51
|
Tielbeek JJ, Al-Itejawi Z, Zijlmans J, Polderman TJC, Buckholtz JW, Popma A. The impact of chronic stress during adolescence on the development of aggressive behavior: A systematic review on the role of the dopaminergic system in rodents. Neurosci Biobehav Rev 2018; 91:187-197. [DOI: 10.1016/j.neubiorev.2016.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/04/2016] [Accepted: 10/12/2016] [Indexed: 12/22/2022]
|
52
|
Coquery N, Meurice P, Janvier R, Bobillier E, Quellec S, Fu M, Roura E, Saint-Jalmes H, Val-Laillet D. fMRI-Based Brain Responses to Quinine and Sucrose Gustatory Stimulation for Nutrition Research in the Minipig Model: A Proof-of-Concept Study. Front Behav Neurosci 2018; 12:151. [PMID: 30140206 PMCID: PMC6094987 DOI: 10.3389/fnbeh.2018.00151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/03/2018] [Indexed: 01/08/2023] Open
Abstract
The minipig model is of high interest for brain research in nutrition and associated pathologies considering the similarities to human nutritional physiology, brain structures, and functions. In the context of a gustatory stimulation paradigm, fMRI can provide crucial information about the sensory, cognitive, and hedonic integration of exteroceptive stimuli in healthy and pathological nutritional conditions. Our aims were (i) to validate the experimental setup, i.e., fMRI acquisition and SPM-based statistical analysis, with a visual stimulation; (ii) to implement the fMRI procedure in order to map the brain responses to different gustatory stimulations, i.e., sucrose (5%) and quinine (10 mM), and (ii) to investigate the differential effects of potentially aversive (quinine) and appetitive/pleasant (sucrose) oral stimulation on brain responses, especially in the limbic and reward circuits. Six Yucatan minipigs were imaged on an Avanto 1.5-T MRI under isoflurane anesthesia and mechanical ventilation. BOLD signal was recorded during visual or gustatory (artificial saliva, sucrose, or quinine) stimulation with a block paradigm. With the visual stimulation, brain responses were detected in the visual cortex, thus validating our experimental and statistical setup. Quinine and sucrose stimulation promoted different cerebral activation patterns that were concordant, to some extent, to results from human studies. The insular cortex (i.e., gustatory cortex) was activated with both sucrose and quinine, but other regions were specifically activated by one or the other stimulation. Gustatory stimulation combined with fMRI analysis in large animals such as minipigs is a promising approach to investigate the integration of gustatory stimulation in healthy or pathological conditions such as obesity, eating disorders, or dysgeusia. To date, this is the first intent to describe gustatory stimulation in minipigs using fMRI.
Collapse
Affiliation(s)
- Nicolas Coquery
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| | - Paul Meurice
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| | - Régis Janvier
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| | - Eric Bobillier
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| | | | - Minghai Fu
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Hervé Saint-Jalmes
- CLCC Eugène Marquis, Inserm, LTSI-UMR 1099, Université de Rennes, Rennes, France
| | - David Val-Laillet
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| |
Collapse
|
53
|
Bruinsma TJ, Sarma VV, Oh Y, Jang DP, Chang SY, Worrell GA, Lowe VJ, Jo HJ, Min HK. The Relationship Between Dopamine Neurotransmitter Dynamics and the Blood-Oxygen-Level-Dependent (BOLD) Signal: A Review of Pharmacological Functional Magnetic Resonance Imaging. Front Neurosci 2018; 12:238. [PMID: 29692706 PMCID: PMC5902685 DOI: 10.3389/fnins.2018.00238] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 03/27/2018] [Indexed: 11/13/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is widely used in investigations of normal cognition and brain disease and in various clinical applications. Pharmacological fMRI (pharma-fMRI) is a relatively new application, which is being used to elucidate the effects and mechanisms of pharmacological modulation of brain activity. Characterizing the effects of neuropharmacological agents on regional brain activity using fMRI is challenging because drugs modulate neuronal function in a wide variety of ways, including through receptor agonist, antagonist, and neurotransmitter reuptake blocker events. Here we review current knowledge on neurotransmitter-mediated blood-oxygen-level dependent (BOLD) fMRI mechanisms as well as recently updated methodologies aimed at more fully describing the effects of neuropharmacologic agents on the BOLD signal. We limit our discussion to dopaminergic signaling as a useful lens through which to analyze and interpret neurochemical-mediated changes in the hemodynamic BOLD response. We also discuss the need for future studies that use multi-modal approaches to expand the understanding and application of pharma-fMRI.
Collapse
Affiliation(s)
- Tyler J Bruinsma
- Department of Radiology, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Vidur V Sarma
- Department of Radiology, College of Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Yoonbae Oh
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea.,Department of Neurologic Surgery, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Dong Pyo Jang
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Su-Youne Chang
- Department of Neurologic Surgery, College of Medicine, Mayo Clinic, Rochester, MN, United States.,Departments of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Greg A Worrell
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Val J Lowe
- Department of Radiology, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Hang Joon Jo
- Department of Neurologic Surgery, College of Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Hoon-Ki Min
- Department of Radiology, College of Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Neurologic Surgery, College of Medicine, Mayo Clinic, Rochester, MN, United States.,Departments of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
54
|
Pultorak KJ, Schelp SA, Isaacs DP, Krzystyniak G, Oleson EB. A Transient Dopamine Signal Represents Avoidance Value and Causally Influences the Demand to Avoid. eNeuro 2018; 5:ENEURO.0058-18.2018. [PMID: 29766047 PMCID: PMC5952648 DOI: 10.1523/eneuro.0058-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 12/20/2022] Open
Abstract
While an extensive literature supports the notion that mesocorticolimbic dopamine plays a role in negative reinforcement, recent evidence suggests that dopamine exclusively encodes the value of positive reinforcement. In the present study, we employed a behavioral economics approach to investigate whether dopamine plays a role in the valuation of negative reinforcement. Using rats as subjects, we first applied fast-scan cyclic voltammetry (FSCV) to determine that dopamine concentration decreases with the number of lever presses required to avoid electrical footshock (i.e., the economic price of avoidance). Analysis of the rate of decay of avoidance demand curves, which depict an inverse relationship between avoidance and increasing price, allows for inference of the worth an animal places on avoidance outcomes. Rapidly decaying demand curves indicate increased price sensitivity, or low worth placed on avoidance outcomes, while slow rates of decay indicate reduced price sensitivity, or greater worth placed on avoidance outcomes. We therefore used optogenetics to assess how inducing dopamine release causally modifies the demand to avoid electrical footshock in an economic setting. Increasing release at an avoidance predictive cue made animals more sensitive to price, consistent with a negative reward prediction error (i.e., the animal perceives they received a worse outcome than expected). Increasing release at avoidance made animals less sensitive to price, consistent with a positive reward prediction error (i.e., the animal perceives they received a better outcome than expected). These data demonstrate that transient dopamine release events represent the value of avoidance outcomes and can predictably modify the demand to avoid.
Collapse
|
55
|
Hsu TM, McCutcheon JE, Roitman MF. Parallels and Overlap: The Integration of Homeostatic Signals by Mesolimbic Dopamine Neurons. Front Psychiatry 2018; 9:410. [PMID: 30233430 PMCID: PMC6129766 DOI: 10.3389/fpsyt.2018.00410] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/13/2018] [Indexed: 01/08/2023] Open
Abstract
Motivated behaviors are often initiated in response to perturbations of homeostasis. Indeed, animals and humans have fundamental drives to procure (appetitive behaviors) and eventually ingest (consummatory behaviors) substances based on deficits in body fluid (e.g., thirst) and energy balance (e.g., hunger). Consumption, in turn, reinforces motivated behavior and is therefore considered rewarding. Over the years, the constructs of homeostatic (within the purview of the hypothalamus) and reward (within the purview of mesolimbic circuitry) have been used to describe need-based vs. need-free consumption. However, many experiments have demonstrated that mesolimbic circuits and "higher-order" brain regions are also profoundly influenced by changes to physiological state, which in turn generate behaviors that are poised to maintain homeostasis. Mesolimbic pathways, particularly dopamine neurons of the ventral tegmental area (VTA) and their projections to nucleus accumbens (NAc), can be robustly modulated by a variety of energy balance signals, including post-ingestive feedback relaying nutrient content and hormonal signals reflecting hunger and satiety. Moreover, physiological states can also impact VTA-NAc responses to non-nutritive rewards, such as drugs of abuse. Coupled with recent evidence showing hypothalamic structures are modulated in anticipation of replenished need, classic boundaries between circuits that convey perturbations in homeostasis and those that drive motivated behavior are being questioned. In the current review, we examine data that have revealed the importance of mesolimbic dopamine neurons and their downstream pathways as a dynamic neurobiological mechanism that provides an interface between physiological state, perturbations to homeostasis, and reward-seeking behaviors.
Collapse
Affiliation(s)
- Ted M Hsu
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| | - James E McCutcheon
- Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, United Kingdom
| | - Mitchell F Roitman
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
56
|
Fujiwara M, Chiba A. Sexual odor preference and dopamine release in the nucleus accumbens by estrous olfactory cues in sexually naïve and experienced male rats. Physiol Behav 2017; 185:95-102. [PMID: 29289614 DOI: 10.1016/j.physbeh.2017.12.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 11/17/2022]
Abstract
Sexual behavior is a natural reward that activates mesolimbic dopaminergic system. Microdialysis studies have shown that extracellular level of dopamine (DA) in the nucleus accumbens (NAcc) significantly increases during copulation in male rats. The NAcc DA level is also known to be increased during the presentation of a sexually receptive female before mating. This rise in DA was probably associated with sexual motivation elicited by incentive stimuli from the receptive female. These microdialysis studies, however, did not thoroughly investigated if olfactory stimuli from estrous females could significantly increase the extracellular DA in the NAcc of male rats. The present study was designed to examine systematically the relationship between the expression of preference for the olfactory stimuli from estrous females and the effects of these stimuli on the extracellular DA levels in the NAcc measured by in vivo microdialysis in male Long-Evans (LE) rats. We used two types of olfactory stimuli, either airborne odors (volatile stimuli) or soiled bedding (volatile plus nonvolatile stimuli). The sexually experienced male rats, which experienced six ejaculations, significantly preferred both of these olfactory stimuli from estrous females as opposed to males. Exposure to these female olfactory stimuli gradually increased extracellular DA in the NAcc, which reached significantly higher level above baseline during the period following the removal of the stimuli although not during the 15-min stimulus presentation period. The sexually naïve male rats, on the other hand, showed neither preference for olfactory stimuli from estrous females nor increase in the NAcc DA after exposure to these stimuli. These data suggest that in male LE rats olfactory stimuli from estrous females in and of themselves can be conditional cues that induce both incentive motivation and a significant increase in the NAcc DA probably as a result of being associated with sexual reward through copulatory experience.
Collapse
Affiliation(s)
- Masaya Fujiwara
- Department of Materials and Life Sciences, Sophia University, Tokyo 102-8554, Japan.
| | - Atsuhiko Chiba
- Department of Materials and Life Sciences, Sophia University, Tokyo 102-8554, Japan.
| |
Collapse
|
57
|
Kim LH, Sharma S, Sharples SA, Mayr KA, Kwok CHT, Whelan PJ. Integration of Descending Command Systems for the Generation of Context-Specific Locomotor Behaviors. Front Neurosci 2017; 11:581. [PMID: 29093660 PMCID: PMC5651258 DOI: 10.3389/fnins.2017.00581] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/04/2017] [Indexed: 11/23/2022] Open
Abstract
Over the past decade there has been a renaissance in our understanding of spinal cord circuits; new technologies are beginning to provide key insights into descending circuits which project onto spinal cord central pattern generators. By integrating work from both the locomotor and animal behavioral fields, we can now examine context-specific control of locomotion, with an emphasis on descending modulation arising from various regions of the brainstem. Here we examine approach and avoidance behaviors and the circuits that lead to the production and arrest of locomotion.
Collapse
Affiliation(s)
- Linda H Kim
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Sandeep Sharma
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Simon A Sharples
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Kyle A Mayr
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Charlie H T Kwok
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Patrick J Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Neuroscience, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
58
|
Premonitory urges and tics in Tourette syndrome: computational mechanisms and neural correlates. Curr Opin Neurobiol 2017; 46:187-199. [PMID: 29017141 DOI: 10.1016/j.conb.2017.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/01/2017] [Accepted: 08/21/2017] [Indexed: 12/22/2022]
Abstract
Tourette syndrome is characterized by open motor behaviors - tics - but another crucial aspect of the disorder is the presence of premonitory urges: uncomfortable sensations that typically precede tics and are temporarily alleviated by tics. We review the evidence implicating the somatosensory cortices and the insula in premonitory urges and the motor cortico-basal ganglia-thalamo-cortical loop in tics. We consider how these regions interact during tic execution, suggesting that the insula plays an important role as a nexus linking the sensory and emotional character of premonitory urges with their translation into tics. We also consider how these regions interact during tic learning, integrating the neural evidence with a computational perspective on how premonitory-urge alleviation reinforces tics.
Collapse
|
59
|
Colechio EM, Alexander DN, Imperio CG, Jackson K, Grigson PS. Once is too much: Early development of the opponent process in taste reactivity behavior is associated with later escalation of cocaine self-administration in rats. Brain Res Bull 2017; 138:88-95. [PMID: 28899796 DOI: 10.1016/j.brainresbull.2017.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/29/2017] [Accepted: 09/06/2017] [Indexed: 01/23/2023]
Abstract
Evidence suggests that the addiction process may begin immediately in some vulnerable subjects. Specifically, some rats have been shown to exhibit aversive taste reactivity (gapes) following the intraoral delivery of a cocaine-predictive taste cue after as few as 1-2 taste-drug pairings. After only 3-4 trials, the number of gapes becomes a reliable predictor of later cocaine self-administration. Given that escalation of drug-taking behavior over time is recognized as a key feature of substance use disorder (SUD) and addiction, the present study examined the relationship between early aversion to the cocaine-predictive flavor cue and later escalation of cocaine self-administration in an extended-access paradigm. The data show that rats who exhibit the greatest conditioned aversion early in training to the intraorally delivered cocaine-paired cue exhibit the greatest escalation of cocaine self-administration over 15 extended-access trials. This finding suggests that early onset of the conditioned opponent process (i.e., the near immediate shift from ingestion to rejection of the drug-paired cue) is a reliable predictor of future vulnerability and resilience to cocaine addiction-like behavior. Future studies must determine the underlying neural mechanisms associated with this early transition and, hence, with early vulnerability to the later development of SUD and addiction. In so doing, we shall be in position to discover novel diagnostics and novel avenues of prevention and treatment.
Collapse
Affiliation(s)
- Elizabeth M Colechio
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, United States
| | - Danielle N Alexander
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, United States
| | - Caesar G Imperio
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, United States
| | - Kelsey Jackson
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, United States
| | - Patricia S Grigson
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, United States.
| |
Collapse
|
60
|
Miranda MI, Rangel-Hernández JA, Vera-Rivera G, García-Medina NE, Soto-Alonso G, Rodríguez-García G, Núñez-Jaramillo L. The role of dopamine D2 receptors in the nucleus accumbens during taste-aversive learning and memory extinction after long-term sugar consumption. Neuroscience 2017; 359:142-150. [DOI: 10.1016/j.neuroscience.2017.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
|
61
|
Reichard RA, Subramanian S, Desta MT, Sura T, Becker ML, Ghobadi CW, Parsley KP, Zahm DS. Abundant collateralization of temporal lobe projections to the accumbens, bed nucleus of stria terminalis, central amygdala and lateral septum. Brain Struct Funct 2017; 222:1971-1988. [PMID: 27704219 PMCID: PMC5378696 DOI: 10.1007/s00429-016-1321-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/28/2016] [Indexed: 10/20/2022]
Abstract
Behavioral flexibility is subserved in part by outputs from the cerebral cortex to telencephalic subcortical structures. In our earlier evaluation of the organization of the cortical-subcortical output system (Reynolds and Zahm, J Neurosci 25:11757-11767, 2005), retrograde double-labeling was evaluated in the prefrontal cortex following tracer injections into pairs of the following subcortical telencephalic structures: caudate-putamen, core and shell of the accumbens (Acb), bed nucleus of stria terminalis (BST) and central nucleus of the amygdala (CeA). The present study was done to assess patterns of retrograde labeling in the temporal lobe after similar paired tracer injections into most of the same telencephalic structures plus the lateral septum (LS). In contrast to the modest double-labeling observed in the prefrontal cortex in the previous study, up to 60-80 % of neurons in the basal and accessory basal amygdaloid nuclei and amygdalopiriform transition area exhibited double-labeling in the present study. The most abundant double-labeling was generated by paired injections into structures affiliated with the extended amygdala, including the CeA, BST and Acb shell. Injections pairing the Acb core with the BST or CeA produced significantly fewer double-labeled neurons. The ventral subiculum exhibited modest amounts of double-labeling associated with paired injections into the Acb, BST, CeA and LS. The results raise the issue of how an extraordinarily collateralized output from the temporal lobe may contribute to behavioral flexibility.
Collapse
Affiliation(s)
- Rhett A Reichard
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Suriya Subramanian
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Mikiyas T Desta
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Tej Sura
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Mary L Becker
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Comeron W Ghobadi
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Kenneth P Parsley
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Daniel S Zahm
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA.
| |
Collapse
|
62
|
Sánchez-Catalán MJ, Orrico A, Hipólito L, Zornoza T, Polache A, Lanuza E, Martínez-García F, Granero L, Agustín-Pavón C. Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats. Front Neuroanat 2017; 11:8. [PMID: 28280461 PMCID: PMC5322247 DOI: 10.3389/fnana.2017.00008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/09/2017] [Indexed: 12/04/2022] Open
Abstract
Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist β-funaltrexamine into the posterior ventral tegmental area does not affect preference for male chemosignals. Nevertheless, exposure to male-soiled bedding elicits an increase in dopamine efflux in the nucleus accumbens shell and core, measured by microdialysis. Infusion of the opioid antagonist naltrexone in the accumbens core does not significantly affect dopamine efflux during exposure to male chemosignals, although it enhances dopamine levels 40 min after withdrawal of the stimuli. By contrast, infusion of the glutamate antagonist kynurenic acid in the accumbens shell inhibits the release of dopamine and reduces the time that females spend investigating male-soiled bedding. These data are in agreement with previous reports in male rats showing that exposure to opposite-sex odors elicits dopamine release in the accumbens, and with data in female mice showing that the behavioral preference for male chemosignals is not affected by opioidergic antagonists. We hypothesize that glutamatergic projections from the amygdala into the accumbens might be important to modulate the neurochemical and behavioral responses elicited by sexual chemosignals in rats.
Collapse
Affiliation(s)
- María-José Sánchez-Catalán
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Universitat de València València, Spain
| | - Alejandro Orrico
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Universitat de València València, Spain
| | - Lucía Hipólito
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Universitat de València València, Spain
| | - Teodoro Zornoza
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Universitat de València València, Spain
| | - Ana Polache
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Universitat de València València, Spain
| | - Enrique Lanuza
- Departament de Biologia Cel⋅lular, Biologia Funcional i Antropologia Física, Universitat de València València, Spain
| | | | - Luis Granero
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Universitat de València València, Spain
| | - Carmen Agustín-Pavón
- Departament de Biologia Cel⋅lular, Biologia Funcional i Antropologia Física, Universitat de València València, Spain
| |
Collapse
|
63
|
Dalenberg JR, Weitkamp L, Renken RJ, Nanetti L, ter Horst GJ. Flavor pleasantness processing in the ventral emotion network. PLoS One 2017; 12:e0170310. [PMID: 28207751 PMCID: PMC5312947 DOI: 10.1371/journal.pone.0170310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/02/2017] [Indexed: 11/28/2022] Open
Abstract
The ventral emotion network-encompassing the amygdala, insula, ventral striatum, and ventral regions of the prefrontal cortex-has been associated with the identification of emotional significance of perceived external stimuli and the production of affective states. Functional magnetic resonance imaging (fMRI) studies investigating chemosensory stimuli have associated parts of this network with pleasantness coding. In the current study, we independently analyzed two datasets in which we measured brain responses to flavor stimuli in young adult men. In the first dataset, participants evaluated eight regular off the shelf drinking products while participants evaluated six less familiar oral nutritional supplements (ONS) in the second dataset. Participants provided pleasantness ratings 20 seconds after tasting. Using independent component analysis (ICA) and mixed effect models, we identified one brain network in the regular products dataset that was associated with flavor pleasantness. This network was very similar to the ventral emotion network. Although we identified an identical network in the ONS dataset using ICA, we found no linear relation between activation of any network and pleasantness scores within this dataset. Our results indicate that flavor pleasantness is processed in a network encompassing amygdala, ventral prefrontal, insular, striatal and parahippocampal regions for familiar drinking products. For more unfamiliar ONS products the association is not obvious, which could be related to the unfamiliarity of these products.
Collapse
Affiliation(s)
- Jelle R. Dalenberg
- Top Institute Food and Nutrition, Wageningen, The Netherlands
- Neuroimaging Center Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Liselore Weitkamp
- Top Institute Food and Nutrition, Wageningen, The Netherlands
- Neuroimaging Center Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Remco J. Renken
- Top Institute Food and Nutrition, Wageningen, The Netherlands
- Neuroimaging Center Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Luca Nanetti
- Neuroimaging Center Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gert J. ter Horst
- Top Institute Food and Nutrition, Wageningen, The Netherlands
- Neuroimaging Center Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
64
|
Caudal Nucleus Accumbens Core Is Critical in the Regulation of Cue-Elicited Approach-Avoidance Decisions. eNeuro 2017; 4:eN-NWR-0330-16. [PMID: 28275709 PMCID: PMC5309732 DOI: 10.1523/eneuro.0330-16.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/16/2017] [Accepted: 01/31/2017] [Indexed: 01/30/2023] Open
Abstract
The nucleus accumbens (NAc) is thought to be a site of integration of positively and negatively valenced information and action selection. Functional differentiation in valence processing has previously been found along the rostrocaudal axis of the shell region of the NAc in assessments of unconditioned motivation. Given that the core region of the NAc has been implicated in the elicitation of motivated behavior in response to conditioned cues, we sought to assess the role of caudal, intermediate, and rostral sites within this subregion in cue-elicited approach-avoidance decisions. Rats were trained to associate visuo-tactile cues with appetitive, aversive, and neutral outcomes. Following the successful acquisition of the cue-outcome associations, rats received microinfusions of GABAA and GABAB receptor agonists (muscimol/baclofen) or saline into the caudal, intermediate, or rostral NAc core and were then exposed to a superimposition of appetitively and aversively valenced cues versus neutral cues in a “conflict test,” as well as to the appetitive versus neutral cues, and aversive cues versus neutral cues, in separate conditioned preference/avoidance tests. Disruption of activity in the intermediate to caudal parts of the NAc core resulted in a robust avoidance bias in response to motivationally conflicting cues, as well as a potentiated avoidance of aversive cues as compared with control animals, coupled with an attenuated conditioned preference for the appetitive cue. These results suggest that the caudal NAc core may have the capacity to exert bidirectional control over appetitively and aversively motivated responses to valence signals.
Collapse
|
65
|
Pagonabarraga J, Kulisevsky J. Apathy in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 133:657-678. [DOI: 10.1016/bs.irn.2017.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
66
|
Xie K, Fox GE, Liu J, Lyu C, Lee JC, Kuang H, Jacobs S, Li M, Liu T, Song S, Tsien JZ. Brain Computation Is Organized via Power-of-Two-Based Permutation Logic. Front Syst Neurosci 2016; 10:95. [PMID: 27895562 PMCID: PMC5108790 DOI: 10.3389/fnsys.2016.00095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/07/2016] [Indexed: 11/17/2022] Open
Abstract
There is considerable scientific interest in understanding how cell assemblies—the long-presumed computational motif—are organized so that the brain can generate intelligent cognition and flexible behavior. The Theory of Connectivity proposes that the origin of intelligence is rooted in a power-of-two-based permutation logic (N = 2i–1), producing specific-to-general cell-assembly architecture capable of generating specific perceptions and memories, as well as generalized knowledge and flexible actions. We show that this power-of-two-based permutation logic is widely used in cortical and subcortical circuits across animal species and is conserved for the processing of a variety of cognitive modalities including appetitive, emotional and social information. However, modulatory neurons, such as dopaminergic (DA) neurons, use a simpler logic despite their distinct subtypes. Interestingly, this specific-to-general permutation logic remained largely intact although NMDA receptors—the synaptic switch for learning and memory—were deleted throughout adulthood, suggesting that the logic is developmentally pre-configured. Moreover, this computational logic is implemented in the cortex via combining a random-connectivity strategy in superficial layers 2/3 with nonrandom organizations in deep layers 5/6. This randomness of layers 2/3 cliques—which preferentially encode specific and low-combinatorial features and project inter-cortically—is ideal for maximizing cross-modality novel pattern-extraction, pattern-discrimination and pattern-categorization using sparse code, consequently explaining why it requires hippocampal offline-consolidation. In contrast, the nonrandomness in layers 5/6—which consists of few specific cliques but a higher portion of more general cliques projecting mostly to subcortical systems—is ideal for feedback-control of motivation, emotion, consciousness and behaviors. These observations suggest that the brain’s basic computational algorithm is indeed organized by the power-of-two-based permutation logic. This simple mathematical logic can account for brain computation across the entire evolutionary spectrum, ranging from the simplest neural networks to the most complex.
Collapse
Affiliation(s)
- Kun Xie
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Augusta UniversityAugusta, GA, USA; The Brain Decoding Center, Banna Biomedical Research Institute, Yunnan Academy of Science and TechnologyYunnan, China
| | - Grace E Fox
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Augusta University Augusta, GA, USA
| | - Jun Liu
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Augusta UniversityAugusta, GA, USA; The Brain Decoding Center, Banna Biomedical Research Institute, Yunnan Academy of Science and TechnologyYunnan, China
| | - Cheng Lyu
- Department of Computer Science and Brain Imaging Center, University of GeorgiaAthens, GA, USA; School of Automation, Northwestern Polytechnical UniversityXi'an, China
| | - Jason C Lee
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Augusta University Augusta, GA, USA
| | - Hui Kuang
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Augusta University Augusta, GA, USA
| | - Stephanie Jacobs
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Augusta University Augusta, GA, USA
| | - Meng Li
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Augusta UniversityAugusta, GA, USA; The Brain Decoding Center, Banna Biomedical Research Institute, Yunnan Academy of Science and TechnologyYunnan, China
| | - Tianming Liu
- Department of Computer Science and Brain Imaging Center, University of Georgia Athens, GA, USA
| | - Sen Song
- McGovern Institute for Brain Research and Center for Brain-Inspired Computing Research, Tsinghua University Beijing, China
| | - Joe Z Tsien
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Augusta UniversityAugusta, GA, USA; The Brain Decoding Center, Banna Biomedical Research Institute, Yunnan Academy of Science and TechnologyYunnan, China
| |
Collapse
|
67
|
Tandon S, Keefe KA, Taha SA. Excitation of lateral habenula neurons as a neural mechanism underlying ethanol-induced conditioned taste aversion. J Physiol 2016; 595:1393-1412. [PMID: 27682823 DOI: 10.1113/jp272994] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/23/2016] [Indexed: 12/23/2022] Open
Abstract
KEY POINTS The lateral habenula (LHb) has been implicated in regulation of drug-seeking behaviours through aversion-mediated learning. In this study, we recorded neuronal activity in the LHb of rats during an operant task before and after ethanol-induced conditioned taste aversion (CTA) to saccharin. Ethanol-induced CTA caused significantly higher baseline firing rates in LHb neurons, as well as elevated firing rates in response to cue presentation, lever press and saccharin taste. In a separate cohort of rats, we found that bilateral LHb lesions blocked ethanol-induced CTA. Our results strongly suggest that excitation of LHb neurons is required for ethanol-induced CTA, and point towards a mechanism through which LHb firing may regulate voluntary ethanol consumption. ABSTRACT Ethanol, like other drugs of abuse, has both rewarding and aversive properties. Previous work suggests that sensitivity to ethanol's aversive effects negatively modulates voluntary alcohol intake and thus may be important in vulnerability to developing alcohol use disorders. We previously found that rats with lesions of the lateral habenula (LHb), which is implicated in aversion-mediated learning, show accelerated escalation of voluntary ethanol consumption. To understand neural encoding in the LHb contributing to ethanol-induced aversion, we recorded neural firing in the LHb of freely behaving, water-deprived rats before and after an ethanol-induced (1.5 g kg-1 20% ethanol, i.p.) conditioned taste aversion (CTA) to saccharin taste. Ethanol-induced CTA strongly decreased motivation for saccharin in an operant task to obtain the tastant. Comparison of LHb neural firing before and after CTA induction revealed four main differences in firing properties. First, baseline firing after CTA induction was significantly higher. Second, firing evoked by cues signalling saccharin availability shifted from a pattern of primarily inhibition before CTA to primarily excitation after CTA induction. Third, CTA induction reduced the magnitude of lever press-evoked inhibition. Finally, firing rates were significantly higher during consumption of the devalued saccharin solution after CTA induction. Next, we studied sham- and LHb-lesioned rats in our operant CTA paradigm and found that LHb lesion significantly attenuated CTA effects in the operant task. Our data demonstrate the importance of LHb excitation in regulating expression of ethanol-induced aversion and suggest a mechanism for its role in modulating escalation of voluntary ethanol intake.
Collapse
Affiliation(s)
- Shashank Tandon
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, 84112-5820, USA
| | - Kristen A Keefe
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, 84112-5820, USA
| | - Sharif A Taha
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, 84112-5820, USA
| |
Collapse
|
68
|
Doremus-Fitzwater TL, Spear LP. Reward-centricity and attenuated aversions: An adolescent phenotype emerging from studies in laboratory animals. Neurosci Biobehav Rev 2016; 70:121-134. [PMID: 27524639 PMCID: PMC5612441 DOI: 10.1016/j.neubiorev.2016.08.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 12/21/2022]
Abstract
Adolescence is an evolutionarily conserved developmental period, with neural circuits and behaviors contributing to the detection, procurement, and receipt of rewards bearing similarity across species. Studies with laboratory animals suggest that adolescence is typified by a "reward-centric" phenotype-an increased sensitivity to rewards relative to adults. In contrast, adolescent rodents are reportedly less sensitive to the aversive properties of many drugs and naturally aversive stimuli. Alterations within the mesocorticolimbic dopamine and endocannabinoid systems likely contribute to an adolescent reward-sensitive, yet aversion-resistant, phenotype. Although early hypotheses postulated that developmental changes in dopaminergic circuitry would result in a "reward deficiency" syndrome, evidence now suggests the opposite: that adolescents are uniquely poised to seek out hedonic stimuli, experience greater "pleasure" from rewards, and consume rewarding stimuli in excess. Future studies that more clearly define the role of specific brain regions and neurotransmitter systems in the expression of behaviors toward reward- and aversive-related cues and stimuli are necessary to more fully understand an adolescent-proclivity for and vulnerability to rewards and drugs of potential abuse.
Collapse
Affiliation(s)
- Tamara L Doremus-Fitzwater
- Developmental Alcohol Exposure Research Center, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York 13902-6000, USA.
| | - Linda P Spear
- Developmental Alcohol Exposure Research Center, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York 13902-6000, USA
| |
Collapse
|
69
|
Matsumoto H, Tian J, Uchida N, Watabe-Uchida M. Midbrain dopamine neurons signal aversion in a reward-context-dependent manner. eLife 2016; 5. [PMID: 27760002 PMCID: PMC5070948 DOI: 10.7554/elife.17328] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/23/2016] [Indexed: 11/14/2022] Open
Abstract
Dopamine is thought to regulate learning from appetitive and aversive events. Here we examined how optogenetically-identified dopamine neurons in the lateral ventral tegmental area of mice respond to aversive events in different conditions. In low reward contexts, most dopamine neurons were exclusively inhibited by aversive events, and expectation reduced dopamine neurons’ responses to reward and punishment. When a single odor predicted both reward and punishment, dopamine neurons’ responses to that odor reflected the integrated value of both outcomes. Thus, in low reward contexts, dopamine neurons signal value prediction errors (VPEs) integrating information about both reward and aversion in a common currency. In contrast, in high reward contexts, dopamine neurons acquired a short-latency excitation to aversive events that masked their VPE signaling. Our results demonstrate the importance of considering the contexts to examine the representation in dopamine neurons and uncover different modes of dopamine signaling, each of which may be adaptive for different environments. DOI:http://dx.doi.org/10.7554/eLife.17328.001 There are many types of learning; one type of learning means that rewards and punishments can shape future behavior. Dopamine is a molecule that allows neurons in the brain to communicate with one another, and it is released in response to unexpected rewards. Most neuroscientists believe that dopamine is important to learn from the reward; however, there are different opinions about whether dopamine is important to learn from punishments or not. Previous studies that tried to examine how dopamine activities change in response to punishment have reported different results. One of the likely reasons for the controversy is that it was difficult to measure only the activity of dopamine-releasing neurons. To overcome this issue, Matsumoto et al. used genetically engineered mice in which shining a blue light into their brain would activate their dopamine neurons but not any other neurons. Tiny electrodes were inserted into the brains of these mice, and a blue light was used to confirm that these electrodes were recording from the dopamine-producing neurons. Specifically if the electrode detected an electrical impulse when blue light was beamed into the brain, then the recorded neuron was confirmed to be a dopamine-producing neuron. Measuring the activities of these dopamine neurons revealed that they were indeed activated by reward but inhibited by punishment. In other words, dopamine neurons indeed can signal punishments as negative and rewards as positive on a single axis. Further experiments showed that, if the mice predicted both a reward and a punishment, the dopamine neurons could integrate information from both to direct learning. Matsumoto et al. also saw that when mice received rewards too often, their dopamine neurons did not signal punishment correctly. These results suggest that how we feel about punishment may depend on how often we experience rewards. In addition to learning, dopamine has also been linked to many psychiatric symptoms such as addiction and depression. The next challenge will be to examine how the frequency of rewards changes an animal’s state and responses to punishment in more detail, and how this relates to normal and abnormal behaviors. DOI:http://dx.doi.org/10.7554/eLife.17328.002
Collapse
Affiliation(s)
- Hideyuki Matsumoto
- Center for Brain Science, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Ju Tian
- Center for Brain Science, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Naoshige Uchida
- Center for Brain Science, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Mitsuko Watabe-Uchida
- Center for Brain Science, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| |
Collapse
|
70
|
Lloyd K, Dayan P. Safety out of control: dopamine and defence. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2016; 12:15. [PMID: 27216176 PMCID: PMC4878001 DOI: 10.1186/s12993-016-0099-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/13/2016] [Indexed: 12/21/2022]
Abstract
We enjoy a sophisticated understanding of how animals learn to predict appetitive outcomes and direct their behaviour accordingly. This encompasses well-defined learning algorithms and details of how these might be implemented in the brain. Dopamine has played an important part in this unfolding story, appearing to embody a learning signal for predicting rewards and stamping in useful actions, while also being a modulator of behavioural vigour. By contrast, although choosing correct actions and executing them vigorously in the face of adversity is at least as important, our understanding of learning and behaviour in aversive settings is less well developed. We examine aversive processing through the medium of the role of dopamine and targets such as D2 receptors in the striatum. We consider critical factors such as the degree of control that an animal believes it exerts over key aspects of its environment, the distinction between 'better' and 'good' actual or predicted future states, and the potential requirement for a particular form of opponent to dopamine to ensure proper calibration of state values.
Collapse
Affiliation(s)
- Kevin Lloyd
- Gatsby Computational Neuroscience Unit, 25 Howland Street, London, UK
| | - Peter Dayan
- Gatsby Computational Neuroscience Unit, 25 Howland Street, London, UK
| |
Collapse
|
71
|
Ferré S. Mechanisms of the psychostimulant effects of caffeine: implications for substance use disorders. Psychopharmacology (Berl) 2016; 233:1963-79. [PMID: 26786412 PMCID: PMC4846529 DOI: 10.1007/s00213-016-4212-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/09/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND The psychostimulant properties of caffeine are reviewed and compared with those of prototypical psychostimulants able to cause substance use disorders (SUD). Caffeine produces psychomotor-activating, reinforcing, and arousing effects, which depend on its ability to disinhibit the brake that endogenous adenosine imposes on the ascending dopamine and arousal systems. OBJECTIVES A model that considers the striatal adenosine A2A-dopamine D2 receptor heteromer as a key modulator of dopamine-dependent striatal functions (reward-oriented behavior and learning of stimulus-reward and reward-response associations) is introduced, which should explain most of the psychomotor and reinforcing effects of caffeine. HIGHLIGHTS The model can explain the caffeine-induced rotational behavior in rats with unilateral striatal dopamine denervation and the ability of caffeine to reverse the adipsic-aphagic syndrome in dopamine-deficient rodents. The model can also explain the weaker reinforcing effects and low abuse liability of caffeine, compared with prototypical psychostimulants. Finally, the model can explain the actual major societal dangers of caffeine: the ability of caffeine to potentiate the addictive and toxic effects of drugs of abuse, with the particularly alarming associations of caffeine (as adulterant) with cocaine, amphetamine derivatives, synthetic cathinones, and energy drinks with alcohol, and the higher sensitivity of children and adolescents to the psychostimulant effects of caffeine and its potential to increase vulnerability to SUD. CONCLUSIONS The striatal A2A-D2 receptor heteromer constitutes an unequivocal main pharmacological target of caffeine and provides the main mechanisms by which caffeine potentiates the acute and long-term effects of prototypical psychostimulants.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Technology Building, 333 Cassell Drive, Baltimore, MD, 21224, USA.
| |
Collapse
|
72
|
Fortin SM, Chartoff EH, Roitman MF. The Aversive Agent Lithium Chloride Suppresses Phasic Dopamine Release Through Central GLP-1 Receptors. Neuropsychopharmacology 2016. [PMID: 26211731 PMCID: PMC4707837 DOI: 10.1038/npp.2015.220] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Unconditioned rewarding stimuli evoke phasic increases in dopamine concentration in the nucleus accumbens (NAc) while discrete aversive stimuli elicit pauses in dopamine neuron firing and reductions in NAc dopamine concentration. The unconditioned effects of more prolonged aversive states on dopamine release dynamics are not well understood and are investigated here using the malaise-inducing agent lithium chloride (LiCl). We used fast-scan cyclic voltammetry to measure phasic increases in NAc dopamine resulting from electrical stimulation of dopamine cell bodies in the ventral tegmental area (VTA). Systemic LiCl injection reduced electrically evoked dopamine release in the NAc of both anesthetized and awake rats. As some behavioral effects of LiCl appear to be mediated through glucagon-like peptide-1 receptor (GLP-1R) activation, we hypothesized that the suppression of phasic dopamine by LiCl is GLP-1R dependent. Indeed, peripheral pretreatment with the GLP-1R antagonist exendin-9 (Ex-9) potently attenuated the LiCl-induced suppression of dopamine. Pretreatment with Ex-9 did not, however, affect the suppression of phasic dopamine release by the kappa-opioid receptor agonist, salvinorin A, supporting a selective effect of GLP-1R stimulation in LiCl-induced dopamine suppression. By delivering Ex-9 to either the lateral or fourth ventricle, we highlight a population of central GLP-1 receptors rostral to the hindbrain that are involved in the LiCl-mediated suppression of NAc dopamine release.
Collapse
Affiliation(s)
- Samantha M Fortin
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL, USA
| | - Elena H Chartoff
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Mitchell F Roitman
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA,Psychology, University of Illinois at Chicago, 1007 W Harrison St, Chicago, IL 60607, USA, Tel: 312 996 3113, Fax: 312 413 4122, E-mail:
| |
Collapse
|
73
|
Physiological state gates acquisition and expression of mesolimbic reward prediction signals. Proc Natl Acad Sci U S A 2016; 113:1943-8. [PMID: 26831116 DOI: 10.1073/pnas.1519643113] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phasic dopamine signaling participates in associative learning by reinforcing associations between outcomes (unconditioned stimulus; US) and their predictors (conditioned stimulus; CS). However, prior work has always engendered these associations with innately rewarding stimuli. Thus, whether dopamine neurons can acquire prediction signals in the absence of appetitive experience and update them when the value of the outcome changes remains unknown. Here, we used sodium depletion to reversibly manipulate the appetitive value of a hypertonic sodium solution while measuring phasic dopamine signaling in rat nucleus accumbens. Dopamine responses to the NaCl US following sodium depletion updated independent of prior experience. In contrast, prediction signals were only acquired through extensive experience with a US that had positive affective value. Once learned, dopamine prediction signals were flexibly expressed in a state-dependent manner. Our results reveal striking differences with respect to how physiological state shapes dopamine signals evoked by outcomes and their predictors.
Collapse
|
74
|
da Silva AAM, Oliveira MM, Cavalcante TCF, do Amaral Almeida LC, de Souza JA, da Silva MC, de Souza SL. Low protein diet during gestation and lactation increases food reward seeking but does not modify sucrose taste reactivity in adult female rats. Int J Dev Neurosci 2016; 49:50-9. [PMID: 26805766 DOI: 10.1016/j.ijdevneu.2016.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 12/25/2015] [Accepted: 01/12/2016] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Nutritional deficiencies during neural development may lead to irreversible changes, even after nutritional rehabilitation, promoting morphological and functional adaptations of structures involved with various behaviours including feeding behaviour. However, the ability of the exposure low protein diet during gestation and lactation to affect the hedonic component of food intake is still poorly understood, especially in females. METHODS Wistar rats were divided into two groups according to the diet offered to the dams during pregnancy and lactation: control female (CF; diet with 17% protein, n=7) and low protein female (LPF; diet with 8% protein, n=7). The following parameters were evaluated: (a) body weight during weaning, 30, 45, 60, 75, 90 days of life; (b) standard diet intake from 110 to 132 days of life; (c) fat diet and consumption of simple carbohydrates (HFHS) for 1h at 145 days of life; (d) incentive runway task 60 days after 82 days of life; (e) taste reactivity at 90 days of life; and (f) neuronal activation in the caudate putamen, amygdala, paraventricular nucleus of the hypothalamus under stimulus HFHS at 145 days of life. RESULTS The exposure, a low protein diet during gestation and lactation, decreased the body weight throughout the study period from weaning to 90 days of life. However, there was no significant change in the body weight of low protein females from 110 to 132 days of life compared with the control females. There was an increase in the rate of the search for reward and reduced the latency of the perception of bitter taste. The exposure, a low protein diet during gestation and lactation, also promoted hypophagy in adult females compared with control animals. The low protein female had increased HFHS diet consumption compared with the control. Undernutrition increased neuronal activation in response to HFHS diet consumption compared with female controls in the amygdala and in the caudate putamen. CONCLUSION Females subjected to the exposure, a low protein diet during gestation and lactation, exhibit hypophagy on a standard diet but a higher consumption of a diet rich in lipids and simple carbohydrates. And also were more motivated by the pursuit of reward and reduced latency of the bitter taste reactivity, and increased the number of immunoreactive cells c-fos protein activated in the caudate putamen, amygdala and paraventricular nucleus.
Collapse
Affiliation(s)
- Amanda Alves Marcelino da Silva
- Nursing College-Universidade de Pernambuco-Campus Petrolina-UPE, Recife, PE, Brazil; Postgraduate Neuropsychiatry and Behavioral Sciences, Universidade Federal Pernambuco-UFPE, Recife, PE, Brazil
| | | | - Taisy Cinthia Ferro Cavalcante
- Postgraduate Nutrition, Universidade Federal Pernambuco-UFPE, Recife, PE, Brazil; Nutrition College-Universidade de Pernambuco-Campus Petrolina-UPE, Recife, PE, Brazil
| | | | | | - Matilde Cesiana da Silva
- Nutrition College-Universidade Federal de Pernambuco, Centro Acadêmico de Vitória-UFPE-CAV, Vitória de Santo Antão, PE, Brazil
| | - Sandra Lopes de Souza
- Postgraduate Neuropsychiatry and Behavioral Sciences, Universidade Federal Pernambuco-UFPE, Recife, PE, Brazil; Department of Anatomy, Universidade Federal de Pernambuco-UFPE, Recife, PE, Brazil.
| |
Collapse
|
75
|
Abstract
UNLABELLED Treating pain is one of the most difficult challenges in medicine and a key facet of disease management. The isolation of morphine by Friedrich Sertürner in 1804 added an essential pharmacological tool in the treatment of pain and spawned the discovery of a new class of drugs known collectively as opioid analgesics. Revered for their potent pain-relieving effects, even Morpheus the god of dreams could not have dreamt that his opium tincture would be both a gift and a burden to humankind. To date, morphine and other opioids remain essential analgesics for alleviating pain. However, their use is plagued by major side effects, such as analgesic tolerance (diminished pain-relieving effects), hyperalgesia (increased pain sensitivity), and drug dependence. This review highlights recent advances in understanding the key causes of these adverse effects and explores the effect of chronic pain on opioid reward. SIGNIFICANCE STATEMENT Chronic pain is pervasive and afflicts >100 million Americans. Treating pain in these individuals is notoriously difficult and often requires opioids, one of the most powerful and effective classes of drugs used for controlling pain. However, their use is plagued by major side effects, such as a loss of pain-relieving effects (analgesic tolerance), paradoxical pain (hyperalgesia), and addiction. Despite the potential side effects, opioids remain the pharmacological cornerstone of modern pain therapy. This review highlights recent breakthroughs in understanding the key causes of these adverse effects and explores the cellular control of opioid systems in reward and aversion. The findings will challenge traditional views of the good, the bad, and the ugly of opioids.
Collapse
|
76
|
Barkley-Levenson AM, Ryabinin AE, Crabbe JC. Neuropeptide Y response to alcohol is altered in nucleus accumbens of mice selectively bred for drinking to intoxication. Behav Brain Res 2016; 302:160-70. [PMID: 26779672 DOI: 10.1016/j.bbr.2016.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/06/2015] [Accepted: 01/05/2016] [Indexed: 11/17/2022]
Abstract
The High Drinking in the Dark (HDID) mice have been selectively bred for drinking to intoxicating blood alcohol levels and represent a genetic model of risk for binge-like drinking. Presently, little is known about the specific genetic factors that promote excessive intake in these mice. Previous studies have identified neuropeptide Y (NPY) as a potential target for modulating alcohol intake. NPY expression differs in some rodent lines that have been selected for high and low alcohol drinking phenotypes, as well as inbred mouse strains that differ in alcohol preference. Alcohol drinking and alcohol withdrawal also produce differential effects on NPY expression in the brain. Here, we assessed brain NPY protein levels in HDID mice of two replicates of selection and control heterogeneous stock (HS) mice at baseline (water drinking) and after binge-like alcohol drinking to determine whether selection is associated with differences in NPY expression and its sensitivity to alcohol. NPY levels did not differ between HDID and HS mice in any brain region in the water-drinking animals. HS mice showed a reduction in NPY levels in the nucleus accumbens (NAc) - especially in the shell - in ethanol-drinking animals vs. water-drinking controls. However, HDID mice showed a blunted NPY response to alcohol in the NAc core and shell compared to HS mice. These findings suggest that the NPY response to alcohol has been altered by selection for drinking to intoxication in a region-specific manner. Thus, the NPY system may represent a potential target for altering binge-like alcohol drinking in these mice.
Collapse
Affiliation(s)
- Amanda M Barkley-Levenson
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; Portland Alcohol Research Center, Portland, OR 97239, United States; VA Portland Health Care System, Portland, OR 97239, United States.
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; Portland Alcohol Research Center, Portland, OR 97239, United States
| | - John C Crabbe
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; Portland Alcohol Research Center, Portland, OR 97239, United States; VA Portland Health Care System, Portland, OR 97239, United States
| |
Collapse
|
77
|
Lee JC, Wang LP, Tsien JZ. Dopamine Rebound-Excitation Theory: Putting Brakes on PTSD. Front Psychiatry 2016; 7:163. [PMID: 27729874 PMCID: PMC5037223 DOI: 10.3389/fpsyt.2016.00163] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/14/2016] [Indexed: 01/19/2023] Open
Abstract
It is not uncommon for humans or animals to experience traumatic events in their lifetimes. However, the majority of individuals are resilient to long-term detrimental changes turning into anxiety and depression, such as post-traumatic stress disorder (PTSD). What underlying neural mechanism accounts for individual variability in stress resilience? Hyperactivity in fear circuits, such as the amygdalar system, is well-known to be the major pathophysiological basis for PTSD, much like a "stuck accelerator." Interestingly, increasing evidence demonstrates that dopamine (DA) - traditionally known for its role in motivation, reward prediction, and addiction - is also crucial in regulating fear learning and anxiety. Yet, how dopaminergic (DAergic) neurons control stress resilience is unclear, especially given that DAergic neurons have multiple subtypes with distinct temporal dynamics. Here, we propose the Rebound-Excitation Theory, which posits that DAergic neurons' rebound-excitation at the termination of fearful experiences serves as an important "brake" by providing intrinsic safety-signals to fear-processing neural circuits in a spatially and temporally controlled manner. We discuss how DAergic neuron rebound-excitation may be regulated by genetics and experiences, and how such physiological properties may be used as a brain-activity biomarker to predict and confer individual resilience to stress and anxiety.
Collapse
Affiliation(s)
- Jason C Lee
- Department of Neurology, Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta University , Augusta, GA , USA
| | - Lei Philip Wang
- Department of Neurology, Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Psychiatry, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Joe Z Tsien
- Department of Neurology, Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta University , Augusta, GA , USA
| |
Collapse
|
78
|
Iwai M, Muroi Y, Kinoshita KI, Ishii T. Serotonin modulates the dehydration-induced changes in tolerance for bitter water. Physiol Behav 2015; 151:545-50. [PMID: 26325013 DOI: 10.1016/j.physbeh.2015.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 11/26/2022]
Abstract
Drinking behavior is regulated by endogenous factors such as the hydration condition of animals and exogenous factors such as the taste of ingested fluids. These factors have been suggested to interact with each other via serotonergic (5-HT) signaling to regulate drinking behavior. In the present study, we examined how dehydration affects the intake of bitter water, which suppresses drinking behavior, via 5-HT signaling. Water deprivation increased water intake for 1h, depending on the duration of water deprivation. The intake of 1mM quinine, which is a bitter tastant, was lower than that of water in mice deprived of water for 24h but not 48 h. We next examined the involvement of the dorsal raphe nucleus (DRN) and median raphe nucleus (MRN), which contain a large population of 5-HT neurons, in changing tolerance for quinine intake after water deprivation. The intake of quinine following water deprivation for 24h, but not 48 h, increased the number of tryptophan hydroxylase-positive neurons expressing c-Fos in the DRN, but not in the MRN. Moreover, administration of paroxetine, a selective serotonin reuptake inhibitor, decreased the intake of quinine solution, but not water, in mice deprived of water for 48 h, indicating that paroxetine treatment restored the aversion to quinine. These results suggest that unresponsiveness of 5-HT neurons in the DRN may be involved in the dehydration-induced increase in tolerance for bitter water.
Collapse
Affiliation(s)
- Masaki Iwai
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| | - Yoshikage Muroi
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| | - Ken-ichi Kinoshita
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| | - Toshiaki Ishii
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
79
|
Breysse E, Pelloux Y, Baunez C. The Good and Bad Differentially Encoded within the Subthalamic Nucleus in Rats(1,2,3). eNeuro 2015; 2:ENEURO.0014-15.2015. [PMID: 26478913 PMCID: PMC4607759 DOI: 10.1523/eneuro.0014-15.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 08/14/2015] [Accepted: 08/25/2015] [Indexed: 11/23/2022] Open
Abstract
The subthalamic nucleus (STN) has only recently been added into the reward circuit. It has been shown to encode information regarding rewards (4% sucrose, 32% cocaine). To investigate the encoding of negative value, STN neurons were recorded in rats performing a task using discriminative stimuli predicting various rewards and especially during the replacement of a positive reinforcer (4% sucrose) by an aversive reinforcer (quinine). The results show that STN neurons encode information relative to both positive and aversive reinforcers via specialized subpopulations. The specialization is reset when the context is modified (change from a favorable context (4% vs 32% sucrose) to an unfavorable context (quinine vs 32% sucrose). An excitatory response to the cue light predicting the reward seems to be associated with the preferred situation, suggesting that STN plays a role in encoding the relative value of rewards. STN also seems to play a critical role in the encoding of execution error. Indeed, various subpopulations of neurons responding exclusively at early (i.e., "oops neurons") or at correct lever release were identified. The oops neurons respond mostly when the preferred reward (32% sucrose) is missed. Furthermore, STN neurons respond to reward omission, suggesting a role in reward prediction error. These properties of STN neurons strengthen its position in the reward circuit as a key cerebral structure through which reward-related processes are mediated. It is particularly important given the fact that STN is the target of surgical treatment for Parkinson's disease and obsessive compulsive disorders, and has been suggested for the treatment of addiction as well.
Collapse
Affiliation(s)
- Emmanuel Breysse
- Centre National de la Recherche Scientifique and Aix Marseille Université, Institut de Neurosciences de la Timone Unité Mixte de Recherche 7289 , 13385 Marseille, France
| | - Yann Pelloux
- Centre National de la Recherche Scientifique and Aix Marseille Université, Institut de Neurosciences de la Timone Unité Mixte de Recherche 7289 , 13385 Marseille, France
| | - Christelle Baunez
- Centre National de la Recherche Scientifique and Aix Marseille Université, Institut de Neurosciences de la Timone Unité Mixte de Recherche 7289 , 13385 Marseille, France
| |
Collapse
|
80
|
Role of PKA signaling in D2 receptor-expressing neurons in the core of the nucleus accumbens in aversive learning. Proc Natl Acad Sci U S A 2015; 112:11383-8. [PMID: 26305972 DOI: 10.1073/pnas.1514731112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nucleus accumbens (NAc) serves as a key neural substrate for aversive learning and consists of two distinct subpopulations of medium-sized spiny neurons (MSNs). The MSNs of the direct pathway (dMSNs) and the indirect pathway (iMSNs) predominantly express dopamine (DA) D1 and D2 receptors, respectively, and are positively and negatively modulated by DA transmitters via Gs- and Gi-coupled cAMP-dependent protein kinase A (PKA) signaling cascades, respectively. In this investigation, we addressed how intracellular PKA signaling is involved in aversive learning in a cell type-specific manner. When the transmission of either dMSNs or iMSNs was unilaterally blocked by pathway-specific expression of transmission-blocking tetanus toxin, infusion of PKA inhibitors into the intact side of the NAc core abolished passive avoidance learning toward an electric shock in the indirect pathway-blocked mice, but not in the direct pathway-blocked mice. We then examined temporal changes in PKA activity in dMSNs and iMSNs in behaving mice by monitoring Förster resonance energy transfer responses of the PKA biosensor with the aid of microendoscopy. PKA activity was increased in iMSNs and decreased in dMSNs in both aversive memory formation and retrieval. Importantly, the increased PKA activity in iMSNs disappeared when aversive memory was prevented by keeping mice in the conditioning apparatus. Furthermore, the increase in PKA activity in iMSNs by aversive stimuli reflected facilitation of aversive memory retention. These results indicate that PKA signaling in iMSNs plays a critical role in both aversive memory formation and retention.
Collapse
|
81
|
Orsini CA, Moorman DE, Young JW, Setlow B, Floresco SB. Neural mechanisms regulating different forms of risk-related decision-making: Insights from animal models. Neurosci Biobehav Rev 2015; 58:147-67. [PMID: 26072028 DOI: 10.1016/j.neubiorev.2015.04.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/13/2015] [Accepted: 04/24/2015] [Indexed: 11/18/2022]
Abstract
Over the past 20 years there has been a growing interest in the neural underpinnings of cost/benefit decision-making. Recent studies with animal models have made considerable advances in our understanding of how different prefrontal, striatal, limbic and monoaminergic circuits interact to promote efficient risk/reward decision-making, and how dysfunction in these circuits underlies aberrant decision-making observed in numerous psychiatric disorders. This review will highlight recent findings from studies exploring these questions using a variety of behavioral assays, as well as molecular, pharmacological, neurophysiological, and translational approaches. We begin with a discussion of how neural systems related to decision subcomponents may interact to generate more complex decisions involving risk and uncertainty. This is followed by an overview of interactions between prefrontal-amygdala-dopamine and habenular circuits in regulating choice between certain and uncertain rewards and how different modes of dopamine transmission may contribute to these processes. These data will be compared with results from other studies investigating the contribution of some of these systems to guiding decision-making related to rewards vs. punishment. Lastly, we provide a brief summary of impairments in risk-related decision-making associated with psychiatric disorders, highlighting recent translational studies in laboratory animals.
Collapse
Affiliation(s)
- Caitlin A Orsini
- Department of Psychiatry and Center for Addiction Research and Education, University of Florida College of Medicine, Gainesville, FL, United States
| | - David E Moorman
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, United States
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, United States; VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, United States
| | - Barry Setlow
- Department of Psychiatry and Center for Addiction Research and Education, University of Florida College of Medicine, Gainesville, FL, United States
| | - Stan B Floresco
- Department of Psychology and Brain Research Center, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
82
|
Aversive stimuli drive drug seeking in a state of low dopamine tone. Biol Psychiatry 2015; 77:895-902. [PMID: 25442790 PMCID: PMC4369463 DOI: 10.1016/j.biopsych.2014.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/26/2014] [Accepted: 09/12/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND Stressors negatively impact emotional state and drive drug seeking, in part, by modulating the activity of the mesolimbic dopamine system. Unfortunately, the rapid regulation of dopamine signaling by the aversive stimuli that cause drug seeking is not well characterized. In a series of experiments, we scrutinized the subsecond regulation of dopamine signaling by the aversive stimulus, quinine, and tested its ability to cause cocaine seeking. Additionally, we examined the midbrain regulation of both dopamine signaling and cocaine seeking by the stress-sensitive peptide, corticotropin releasing factor (CRF). METHODS Combining fast-scan cyclic voltammetry with behavioral pharmacology, we examined the effect of intraoral quinine administration on nucleus accumbens dopamine signaling and hedonic expression in 21 male Sprague-Dawley rats. We tested the role of CRF in modulating aversion-induced changes in dopamine concentration and cocaine seeking by bilaterally infusing the CRF antagonist, CP-376395, into the ventral tegmental area (VTA). RESULTS We found that quinine rapidly reduced dopamine signaling on two distinct time scales. We determined that CRF acted in the VTA to mediate this reduction on only one of these time scales. Further, we found that the reduction of dopamine tone and quinine-induced cocaine seeking were eliminated by blocking the actions of CRF in the VTA during the experience of the aversive stimulus. CONCLUSIONS These data demonstrate that stress-induced drug seeking can occur in a terminal environment of low dopamine tone that is dependent on a CRF-induced decrease in midbrain dopamine activity.
Collapse
|
83
|
Pagonabarraga J, Kulisevsky J, Strafella AP, Krack P. Apathy in Parkinson's disease: clinical features, neural substrates, diagnosis, and treatment. Lancet Neurol 2015; 14:518-31. [PMID: 25895932 DOI: 10.1016/s1474-4422(15)00019-8] [Citation(s) in RCA: 321] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 09/29/2014] [Accepted: 01/06/2015] [Indexed: 02/06/2023]
Abstract
Normal maintenance of human motivation depends on the integrity of subcortical structures that link the prefrontal cortex with the limbic system. Structural and functional disruption of different networks within these circuits alters the maintenance of spontaneous mental activity and the capacity of affected individuals to associate emotions with complex stimuli. The clinical manifestations of these changes include a continuum of abnormalities in goal-oriented behaviours known as apathy. Apathy is highly prevalent in Parkinson's disease (and across many neurodegenerative disorders) and can severely affect the quality of life of both patients and caregivers. Differentiation of apathy from depression, and discrimination of its cognitive, emotional, and auto-activation components could guide an individualised approach to the treatment of symptoms. The opportunity to manipulate dopaminergic treatment in Parkinson's disease allows researchers to study a continuous range of motivational states, from apathy to impulse control disorders. Parkinson's disease can thus be viewed as a model that provides insight into the neural substrates of apathy.
Collapse
Affiliation(s)
- Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital and Biomedical Research Institute, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital and Biomedical Research Institute, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain; Universitat Oberta de Catalunya, Barcelona, Spain
| | - Antonio P Strafella
- Morton and Gloria Shulman Movement Disorder Unit, E.J. Safra Parkinson Disease Program, Toronto Western Hospital and Research Institute, UHN, ON, Canada; Research Imaging Centre, Campbell Family Mental Health Research Institute, CAMH, University of Toronto, ON, Canada
| | - Paul Krack
- Movement Disorder Unit, Department of Psychiatry and Neurology, CHU de Grenoble, Joseph Fourier University, Grenoble, France; INSERM, Unit 836, Grenoble Institut des Neurosciences, Grenoble, France.
| |
Collapse
|
84
|
Abstract
Drug withdrawal is often conceptualized as an aversive state that motivates drug-seeking and drug-taking behaviors in humans. Stress is more difficult to define, but is also frequently associated with aversive states. Here we describe evidence for the simple theory that drug withdrawal is a stress-like state, on the basis of common effects on behavioral, neurochemical, and molecular endpoints. We also describe data suggesting a more complex relationship between drug withdrawal and stress. As one example, we will highlight evidence that, depending on drug class, components of withdrawal can produce effects that have characteristics consistent with mood elevation. In addition, some stressors can act as positive reinforcers, defined as having the ability to increase the probability of a behavior that produces it. As such, accumulating evidence supports the general principles of opponent process theory, whereby processes that have an affective valence are followed in time by an opponent process that has the opposite valence. Throughout, we identify gaps in knowledge and propose future directions for research. A better understanding of the similarities, differences, and overlaps between drug withdrawal and stress will lead to the development of improved treatments for addiction, as well as for a vast array of neuropsychiatric conditions that are triggered or exacerbated by stress.
Collapse
|
85
|
Colechio EM, Grigson PS. Conditioned Aversion for a Cocaine-Predictive Cue is Associated with Cocaine Seeking and Taking in Rats. INTERNATIONAL JOURNAL OF COMPARATIVE PSYCHOLOGY 2015; 27:488-500. [PMID: 25673916 PMCID: PMC4321739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023] Open
Abstract
Rats emit aversive taste reactivity (TR) behavior (i.e., gapes) following intraoral delivery of a cocaine-paired taste cue, and greater conditioned aversive TR in well-trained rats predicts greater drug-taking. Here, we used a between-groups design and tracked the development of this conditioned aversive TR behavior on a trial by trial basis in an effort to determine when the change in behavior occurs and at what point individual differences in cue reactivity become predictive of cocaine-seeking and cocaine-taking. The results demonstrate that conditioned aversive TR to a cocaine-predictive flavor cue appears very early in training (i.e., following as few as 1 to 2 taste-drug pairings), stabilizes quickly, and becomes predictive of terminal self-administration within 3 to 4 trials. Indeed, rats exhibiting high conditioned aversive TR to the cocaine-paired cue also exhibited greater goal-directed behavior, were faster to take drug, self-administered more cocaine, and exhibited greater seeking during periods of drug non-availability. High conditioned aversive TR, then, develops quickly and is associated with a greater motivation for drug.
Collapse
Affiliation(s)
- Elizabeth M Colechio
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA
| | - Patricia S Grigson
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA
| |
Collapse
|
86
|
Wenzel JM, Rauscher NA, Cheer JF, Oleson EB. A role for phasic dopamine release within the nucleus accumbens in encoding aversion: a review of the neurochemical literature. ACS Chem Neurosci 2015; 6:16-26. [PMID: 25491156 DOI: 10.1021/cn500255p] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Survival is dictated by an organism's fitness in approaching positive stimuli and avoiding harm. While a rich literature outlines a role for mesolimbic dopamine in reward and appetitive behaviors, dopamine's involvement in aversion and avoidance behaviors remains controversial. Debate surrounding dopamine's function in the processing of negative stimuli likely stems from conflicting results reported by single-unit electrophysiological studies. Indeed, a number of studies suggest that midbrain dopaminergic cells are inhibited by the presentation of negative or fearful stimuli, while others report no change, or even an increase, in their activity. These disparate results may be due to population heterogeneity. Recent evidence demonstrates that midbrain dopamine neurons are heterogeneous in their projection targets, responses to environmental stimuli, pharmacology, and influences on motivated behavior. Thus, in order to assemble an accurate account of dopamine function during aversive stimulus experience and related behavior, it is necessary to examine the functional output of dopamine neural activity at mesolimbic terminal regions. This Review presents a growing body of evidence that dopamine release in the nucleus accumbens encodes not only reward, but also aversion. For example, our laboratory recently utilized fast-scan cyclic voltammetry to show that real-time changes in accumbal dopamine release are detected when animals are presented with predictors of aversion and its avoidance. These data, along with other reports, support a considerably more nuanced view of dopamine neuron function, wherein accumbal dopamine release is differentially modulated by positive and negative affective stimuli to promote adaptive behaviors.
Collapse
Affiliation(s)
| | - Noah A. Rauscher
- Department
of Psychology, University of Colorado, Denver, Colorado 80015, United States
| | | | - Erik B. Oleson
- Department
of Psychology, University of Colorado, Denver, Colorado 80015, United States
| |
Collapse
|
87
|
Pelloux Y, Meffre J, Giorla E, Baunez C. The subthalamic nucleus keeps you high on emotion: behavioral consequences of its inactivation. Front Behav Neurosci 2014; 8:414. [PMID: 25538581 PMCID: PMC4257083 DOI: 10.3389/fnbeh.2014.00414] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/12/2014] [Indexed: 01/28/2023] Open
Abstract
The subthalamic nucleus (STN) belongs to the basal ganglia and is the current target for the surgical treatment of neurological and psychiatric disorders such as Parkinson's Disease (PD) and obsessive compulsive disorders (OCD), but also a proposed site for the treatment of addiction. It is therefore very important to understand its functions in order to anticipate and prevent possible side-effects in the patients. Although the involvement of the STN is well documented in motor, cognitive and motivational processes, less is known regarding emotional processes. Here we have investigated the direct consequences of STN inactivation by excitotoxic lesions on emotional processing and reinforcement in the rat. We have used various behavioral procedures to assess affect for neutral, positive and negative reinforcers in STN lesioned rats. STN lesions reduced affective responses for positive (sweet solutions) and negative (electric foot shock, Lithium Chloride-induced sickness) reinforcers while they had no effect on responses for a more neutral reinforcer (novelty induced place preference (NIPP)). Furthermore, when given the choice between saccharine, a sweet but non caloric solution, and glucose, a more bland but caloric solution, in contrast to sham animals that preferred saccharine, STN lesioned animals preferred glucose over saccharine. Taken altogether these results reveal that STN plays a critical role in emotional processing. These results, in line with some clinical observations in PD patients subjected to STN surgery, suggest possible emotional side-effects of treatments targeting the STN. They also suggest that the increased motivation for sucrose previously reported cannot be due to increased pleasure, but could be responsible for the decreased motivation for cocaine reported after STN inactivation.
Collapse
Affiliation(s)
- Yann Pelloux
- Institut de Neurosciences de la Timone, UMR7289, CNRS and Aix-Marseille UniversitéMarseille, France
| | - Julie Meffre
- Institut de Neurosciences de la Timone, UMR7289, CNRS and Aix-Marseille UniversitéMarseille, France
| | - Elodie Giorla
- Institut de Neurosciences de la Timone, UMR7289, CNRS and Aix-Marseille UniversitéMarseille, France
| | - Christelle Baunez
- Institut de Neurosciences de la Timone, UMR7289, CNRS and Aix-Marseille UniversitéMarseille, France
| |
Collapse
|
88
|
Paladini C, Roeper J. Generating bursts (and pauses) in the dopamine midbrain neurons. Neuroscience 2014; 282:109-21. [DOI: 10.1016/j.neuroscience.2014.07.032] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 01/01/2023]
|
89
|
Abstract
Migraine is a debilitating neurological disorder with grave consequences for both the individual and society. This review will focus on recent literature investigating how brain structures implicated in reward and aversion contribute to the genesis of migraine pain. There exist many overlapping and interacting brain regions within pain and reward circuitry that contribute to negative affect and subjective experience of pain. The emotional component of pain has been argued to be a greater metric of quality of life than its sensory component, and thus understanding the processes that influence this pain characteristic is essential to developing novel treatment strategies for mitigating migraine pain. We emphasize and provide evidence that abnormalities within the mesolimbic cortical reward pathways contribute to migraine pain and that there are structural and functional neuroplasticity within the overlapping brain regions common to both pain and reward.
Collapse
|
90
|
Cahill CM, Taylor AMW, Cook C, Ong E, Morón JA, Evans CJ. Does the kappa opioid receptor system contribute to pain aversion? Front Pharmacol 2014; 5:253. [PMID: 25452729 PMCID: PMC4233910 DOI: 10.3389/fphar.2014.00253] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 10/30/2014] [Indexed: 01/18/2023] Open
Abstract
The kappa opioid receptor (KOR) and the endogenous peptide-ligand dynorphin have received significant attention due the involvement in mediating a variety of behavioral and neurophysiological responses, including opposing the rewarding properties of drugs of abuse including opioids. Accumulating evidence indicates this system is involved in regulating states of motivation and emotion. Acute activation of the KOR produces an increase in motivational behavior to escape a threat, however, KOR activation associated with chronic stress leads to the expression of symptoms indicative of mood disorders. It is well accepted that KOR can produce analgesia and is engaged in chronic pain states including neuropathic pain. Spinal studies have revealed KOR-induced analgesia in reversing pain hypersensitivities associated with peripheral nerve injury. While systemic administration of KOR agonists attenuates nociceptive sensory transmission, this effect appears to be a stress-induced effect as anxiolytic agents, including delta opioid receptor agonists, mitigate KOR agonist-induced analgesia. Additionally, while the role of KOR and dynorphin in driving the dysphoric and aversive components of stress and drug withdrawal has been well characterized, how this system mediates the negative emotional states associated with chronic pain is relatively unexplored. This review provides evidence that dynorphin and the KOR system contribute to the negative affective component of pain and that this receptor system likely contributes to the high comorbidity of mood disorders associated with chronic neuropathic pain.
Collapse
Affiliation(s)
- Catherine M Cahill
- Department of Anesthesiology and Perioperative Care, University of California Irvine Irvine, CA, USA ; Department of Pharmacology, University of California Irvine Irvine, CA, USA ; Department of Biomedical and Molecular Sciences, Queen's University Kingston, ON, Canada
| | - Anna M W Taylor
- Department of Anesthesiology and Perioperative Care, University of California Irvine Irvine, CA, USA ; Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles Los Angeles, CA, USA
| | - Christopher Cook
- Department of Anesthesiology and Perioperative Care, University of California Irvine Irvine, CA, USA ; Department of Pharmacology, University of California Irvine Irvine, CA, USA
| | - Edmund Ong
- Department of Anesthesiology and Perioperative Care, University of California Irvine Irvine, CA, USA ; Department of Biomedical and Molecular Sciences, Queen's University Kingston, ON, Canada
| | - Jose A Morón
- Department of Anesthesiology, Columbia University Medical Center, New York, NY USA
| | - Christopher J Evans
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles Los Angeles, CA, USA
| |
Collapse
|
91
|
Silk JS, Siegle GJ, Lee KH, Nelson EE, Stroud LR, Dahl RE. Increased neural response to peer rejection associated with adolescent depression and pubertal development. Soc Cogn Affect Neurosci 2014; 9:1798-807. [PMID: 24273075 PMCID: PMC4221220 DOI: 10.1093/scan/nst175] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 10/22/2013] [Accepted: 11/17/2013] [Indexed: 12/31/2022] Open
Abstract
Sensitivity to social evaluation has been proposed as a potential marker or risk factor for depression, and has also been theorized to increase with pubertal maturation. This study utilized an ecologically valid paradigm to test the hypothesis that adolescents with major depressive disorder (MDD) would show altered reactivity to peer rejection and acceptance relative to healthy controls in a network of ventral brain regions implicated in affective processing of social information. A total of 48 adolescents (ages 11-17), including 21 with a current diagnosis of MDD and 27 age- and gender-matched controls, received rigged acceptance and rejection feedback from fictitious peers during a simulated online peer interaction during functional neuroimaging. MDD youth showed increased activation to rejection relative to controls in the bilateral amygdala, subgenual anterior cingulate, left anterior insula and left nucleus accumbens. MDD and healthy youth did not differ in response to acceptance. Youth more advanced in pubertal maturation also showed increased reactivity to rejection in the bilateral amygdala/parahippocampal gyrus and the caudate/subgenual anterior cingulate, and these effects remained significant when controlling for chronological age. Findings suggest that increased reactivity to peer rejection is a normative developmental process associated with pubertal development, but is particularly enhanced among youth with depression.
Collapse
Affiliation(s)
- Jennifer S Silk
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA, Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA, Mood and Anxiety Disorders Program, National Institute of Mental Health, Bethesda, MD 20895, USA, Department of Psychiatry and Human Behavior, Brown Medical School, Providence, RI 02903, USA, and School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA, Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA, Mood and Anxiety Disorders Program, National Institute of Mental Health, Bethesda, MD 20895, USA, Department of Psychiatry and Human Behavior, Brown Medical School, Providence, RI 02903, USA, and School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Greg J Siegle
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA, Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA, Mood and Anxiety Disorders Program, National Institute of Mental Health, Bethesda, MD 20895, USA, Department of Psychiatry and Human Behavior, Brown Medical School, Providence, RI 02903, USA, and School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA, Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA, Mood and Anxiety Disorders Program, National Institute of Mental Health, Bethesda, MD 20895, USA, Department of Psychiatry and Human Behavior, Brown Medical School, Providence, RI 02903, USA, and School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kyung Hwa Lee
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA, Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA, Mood and Anxiety Disorders Program, National Institute of Mental Health, Bethesda, MD 20895, USA, Department of Psychiatry and Human Behavior, Brown Medical School, Providence, RI 02903, USA, and School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Eric E Nelson
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA, Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA, Mood and Anxiety Disorders Program, National Institute of Mental Health, Bethesda, MD 20895, USA, Department of Psychiatry and Human Behavior, Brown Medical School, Providence, RI 02903, USA, and School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Laura R Stroud
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA, Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA, Mood and Anxiety Disorders Program, National Institute of Mental Health, Bethesda, MD 20895, USA, Department of Psychiatry and Human Behavior, Brown Medical School, Providence, RI 02903, USA, and School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ronald E Dahl
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA, Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA, Mood and Anxiety Disorders Program, National Institute of Mental Health, Bethesda, MD 20895, USA, Department of Psychiatry and Human Behavior, Brown Medical School, Providence, RI 02903, USA, and School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
92
|
Neurotensin: revealing a novel neuromodulator circuit in the nucleus accumbens–parabrachial nucleus projection of the domestic chick. Brain Struct Funct 2014; 221:605-16. [DOI: 10.1007/s00429-014-0928-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/18/2014] [Indexed: 11/30/2022]
|
93
|
Enhanced consumption of salient solutions following pedunculopontine tegmental lesions. Neuroscience 2014; 284:381-399. [PMID: 25305665 DOI: 10.1016/j.neuroscience.2014.09.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 12/19/2022]
Abstract
Rats with lesions of the pedunculopontine tegmental nucleus (PPTg) reliably overconsume high concentration sucrose solution. This effect is thought to be indicative of response-perseveration or loss of behavioral control in conditions of high excitement. While these theories have anatomical and behavioral support, they have never been explicitly tested. Here, we used a contact lickometer to examine the microstructure of drinking behavior to gain insight into the behavioral changes during overconsumption. Rats received either excitotoxic (ibotenic acid) damage to all PPTg neuronal subpopulations or selective depletion of the cholinergic neuronal sub-population (diphtheria toxin-urotensin II (Dtx-UII) lesions). We offered rats a variety of pleasant, neutral and aversive tastants to assess the generalizability and specificity of the overconsumption effect. Ibotenic-lesioned rats consumed significantly more 20% sucrose than sham controls, and did so through licking significantly more times. However, the behavioral microstructure during overconsumption was unaffected by the lesion and showed no indications of response-perseveration. Furthermore, the overconsumption effect did not generalize to highly consumed saccharin. In contrast, while only consuming small amounts of quinine solution, ibotenic-lesioned rats had significantly more licks and bursts for this tastant. Selective depletion of cholinergic PPTg neurons had no effect on consumption of any tastant. We then assessed whether it is the salience of the solution which determines overconsumption by ibotenic-lesioned rats. While maintained on free-food, ibotenic-lesioned rats had normal consumption of sucrose and hypertonic saline. After mild food deprivation ibotenic PPTg-lesioned rats overconsumed 20% sucrose. Subsequently, after dietary-induced sodium deficiency, lesioned rats consumed significantly more saline than controls. These results establish that it is the salience of the solution which is the determining factor leading to overconsumption following excitotoxic PPTg lesion. They also find no support for response-perseveration contributing to this effect. Results are discussed in terms of altered dopamine (DA) and salience signaling.
Collapse
|
94
|
McCutcheon JE, Cone JJ, Sinon CG, Fortin SM, Kantak PA, Witten IB, Deisseroth K, Stuber GD, Roitman MF. Optical suppression of drug-evoked phasic dopamine release. Front Neural Circuits 2014; 8:114. [PMID: 25278845 PMCID: PMC4166314 DOI: 10.3389/fncir.2014.00114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/31/2014] [Indexed: 11/25/2022] Open
Abstract
Brief fluctuations in dopamine concentration (dopamine transients) play a key role in behavior towards rewards, including drugs of abuse. Drug-evoked dopamine transients may result from actions at both dopamine cell bodies and dopamine terminals. Inhibitory opsins can be targeted to dopamine neurons permitting their firing activity to be suppressed. However, as dopamine transients can become uncoupled from firing, it is unknown whether optogenetic hyperpolarization at the level of the soma is able to suppress dopamine transients. Here, we used in vivo fast-scan cyclic voltammetry to record transients evoked by cocaine and raclopride in nucleus accumbens (NAc) of urethane-anesthetized rats. We targeted halorhodopsin (NpHR) specifically to dopamine cells by injecting Cre-inducible virus into ventral tegmental area (VTA) of transgenic rats that expressed Cre recombinase under control of the tyrosine hydroxylase promoter (TH-Cre+ rats). Consistent with previous work, co-administration of cocaine and raclopride led to the generation of dopamine transients in NAc shell. Illumination of VTA with laser strongly suppressed the frequency of transients in NpHR-expressing rats, but not in control rats. Laser did not have any effect on amplitude of transients. Thus, optogenetics can effectively reduce the occurrence of drug-evoked transients and is therefore a suitable approach for studying the functional role of such transients in drug-associated behavior.
Collapse
Affiliation(s)
- James E McCutcheon
- Department of Psychology, University of Illinois at Chicago Chicago, IL, USA
| | - Jackson J Cone
- Department of Psychology, University of Illinois at Chicago Chicago, IL, USA
| | - Christopher G Sinon
- Department of Psychology, University of Illinois at Chicago Chicago, IL, USA
| | - Samantha M Fortin
- Department of Psychology, University of Illinois at Chicago Chicago, IL, USA
| | - Pranish A Kantak
- Department of Psychiatry and Department of Cell Biology and Physiology, University of North Carolina Chapel Hill, NC, USA
| | - Ilana B Witten
- Princeton Neuroscience Institute and Department of Psychology, Princeton University Princeton, NJ, USA
| | - Karl Deisseroth
- Departments of Bioengineering, Psychiatry and Behavioral Sciences, Howard Hughes Medical Institute, and CNC Program, Stanford University Stanford, CA, USA
| | - Garret D Stuber
- Department of Psychiatry and Department of Cell Biology and Physiology, University of North Carolina Chapel Hill, NC, USA
| | - Mitchell F Roitman
- Department of Psychology, University of Illinois at Chicago Chicago, IL, USA
| |
Collapse
|
95
|
van den Bosch I, Dalenberg J, Renken R, van Langeveld A, Smeets P, Griffioen-Roose S, ter Horst G, de Graaf C, Boesveldt S. To like or not to like: Neural substrates of subjective flavor preferences. Behav Brain Res 2014; 269:128-37. [DOI: 10.1016/j.bbr.2014.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/01/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
|
96
|
Marinelli M, McCutcheon JE. Heterogeneity of dopamine neuron activity across traits and states. Neuroscience 2014; 282:176-97. [PMID: 25084048 DOI: 10.1016/j.neuroscience.2014.07.034] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 12/29/2022]
Abstract
Midbrain dopamine neurons fire irregularly, with interspersed clusters of high-frequency spikes, commonly called 'bursts'. In this review we examine such heterogeneity in activity, and provide insight into how it can participate in psychiatric conditions such as drug addiction. We first describe several techniques used to evaluate dopamine neuron activity, and comment on the different measures that each provides. We next describe the activity of dopamine neurons in 'basal' conditions. Specifically, we discuss how the use of anesthesia and reduced preparations may alter aspects of dopamine cell activity, and how there is heterogeneity across species and regions. We also describe how dopamine cell firing changes throughout the peri-adolescent period and how dopamine neuron activity differs across the population. In the final section, we discuss how dopamine neuron activity changes in response to life events. First, we focus attention on drugs of abuse. Drugs themselves change firing activity through a variety of mechanisms, with effects on firing while drug is present differing from those seen after drug discontinuation. We then review how stimuli that are rewarding, aversive, or salient can evoke changes in firing rate and discharge pattern of dopamine neurons, and provide behavioral relevance of dopamine signaling. Finally, we discuss how stress can modulate dopamine neuron firing and how this may contribute to the role that stressful experiences play in psychiatric disorders such as addiction and depression.
Collapse
Affiliation(s)
- M Marinelli
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 107 W. Dean Keeton, C0875, BME 6.114A, Austin, TX 78756, USA.
| | - J E McCutcheon
- Department of Cell Physiology and Pharmacology, College of Medicine, Biological Sciences and Psychology, University of Leicester, Maurice Shock Medical Sciences Building, University Road, P.O. Box 138, Leicester LE1 9HN, UK.
| |
Collapse
|
97
|
Burke CJ, Dreher JC, Seymour B, Tobler PN. State-dependent value representation: evidence from the striatum. Front Neurosci 2014; 8:193. [PMID: 25076870 PMCID: PMC4097395 DOI: 10.3389/fnins.2014.00193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/20/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Christopher J Burke
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich Zurich, Switzerland
| | - Jean-Claude Dreher
- Neuroeconomics Laboratory: Reward and Decision-Making, CNRS, UMR 5229, Université de Lyon, Université Claude Bernard Lyon 1 Lyon, France
| | - Ben Seymour
- Center for Information and Neural Networks, National Institute for Information and Communications Technology Osaka, Japan ; Computational and Biological Learning Lab, Department of Engineering, University of Cambridge Cambridge, UK
| | - Philippe N Tobler
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich Zurich, Switzerland
| |
Collapse
|
98
|
Hayes DJ, Duncan NW, Xu J, Northoff G. A comparison of neural responses to appetitive and aversive stimuli in humans and other mammals. Neurosci Biobehav Rev 2014; 45:350-68. [PMID: 25010558 DOI: 10.1016/j.neubiorev.2014.06.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/29/2014] [Accepted: 06/27/2014] [Indexed: 11/30/2022]
Abstract
Distinguishing potentially harmful or beneficial stimuli is necessary for the self-preservation and well-being of all organisms. This assessment requires the ongoing valuation of environmental stimuli. Despite much work on the processing of aversive- and appetitive-related brain signals, it is not clear to what degree these two processes interact across the brain. To help clarify this issue, this report used a cross-species comparative approach in humans (i.e. meta-analysis of imaging data) and other mammals (i.e. targeted review of functional neuroanatomy in rodents and non-human primates). Human meta-analysis results suggest network components that appear selective for appetitive (e.g. ventromedial prefrontal cortex, ventral tegmental area) or aversive (e.g. cingulate/supplementary motor cortex, periaqueductal grey) processing, or that reflect overlapping (e.g. anterior insula, amygdala) or asymmetrical, i.e. apparently lateralized, activity (e.g. orbitofrontal cortex, ventral striatum). However, a closer look at the known value-related mechanisms from the animal literature suggests that all of these macroanatomical regions are involved in the processing of both appetitive and aversive stimuli. Differential spatiotemporal network dynamics may help explain similarities and differences in appetitive- and aversion-related activity.
Collapse
Affiliation(s)
- Dave J Hayes
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Canada; Toronto Western Research Institute, Brain, Imaging and Behaviour - Systems Neuroscience, University of Toronto, Division of Neurosurgery, 399 Bathurst Street, Toronto, Canada.
| | - Niall W Duncan
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Canada; Department of Biology, University of Carleton, 1125 Colonel By Drive, Ottawa, Canada; Centre for Cognition and Brain Disorders, Hangzhou Normal University, 276 Lishui Lu, Hangzhou, China
| | - Jiameng Xu
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Canada; Centre for Cognition and Brain Disorders, Hangzhou Normal University, 276 Lishui Lu, Hangzhou, China; Taipei Medical University, Shuang Ho Hospital, Brain and Consciousness Research Center, Graduate Institute of Humanities in Medicine, Taipei, Taiwan; National Chengchi University, Research Center for Mind, Brain and Learning, Taipei, Taiwan
| |
Collapse
|
99
|
Oleson EB, Cachope R, Fitoussi A, Cheer JF. Tales from the dark side: do neuromodulators of drug withdrawal require changes in endocannabinoid tone? Prog Neuropsychopharmacol Biol Psychiatry 2014; 52:17-23. [PMID: 23911441 PMCID: PMC3874071 DOI: 10.1016/j.pnpbp.2013.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/15/2013] [Accepted: 07/23/2013] [Indexed: 10/26/2022]
Abstract
Environmental and interoceptive cues are theorized to serve as 'signals' that motivate drug seeking and effects that may be augmented in the withdrawn state. Phasic dopamine release events are observed in the nucleus accumbens in response to such motivational salient stimuli and are thought to be necessary for drug-associated cues to trigger craving. We recently demonstrated how dopamine neurons encode stimuli conditioned to a negative event, as might occur during conditioned withdrawal, and stimuli predicting the avoidance of negative events, as might occur as an addict seeks out drugs to prevent withdrawal. In this review we first discuss how the subsecond dopamine release events might process conditioned withdrawal and drug seeking driven by negative reinforcement processes within the context of our dopamine data obtained during conditioned avoidance procedures. We next describe how the endocannabinoid system modulates phasic dopamine release events and how it might be harnessed to treat negative affective states in addiction. Specifically, we have demonstrated that endocannabinoids in the ventral tegmentum sculpt cue-induced accumbal surges in dopamine release and, therefore, may also be mobilized during drug withdrawal.
Collapse
Affiliation(s)
- Erik B. Oleson
- University of Maryland, School of Medicine, 20 Penn St. Baltimore MD 21201,University of Colorado Denver, P.O. Box 173364, Denver, CO 80217
| | - Roger Cachope
- University of Maryland, School of Medicine, 20 Penn St. Baltimore MD 21201
| | - Aurelie Fitoussi
- University of Maryland, School of Medicine, 20 Penn St. Baltimore MD 21201
| | - Joseph F. Cheer
- University of Maryland, School of Medicine, 20 Penn St. Baltimore MD 21201
| |
Collapse
|
100
|
Yetnikoff L, Reichard RA, Schwartz ZM, Parsely KP, Zahm DS. Protracted maturation of forebrain afferent connections of the ventral tegmental area in the rat. J Comp Neurol 2014; 522:1031-47. [PMID: 23983069 PMCID: PMC4217282 DOI: 10.1002/cne.23459] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/30/2013] [Accepted: 08/14/2013] [Indexed: 01/21/2023]
Abstract
The mesocorticolimbic dopamine system has long attracted the interest of researchers concerned with the unique gamut of behavioral and mental health vulnerabilities associated with adolescence. Accordingly, the development of the mesocorticolimbic system has been studied extensively, but almost exclusively with regard to dopaminergic output, particularly in the nucleus accumbens and medial prefrontal cortex. To the contrary, the ontogeny of inputs to the ventral tegmental area (VTA), the source of mesocorticolimbic dopamine, has been neglected. This is not a trivial oversight, as the activity of VTA neurons, which reflects their capacity to transmit information about salient events, is sensitively modulated by inputs. Here, we assessed the development of VTA afferent connections using the β subunit of cholera toxin (Ctβ) as a retrograde axonal tracer in adolescent (postnatal day 39) and early adult (8-9-week-old) rats. After intra-VTA injections of Ctβ, adolescent and early adult animals exhibited qualitatively similar distributions of retrogradely labeled neurons in the sense that VTA-projecting neurons were present at all of the same rostrocaudal levels in all of the same structures in both age groups. However, quantitation of retrogradely labeled neurons revealed that adolescent brains, compared with early adult brains, had significantly fewer VTA-projecting neurons preferentially within an interconnected network of cortical and striatopallidal forebrain structures. These findings provide a novel perspective on the development of the mesocorticolimbic dopamine system and may have important implications for age-dependent specificity in the function of this system, particularly with regard to adolescent impulsivity and mental health vulnerabilities.
Collapse
Affiliation(s)
- Leora Yetnikoff
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri 63104
| | - Rhett A. Reichard
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri 63104
| | - Zachary M. Schwartz
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri 63104
| | - Kenneth P. Parsely
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri 63104
| | - Daniel S. Zahm
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri 63104
| |
Collapse
|