:2493-510. [PMID: 25963709 PMCID: PMC4884203 DOI: 10.1007/s00429-015-1052-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 04/27/2015] [Indexed: 01/19/2023]
Abstract
Thalamocortical loops have been implicated in the control of higher-order cognitive functions, but advances in our understanding of the molecular underpinnings of neocortical organization have not been accompanied by similar analyses in the thalamus. Using expression-based correlation maps and the manual mapping of mouse and human datasets available in the Allen Brain Atlas, we identified a few individual regions and several sets of molecularly related nuclei that partially overlap with the classic grouping that is based on topographical localization and thalamocortical connections. These new molecular divisions of the adult thalamic complex are defined by the combinatorial expression of Tcf7l2, Lef1, Gbx2, Prox1, Pou4f1, Esrrg, and Six3 transcription factor genes. Further in silico and experimental analyses provided the evidence that TCF7L2 might be a pan-thalamic specifier. These results provide substantial insights into the "molecular logic" that underlies organization of the thalamic complex.
Collapse
Affiliation(s)
- Andrzej Nagalski
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, Warsaw, 00-927, Poland
| | - Luis Puelles
- Department of Human Anatomy, University of Murcia and IMIB, Murcia, 30071, Spain
| | - Michal Dabrowski
- Laboratory of Bioinformatics, Center of Neurobiology, Nencki Institute of Experimental Biology, Warsaw, 02-093, Poland
| | - Tomasz Wegierski
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
| | - Jacek Kuznicki
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
| | - Marta B Wisniewska
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland.
- Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, Warsaw, 00-927, Poland.
| |
Collapse
|
61
|
Turner KJ, Hawkins TA, Yáñez J, Anadón R, Wilson SW, Folgueira M. Afferent Connectivity of the Zebrafish Habenulae. Front Neural Circuits 2016; 10:30. [PMID: 27199671 PMCID: PMC4844923 DOI: 10.3389/fncir.2016.00030] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/04/2016] [Indexed: 11/13/2022] Open
Abstract
The habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates. Here we describe the main afferents to the habenulae in larval and adult zebrafish. We observe afferents from the subpallium, nucleus rostrolateralis, posterior tuberculum, posterior hypothalamic lobe, median raphe; we also see asymmetric afferents from olfactory bulb to the right habenula, and from the parapineal to the left habenula. In addition, we find afferents from a ventrolateral telencephalic nucleus that neurochemical and hodological data identify as the ventral entopeduncular nucleus (vENT), confirming and extending observations of Amo et al. (2014). Fate map and marker studies suggest that vENT originates from the diencephalic prethalamic eminence and extends into the lateral telencephalon from 48 to 120 hour post-fertilization (hpf). No afferents to the habenula were observed from the dorsal entopeduncular nucleus (dENT). Consequently, we confirm that the vENT (and not the dENT) should be considered as the entopeduncular nucleus "proper" in zebrafish. Furthermore, comparison with data in other vertebrates suggests that the vENT is a conserved basal ganglia nucleus, being homologous to the entopeduncular nucleus of mammals (internal segment of the globus pallidus of primates) by both embryonic origin and projections, as previously suggested by Amo et al. (2014).
Collapse
Affiliation(s)
- Katherine J. Turner
- Department of Cell and Developmental Biology, University College London (UCL)London, UK
| | - Thomas A. Hawkins
- Department of Cell and Developmental Biology, University College London (UCL)London, UK
| | - Julián Yáñez
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Cell and Molecular Biology, University of A Coruña (UDC)A Coruña, Spain
| | - Ramón Anadón
- Department of Cell Biology and Ecology, Faculty of Biology, University of Santiago de CompostelaSantiago de Compostela, Spain
| | - Stephen W. Wilson
- Department of Cell and Developmental Biology, University College London (UCL)London, UK
| | - Mónica Folgueira
- Department of Cell and Developmental Biology, University College London (UCL)London, UK
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Cell and Molecular Biology, University of A Coruña (UDC)A Coruña, Spain
| |
Collapse
|
62
|
Human habenula segmentation using myelin content. Neuroimage 2016; 130:145-156. [PMID: 26826517 DOI: 10.1016/j.neuroimage.2016.01.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 11/23/2022] Open
Abstract
The habenula consists of a pair of small epithalamic nuclei located adjacent to the dorsomedial thalamus. Despite increasing interest in imaging the habenula due to its critical role in mediating subcortical reward circuitry, in vivo neuroimaging research targeting the human habenula has been limited by its small size and low anatomical contrast. In this work, we have developed an objective semi-automated habenula segmentation scheme consisting of histogram-based thresholding, region growing, geometric constraints, and partial volume estimation steps. This segmentation scheme was designed around in vivo 3 T myelin-sensitive images, generated by taking the ratio of high-resolution T1w over T2w images. Due to the high myelin content of the habenula, the contrast-to-noise ratio with the thalamus in the in vivo 3T myelin-sensitive images was significantly higher than the T1w or T2w images alone. In addition, in vivo 7 T myelin-sensitive images (T1w over T2*w ratio images) and ex vivo proton density-weighted images, along with histological evidence from the literature, strongly corroborated the in vivo 3 T habenula myelin contrast used in the proposed segmentation scheme. The proposed segmentation scheme represents a step toward a scalable approach for objective segmentation of the habenula suitable for both morphological evaluation and habenula seed region selection in functional and diffusion MRI applications.
Collapse
|
63
|
Loonen AJM, Ivanova SA. Circuits regulating pleasure and happiness: the evolution of reward-seeking and misery-fleeing behavioral mechanisms in vertebrates. Front Neurosci 2015; 9:394. [PMID: 26557051 PMCID: PMC4615821 DOI: 10.3389/fnins.2015.00394] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/07/2015] [Indexed: 12/21/2022] Open
Abstract
The very first free-moving animals in the oceans over 540 million years ago must have been able to obtain food, territory, and shelter, as well as reproduce. Therefore, they would have needed regulatory mechanisms to induce movements enabling achievement of these prerequisites for survival. It can be useful to consider these mechanisms in primitive chordates, which represent our earliest ancestors, to develop hypotheses addressing how these essential parts of human behavior are regulated and relate to more sophisticated behavioral manifestations such as mood. An animal comparable to lampreys was the earliest known vertebrate with a modern forebrain consisting of old and new cortical parts. Lampreys have a separate dorsal pallium, the forerunner of the most recently developed part of the cerebral cortex. In addition, the lamprey extrapyramidal system (EPS), which regulates movement, is modern. However, in lampreys and their putative forerunners, the hagfishes, the striatum, which is the input part of this EPS, probably corresponds to the human centromedial amygdala, which in higher vertebrates is part of a system mediating fear and anxiety. Both animals have well-developed nuclear habenulae, which are involved in several critical behaviors; in lampreys this system regulates the reward system that reinforces appetitive-seeking behavior or the avoidance system that reinforces flight behavior resulting from negative inputs. Lampreys also have a distinct glutamatergic nucleus, the so-called habenula-projection globus pallidus, which receives input from glutamatergic and GABAergic signals and gives output to the lateral habenula. Via this route, this nucleus influences midbrain monoaminergic nuclei and regulates the food acquisition system. These various structures involved in motor regulation in the lampreys may be conserved in humans and include two complementary mechanisms for reward reinforcement and avoidance behaviors. The first system is associated with experiencing pleasure and the second with happiness. The activities of these mechanisms are regulated by a tract running via the habenula to the upper brainstem. Identifying the human correlate of the lamprey habenula-projecting globus pallidus may help in elucidating the mechanism of the antidepressant effects of glutamatergic drugs.
Collapse
Affiliation(s)
- Anton J M Loonen
- Department of Pharmacy, Geestelijke GezondheidsZorg Westelijk Noord-Brabant Chair of Pharmacotherapy in Psychiatric Patients, University of Groningen Groningen, Netherlands ; Mental Health Institute Westelijk Noord-Brabant Halsteren, Netherlands
| | - Svetlana A Ivanova
- Molecular Biology and Biological Psychiatry, Mental Health Research Institute Tomsk, Russia ; Department of Ecology and Basic Safety, National Research Tomsk Polytechnic University Tomsk, Russia
| |
Collapse
|
64
|
Kuan YS, Roberson S, Akitake CM, Fortuno L, Gamse J, Moens C, Halpern ME. Distinct requirements for Wntless in habenular development. Dev Biol 2015; 406:117-128. [PMID: 26116173 PMCID: PMC4639407 DOI: 10.1016/j.ydbio.2015.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 01/24/2023]
Abstract
Secreted Wnt proteins play pivotal roles in development, including regulation of cell proliferation, differentiation, progenitor maintenance and tissue patterning. The transmembrane protein Wntless (Wls) is necessary for secretion of most Wnts and essential for effective Wnt signaling. During a mutagenesis screen to identify genes important for development of the habenular nuclei in the dorsal forebrain, we isolated a mutation in the sole wls gene of zebrafish and confirmed its identity with a second, independent allele. Early embryonic development appears normal in homozygous wls mutants, but they later lack the ventral habenular nuclei, form smaller dorsal habenulae and otic vesicles, have truncated jaw and fin cartilages and lack swim bladders. Activation of a reporter for β-catenin-dependent transcription is decreased in wls mutants, indicative of impaired signaling by the canonical Wnt pathway, and expression of Wnt-responsive genes is reduced in the dorsal diencephalon. Wnt signaling was previously implicated in patterning of the zebrafish brain and in the generation of left-right (L-R) differences between the bilaterally paired dorsal habenular nuclei. Outside of the epithalamic region, development of the brain is largely normal in wls mutants and, despite their reduced size, the dorsal habenulae retain L-R asymmetry. We find that homozygous wls mutants show a reduction in two cell populations that contribute to the presumptive dorsal habenulae. The results support distinct temporal requirements for Wls in habenular development and reveal a new role for Wnt signaling in the regulation of dorsal habenular progenitors.
Collapse
Affiliation(s)
- Yung-Shu Kuan
- Department of Embryology, Carnegie Institution for Science, USA
| | - Sara Roberson
- Department of Embryology, Carnegie Institution for Science, USA
- Department of Biology, Johns Hopkins University, USA
| | - Courtney M. Akitake
- Department of Embryology, Carnegie Institution for Science, USA
- Department of Biology, Johns Hopkins University, USA
| | - Lea Fortuno
- Department of Embryology, Carnegie Institution for Science, USA
| | - Joshua Gamse
- Department of Biological Sciences, Vanderbilt University, USA
| | - Cecilia Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA
| | - Marnie E. Halpern
- Department of Embryology, Carnegie Institution for Science, USA
- Department of Biology, Johns Hopkins University, USA
| |
Collapse
|
65
|
Nathan FM, Ogawa S, Parhar IS. Neuronal connectivity between habenular glutamate-kisspeptin1 co-expressing neurons and the raphe 5-HT system. J Neurochem 2015; 135:814-29. [PMID: 26250886 PMCID: PMC5049628 DOI: 10.1111/jnc.13273] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 01/24/2023]
Abstract
The habenula, located on the dorsal thalamic surface, is an emotional and reward processing center. As in the mammalian brain, the zebrafish habenula is divided into dorsal (dHb) and ventral (vHb) subdivisions that project to the interpeduncular nucleus and median raphe (MR) respectively. Previously, we have shown that kisspeptin 1 (Kiss1) expressing in the vHb, regulates the serotonin (5‐HT) system in the MR. However, the connectivity between the Kiss1 neurons and the 5‐HT system remains unknown. To resolve this issue, we generated a specific antibody against zebrafish Kiss1 receptor (Kiss‐R1); using this primary antibody we found intense immunohistochemical labeling in the ventro‐anterior corner of the MR (vaMR) but not in 5‐HT neurons, suggesting the potential involvement of interneurons in 5‐HT modulation by Kiss1. Double‐fluorescence labeling showed that the majority of habenular Kiss1 neurons are glutamatergic. In the MR region, Kiss1 fibers were mainly seen in close association with glutamatergic neurons and only scarcely within GABAergic and 5‐HT neurons. Our findings indicate that the habenular Kiss1 neurons potentially modulate the 5‐HT system primarily through glutamatergic neurotransmission via as yet uncharacterized interneurons.
The neuropeptide kisspeptin (Kiss1) play a key role in vertebrate reproduction. We have previously shown modulatory role of habenular Kiss1 in the raphe serotonin (5‐HT) systems. This study proposed that the habenular Kiss1 neurons modulate the 5‐HT system primarily through glutamatergic neurotransmission, which provides an important insight for understanding of the modulation of 5‐HT system by the habenula‐raphe pathway.
Collapse
Affiliation(s)
- Fatima M Nathan
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
66
|
The ancestral role of nodal signalling in breaking L/R symmetry in the vertebrate forebrain. Nat Commun 2015; 6:6686. [DOI: 10.1038/ncomms7686] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/19/2015] [Indexed: 12/25/2022] Open
|
67
|
Amo R, Fredes F, Kinoshita M, Aoki R, Aizawa H, Agetsuma M, Aoki T, Shiraki T, Kakinuma H, Matsuda M, Yamazaki M, Takahoko M, Tsuboi T, Higashijima SI, Miyasaka N, Koide T, Yabuki Y, Yoshihara Y, Fukai T, Okamoto H. The habenulo-raphe serotonergic circuit encodes an aversive expectation value essential for adaptive active avoidance of danger. Neuron 2014; 84:1034-48. [PMID: 25467985 DOI: 10.1016/j.neuron.2014.10.035] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2014] [Indexed: 12/24/2022]
Abstract
Anticipation of danger at first elicits panic in animals, but later it helps them to avoid the real threat adaptively. In zebrafish, as fish experience more and more danger, neurons in the ventral habenula (vHb) showed tonic increase in the activity to the presented cue and activated serotonergic neurons in the median raphe (MR). This neuronal activity could represent the expectation of a dangerous outcome and be used for comparison with a real outcome when the fish is learning how to escape from a dangerous to a safer environment. Indeed, inhibiting synaptic transmission from vHb to MR impaired adaptive avoidance learning, while panic behavior induced by classical fear conditioning remained intact. Furthermore, artificially triggering this negative outcome expectation signal by optogenetic stimulation of vHb neurons evoked place avoidance behavior. Thus, vHb-MR circuit is essential for representing the level of expected danger and behavioral programming to adaptively avoid potential hazard.
Collapse
Affiliation(s)
- Ryunosuke Amo
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Saitama 351-0198, Japan; Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Tokyo 162-8430, Japan
| | - Felipe Fredes
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Masae Kinoshita
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Ryo Aoki
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Saitama 351-0198, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Hidenori Aizawa
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Masakazu Agetsuma
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Tazu Aoki
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Toshiyuki Shiraki
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Hisaya Kakinuma
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Masaru Matsuda
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
| | - Masako Yamazaki
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Mikako Takahoko
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Takashi Tsuboi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Shin-ichi Higashijima
- National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| | - Nobuhiko Miyasaka
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Tetsuya Koide
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Yoichi Yabuki
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Yoshihiro Yoshihara
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Tomoki Fukai
- Laboratory for Neural Circuit Theory, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Hitoshi Okamoto
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Saitama 351-0198, Japan; Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Tokyo 162-8430, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan.
| |
Collapse
|
68
|
Kctd12 and Ulk2 partner to regulate dendritogenesis and behavior in the habenular nuclei. PLoS One 2014; 9:e110280. [PMID: 25329151 PMCID: PMC4203773 DOI: 10.1371/journal.pone.0110280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/15/2014] [Indexed: 11/30/2022] Open
Abstract
The habenular nuclei of the limbic system regulate responses, such as anxiety, to aversive stimuli in the environment. The habenulae receive inputs from the telencephalon via elaborate dendrites that form in the center of the nuclei. The kinase Ulk2 positively regulates dendritogenesis on habenular neurons, and in turn is negatively regulated by the cytoplasmic protein Kctd12. Given that the habenulae are a nexus in the aversive response circuit, we suspected that incomplete habenular dendritogenesis would have profound implications for behavior. We find that Ulk2, which interacts with Kctd12 proteins via a small proline-serine rich domain, promotes branching and elaboration of dendrites. Loss of Kctd12 results in increased branching/elaboration and decreased anxiety. We conclude that fine-tuning of habenular dendritogenesis during development is essential for appropriate behavioral responses to negative stimuli.
Collapse
|
69
|
Hüsken U, Stickney HL, Gestri G, Bianco IH, Faro A, Young RM, Roussigne M, Hawkins TA, Beretta CA, Brinkmann I, Paolini A, Jacinto R, Albadri S, Dreosti E, Tsalavouta M, Schwarz Q, Cavodeassi F, Barth AK, Wen L, Zhang B, Blader P, Yaksi E, Poggi L, Zigman M, Lin S, Wilson SW, Carl M. Tcf7l2 is required for left-right asymmetric differentiation of habenular neurons. Curr Biol 2014; 24:2217-27. [PMID: 25201686 PMCID: PMC4194317 DOI: 10.1016/j.cub.2014.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 06/11/2014] [Accepted: 08/02/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Although left-right asymmetries are common features of nervous systems, their developmental bases are largely unknown. In the zebrafish epithalamus, dorsal habenular neurons adopt medial (dHbm) and lateral (dHbl) subnuclear character at very different frequencies on the left and right sides. The left-sided parapineal promotes the elaboration of dHbl character in the left habenula, albeit by an unknown mechanism. Likewise, the genetic pathways acting within habenular neurons to control their asymmetric differentiated character are unknown. RESULTS In a forward genetic screen for mutations that result in loss of habenular asymmetry, we identified two mutant alleles of tcf7l2, a gene that encodes a transcriptional regulator of Wnt signaling. In tcf7l2 mutants, most neurons on both sides differentiate with dHbl identity. Consequently, the habenulae develop symmetrically, with both sides adopting a pronounced leftward character. Tcf7l2 acts cell automously in nascent equipotential neurons, and on the right side, it promotes dHbm and suppresses dHbl differentiation. On the left, the parapineal prevents this Tcf7l2-dependent process, thereby promoting dHbl differentiation. CONCLUSIONS Tcf7l2 is essential for lateralized fate selection by habenular neurons that can differentiate along two alternative pathways, thereby leading to major neural circuit asymmetries.
Collapse
Affiliation(s)
- Ulrike Hüsken
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany
| | - Heather L Stickney
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Gaia Gestri
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Isaac H Bianco
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Ana Faro
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Rodrigo M Young
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Myriam Roussigne
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK; Centre de Biologie du Développement (CDB), UPS, Université de Toulouse, 118 Route de Narbonne, 31062, France; CNRS, CDB UMR 5547, 31062 Toulouse, France
| | - Thomas A Hawkins
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Carlo A Beretta
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany
| | - Irena Brinkmann
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany
| | - Alessio Paolini
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany
| | - Raquel Jacinto
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany
| | - Shahad Albadri
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Elena Dreosti
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK; Neuroelectronics Research Flanders, 3001 Leuven, Belgium
| | - Matina Tsalavouta
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Quenten Schwarz
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Florencia Cavodeassi
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Anukampa K Barth
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Lu Wen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Patrick Blader
- Centre de Biologie du Développement (CDB), UPS, Université de Toulouse, 118 Route de Narbonne, 31062, France; CNRS, CDB UMR 5547, 31062 Toulouse, France
| | - Emre Yaksi
- Neuroelectronics Research Flanders, 3001 Leuven, Belgium; Vlaams Instituut voor Biotechnologie, 3001 Leuven, Belgium; KU Leuven, 3001 Leuven, Belgium
| | - Lucia Poggi
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Mihaela Zigman
- Department of Molecular Evolution and Genomics, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Shuo Lin
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China; Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, 621 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Matthias Carl
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany.
| |
Collapse
|
70
|
Cheng RK, Jesuthasan SJ, Penney TB. Zebrafish forebrain and temporal conditioning. Philos Trans R Soc Lond B Biol Sci 2014; 369:20120462. [PMID: 24446496 DOI: 10.1098/rstb.2012.0462] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The rise of zebrafish as a neuroscience research model organism, in conjunction with recent progress in single-cell resolution whole-brain imaging of larval zebrafish, opens a new window of opportunity for research on interval timing. In this article, we review zebrafish neuroanatomy and neuromodulatory systems, with particular focus on identifying homologies between the zebrafish forebrain and the mammalian forebrain. The neuroanatomical and neurochemical basis of interval timing is summarized with emphasis on the potential of using zebrafish to reveal the neural circuits for interval timing. The behavioural repertoire of larval zebrafish is reviewed and we demonstrate that larval zebrafish are capable of expecting a stimulus at a precise time point with minimal training. In conclusion, we propose that interval timing research using zebrafish and whole-brain calcium imaging at single-cell resolution will contribute to our understanding of how timing and time perception originate in the vertebrate brain from the level of single cells to circuits.
Collapse
Affiliation(s)
- Ruey-Kuang Cheng
- Institute of Molecular and Cellular Biology, , A*STAR, 61 Biopolis Drive, #08-13 Proteos, Singapore 138673, Singapore
| | | | | |
Collapse
|
71
|
Aizawa H, Cui W, Tanaka K, Okamoto H. Hyperactivation of the habenula as a link between depression and sleep disturbance. Front Hum Neurosci 2013; 7:826. [PMID: 24339810 PMCID: PMC3857532 DOI: 10.3389/fnhum.2013.00826] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/16/2013] [Indexed: 12/13/2022] Open
Abstract
Depression occurs frequently with sleep disturbance such as insomnia. Sleep in depression is associated with disinhibition of the rapid eye movement (REM) sleep. Despite the coincidence of the depression and sleep disturbance, neural substrate for depressive behaviors and sleep regulation remains unknown. Habenula is an epithalamic structure regulating the activities of monoaminergic neurons in the brain stem. Since the imaging studies showed blood flow increase in the habenula of depressive patients, hyperactivation of the habenula has been implicated in the pathophysiology of the depression. Recent electrophysiological studies reported a novel role of the habenular structure in regulation of REM sleep. In this article, we propose possible cellular mechanisms which could elicit the hyperactivation of the habenular neurons and a hypothesis that dysfunction in the habenular circuit causes the behavioral and sleep disturbance in depression. Analysis of the animals with hyperactivated habenula would open the door to understand roles of the habenula in the heterogeneous symptoms such as reduced motor behavior and altered REM sleep in depression.
Collapse
Affiliation(s)
- Hidenori Aizawa
- Department of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
72
|
Colombo A, Palma K, Armijo L, Mione M, Signore IA, Morales C, Guerrero N, Meynard MM, Pérez R, Suazo J, Marcelain K, Briones L, Härtel S, Wilson SW, Concha ML. Daam1a mediates asymmetric habenular morphogenesis by regulating dendritic and axonal outgrowth. Development 2013; 140:3997-4007. [PMID: 24046318 PMCID: PMC3775416 DOI: 10.1242/dev.091934] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although progress has been made in resolving the genetic pathways that specify neuronal asymmetries in the brain, little is known about genes that mediate the development of structural asymmetries between neurons on left and right. In this study, we identify daam1a as an asymmetric component of the signalling pathways leading to asymmetric morphogenesis of the habenulae in zebrafish. Daam1a is a member of the Formin family of actin-binding proteins and the extent of Daam1a expression in habenular neuron dendrites mirrors the asymmetric growth of habenular neuropil between left and right. Local loss and gain of Daam1a function affects neither cell number nor subtype organisation but leads to a decrease or increase of neuropil, respectively. Daam1a therefore plays a key role in the asymmetric growth of habenular neuropil downstream of the pathways that specify asymmetric cellular domains in the habenulae. In addition, Daam1a mediates the development of habenular efferent connectivity as local loss and gain of Daam1a function impairs or enhances, respectively, the growth of habenular neuron terminals in the interpeduncular nucleus. Abrogation of Daam1a disrupts the growth of both dendritic and axonal processes and results in disorganised filamentous actin and α-tubulin. Our results indicate that Daam1a plays a key role in asymmetric habenular morphogenesis mediating the growth of dendritic and axonal processes in dorsal habenular neurons.
Collapse
Affiliation(s)
- Alicia Colombo
- Institute of Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Nagalski A, Irimia M, Szewczyk L, Ferran JL, Misztal K, Kuznicki J, Wisniewska MB. Postnatal isoform switch and protein localization of LEF1 and TCF7L2 transcription factors in cortical, thalamic, and mesencephalic regions of the adult mouse brain. Brain Struct Funct 2013; 218:1531-49. [PMID: 23152144 PMCID: PMC3825142 DOI: 10.1007/s00429-012-0474-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 10/25/2012] [Indexed: 02/06/2023]
Abstract
β-Catenin signaling, leading to the activation of lymphoid enhancer-binding factor 1/T cell factor (LEF1/TCF) transcription factors, plays a well-established role in transcription regulation during development and tissue homeostasis. In the adult organism, the activity of this pathway has been found in stem cell niches and postmitotic thalamic neurons. Recently, studies show that mutations in components of β-catenin signaling networks have been associated with several psychiatric disorders, indicating the involvement of β-catenin and LEF1/TCF proteins in the proper functioning of the brain. Here, we report a comprehensive analysis of LEF1/TCF protein localization and the expression profile of their isoforms in cortical, thalamic, and midbrain regions in mice. We detected LEF1 and TCF7L2 proteins in neurons of the thalamus and dorsal midbrain, i.e., subcortical regions specialized in the integration of diverse sources of sensory information. These neurons also exhibited nuclear localization of β-catenin, suggesting the involvement of β-catenin/LEF1/TCF7L2 in the regulation of gene expression in these regions. Analysis of alternative splicing and promoter usage identified brain-specific TCF7L2 isoforms and revealed a developmentally coordinated transition in the composition of LEF1 and TCF7L2 isoforms. In the case of TCF7L2, the typical brain isoforms lack the so-called C clamp; in addition, the dominant-negative isoforms are predominant in the embryonic thalamus but disappear postnatally. The present study provides a necessary framework to understand the role of LEF1/TCF factors in thalamic and midbrain development until adulthood and predicts that the regulatory role of these proteins in the adult brain is significantly different from their role in the embryonic brain or other non-neural tissues.
Collapse
Affiliation(s)
- A. Nagalski
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | - M. Irimia
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1 Canada
| | - L. Szewczyk
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | - J. L. Ferran
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, E30071 Spain
| | - K. Misztal
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | - J. Kuznicki
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - M. B. Wisniewska
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| |
Collapse
|
74
|
Saidel WM. Nucleus rostrolateralis: an expansion of the epithalamus in some actinopterygii. Anat Rec (Hoboken) 2013; 296:1594-602. [PMID: 23956021 DOI: 10.1002/ar.22761] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 11/08/2022]
Abstract
The diencephalic nucleus rostrolateralis (RL) in the African butterfly fish (Pantodon buchholzi) is a brain nucleus identified in fewer than a dozen of the ∼25,000 species of actinopterygian fishes. Located in the rostrolateral diencephalon, this nucleus in Pantodon receives direct and indirect visual input from the superior visual field. Its lack of precedent or consistent phylogenetic expression creates a difficulty in interpreting the functional role of this nucleus within the visual system. By tracing experiments, RL was found to be afferent to nucleus interpeduncularis (IP) and the target of cells from the subpallium of the telencephalon. RL is a component of a descending telencephalic pathway involved in at least one behavior at the intersection of limbic and somatic activities--feeding. The parallelism between the ventral telencephalon--RL--IP and the limbic/striatal--habenula--IP pathway (the dorsal diencephalic conduction system, DDCS) suggests that RL is a component within the DDCS. Moreover, the hodological connections of RL suggest that RL is likely a hypertrophy of the lateral habenula.
Collapse
Affiliation(s)
- William M Saidel
- Department of Biology, Rutgers University, Camden, New Jersey; Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey
| |
Collapse
|
75
|
The synchronous activity of lateral habenular neurons is essential for regulating hippocampal theta oscillation. J Neurosci 2013; 33:8909-21. [PMID: 23678132 DOI: 10.1523/jneurosci.4369-12.2013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lateral habenula (LHb) has attracted growing interest as a regulator of serotonergic and dopaminergic neurons in the CNS. However, it remains unclear how the LHb modulates brain states in animals. To identify the neural substrates that are under the influence of LHb regulation, we examined the effects of rat LHb lesions on the hippocampal oscillatory activity associated with the transition of brain states. Our results showed that the LHb lesion shortened the theta activity duration both in anesthetized and sleeping rats. Furthermore, this inhibitory effect of LHb lesion on theta maintenance depended upon an intact serotonergic median raphe, suggesting that LHb activity plays an essential role in maintaining hippocampal theta oscillation via the serotonergic raphe. Multiunit recording of sleeping rats further revealed that firing of LHb neurons showed significant phase-locking activity at each theta oscillation cycle in the hippocampus. LHb neurons showing activity that was coordinated with that of the hippocampal theta were localized in the medial LHb division, which receives afferents from the diagonal band of Broca (DBB), a pacemaker region for the hippocampal theta oscillation. Thus, our findings indicate that the DBB may pace not only the hippocampus, but also the LHb, during rapid eye movement sleep. Since serotonin is known to negatively regulate theta oscillation in the hippocampus, phase-locking activity of the LHb neurons may act, under the influence of the DBB, to maintain the hippocampal theta oscillation by modulating the activity of serotonergic neurons.
Collapse
|
76
|
|
77
|
Habenula and the asymmetric development of the vertebrate brain. Anat Sci Int 2012; 88:1-9. [PMID: 23086722 DOI: 10.1007/s12565-012-0158-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/04/2012] [Indexed: 12/21/2022]
Abstract
Habenula is a relay nucleus connecting the forebrain with the brain stem and plays a pivotal role in cognitive behaviors by regulating serotonergic and dopaminergic activities. The mammalian habenula is divided into the medial and lateral habenulae, each of which consists of a heterogeneous population of neurons. Recent comparative analyses of zebrafish and rodent habenulae have provided molecular insights into the developmental mechanism of the habenula. Hodological and gene expression analyses revealed that these two habenular pathways are conserved phylogenetically between fish and mammals. The anatomical information make the zebrafish and rodent model animals amenable to the genetic analysis of the development and physiological role of the vertebrate habenula. Intriguingly, habenula has also attracted interest as a model for brain asymmetry, since many vertebrates show left-right differences in habenular size and neural circuitry. Left-right asymmetry is a common feature of the central nervous system in vertebrates. Despite its prevalence and functional importance, few studies have addressed the molecular mechanism for generation of the asymmetric brain structure, probably due to the absence of genetically accessible model animals showing obvious asymmetry. The results from recent studies on zebrafish habenula suggest that development of habenular asymmetry is mediated by differential regulation of the neurogenetic period for generating specific neuronal subtypes. Since the orientation and size ratio of the medial and lateral habenulae differs across species, evolution of those subregions within the habenula may also reflect changes in neurogenesis duration for each habenular subdivision according to the evolutionary process.
Collapse
|
78
|
Beretta CA, Dross N, Guiterrez-Triana JA, Ryu S, Carl M. Habenula circuit development: past, present, and future. Front Neurosci 2012; 6:51. [PMID: 22536170 PMCID: PMC3332237 DOI: 10.3389/fnins.2012.00051] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/27/2012] [Indexed: 12/23/2022] Open
Abstract
The habenular neural circuit is attracting increasing attention from researchers in fields as diverse as neuroscience, medicine, behavior, development, and evolution. Recent studies have revealed that this part of the limbic system in the dorsal diencephalon is involved in reward, addiction, and other behaviors and its impairment is associated with various neurological conditions and diseases. Since the initial description of the dorsal diencephalic conduction system (DDC) with the habenulae in its center at the end of the nineteenth century, increasingly sophisticated techniques have resolved much of its anatomy and have shown that these pathways relay information from different parts of the forebrain to the tegmentum, midbrain, and hindbrain. The first part of this review gives a brief historical overview on how the improving experimental approaches have allowed the stepwise uncovering much of the architecture of the habenula circuit as we know it today. Our brain distributes tasks differentially between left and right and it has become a paradigm that this functional lateralization is a universal feature of vertebrates. Moreover, task dependent differential brain activities have been linked to anatomical differences across the left–right axis in humans. A good way to further explore this fundamental issue will be to study the functional consequences of subtle changes in neural network formation, which requires that we fully understand DDC system development. As the habenular circuit is evolutionarily highly conserved, researchers have the option to perform such difficult experiments in more experimentally amenable vertebrate systems. Indeed, research in the last decade has shown that the zebrafish is well suited for the study of DDC system development and the phenomenon of functional lateralization. We will critically discuss the advantages of the zebrafish model, available techniques, and others that are needed to fully understand habenular circuit development.
Collapse
Affiliation(s)
- Carlo A Beretta
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany
| | | | | | | | | |
Collapse
|
79
|
Villalón A, Sepúlveda M, Guerrero N, Meynard MM, Palma K, Concha ML. Evolutionary plasticity of habenular asymmetry with a conserved efferent connectivity pattern. PLoS One 2012; 7:e35329. [PMID: 22514727 PMCID: PMC3325962 DOI: 10.1371/journal.pone.0035329] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/12/2012] [Indexed: 12/12/2022] Open
Abstract
The vertebrate habenulae (Hb) is an evolutionary conserved dorsal diencephalic nuclear complex that relays information from limbic and striatal forebrain regions to the ventral midbrain. One key feature of this bilateral nucleus is the presence of left-right differences in size, cytoarchitecture, connectivity, neurochemistry and/or gene expression. In teleosts, habenular asymmetry has been associated with preferential innervation of left-right habenular efferents into dorso-ventral domains of the midbrain interpeduncular nucleus (IPN). However, the degree of conservation of this trait and its relation to the structural asymmetries of the Hb are currently unknown. To address these questions, we performed the first systematic comparative analysis of structural and connectional asymmetries of the Hb in teleosts. We found striking inter-species variability in the overall shape and cytoarchitecture of the Hb, and in the frequency, strength and to a lesser degree, laterality of habenular volume at the population level. Directional asymmetry of the Hb was either to the left in D. rerio, E. bicolor, O. latipes, P. reticulata, B. splendens, or to the right in F. gardneri females. In contrast, asymmetry was absent in P. scalare and F. gardneri males at the population level, although in these species the Hb displayed volumetric asymmetries at the individual level. Inter-species variability was more pronounced across orders than within a single order, and coexisted with an overall conserved laterotopic representation of left-right habenular efferents into dorso-ventral domains of the IPN. These results suggest that the circuit design involving the Hb of teleosts promotes structural flexibility depending on developmental, cognitive and/or behavioural pressures, without affecting the main midbrain connectivity output, thus unveiling a key conserved role of this connectivity trait in the function of the circuit. We propose that ontogenic plasticity in habenular morphogenesis underlies the observed inter-species variations in habenular asymmetric morphology.
Collapse
Affiliation(s)
- Aldo Villalón
- Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Anatomy and Developmental Biology Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Universidad Diego Portales, Santiago, Chile
| | - Mauricio Sepúlveda
- Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Anatomy and Developmental Biology Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Néstor Guerrero
- Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Anatomy and Developmental Biology Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Margarita M. Meynard
- Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Anatomy and Developmental Biology Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Karina Palma
- Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Anatomy and Developmental Biology Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Miguel L. Concha
- Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Anatomy and Developmental Biology Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|