51
|
Wan Y, He B, Zhu D, Wang L, Huang R, Zhu J, Wang C, Gao F. Nicotinamide mononucleotide attenuates doxorubicin-induced cardiotoxicity by reducing oxidative stress, inflammation and apoptosis in rats. Arch Biochem Biophys 2021; 712:109050. [PMID: 34610336 DOI: 10.1016/j.abb.2021.109050] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023]
Abstract
Doxorubicin (DOX) is an effective and widely used antineoplastic drug. However, its clinical application is limited due to its dose-dependent cardiotoxicity. Great efforts have been made to explore the pathological mechanism of DOX-induced cardiotoxicity (DIC), but new drugs and strategies to alleviate cardiac damage are still needed. Here, we aimed to investigate the effect of nicotinamide mononucleotide (NMN) on DIC in rats. The results of the present study showed that DOX treatment significantly induced cardiac dysfunction and cardiac injury, whereas NMN alleviated these changes. In addition, NMN inhibited Dox-induced activation of nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome-mediated inflammation, as evidenced by decreased caspase 1 and IL-1β activity. Moreover, NMN treatment increased glutathione (GSH) levels and superoxide dismutase (SOD) activity and decreased the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) in DOX-treated rats. Furthermore, NMN treatment mitigated DOX-induced cardiomyocyte apoptosis and cardiac fibrosis. In conclusion, the results indicated that NMN protects against DIC in rats by inhibiting NLRP3 inflammasome activation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Yixuan Wan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo He
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Dongyong Zhu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Wang
- Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruijue Huang
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Jing Zhu
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Chunhua Wang
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, China
| | - Fabao Gao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
52
|
Yin Y, Shen H. Advances in Cardiotoxicity Induced by Altered Mitochondrial Dynamics and Mitophagy. Front Cardiovasc Med 2021; 8:739095. [PMID: 34616789 PMCID: PMC8488107 DOI: 10.3389/fcvm.2021.739095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022] Open
Abstract
Mitochondria are the most abundant organelles in cardiac cells, and are essential to maintain the normal cardiac function, which requires mitochondrial dynamics and mitophagy to ensure the stability of mitochondrial quantity and quality. When mitochondria are affected by continuous injury factors, the balance between mitochondrial dynamics and mitophagy is broken. Aging and damaged mitochondria cannot be completely removed in cardiac cells, resulting in energy supply disorder and accumulation of toxic substances in cardiac cells, resulting in cardiac damage and cardiotoxicity. This paper summarizes the specific underlying mechanisms by which various adverse factors interfere with mitochondrial dynamics and mitophagy to produce cardiotoxicity and emphasizes the crucial role of oxidative stress in mitophagy. This review aims to provide fresh ideas for the prevention and treatment of cardiotoxicity induced by altered mitochondrial dynamics and mitophagy.
Collapse
Affiliation(s)
- Yiyuan Yin
- Department of Emergency Medicine, ShengJing Hospital of China Medical University, Shenyang, China
| | - Haitao Shen
- Department of Emergency Medicine, ShengJing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
53
|
Mallard J, Hucteau E, Hureau TJ, Pagano AF. Skeletal Muscle Deconditioning in Breast Cancer Patients Undergoing Chemotherapy: Current Knowledge and Insights From Other Cancers. Front Cell Dev Biol 2021; 9:719643. [PMID: 34595171 PMCID: PMC8476809 DOI: 10.3389/fcell.2021.719643] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/10/2021] [Indexed: 01/18/2023] Open
Abstract
Breast cancer represents the most commonly diagnosed cancer while neoadjuvant and adjuvant chemotherapies are extensively used in order to reduce tumor development and improve disease-free survival. However, chemotherapy also leads to severe off-target side-effects resulting, together with the tumor itself, in major skeletal muscle deconditioning. This review first focuses on recent advances in both macroscopic changes and cellular mechanisms implicated in skeletal muscle deconditioning of breast cancer patients, particularly as a consequence of the chemotherapy treatment. To date, only six clinical studies used muscle biopsies in breast cancer patients and highlighted several important aspects of muscle deconditioning such as a decrease in muscle fibers cross-sectional area, a dysregulation of protein turnover balance and mitochondrial alterations. However, in comparison with the knowledge accumulated through decades of intensive research with many different animal and human models of muscle atrophy, more studies are necessary to obtain a comprehensive understanding of the cellular processes implicated in breast cancer-mediated muscle deconditioning. This understanding is indeed essential to ultimately lead to the implementation of efficient preventive strategies such as exercise, nutrition or pharmacological treatments. We therefore also discuss potential mechanisms implicated in muscle deconditioning by drawing a parallel with other cancer cachexia models of muscle wasting, both at the pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Joris Mallard
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Elyse Hucteau
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Thomas J Hureau
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Allan F Pagano
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
54
|
Biological Aspects of Inflamm-Aging in Childhood Cancer Survivors. Cancers (Basel) 2021; 13:cancers13194933. [PMID: 34638416 PMCID: PMC8508005 DOI: 10.3390/cancers13194933] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Anti-cancer treatments improve survival in children with cancer. A total of 80% of children treated for childhood cancer achieve 5-year survival, becoming long-term survivors. However, they undergo several chronic late effects related to treatments. In childhood cancer survivors a chronic low-grade inflammation, known as inflamm-aging, is responsible for frailty, a condition characterized by vital organ failure and by premature aging processes. Inflamm-aging is closely related to chemotherapy and radiotherapy, which induce inflammation, accumulation of senescent cells, DNA mutations, and the production of reactive oxygen species. All these conditions are responsible for the onset of secondary diseases, such as osteoporosis, cardiovascular diseases, obesity, and infertility. Considering that the pathobiology of frailty among childhood cancer survivors is still unknown, investigations are needed to better understand frailty's biological and molecular processes and to identify inflamm-aging key biomarkers in order to facilitate the screening of comorbidities and to clarify whether treatments, normally used to modulate inflamm-aging, may be beneficial. This review offers an overview of the possible biological mechanisms involved in the development of inflamm-aging, focusing our attention on immune system alteration, oxidative stress, cellular senescence, and therapeutic strategies.
Collapse
|
55
|
Fu X, Tang J, Wen P, Huang Z, Najafi M. Redox interactions-induced cardiac toxicity in cancer therapy. Arch Biochem Biophys 2021; 708:108952. [PMID: 34097901 DOI: 10.1016/j.abb.2021.108952] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
Cancer patients undergoing radiotherapy, chemotherapy, or targeted cancer therapy are exposed to the risk of several side effects because of the heavy production of ROS by ionizing radiation or some chemotherapy drugs. Damages to DNA, mitochondria, membrane and other organelles within normal tissue cells such as cardiomyocytes and endothelial cells lead to the release of some toxins which are associated with triggering inflammatory cells to release several types of cytokines, chemokines, ROS, and RNS. The release of some molecules following radiotherapy or chemotherapy stimulates reduction/oxidation (redox) reactions. Redox reactions cause remarkable changes in the level of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Excessive production of ROS and RNS or suppression of antioxidant defense enzymes leads to damage to critical macromolecules, which may continue for long times. Increased levels of some cytokines and oxidative injury are hallmarks of heart injury following cancer therapy. Redox reactions may be involved in several heart disorders such as fibrosis, cardiomyopathy, and endothelium injury. In the current review, we explain the cellular and molecular mechanisms of redox interactions following radiotherapy, chemotherapy, and targeted cancer therapy. Afterward, we explain the evidence of the involvement of redox reactions in heart diseases.
Collapse
Affiliation(s)
- Xiao Fu
- College of Basic Medicine, Shaoyang University, Shaoyang, 422000, China
| | - Juan Tang
- College of Basic Medicine, Shaoyang University, Shaoyang, 422000, China
| | - Ping Wen
- College of Basic Medicine, Shaoyang University, Shaoyang, 422000, China
| | - Zezhi Huang
- Shaoyang Key Laboratory of Molecular Biology Diagnosis, Shaoyang, 422000, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
56
|
Hsu PY, Mammadova A, Benkirane-Jessel N, Désaubry L, Nebigil CG. Updates on Anticancer Therapy-Mediated Vascular Toxicity and New Horizons in Therapeutic Strategies. Front Cardiovasc Med 2021; 8:694711. [PMID: 34386529 PMCID: PMC8353082 DOI: 10.3389/fcvm.2021.694711] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Vascular toxicity is a frequent adverse effect of current anticancer chemotherapies and often results from endothelial dysfunction. Vascular endothelial growth factor inhibitors (VEGFi), anthracyclines, plant alkaloids, alkylating agents, antimetabolites, and radiation therapy evoke vascular toxicity. These anticancer treatments not only affect tumor vascularization in a beneficial manner, they also damage ECs in the heart. Cardiac ECs have a vital role in cardiovascular functions including hemostasis, inflammatory and coagulation responses, vasculogenesis, and angiogenesis. EC damage can be resulted from capturing angiogenic factors, inhibiting EC proliferation, survival and signal transduction, or altering vascular tone. EC dysfunction accounts for the pathogenesis of myocardial infarction, atherothrombosis, microangiopathies, and hypertension. In this review, we provide a comprehensive overview of the effects of chemotherapeutic agents on vascular toxicity leading to hypertension, microvascular rarefaction thrombosis and atherosclerosis, and affecting drug delivery. We also describe the potential therapeutic approaches such as vascular endothelial growth factor (VEGF)-B and prokineticin receptor-1 agonists to maintain endothelial function during or following treatments with chemotherapeutic agents, without affecting anti-tumor effectiveness.
Collapse
Affiliation(s)
| | | | | | | | - Canan G. Nebigil
- INSERM UMR 1260, Regenerative Nanomedicine, University of Strasbourg, FMTS (Fédération de Médecine Translationnelle de l'Université de Strasbourg), Strasbourg, France
| |
Collapse
|
57
|
Villa F, Bruno S, Costa A, Li M, Russo M, Cimino J, Altieri P, Ruggeri C, Gorgun C, De Biasio P, Paladini D, Coviello D, Quarto R, Ameri P, Ghigo A, Ravera S, Tasso R, Bollini S. The Human Fetal and Adult Stem Cell Secretome Can Exert Cardioprotective Paracrine Effects against Cardiotoxicity and Oxidative Stress from Cancer Treatment. Cancers (Basel) 2021; 13:cancers13153729. [PMID: 34359631 PMCID: PMC8345068 DOI: 10.3390/cancers13153729] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Anthracyclines, such as doxorubicin (Dox), are an important class of chemotherapeutic drugs. However, their use is hampered by the risk of developing heart failure. The aim of this study was to assess and compare the cardioprotective effects exerted by a set of factors, collectively named secretomes, secreted by either adult or fetal human stem cells. Both secretome formulations were effective in counteracting Dox-induced apoptosis and mitochondrial impairment in cardiomyocytes and cardiac fibroblasts. In vivo experiments in a mouse model of Dox-induced cardiomyopathy (DIC) indicated that early administration of both secretomes during Dox treatment exerted beneficial long-term effects, preserving cardiac function and body mass. These findings suggest that the stem cell secretome could represent a feasible option for future paracrine cardioprotective therapy against Dox-related cardiotoxicity during cancer treatment. Abstract Cardiovascular side effects are major shortcomings of cancer treatments causing cardiotoxicity and late-onset cardiomyopathy. While doxorubicin (Dox) has been reported as an effective chemotherapy agent, unspecific impairment in cardiomyocyte mitochondria activity has been documented. We demonstrated that the human fetal amniotic fluid-stem cell (hAFS) secretome, namely the secreted paracrine factors within the hAFS-conditioned medium (hAFS-CM), exerts pro-survival effects on Dox-exposed cardiomyocytes. Here, we provide a detailed comparison of the cardioprotective potential of hAFS-CM over the secretome of mesenchymal stromal cells from adipose tissue (hMSC-CM). hAFS and hMSC were preconditioned under hypoxia to enrich their secretome. The cardioprotective effects of hAFS/hMSC-CM were evaluated on murine neonatal ventricular cardiomyocytes (mNVCM) and on their fibroblast counterpart (mNVFib), and their long-term paracrine effects were investigated in a mouse model of Dox-induced cardiomyopathy. Both secretomes significantly contributed to preserving mitochondrial metabolism within Dox-injured cardiac cells. hAFS-CM and hMSC-CM inhibited body weight loss, improved myocardial function, reduced lipid peroxidation and counteracted the impairment of mitochondrial complex I activity, oxygen consumption, and ATP synthesis induced by Dox. The hAFS and hMSC secretomes can be exploited for inhibiting cardiotoxic detrimental side effects of Dox during cancer therapy, thus ensuring cardioprotection via combinatorial paracrine therapy in association with standard oncological treatments.
Collapse
Affiliation(s)
- Federico Villa
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (F.V.); (C.G.); (R.Q.)
| | - Silvia Bruno
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (S.B.); (A.C.); (S.R.)
| | - Ambra Costa
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (S.B.); (A.C.); (S.R.)
| | - Mingchuan Li
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.L.); (M.R.); (J.C.); (A.G.)
| | - Michele Russo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.L.); (M.R.); (J.C.); (A.G.)
| | - James Cimino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.L.); (M.R.); (J.C.); (A.G.)
| | - Paola Altieri
- Laboratory of Cardiovascular Biology, Department of Internal Medicine (DIMI), University of Genova, 16132 Genova, Italy; (P.A.); (C.R.); (P.A.)
| | - Clarissa Ruggeri
- Laboratory of Cardiovascular Biology, Department of Internal Medicine (DIMI), University of Genova, 16132 Genova, Italy; (P.A.); (C.R.); (P.A.)
| | - Cansu Gorgun
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (F.V.); (C.G.); (R.Q.)
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (S.B.); (A.C.); (S.R.)
| | - Pierangela De Biasio
- Unit of Prenatal Diagnosis and Perinatal Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Dario Paladini
- Fetal Medicine and Surgery Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Domenico Coviello
- Human Genetics Laboratory, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Rodolfo Quarto
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (F.V.); (C.G.); (R.Q.)
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (S.B.); (A.C.); (S.R.)
| | - Pietro Ameri
- Laboratory of Cardiovascular Biology, Department of Internal Medicine (DIMI), University of Genova, 16132 Genova, Italy; (P.A.); (C.R.); (P.A.)
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.L.); (M.R.); (J.C.); (A.G.)
| | - Silvia Ravera
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (S.B.); (A.C.); (S.R.)
| | - Roberta Tasso
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (F.V.); (C.G.); (R.Q.)
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (S.B.); (A.C.); (S.R.)
- Correspondence: (R.T.); (S.B.); Tel.: +39-010-555-8394 (R.T.); +39-010-555-8257 (S.B.)
| | - Sveva Bollini
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (S.B.); (A.C.); (S.R.)
- Correspondence: (R.T.); (S.B.); Tel.: +39-010-555-8394 (R.T.); +39-010-555-8257 (S.B.)
| |
Collapse
|
58
|
Hou K, Shen J, Yan J, Zhai C, Zhang J, Pan JA, Zhang Y, Jiang Y, Wang Y, Lin RZ, Cong H, Gao S, Zong WX. Loss of TRIM21 alleviates cardiotoxicity by suppressing ferroptosis induced by the chemotherapeutic agent doxorubicin. EBioMedicine 2021; 69:103456. [PMID: 34233258 PMCID: PMC8261003 DOI: 10.1016/j.ebiom.2021.103456] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Doxorubicin, an anthracycline chemotherapeutic agent, is widely used in the treatment of many cancers. However, doxorubicin posts a great risk of adverse cardiovascular events, which are thought to be caused by oxidative stress. We recently reported that the ubiquitin E3 ligase TRIM21 interacts and ubiquitylates p62 and negatively regulates the p62-Keap1-Nrf2 antioxidant pathway. Therefore, we sought to determine the role TRIM21 in cardiotoxicity induced by oxidative damage. METHODS Using TRIM21 knockout mice, we examined the effects of TRIM21 on cardiotoxicity induced by two oxidative damage models: the doxorubicin treatment model and the Left Anterior Descending (LAD) model. We also explored the underlying mechanism by RNA-sequencing of the heart tissues, and by treating the mouse embryonic fibroblasts (MEFs), immortalized rat cardiomyocyte line H9c2, and immortalized human cardiomyocyte line AC16 with doxorubicin. FINDINGS TRIM21 knockout mice are protected from heart failure and fatality in both the doxorubicin and LAD models. Hearts of doxorubicin-treated wild-type mice exhibit deformed mitochondria and elevated level of lipid peroxidation reminiscent of ferroptosis, which is alleviated in TRIM21 knockout hearts. Mechanistically, TRIM21-deficient heart tissues and cultured MEFs and H9c2 cells display enhanced p62 sequestration of Keap1 and are protected from doxorubicin-induced ferroptosis. Reconstitution of wild-type but not the E3 ligase-dead and the p62 binding-deficient TRIM21 mutants impedes the protection from doxorubicin-induced cell death. INTERPRETATION Our study demonstrates that TRIM21 ablation protects doxorubicin-induced cardiotoxicity and illustrates a new function of TRIM21 in ferroptosis, and suggests TRIM21 as a therapeutic target for reducing chemotherapy-related cardiotoxicity. FUNDING NIH (CA129536; DK108989): data collection, analysis. Shanghai Pujiang Program (19PJ1401900): data collection. National Natural Science Foundation (31971161): data collection. Department of Veteran Affairs (BX004083): data collection. Tianjin Science and Technology Plan Project (17ZXMFSY00020): data collection.
Collapse
Affiliation(s)
- Kai Hou
- School of Medicine, Nankai University, Tianjin, China; Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA; Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Jianliang Shen
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Junrong Yan
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Chuannan Zhai
- School of Medicine, Nankai University, Tianjin, China; Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Jingxia Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Ji-An Pan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Ye Zhang
- Tianjin Third Central Hospital, Tianjin, China
| | - Yaping Jiang
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Richard Z Lin
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Hongliang Cong
- School of Medicine, Nankai University, Tianjin, China; Department of Cardiology, Tianjin Chest Hospital, Tianjin, China.
| | - Shenglan Gao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
59
|
Li F, Wang W, Xiao H. The evaluation of anti-breast cancer activity and safety pharmacology of the ethanol extract of Aralia elata Seem. leaves. Drug Chem Toxicol 2021; 44:427-436. [PMID: 31025581 DOI: 10.1080/01480545.2019.1601211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/14/2019] [Accepted: 03/24/2019] [Indexed: 12/22/2022]
Abstract
Aralia elata Seem. is a traditional folk Chinese medicinal plant and its leaves have been used to treat many diseases. We aimed to evaluate the anti-breast cancer activity and safety pharmacology of the ethanol extract of A. elata Seem. leaves (ELE). Cytotoxicity was evaluated on human tumor cell lines by MTT assay in vitro. A tumor bearing-nude mice model was used to assess antitumor activity in vivo. Cell apoptosis was determined by Hoechst 33258 staining, flow cytometry and TUNEL staining. The protein levels were determined by western-blotting and immunohistochemical staining. In safety evaluation, ICR mice and beagle dogs were orally administered ELE at different doses to determine its adverse effects on the central nervous system and cardiorespiratory system. ELE significantly inhibited tumor growth and induced cell apoptosis in MCF-7 cells in vitro and in vivo. The protein levels including caspase-3, caspase-9, bax, bcl-2, PARP, and cytochrome c were significantly changed. For the central nervous system, no treatment-related changes in behavior, motor activity or coordination were observed in mice. For the cardiorespiratory system, no significant differences in cardiorespiratory parameters including heart rate, PR interval, RR interval, P wave duration, QRS duration, QTcF interval, respiratory frequency, tidal volume, body temperature, and blood pressure were observed in beagle dogs between the ELE treatment and control group. In conclusion, ELE possessed anti-breast cancer activity by activating a mitochondrial-mediated apoptotic pathway with high biological safety in animals, which indicates it could be a potential therapeutic agent for treating human breast cancer in the future.
Collapse
Affiliation(s)
- Fengjin Li
- Institute of Chinese Medicine, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
- Department of Basic Medicine, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weiming Wang
- Institute of Chinese Medicine, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Hongbin Xiao
- Department of Basic Medicine, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
60
|
Anjos M, Fontes-Oliveira M, Costa VM, Santos M, Ferreira R. An update of the molecular mechanisms underlying doxorubicin plus trastuzumab induced cardiotoxicity. Life Sci 2021; 280:119760. [PMID: 34166713 DOI: 10.1016/j.lfs.2021.119760] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022]
Abstract
Cardiotoxicity is a major side effect of the chemotherapeutic drug doxorubicin (Dox), which is further exacerbated when it is combined with trastuzumab, a standard care approach for Human Epidermal growth factor Receptor-type 2 (HER2) positive cancer patients. However, the molecular mechanisms of the underlying cardiotoxicity of this combination are still mostly elusive. Increased oxidative stress, impaired energetic substrate uses and topoisomerase IIB inhibition are among the biological processes proposed to explain Dox-induced cardiomyocyte dysfunction. Since cardiomyocytes express HER2, trastuzumab can also damage these cells by interfering with neuroregulin-1 signaling and mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)/Akt and focal adhesion kinase (FAK)-dependent pathways. Nevertheless, Dox and trastuzumab target other cardiac cell types, such as endothelial cells, fibroblasts, cardiac progenitor cells and leukocytes, which can contribute to the clinical cardiotoxicity observed. This review aims to summarize the current knowledge on the cardiac signaling pathways modulated by these two antineoplastic drugs highly used in the management of breast cancer, not only focusing on cardiomyocytes but also to broaden the knowledge of the potential impact on other cells found in the heart.
Collapse
Affiliation(s)
- Miguel Anjos
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | - Vera M Costa
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Mário Santos
- Cardiology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal; UMIB, Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Rita Ferreira
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
61
|
Palmer JA, Smith AM, Gryshkova V, Donley ELR, Valentin JP, Burrier RE. A Targeted Metabolomics-Based Assay Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Identifies Structural and Functional Cardiotoxicity Potential. Toxicol Sci 2021; 174:218-240. [PMID: 32040181 DOI: 10.1093/toxsci/kfaa015] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Implementing screening assays that identify functional and structural cardiotoxicity earlier in the drug development pipeline has the potential to improve safety and decrease the cost and time required to bring new drugs to market. In this study, a metabolic biomarker-based assay was developed that predicts the cardiotoxicity potential of a drug based on changes in the metabolism and viability of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Assay development and testing was conducted in 2 phases: (1) biomarker identification and (2) targeted assay development. In the first phase, metabolomic data from hiPSC-CM spent media following exposure to 66 drugs were used to identify biomarkers that identified both functional and structural cardiotoxicants. Four metabolites that represent different metabolic pathways (arachidonic acid, lactic acid, 2'-deoxycytidine, and thymidine) were identified as indicators of cardiotoxicity. In phase 2, a targeted, exposure-based biomarker assay was developed that measured these metabolites and hiPSC-CM viability across an 8-point concentration curve. Metabolite-specific predictive thresholds for identifying the cardiotoxicity potential of a drug were established and optimized for balanced accuracy or sensitivity. When predictive thresholds were optimized for balanced accuracy, the assay predicted the cardiotoxicity potential of 81 drugs with 86% balanced accuracy, 83% sensitivity, and 90% specificity. Alternatively, optimizing the thresholds for sensitivity yields a balanced accuracy of 85%, 90% sensitivity, and 79% specificity. This new hiPSC-CM-based assay provides a paradigm that can identify structural and functional cardiotoxic drugs that could be used in conjunction with other endpoints to provide a more comprehensive evaluation of a drug's cardiotoxicity potential.
Collapse
Affiliation(s)
| | - Alan M Smith
- Stemina Biomarker Discovery, Inc, Madison, Wisconsin
| | - Vitalina Gryshkova
- UCB Biopharma SPRL, Investigative Toxicology, Development Science, B-1420 Braine L'Alleud, Belgium
| | | | - Jean-Pierre Valentin
- UCB Biopharma SPRL, Investigative Toxicology, Development Science, B-1420 Braine L'Alleud, Belgium
| | | |
Collapse
|
62
|
Liu Y, Wei X, Wu M, Xu J, Xu B, Kang L. Cardioprotective Roles of β-Hydroxybutyrate Against Doxorubicin Induced Cardiotoxicity. Front Pharmacol 2021; 11:603596. [PMID: 33935690 PMCID: PMC8082360 DOI: 10.3389/fphar.2020.603596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
Background: β-Hydroxybutyrate (BHB) is produced by fatty acid oxidation in the liver under the fasting state and confirmed to play a cardioprotective role in ischemia and hypertensive settings. Doxorubicin (DOX) is an effective chemotherapeutic drug, but limited by serious irreversible cardiotoxicity. However, whether BHB can protect from DOX-induced cardiotoxicity remains unknown. Methods and Results: C57BL/6 mice were intraperitoneally injected with DOX to induce cardiac toxicity and intragastrically administered into BHB for treatment. They were randomly divided into three groups, namely a sham group (Sham), a doxorubicin group (DOX), and a doxorubicin+β-Hydroxybutyrate group (DOX + BHB). Echocardiography and pathological staining were performed to evaluate cardiac function and fibrosis. H9c2 cardiomyocyte was treated with DOX or BHB for in vitro experiments. Cell apoptosis and ROS were determined by flow cytometry. BHB significantly restored DOX-induced cardiac function decline and partially prevented cardiac reverse remodeling, characterized by increased cell size and decreased fibrosis. In vitro, BHB treatment decreased cellular injury and apoptosis. Also, BHB alleviated oxidative stress level and increased mitochondrial membrane potential. Conclusion: Our results suggested that BHB could protected from DOX-induced cardiotoxicity by inhibiting cell apoptosis and oxidative stress and maintaining mitochondrial membrane integrity.
Collapse
Affiliation(s)
- Yihai Liu
- Department of Cardiology, Nanjing Drum Tower Hospital as Affiliated Drum Tower Hospital, Nanjing, China
| | - Xuan Wei
- Department of Cardiology, Nanjing Drum Tower Hospital as Affiliated Drum Tower Hospital, Nanjing, China
| | - Mingyue Wu
- Department of Cardiology, Nanjing Drum Tower Hospital as Affiliated Drum Tower Hospital, Nanjing, China
| | - Jiamin Xu
- Department of Cardiology, Nanjing Drum Tower Hospital as Affiliated Drum Tower Hospital, Nanjing, China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital as Affiliated Drum Tower Hospital, Nanjing, China
| | - Lina Kang
- Department of Cardiology, Nanjing Drum Tower Hospital as Affiliated Drum Tower Hospital, Nanjing, China
| |
Collapse
|
63
|
Kihara M, Kaiya H, Hirai Y, Katayama H, Terao A, Nishikawa M. Salmon acyl-ghrelin increases food intake and reduces doxorubicin-induced myocardial apoptosis in rats, likely by anti-oxidative activity. Peptides 2021; 137:170471. [PMID: 33340558 DOI: 10.1016/j.peptides.2020.170471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/26/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022]
Abstract
We had reported that orally administered ghrelin-containing salmon stomach extract prevents doxorubicin (DOX)-induced cardiotoxicity. In this study, we investigated the binding affinity of salmon ghrelin to rat ghrelin receptor and the cardioprotective effects of subcutaneous (sc) injected synthetic salmon ghrelin in rats with DOX-induced acute heart failure in order to clarify the potential efficacy of salmon ghrelin. Intracellular calcium mobilization assay was performed on rat GHS-R1a-expressing CHO cells to reveal ghrelin activity. Rats were divided into five groups; the normal control (I), and toxic control (II) groups were given saline (sc, twice daily), and the salmon acyl-ghrelin (sAG) (III), salmon unacylated-ghrelin (sUAG) (IV), and rat acyl-ghrelin (rAG) (V) groups were given corresponding synthetic ghrelins (sc, twice daily), respectively. After seven days of treatment, DOX (20 mg/kg BW) or saline was administered to the corresponding groups by intraperitoneal injection. The toxic control group was the negative control group for the DOX-induced cardiotoxicity groups. While sAG displayed similar affinity to rAG upon application to GHS-R1a-expressing cells, and also decreased DOX-induced apoptosis and increased food intake, sUAG did not. Both sAG and rAG improved DOX-induced deterioration, showing anti-oxidative activity. The anti-oxidative activity of sAG might contribute to the protective effects on cardiomyocytes. The results also suggest that, similar to rAG, sAG is a potent protectant against DOX-induced cardiotoxicity and a potential functional component in orally administered ghrelin-containing salmon stomach extract, which prevented DOX-induced cardiotoxicity in our previous study.
Collapse
Affiliation(s)
- Minoru Kihara
- Department of Marine Biology and Sciences, School of Biological Sciences, Tokai University, 5-1-1-1 Minamisawa, Minami-ku, Sapporo, 005-8601, Japan.
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, 564-8565, Japan
| | - Yumi Hirai
- Department of Marine Biology and Sciences, School of Biological Sciences, Tokai University, 5-1-1-1 Minamisawa, Minami-ku, Sapporo, 005-8601, Japan
| | - Hidekazu Katayama
- Department of Applied Biochemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Akira Terao
- Liberal Arts Education Center, Sapporo Campus, Tokai University, 5-1-1-1 Minamisawa, Minami-ku, Sapporo, 005-8601, Japan
| | - Masazumi Nishikawa
- Department of Food Management, School of Food, Agricultural and Environmental Sciences, Miyagi University, 2-2-1 Hatadate, Taihaku-ku, Sendai, 982-0215, Japan
| |
Collapse
|
64
|
Cadeddu Dessalvi C, Deidda M, Noto A, Madeddu C, Cugusi L, Santoro C, López-Fernández T, Galderisi M, Mercuro G. Antioxidant Approach as a Cardioprotective Strategy in Chemotherapy-Induced Cardiotoxicity. Antioxid Redox Signal 2021; 34:572-588. [PMID: 32151144 DOI: 10.1089/ars.2020.8055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Chemotherapy-induced cardiotoxicity (CTX) has been associated with redox signaling imbalance. In fact, redox reactions are crucial for normal heart physiology, whereas excessive oxidative stress can cause cardiomyocyte structural damage. Recent Advances: An antioxidant approach as a cardioprotective strategy in this setting has shown encouraging results in preventing anticancer drug-induced CTX. Critical Issues: In fact, traditional heart failure drugs as well as many other compounds and nonpharmacological strategies, with a partial effect in reducing oxidative stress, have been shown to counterbalance chemotherapy-induced CTX in this setting to some extent. Future Directions: Given the various pathways of toxicity involved in different chemotherapeutic schemes, interactions with redox balance need to be fine-tuned and a personalized cardioprotective approach seems to be required.
Collapse
Affiliation(s)
| | - Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Antonio Noto
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Clelia Madeddu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Lucia Cugusi
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Ciro Santoro
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Teresa López-Fernández
- Cardiology Service, Cardio-Oncology Unit, La Paz University Hospital, IdiPAz Research Institute, Ciber CV, Madrid, Spain
| | - Maurizio Galderisi
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
65
|
Ciernikova S, Mego M, Chovanec M. Exploring the Potential Role of the Gut Microbiome in Chemotherapy-Induced Neurocognitive Disorders and Cardiovascular Toxicity. Cancers (Basel) 2021; 13:782. [PMID: 33668518 PMCID: PMC7918783 DOI: 10.3390/cancers13040782] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy, targeting not only malignant but also healthy cells, causes many undesirable side effects in cancer patients. Due to this fact, long-term cancer survivors often suffer from late effects, including cognitive impairment and cardiovascular toxicity. Chemotherapy damages the intestinal mucosa and heavily disrupts the gut ecosystem, leading to gastrointestinal toxicity. Animal models and clinical studies have revealed the associations between intestinal dysbiosis and depression, anxiety, pain, impaired cognitive functions, and cardiovascular diseases. Recently, a possible link between chemotherapy-induced gut microbiota disruption and late effects in cancer survivors has been proposed. In this review, we summarize the current understanding of preclinical and clinical findings regarding the emerging role of the microbiome and the microbiota-gut-brain axis in chemotherapy-related late effects affecting the central nervous system (CNS) and heart functions. Importantly, we provide an overview of clinical trials evaluating the relationship between the gut microbiome and cancer survivorship. Moreover, the beneficial effects of probiotics in experimental models and non-cancer patients with neurocognitive disorders and cardiovascular diseases as well as several studies on microbiota modulations via probiotics or fecal microbiota transplantation in cancer patients are discussed.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, 833 10 Bratislava, Slovakia; (M.M.); (M.C.)
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, 833 10 Bratislava, Slovakia; (M.M.); (M.C.)
| |
Collapse
|
66
|
Russo M, Della Sala A, Tocchetti CG, Porporato PE, Ghigo A. Metabolic Aspects of Anthracycline Cardiotoxicity. Curr Treat Options Oncol 2021; 22:18. [PMID: 33547494 PMCID: PMC7864817 DOI: 10.1007/s11864-020-00812-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/13/2022]
Abstract
OPINION STATEMENT Heart failure (HF) is increasingly recognized as the major complication of chemotherapy regimens. Despite the development of modern targeted therapies such as monoclonal antibodies, doxorubicin (DOXO), one of the most cardiotoxic anticancer agents, still remains the treatment of choice for several solid and hematological tumors. The insurgence of cardiotoxicity represents the major limitation to the clinical use of this potent anticancer drug. At the molecular level, cardiac side effects of DOXO have been associated to mitochondrial dysfunction, DNA damage, impairment of iron metabolism, apoptosis, and autophagy dysregulation. On these bases, the antioxidant and iron chelator molecule, dexrazoxane, currently represents the unique FDA-approved cardioprotectant for patients treated with anthracyclines.A less explored area of research concerns the impact of DOXO on cardiac metabolism. Recent metabolomic studies highlight the possibility that cardiac metabolic alterations may critically contribute to the development of DOXO cardiotoxicity. Among these, the impairment of oxidative phosphorylation and the persistent activation of glycolysis, which are commonly observed in response to DOXO treatment, may undermine the ability of cardiomyocytes to meet the energy demand, eventually leading to energetic failure. Moreover, increasing evidence links DOXO cardiotoxicity to imbalanced insulin signaling and to cardiac insulin resistance. Although anti-diabetic drugs, such as empagliflozin and metformin, have shown interesting cardioprotective effects in vitro and in vivo in different models of heart failure, their mechanism of action is unclear, and their use for the treatment of DOXO cardiotoxicity is still unexplored.This review article aims at summarizing current evidence of the metabolic derangements induced by DOXO and at providing speculations on how key players of cardiac metabolism could be pharmacologically targeted to prevent or cure DOXO cardiomyopathy.
Collapse
Affiliation(s)
- Michele Russo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Via Nizza 52, 10126, Torino, Italy
| | - Angela Della Sala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Via Nizza 52, 10126, Torino, Italy
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
- Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Federico II University, Naples, Italy
- Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Paolo Ettore Porporato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Via Nizza 52, 10126, Torino, Italy.
| |
Collapse
|
67
|
Gonciar D, Mocan L, Zlibut A, Mocan T, Agoston-Coldea L. Cardiotoxicity in HER2-positive breast cancer patients. Heart Fail Rev 2021; 26:919-935. [PMID: 33405000 DOI: 10.1007/s10741-020-10072-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 01/22/2023]
Abstract
Due to the recent advances in diagnosis and management of patients with HER2-positive breast cancer, especially through novel HER2-targeted agents, cardiotoxicity becomes an emerging problem. Although chemotherapy significantly increases survival, the risk of cardiovascular disease development is high and still underestimated and could imply treatment discontinuation. Frequently, due to lack of rigorous diagnosis strategies, cardiotoxicity assessment is delayed, and, moreover, the efficacy of current therapy options in restoring heart function is questionable. For a comprehensive risk assessment, it is vital to characterize the clinical spectrum of HER2-targeted agents and anthracyclines, as well as their pathogenic pathways involved in cardiotoxicity. Advanced cardiovascular multimodal imaging and circulating biomarkers plays primary roles in early assessing cardiotoxicity and also in guiding specific preventive measures. Even though the knowledge in this field is rapidly expanding, there are still questions that arise regarding the optimal approach in terms of timing and methods. The aim of the current review aims to providean overview of currently available data.
Collapse
Affiliation(s)
- Diana Gonciar
- 2nd Department of Internal Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lucian Mocan
- 3rd Surgery Department, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Nanomedicine, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| | - Alexandru Zlibut
- 2nd Department of Internal Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Teodora Mocan
- Physiology Department, Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Nanomedicine, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| | - Lucia Agoston-Coldea
- 2nd Department of Internal Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| |
Collapse
|
68
|
Li L, Nie X, Zhang P, Huang Y, Ma L, Li F, Yi M, Qin W, Yuan X. Dexrazoxane ameliorates radiation-induced heart disease in a rat model. Aging (Albany NY) 2021; 13:3699-3711. [PMID: 33406500 PMCID: PMC7906151 DOI: 10.18632/aging.202332] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Abstract
Treatment of thoracic tumors with radiotherapy can lead to severe cardiac injury. We investigated the effects of dexrazoxane, a USFDA-approved cardioprotective drug administered with chemotherapy, on radiation-induced heart disease (RIHD) in a rat model. Male Sprague-Dawley rats were irradiated with a single dose of 20 Gy to the heart and treated with dexrazoxane at the time of irradiation and for 12 subsequent weeks. Dexrazoxane suppressed radiation-induced myocardial apoptosis and significantly reversed changes in serum cardiac troponin I levels and histopathological characteristics six months post-radiation. Treatment with dexrazoxane did not alter the radiosensitivity of thoracic tumors in a tumor formation experiment using male nude Balb/C mice with tumors generated by H292 cells. Dexrazoxane reduced the accumulation of reactive oxygen species in rat cardiac tissues, but not in tumors in nude mice. Transcriptome sequencing showed that IKBKE, MAP3K8, NFKBIA, and TLR5, which are involved in Toll-like receptor signaling, may be associated with the anti-RIHD effects of dexrazoxane. Immunohistochemistry revealed that dexrazoxane significantly decreased NF-κB p65 expression in cardiomyocytes. These findings suggest dexrazoxane may protect against RIHD by suppressing apoptosis and oxidative stress in cardiomyocytes.
Collapse
Affiliation(s)
- Long Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoqi Nie
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Li Ma
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fang Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Minxiao Yi
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
69
|
Cuomo A, Pirozzi F, Attanasio U, Franco R, Elia F, De Rosa E, Russo M, Ghigo A, Ameri P, Tocchetti CG, Mercurio V. Cancer Risk in the Heart Failure Population: Epidemiology, Mechanisms, and Clinical Implications. Curr Oncol Rep 2020; 23:7. [PMID: 33263821 PMCID: PMC7716920 DOI: 10.1007/s11912-020-00990-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Along with population aging, the incidence of both heart failure (HF) and cancer is increasing. However, little is known about new-onset cancer in HF patients. This review aims at showing recent discoveries concerning this subset of patients. RECENT FINDINGS Not only cancer and HF share similar risk factors but also HF itself can stimulate cancer development. Some cytokines produced by the failing heart induce mild inflammation promoting carcinogenesis, as it has been recently suggested by an experimental model of HF in mice. The incidence of new-onset cancer is higher in HF patients compared to the general population, and it significantly worsens their prognosis. Moreover, the management of HF patients developing new-onset cancer is challenging, especially due to the limited therapeutic options for patients affected by both cancer and HF and the higher risk of cardiotoxicity from anticancer drugs.
Collapse
Affiliation(s)
- Alessandra Cuomo
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Flora Pirozzi
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Umberto Attanasio
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Riccardo Franco
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Francesco Elia
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Eliana De Rosa
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Michele Russo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Italian Cardiovascular Network, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine, University of Genova, Genoa, Italy
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy.
- Interdepartmental Center of Clinical and Translational Research, Federico II University, Naples, Italy.
| | - Valentina Mercurio
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| |
Collapse
|
70
|
Tubić B. Cardiovascular toxicity of antineoplastic medicines in Bosnia and Herzegovina. MAKEDONSKO FARMACEVTSKI BILTEN 2020. [DOI: 10.33320/maced.pharm.bull.2020.66.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Biljana Tubić
- Agency for medicines and medical devices of Bosnia and Herzegovina, Veljka Mlađenovića bb, 78000 Banjaluka, Bosnia and Herzegovina
| |
Collapse
|
71
|
Pudil R, Mueller C, Čelutkienė J, Henriksen PA, Lenihan D, Dent S, Barac A, Stanway S, Moslehi J, Suter TM, Ky B, Štěrba M, Cardinale D, Cohen‐Solal A, Tocchetti CG, Farmakis D, Bergler‐Klein J, Anker MS, Von Haehling S, Belenkov Y, Iakobishvili Z, Maack C, Ciardiello F, Ruschitzka F, Coats AJ, Seferovic P, Lainscak M, Piepoli MF, Chioncel O, Bax J, Hulot J, Skouri H, Hägler‐Laube ES, Asteggiano R, Fernandez TL, Boer RA, Lyon AR. Role of serum biomarkers in cancer patients receiving cardiotoxic cancer therapies: a position statement from the
Cardio‐Oncology Study Group
of the
Heart Failure Association
and the
Cardio‐Oncology Council of the European Society of Cardiology. Eur J Heart Fail 2020; 22:1966-1983. [DOI: 10.1002/ejhf.2017] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/14/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Radek Pudil
- 1st Department Medicine – Cardioangiology Charles University Prague, Medical Faculty and University Hospital Hradec Kralove Prague Czech Republic
| | - Christian Mueller
- Cardiovascular Research Institute Basel (CRIB) and Department of Cardiology University Hospital Basel, University of Basel Basel Switzerland
| | - Jelena Čelutkienė
- Clinic of Cardiac and Vascular Diseases Institute of Clinical Medicine, Faculty of Medicine, Vilnius University Vilnius Lithuania
- State Research Institute Centre For Innovative Medicine Vilnius Lithuania
| | | | - Dan Lenihan
- Cardio‐Oncology Center of Excellence Washington University in St Louis St Louis MO USA
| | - Susan Dent
- Duke Cancer Institute Duke University Durham NC USA
| | - Ana Barac
- MedStar Heart and Vascular Institute Georgetown University Washington DC USA
| | | | - Javid Moslehi
- Cardio‐Oncology Program, Department of Medicine Vanderbilt University Medical Center Nashville TN USA
| | - Thomas M. Suter
- Department of Cardiology Bern University Hospital, Inselspital, University of Bern Bern Switzerland
| | - Bonnie Ky
- University of Pennsylvania Philadelphia PA USA
| | - Martin Štěrba
- Department of Pharmacology Faculty of Medicine in Hradec Kralove, Charles University Hradec Kralove Czech Republic
| | - Daniela Cardinale
- Cardioncology Unit European Institute of Oncology, IRCCS Milan Italy
| | - Alain Cohen‐Solal
- UMR‐S 942, Paris University, Cardiology Department, Lariboisiere Hospital, AP‐HP Paris France
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center for Clinical and Translational Research (CIRCET) ‘Federico II’ University Naples Italy
| | - Dimitrios Farmakis
- University of Cyprus Medical School Nicosia Cyprus
- Cardio‐Oncology Clinic, Heart Failure Unit, ‘Attikon’ University Hospital Athens Greece
- National and Kapodistrian University of Athens Medical School Athens Greece
| | | | - Markus S. Anker
- Division of Cardiology and Metabolism, Department of Cardiology Charité and Berlin Institute of Health Center for Regenerative Therapies (BCRT) and DZHK (German Centre for Cardiovascular Research), partner site Berlin and Department of Cardiology, Charité Campus Benjamin Franklin Berlin Germany
| | - Stephan Von Haehling
- Department of Cardiology and Pneumology University of Goettingen Medical Center Goettingen Germany
- German Center for Cardiovascular Research (DZHK), partner site Goettingen Goettingen Germany
| | | | - Zaza Iakobishvili
- Department of Community Cardiology Tel Aviv Jaffa District, Clalit Health Fund and Sackler Faculty of Medicine, Tel Aviv University Tel Aviv Israel
| | - Christoph Maack
- Comprehensive Heart Failure Center University Clinic Würzburg Würzburg Germany
| | - Fortunato Ciardiello
- Department of Precision Medicine ‘Luigi Vanvitelli’ University of Campania Naples Italy
| | - Frank Ruschitzka
- University Heart Center, Department of Cardiology University Hospital Zurich Zurich Switzerland
| | - Andrew J.S. Coats
- University of Warwick Warwick UK
- Pharmacology Centre of Clinical and Experimental Medicine, IRCCS San Raffaele Pisana Rome Italy
| | - Petar Seferovic
- Faculty of Medicine and Serbian Academy of Sciences and Arts University of Belgrade Belgrade Serbia
| | | | - Massimo F. Piepoli
- Cardiac Department ‘Guglielmo da Saliceto’ Polichirurgico Hospital AUSL Piacenza Piacenza Italy
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases ‘Prof. C.C. Iliescu’ Bucharest Romania
- University of Medicine Carol Davila Bucharest Romania
| | - Jereon Bax
- Department of Cardiology Leiden University Medical Centre Leiden The Netherlands
| | - Jean‐Sebastien Hulot
- Université de Paris CIC1418, Paris Cardiovascular Research Center, INSERM Paris France
| | - Hadi Skouri
- Cardiology Division, Internal Medicine Department at American University of Beirut Medical Center Beirut Lebanon
| | | | | | - Teresa Lopez Fernandez
- Cardiology Service Cardio‐Oncology Unit, La Paz University Hospital and IdiPAz Research Institute, Ciber CV Madrid Spain
| | - Rudolf A. Boer
- Department of Cardiology University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Alexander R. Lyon
- Cardio‐Oncology Service Royal Brompton Hospital and Imperial College London London UK
| |
Collapse
|
72
|
Marone G, Schroeder JT, Mattei F, Loffredo S, Gambardella AR, Poto R, de Paulis A, Schiavoni G, Varricchi G. Is There a Role for Basophils in Cancer? Front Immunol 2020; 11:2103. [PMID: 33013885 PMCID: PMC7505934 DOI: 10.3389/fimmu.2020.02103] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Basophils were identified in human peripheral blood by Paul Ehrlich over 140 years ago. Human basophils represent <1% of peripheral blood leukocytes. During the last decades, basophils have been described also in mice, guinea pigs, rabbits, and monkeys. There are many similarities, but also several immunological differences between human and mouse basophils. There are currently several strains of mice with profound constitutive or inducible basophil deficiency useful to prove that these cells have specific roles in vivo. However, none of these mice are solely and completely devoid of all basophils. Therefore, the relevance of these findings to humans remains to be established. It has been known for some time that basophils have the propensity to migrate into the site of inflammation. Recent observations indicate that tissue resident basophils contribute to lung development and locally promote M2 polarization of macrophages. Moreover, there is increasing evidence that lung-resident basophils exhibit a specific phenotype, different from circulating basophils. Activated human and mouse basophils synthesize restricted and distinct profiles of cytokines. Human basophils produce several canonical (e.g., VEGFs, angiopoietin 1) and non-canonical (i.e., cysteinyl leukotriene C4) angiogenic factors. Activated human and mouse basophils release extracellular DNA traps that may have multiple effects in cancer. Hyperresponsiveness of basophils has been demonstrated in patients with JAK2V617F-positive polycythemia vera. Basophils are present in the immune landscape of human lung adenocarcinoma and pancreatic cancer and can promote inflammation-driven skin tumor growth. The few studies conducted thus far using different models of basophil-deficient mice have provided informative results on the roles of these cells in tumorigenesis. Much more remains to be discovered before we unravel the hitherto mysterious roles of basophils in human and experimental cancers.
Collapse
Affiliation(s)
- Giancarlo Marone
- Section of Hygiene, Department of Public Health, University of Naples Federico II, Naples, Italy.,Azienda Ospedaliera Ospedali dei Colli, Monaldi Hospital Pharmacy, Naples, Italy
| | - John T Schroeder
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD, United States
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| | | | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| |
Collapse
|
73
|
Muhammad RN, Sallam N, El-Abhar HS. Activated ROCK/Akt/eNOS and ET-1/ERK pathways in 5-fluorouracil-induced cardiotoxicity: modulation by simvastatin. Sci Rep 2020; 10:14693. [PMID: 32895407 PMCID: PMC7477553 DOI: 10.1038/s41598-020-71531-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
5-Fluorouracil (5-FU) is used in the treatment of different solid tumors; however, its use is associated with rare, but serious cardiotoxicity. Nevertheless, the involvement of ROCK/NF-κB, Akt/eNOS and ET-1/ERK1/2 trajectories in the cardiotoxic effect and in the potential cardioprotective upshot of simvastatin has been elusive. Male Wistar rats were allocated into 5-FU (50 mg/kg/week; i.p, 6 weeks), simvastatin (15 mg/kg/day; p.o, 8 weeks) treated groups and simvastatin + 5-FU, besides the normal control group. 5-FU-induced cardiotoxicity boosted the serum level of N-terminal pro-brain (B-type) natriuretic peptide (NT-proBNP), aortic contents of endothelin (ET)-1 and thromboxane (TX) A2, as well as cardiac contents of NADPH oxidases (Nox), cyclooxygenase (COX)-2, malondialdehyde (MDA), phosphorylated Akt (p-Akt), phosphorylated extracellular signal-regulated kinase (p-ERK)1/2 and the protein expressions of rho-kinase (ROCK) and caspase-3. On the other hand, it suppressed cardiac reduced glutathione (GSH) and phosphorylated endothelial nitric oxide synthase (p-eNOS). Contrariwise, co-administration with simvastatin overcame these disturbed events and modulated the ROCK/NF-κB, Akt/eNOS and ET-1/ERK1/2 signaling pathways. This study highlights other mechanisms than coronary artery spasm in the 5-FU cardiotoxicity and reveals that NT-proBNP is a potential early marker in this case. Moreover, the cross-talk between ROCK/ NF-κB, ROS/COX-2/TXA2, Akt/eNOS and ET-1/ERK1/2 pathways contributes via different means to upsetting the vasoconstriction/vasodilatation equilibrium as well as endothelial cell function and finally leads to cardiomyocyte stress and death-the modulation of these trajectories offers simvastatin its potential cardio-protection against 5-FU.
Collapse
Affiliation(s)
- Radwa Nasser Muhammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Nada Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Hanan Salah El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, 11835, Egypt
| |
Collapse
|
74
|
Soufer A, Liu C, Henry ML, Baldassarre LA. Nuclear cardiology in the context of multimodality imaging to detect cardiac toxicity from cancer therapeutics: Established and emerging methods. J Nucl Cardiol 2020; 27:1210-1224. [PMID: 30868378 DOI: 10.1007/s12350-019-01671-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/12/2019] [Indexed: 12/21/2022]
Abstract
The complexity of cancer therapies has vastly expanded in the last decade, along with type and severity of cardiac toxicities associated with these treatments. Prevention of pre-clinical cardiotoxicity may improve cardiovascular outcomes and circumvent the decision to place life-sustaining chemotherapeutic agents on hold, making the early detection of cancer therapeutic related cardiac toxicity with non-invasive imaging essential to the care of these patients. There are several established methods of cardiac imaging in the areas of nuclear cardiology, echocardiography, computed tomography, and cardiac magnetic resonance imaging that are used to assess for cardiovascular toxicity of cancer treatments, with several methods under development. The following review will provide an overview of current and emerging imaging techniques in these areas.
Collapse
Affiliation(s)
- Aaron Soufer
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Chi Liu
- Department of Radiology and Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
| | - Mariana L Henry
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Lauren A Baldassarre
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
75
|
Mercurio V, Cuomo A, Cadeddu Dessalvi C, Deidda M, Di Lisi D, Novo G, Manganaro R, Zito C, Santoro C, Ameri P, Spallarossa P, Arboscello E, Tocchetti CG, Penna C. Redox Imbalances in Ageing and Metabolic Alterations: Implications in Cancer and Cardiac Diseases. An Overview from the Working Group of Cardiotoxicity and Cardioprotection of the Italian Society of Cardiology (SIC). Antioxidants (Basel) 2020; 9:E641. [PMID: 32708201 PMCID: PMC7402085 DOI: 10.3390/antiox9070641] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic syndrome (MetS) is a well established risk factor for cardiovascular (CV) diseases. In addition, several studies indicate that MetS correlates with the increased risk of cancer in adults. The mechanisms linking MetS and cancer are not fully understood. Several risk factors involved in MetS are also cancer risk factors, such as the consumption of high calorie-food or high fat intake, low fibre intake, and sedentary lifestyle. Other common aspects of both cancer and MetS are oxidative stress and inflammation. In addition, some anticancer treatments can induce cardiotoxicity, including, for instance, left ventricular (LV) dysfunction and heart failure (HF), endothelial dysfunction and hypertension. In this review, we analyse several aspects of MetS, cancer and cardiotoxicity from anticancer drugs. In particular, we focus on oxidative stress in ageing, cancer and CV diseases, and we analyse the connections among CV risk factors, cancer and cardiotoxicity from anticancer drugs.
Collapse
Affiliation(s)
- Valentina Mercurio
- Department of Translational Medical Sciences, Federico II University, 80131 Naples, Italy; (V.M.); (A.C.)
| | - Alessandra Cuomo
- Department of Translational Medical Sciences, Federico II University, 80131 Naples, Italy; (V.M.); (A.C.)
| | - Christian Cadeddu Dessalvi
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy; (C.C.D.); (M.D.)
| | - Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy; (C.C.D.); (M.D.)
| | - Daniela Di Lisi
- Cardiology Unit AUOP Policlinico, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (D.D.L.); (G.N.)
| | - Giuseppina Novo
- Cardiology Unit AUOP Policlinico, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (D.D.L.); (G.N.)
| | - Roberta Manganaro
- Cardiology with Coronary Intensive Care Unit, Department of Clinical and Experimental Medicine, University Hospital Policlinico “G. Martino”, University of Messina, 98124 Messina, Italy; (R.M.); (C.Z.)
| | - Concetta Zito
- Cardiology with Coronary Intensive Care Unit, Department of Clinical and Experimental Medicine, University Hospital Policlinico “G. Martino”, University of Messina, 98124 Messina, Italy; (R.M.); (C.Z.)
| | - Ciro Santoro
- Department of Advanced Biomedical Sciences, Federico II University, 80131 Naples, Italy;
| | - Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy—IRCCS Italian Cardiovascular Network & Department of Internal Medicine, University of Genova, 16121 Genova, Italy; (P.A.); (P.S.); (E.A.)
| | - Paolo Spallarossa
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy—IRCCS Italian Cardiovascular Network & Department of Internal Medicine, University of Genova, 16121 Genova, Italy; (P.A.); (P.S.); (E.A.)
| | - Eleonora Arboscello
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy—IRCCS Italian Cardiovascular Network & Department of Internal Medicine, University of Genova, 16121 Genova, Italy; (P.A.); (P.S.); (E.A.)
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences, Federico II University, 80131 Naples, Italy; (V.M.); (A.C.)
- Interdepartmental Center of Clinical and Translational Sciences, Federico II University, 80131 Naples, Italy
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, 10043 Torino, Italy
| |
Collapse
|
76
|
Tocchetti CG, Ameri P, de Boer RA, D’Alessandra Y, Russo M, Sorriento D, Ciccarelli M, Kiss B, Bertrand L, Dawson D, Falcao-Pires I, Giacca M, Hamdani N, Linke WA, Mayr M, van der Velden J, Zacchigna S, Ghigo A, Hirsch E, Lyon AR, Görbe A, Ferdinandy P, Madonna R, Heymans S, Thum T. Cardiac dysfunction in cancer patients: beyond direct cardiomyocyte damage of anticancer drugs: novel cardio-oncology insights from the joint 2019 meeting of the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovasc Res 2020; 116:1820-1834. [DOI: 10.1093/cvr/cvaa222] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/17/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
In western countries, cardiovascular (CV) disease and cancer are the leading causes of death in the ageing population. Recent epidemiological data suggest that cancer is more frequent in patients with prevalent or incident CV disease, in particular, heart failure (HF). Indeed, there is a tight link in terms of shared risk factors and mechanisms between HF and cancer. HF induced by anticancer therapies has been extensively studied, primarily focusing on the toxic effects that anti-tumour treatments exert on cardiomyocytes. In this Cardio-Oncology update, members of the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart discuss novel evidence interconnecting cardiac dysfunction and cancer via pathways in which cardiomyocytes may be involved but are not central. In particular, the multiple roles of cardiac stromal cells (endothelial cells and fibroblasts) and inflammatory cells are highlighted. Also, the gut microbiota is depicted as a new player at the crossroads between HF and cancer. Finally, the role of non-coding RNAs in Cardio-Oncology is also addressed. All these insights are expected to fuel additional research efforts in the field of Cardio-Oncology.
Collapse
Affiliation(s)
- Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences, Federico II University, via Pansini 5, 80131 Naples, Italy
- Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Federico II University, Naples, Italy
| | - Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine, University of Genova, Genova, Italy
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, AB31, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - Yuri D’Alessandra
- Immunology and Functional Genomics Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Michele Russo
- Department of Translational Medical Sciences, Federico II University, via Pansini 5, 80131 Naples, Italy
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Daniela Sorriento
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Michele Ciccarelli
- Department of Medicine Surgery and Odontology, University of Salerno, Salerno, Italy
| | - Bernadett Kiss
- Department of Pharmacology and Pharmacotherapy, Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Semmelweis University, Budapest, Hungary
| | - Luc Bertrand
- IREC Institute, Pole of Cardiovascular Research, Université Catholique de Louvain, Brussels, Belgium
| | - Dana Dawson
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Ines Falcao-Pires
- Unidade de Investigação e Desenvolvimento Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Portugal
| | - Mauro Giacca
- Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Centre for Translational Cardiology, Azienda Sanitaria Universitaria Integrata Trieste, Trieste, Italy
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Nazha Hamdani
- Department of Molecular and Experimental Cardiology, Ruhr Universität Bochum, Bochum, Germany
- Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Witten, Germany
| | | | - Manuel Mayr
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
| | - Serena Zacchigna
- Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Centre for Translational Cardiology, Azienda Sanitaria Universitaria Integrata Trieste, Trieste, Italy
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Alexander R Lyon
- Cardio-Oncology Service, Royal Brompton Hospital, Imperial College London, London, UK
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy
- Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Thomas Thum
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| |
Collapse
|
77
|
Abstract
The era of modern oncology incorporates an ever-evolving personalized approach to hematological malignancies and solid tumors. As a result, patient survival rates have, in part, substantially improved, depending on the specific type of underlying malignancy. However, systemic therapies may come along with potential cardiotoxic effects resulting in heart failure with increased morbidity and mortality. Ultimately, patients may survive their malignancy but die as a result of cancer treatment. Cardiovascular magnetic resonance imaging has long been in use for the assessment of function and tissue characteristics in patients with various nonischemic cardiac diseases. Besides an introductory overview on the general definition of cardiotoxicity including potential underlying mechanisms, this review provides insight into the application of various cardiovascular magnetic resonance imaging techniques in the setting of cancer therapy-related cardiac and vascular toxicity. Early identification of cardiotoxic effects may allow for on-time therapy adjustment and/or cardioprotective measures to avoid subsequent long-term heart failure with increased mortality.
Collapse
|
78
|
Delasoie J, Pavic A, Voutier N, Vojnovic S, Crochet A, Nikodinovic-Runic J, Zobi F. Identification of novel potent and non-toxic anticancer, anti-angiogenic and antimetastatic rhenium complexes against colorectal carcinoma. Eur J Med Chem 2020; 204:112583. [PMID: 32731186 DOI: 10.1016/j.ejmech.2020.112583] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/06/2020] [Accepted: 06/14/2020] [Indexed: 12/26/2022]
Abstract
Combination therapy targeting both tumor growth and vascularization is considered to be a cornerstone for colorectal carcinomas (CRC) treatment. However, the major obstacles of most clinical anticancer drugs are their weak selective activity towards cancer cells and inherent inner organs toxicity, accompanied with fast drug resistance development. In our effort to discover novel selective and non-toxic agents effective against CRC, we designed, synthesized and characterized a series of rhenium(I) tricarbonyl-based complexes with increased lipophilicity. Two of these novel compounds were discovered to possess remarkable anticancer, anti-angiogenic and antimetastatic activity in vivo (zebrafish-human HCT-116 xenograft model), being effective at very low doses (1-3 μM). At doses as high as 250 μM the complexes did not provoke toxicity issues encountered in clinical anticancer drugs (cardio-, hepato-, and myelotoxicity). In vivo assays showed that the two compounds exceed the anti-tumor and anti-angiogenic activity of clinical drugs cisplatin and sunitinib malate, and display a large therapeutic window.
Collapse
Affiliation(s)
- Joachim Delasoie
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 152, Belgrade, Republic of Serbia.
| | - Noémie Voutier
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 152, Belgrade, Republic of Serbia
| | - Aurelien Crochet
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 152, Belgrade, Republic of Serbia.
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland.
| |
Collapse
|
79
|
Clerodendrum volubile Ethanol Leaf Extract: A Potential Antidote to Doxorubicin-Induced Cardiotoxicity in Rats. J Toxicol 2020; 2020:8859716. [PMID: 32714390 PMCID: PMC7355376 DOI: 10.1155/2020/8859716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/11/2020] [Indexed: 01/09/2023] Open
Abstract
Doxorubicin is widely applied in hematological and solid tumor treatment but limited by its off-target cardiotoxicity. Thus, cardioprotective potential and mechanism(s) of CVE in DOX-induced cardiotoxicity were investigated using cardiac and oxidative stress markers and histopathological endpoints. 50–400 mg/kg/day CVE in 5% DMSO in distilled water were investigated in Wistar rats intraperitoneally injected with 2.5 mg/kg DOX on alternate days for 14 days, using serum troponin I and LDH, complete lipid profile, cardiac tissue oxidative stress marker assays, and histopathological examination of DOX-treated cardiac tissue. Preliminary qualitative and quantitative assays of CVE's secondary metabolites were also conducted. Phytochemical analyses revealed the presence of flavonoids (34.79 ± 0.37 mg/100 mg dry extract), alkaloids (36.73 ± 0.27 mg/100 mg dry extract), reducing sugars (07.78 ± 0.09 mg/100 mg dry extract), and cardiac glycosides (24.55 ± 0.12 mg/100 mg dry extract). 50–400 mg/kg/day CVE significantly attenuated increases in the serum LDH and troponin I levels. Similarly, the CVE dose unrelatedly decreased serum TG and VLDL-c levels without significant alterations in the serum TC, HDL-c, and LDL-c levels. Also, CVE profoundly attenuated alterations in the cardiac tissue oxidative stress markers' activities while improving DOX-associated cardiac histological lesions that were possibly mediated via free radical scavenging and/or antioxidant mechanisms. Overall, CVE may play a significant therapeutic role in the management of DOX-induced cardiotoxicity in humans.
Collapse
|
80
|
Abstract
Purpose of Review Currently, cardiotoxicity is monitored through echocardiography or multigated acquisition scanning and is defined as 10% or higher LVEF reduction. The latter stage may represent irreversible myocardium injury and limits modification of therapeutic paradigms at earliest stages. To stratify patients for anthracycline-related heart failure, highly sensitive and molecularly specific probes capable of interrogating cardiac damage at the subcellular levels have been sought. Recent Findings PET tracers may provide noninvasive assessment of earliest changes within myocardium. These tracers are at nascent stages of development and belong primarily to (a) mitochondrial potential-targeted and (b) general ROS (reactive oxygen species)-targeted radiotracers. Given that electrochemical gradient changes at the mitochondrial membrane represent an upstream, and earliest event before triggering the production of the ROS and caspase activity in a biochemical cascade, the former category might offer interrogation of cardiotoxicity at earliest stages exemplified by PET imaging, using 18F-Mitophos and 68Ga-Galmydar in rodent models. Summary Both categories of radiotracers may provide tools for monitoring chemotherapy-induced cardiotoxicity and interrogating therapeutic efficacy of cardio-protectants.
Collapse
Affiliation(s)
- Jothilingam Sivapackiam
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, PO Box 8225, 510 S. Kingshighway Blvd, St. Louis, MO, 63110, USA
| | - Monica Sharma
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, PO Box 8225, 510 S. Kingshighway Blvd, St. Louis, MO, 63110, USA
| | - Thomas H Schindler
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, PO Box 8225, 510 S. Kingshighway Blvd, St. Louis, MO, 63110, USA.,Departments of Medicine, Cardiology and Nuclear Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Vijay Sharma
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, PO Box 8225, 510 S. Kingshighway Blvd, St. Louis, MO, 63110, USA. .,Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Department of Biomedical Engineering, School of Engineering & Applied Science, Washington University, St. Louis, MO, 63105, USA.
| |
Collapse
|
81
|
Rocca C, Pasqua T, Cerra MC, Angelone T. Cardiac Damage in Anthracyclines Therapy: Focus on Oxidative Stress and Inflammation. Antioxid Redox Signal 2020; 32:1081-1097. [PMID: 31928066 DOI: 10.1089/ars.2020.8016] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Despite their serious side effects, anthracyclines (ANTs) are the most prescribed chemotherapeutic drugs because of their strong efficacy in both solid and hematological tumors. A major limitation to ANTs clinical application is the severe cardiotoxicity observed both acutely and chronically. The mechanism underlying cardiac dysfunction under chemotherapy is mainly dependent on the generation of oxidative stress and systemic inflammation, both of which lead to progressive cardiomyopathy and heart failure. Recent Advances: Over the years, the iatrogenic ANTs-induced cardiotoxicity was believed to be simply given by iron metabolism and reactive oxygen species production; however, several experimental data indicate that ANTs may use alternative damaging mechanisms, such as topoisomerase 2β inhibition, inflammation, pyroptosis, immunometabolism, and autophagy. Critical Issues: In this review, we aimed at discussing ANTs-induced cardiac injury from different points of view, updating and focusing on oxidative stress and inflammation, since these pathways are not exclusive or independent from each other but they together importantly contribute to the complexity of ANTs-induced multifactorial cardiotoxicity. Future Directions: A deeper understanding of the mechanistic signaling leading to ANTs side effects could reveal crucial targeting molecules, thus representing strategic knowledge to promote better therapeutic efficacy and lower cardiotoxicity during clinical application.
Collapse
Affiliation(s)
- Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Teresa Pasqua
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Maria Carmela Cerra
- Laboratory of Organ and System Physiology, Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.,National Institute of Cardiovascular Research (INRC), Bologna, Italy
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.,National Institute of Cardiovascular Research (INRC), Bologna, Italy
| |
Collapse
|
82
|
Sala V, Della Sala A, Hirsch E, Ghigo A. Signaling Pathways Underlying Anthracycline Cardiotoxicity. Antioxid Redox Signal 2020; 32:1098-1114. [PMID: 31989842 DOI: 10.1089/ars.2020.8019] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Significance: The cardiac side effects of hematological treatments are a major issue of the growing population of cancer survivors, often affecting patient survival even more than the tumor for which the treatment was initially prescribed. Among the most cardiotoxic drugs are anthracyclines (ANTs), highly potent antitumor agents, which still represent a mainstay in the treatment of hematological and solid tumors. Unfortunately, diagnosis, prevention, and treatment of cardiotoxicity are still unmet clinical needs, which call for a better understanding of the molecular mechanism behind the pathology. Recent Advances: This review article will discuss recent findings on the pathomechanisms underlying the cardiotoxicity of ANTs, spanning from DNA and mitochondrial damage to calcium homeostasis, autophagy, and apoptosis. Special emphasis will be given to the role of reactive oxygen species and their interplay with major signaling pathways. Critical Issues: Although new promising therapeutic targets and new drugs have started to be identified, their efficacy has been mainly proven in preclinical studies and requires clinical validation. Future Directions: Future studies are awaited to confirm the relevance of recently uncovered targets, as well as to identify new druggable pathways, in more clinically relevant models, including, for example, human induced pluripotent stem cell-derived cardiomyocytes.
Collapse
Affiliation(s)
- Valentina Sala
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Angela Della Sala
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
83
|
Cadeddu Dessalvi C, Pepe A, Penna C, Gimelli A, Madonna R, Mele D, Monte I, Novo G, Nugara C, Zito C, Moslehi JJ, de Boer RA, Lyon AR, Tocchetti CG, Mercuro G. Sex differences in anthracycline-induced cardiotoxicity: the benefits of estrogens. Heart Fail Rev 2020; 24:915-925. [PMID: 31256318 DOI: 10.1007/s10741-019-09820-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Anthracyclines are the cornerstone for many oncologic treatments, but their cardiotoxicity has been recognized for several decades. Female subjects, especially before puberty and adolescence, or after menopause, seem to be more at increased risk, with the prognostic impact of this sex issue being less consistent compared to other cardiovascular risk factors. Several studies imply that sex differences could depend on the lack of the protective effect of sex hormones against the anthracycline-initiated damage in cardiac cells, or on differential mitochondria-related oxidative gene expression. This is also reflected by the results obtained with different diagnostic methods, such as cardiovascular biomarkers and imaging techniques (echocardiography, magnetic resonance, and nuclear medicine) in the diagnosis and monitoring of cardiotoxicity, confirming that sex differences exist. The same is true about protective strategies from anthracycline cardiotoxicity. Indeed, first studied to withstand oxidative damage in response to ischemia/reperfusion (I/R) injury, cardioprotection has different outcomes in men and women. A number of studies assessed the differences in I/R response between male and female hearts, with oxidative stress and apoptosis being shared mechanisms between the I/R and anthracyclines heart damage. Sex hormones can modulate these mechanisms, thus confirming their importance in the pathophysiology in cardioprotection not only from the ischemia/reperfusion damage, but also from anthracyclines, fueling further cardio-oncologic research on the topic.
Collapse
Affiliation(s)
| | - Alessia Pepe
- Magnetic Resonance Imaging Unit, Fondazione G. Monasterio C.N.R.- Regione Toscana, Pisa, Italy
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alessia Gimelli
- Nuclear Medicine Unit, Fondazione G. Monasterio C.N.R.- Regione Toscana, Pisa, Italy
| | - Rosalinda Madonna
- Center of Aging Sciences and Translational Medicine - CESI-MeT, "G. d'Annunzio" University, Chieti, Italy
| | - Donato Mele
- Cardiology Unit, Emergency Department, University Hospital of Ferrara, Ferrara, Italy
| | - Ines Monte
- Department of General Surgery and Medical-Surgery Specialities- Cardiology, University of Catania, Catania, Italy
| | - Giuseppina Novo
- Department of Cardiology, University of Palermo, Palermo, Italy
| | - Cinzia Nugara
- Department of Cardiology, University of Palermo, Palermo, Italy
| | - Concetta Zito
- Department of Clinical and Experimental Medicine - Cardiology, University of Messina, Messina, Italy
| | - Javid J Moslehi
- Vanderbilt Ingram Cancer Center, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rudolf A de Boer
- University Medical Center Groningen, Department of Cardiology, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | | | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy. .,Interdepartmental Center for Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy.
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
84
|
The Role of Antioxidants in Ameliorating Cyclophosphamide-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4965171. [PMID: 32454939 PMCID: PMC7238386 DOI: 10.1155/2020/4965171] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
The chemotherapeutic and immunosuppressive agent cyclophosphamide has previously been shown to induce complications within the setting of bone marrow transplantation. More recently, cardiotoxicity has been shown to be a dose-limiting factor during cyclophosphamide therapy, and cardiooncology is getting wider attention. Though mechanism of cyclophosphamide-induced cardiotoxicity is not completely understood, it is thought to encompass oxidative and nitrative stress. As such, this review focuses on antioxidants and their role in preventing or ameliorating cyclophosphamide-induced cardiotoxicity. It will give special emphasis to the cardioprotective effects of natural, plant-derived antioxidants that have garnered significant interest in recent times.
Collapse
|
85
|
Cardioprotective Effect of Croton macrostachyus Stem Bark Extract and Solvent Fractions on Cyclophosphamide-Induced Cardiotoxicity in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8467406. [PMID: 32328140 PMCID: PMC7150702 DOI: 10.1155/2020/8467406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/04/2020] [Accepted: 03/09/2020] [Indexed: 01/06/2023]
Abstract
Objective To evaluate the antioxidant and cardioprotective activities of stem bark extract and solvent fractions of Croton macrostachyus on cyclophosphamide-induced cardiotoxicity in rats. Materials and Methods. DPPH free radical scavenging assay method was used to determine antioxidant activity whereas Sprague-Dawley rats were used to evaluate the cardioprotective activity. Except for the normal control, all groups were subjected to cyclophosphamide (200 mg/kg, i.p.) toxicity on the first day. Enalapril at 10 mg/kg was used as a reference. The hydromethanolic crude extract (100, 200, and 400 mg/kg) and aqueous and ethyl acetate fractions (100 and 200 mg/kg, each) were administered for 10 days. The cardioprotective activities were evaluated using cardiac biomarkers such as Troponin I, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total cholesterol (TC), triglyceride (TG), and histopathological studies of heart tissue. Results Crude extract and ethyl acetate and aqueous fractions exhibited free radical scavenging activities at IC50 of 594 μg/mL, 419 μg/mL, and 716 μg/mL, respectively. Crude extract at 400 mg/kg decreased the levels of troponin, AST, ALT, and ALP to 0.29 ± 0.06 ng/mL, 103.00 ± 7.63 U/L, 99.80 ± 6.18 U/L, and 108.80 ± 8.81 U/L, respectively. In addition, ethyl acetate fraction at 200 mg/kg decreased the levels of troponin, AST, ALT, and ALP to 0.22 ± 0.02 ng/mL, 137.00 ± 14.30 U/L, 90.33 ± 6.13 U/L, and 166.67 ± 13.50 U/L, respectively, compared with the cyclophosphamide control group. Conclusions Croton macrostachyus possesses cardioprotective activities and it could be a possible source of treatment for cardiotoxicity induced by cyclophosphamide.
Collapse
|
86
|
Chariou PL, Ortega-Rivera OA, Steinmetz NF. Nanocarriers for the Delivery of Medical, Veterinary, and Agricultural Active Ingredients. ACS NANO 2020; 14:2678-2701. [PMID: 32125825 PMCID: PMC8085836 DOI: 10.1021/acsnano.0c00173] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanocarrier-based delivery systems can be used to increase the safety and efficacy of active ingredients in medical, veterinary, or agricultural applications, particularly when such ingredients are unstable, sparingly soluble, or cause off-target effects. In this review, we highlight the diversity of nanocarrier materials and their key advantages compared to free active ingredients. We discuss current trends based on peer-reviewed research articles, patent applications, clinical trials, and the nanocarrier formulations already approved by regulatory bodies. Although most nanocarriers have been engineered to combat cancer, the number of formulations developed for other purposes is growing rapidly, especially those for the treatment of infectious diseases and parasites affecting humans, livestock, and companion animals. The regulation and prohibition of many pesticides have also fueled research to develop targeted pesticide delivery systems based on nanocarriers, which maximize efficacy while minimizing the environmental impact of agrochemicals.
Collapse
|
87
|
Li M, Russo M, Pirozzi F, Tocchetti CG, Ghigo A. Autophagy and cancer therapy cardiotoxicity: From molecular mechanisms to therapeutic opportunities. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118493. [DOI: 10.1016/j.bbamcr.2019.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/31/2019] [Accepted: 06/15/2019] [Indexed: 11/25/2022]
|
88
|
Lin S, Chang C, Hsu C, Tsai M, Cheng H, Leong MK, Sung P, Chen J, Weng C. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence. Br J Pharmacol 2020; 177:1409-1423. [PMID: 31368509 PMCID: PMC7056458 DOI: 10.1111/bph.14816] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/19/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022] Open
Abstract
Traditional chemotherapy is being considered due to hindrances caused by systemic toxicity. Currently, the administration of multiple chemotherapeutic drugs with different biochemical/molecular targets, known as combination chemotherapy, has attained numerous benefits like efficacy enhancement and amelioration of adverse effects that has been broadly applied to various cancer types. Additionally, seeking natural-based alternatives with less toxicity has become more important. Experimental evidence suggests that herbal extracts such as Solanum nigrum and Claviceps purpurea and isolated herbal compounds (e.g., curcumin, resveratrol, and matairesinol) combined with antitumoral drugs have the potential to attenuate resistance against cancer therapy and to exert chemoprotective actions. Plant products are not free of risks: Herb adverse effects, including herb-drug interactions, should be carefully considered. LINKED ARTICLES: This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc.
Collapse
Affiliation(s)
- Shian‐Ren Lin
- Department of Life Science and Institute of BiotechnologyNational Dong Hwa UniversityHualienTaiwan
| | - Chia‐Hsiang Chang
- Department of Life Science and Institute of BiotechnologyNational Dong Hwa UniversityHualienTaiwan
| | - Che‐Fang Hsu
- Department of Life Science and Institute of BiotechnologyNational Dong Hwa UniversityHualienTaiwan
- Center for Prevention and Therapy of Gynaecological Cancers, Department of ResearchTzu Chi HospitalHualienTaiwan
| | - May‐Jwan Tsai
- Neural Regeneration Laboratory, Neurological InstituteTaipei Veterans General HospitalTaipei CityTaiwan
| | - Henrich Cheng
- Neural Regeneration Laboratory, Neurological InstituteTaipei Veterans General HospitalTaipei CityTaiwan
| | - Max K. Leong
- Department of ChemistryNational Dong Hwa UniversityHualienTaiwan
| | - Ping‐Jyun Sung
- Graduate Institute of Marine BiotechnologyNational Dong Hwa UniversityPingtungTaiwan
| | - Jian‐Chyi Chen
- Department of BiotechnologySouthern Taiwan University of Science and TechnologyTainan CityTaiwan
| | - Ching‐Feng Weng
- Graduate Institute of Marine BiotechnologyNational Dong Hwa UniversityPingtungTaiwan
- Department of Basic Medical Science, Center for Transitional MedicineXiamen Medical CollegeXiamenChina
| |
Collapse
|
89
|
The role of A-kinase anchoring proteins in cardiac oxidative stress. Biochem Soc Trans 2020; 47:1341-1353. [PMID: 31671182 PMCID: PMC6824835 DOI: 10.1042/bst20190228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022]
Abstract
Cardiac stress initiates a pathological remodeling process that is associated with cardiomyocyte loss and fibrosis that ultimately leads to heart failure. In the injured heart, a pathologically elevated synthesis of reactive oxygen species (ROS) is the main driver of oxidative stress and consequent cardiomyocyte dysfunction and death. In this context, the cAMP-dependent protein kinase (PKA) plays a central role in regulating signaling pathways that protect the heart against ROS-induced cardiac damage. In cardiac cells, spatiotemporal regulation of PKA activity is controlled by A-kinase anchoring proteins (AKAPs). This family of scaffolding proteins tether PKA and other transduction enzymes at subcellular microdomains where they can co-ordinate cellular responses regulating oxidative stress. In this review, we will discuss recent literature illustrating the role of PKA and AKAPs in modulating the detrimental impact of ROS production on cardiac function.
Collapse
|
90
|
Marone G, Gambardella AR, Mattei F, Mancini J, Schiavoni G, Varricchi G. Basophils in Tumor Microenvironment and Surroundings. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1224:21-34. [PMID: 32036602 DOI: 10.1007/978-3-030-35723-8_2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Basophils represent approximately 1% of human peripheral blood leukocytes. Their effector functions were initially appreciated in the 1970s when basophils were shown to express the high-affinity receptor (FcεRI) for IgE and to release proinflammatory mediators (histamine and cysteinyl leukotriene C4) and immunoregulatory cytokines (i.e., IL-4 and IL-13). Basophils in the mouse were subsequently identified and immunologically characterized. There are many similarities but also several differences between human and mouse basophils. Basophil-deficient mice have enabled to examine the in vivo roles of basophils in several immune disorders and, more recently, in tumor immunity. Activated human basophils release several proangiogenic molecules such as vascular endothelial growth factor-A (VEGF-A), vascular endothelial growth factor-B (VEGF-B), CXCL8, angiopoietin 1 (ANGPT1), and hepatocyte growth factor (HGF). On the other side, basophils can exert anti-tumorigenic effects by releasing granzyme B, TNF-α, and histamine. Circulating basophils have been associated with certain human hematologic (i.e., chronic myeloid leukemia) and solid tumors. Basophils have been found in tumor microenvironment (TME) of human lung adenocarcinoma and pancreatic cancer. Basophils played a role in melanoma rejection in basophil-deficient mouse model. By contrast, basophils appear to play a pro-tumorigenic role in experimental and human pancreatic cancer. In conclusion, the roles of basophils in experimental and human cancers have been little investigated and remain largely unknown. The elucidation of the roles of basophils in tumor immunity will demand studies on increasing complexity beyond those assessing basophil density and their microlocalization in TME. There are several fundamental questions to be addressed in experimental models and clinical studies before we understand whether basophils are an ally, adversary, or even innocent bystanders in cancers.
Collapse
Affiliation(s)
- Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy
- Azienda Ospedaliera dei Colli-Monaldi Hospital Pharmacy, Naples, Italy
| | | | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Jacopo Mancini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.
- WAO Center of Excellence, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy.
| |
Collapse
|
91
|
Elia G, Ferrari SM, Galdiero MR, Ragusa F, Paparo SR, Ruffilli I, Varricchi G, Fallahi P, Antonelli A. New insight in endocrine-related adverse events associated to immune checkpoint blockade. Best Pract Res Clin Endocrinol Metab 2020; 34:101370. [PMID: 31983543 DOI: 10.1016/j.beem.2019.101370] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Anticancer immunotherapy, in the form of immune checkpoint inhibition, is a paradigm shift that has transformed the care of patients with different types of solid and hematologic cancers. The most notable improvements have been seen in patients with melanoma, non-small-cell lung, bladder, renal, cervical, urotherial, and colorectal cancers, Merkel cell carcinoma, and Hodgkin lymphoma. Monoclonal antibodies (mAbs) targeting immune checkpoints (i.e., anti-CTLA: ipilimumab; anti-PD-1: nivolumab, pembrolizumab; anti-PD-L1: durvalumab, atezolizumab, avelumab) unleash the immune system against tumor cells targeting mainly T cells. Treatment with immune checkpoint inhibitors (ICIs) is associated with a variety of diverse and distinct immune-related adverse events (irAEs), reflecting the mechanistic underpinning of each target (i.e., CTLA-4, and PD-1/PD-L1 network). The most frequent endocrine irAEs associated with anti-PD-1 mAb treatment are thyroid dysfunctions, whereas hypophysitis is mostly linked to anti-CTLA-4 treatment. Type 1 diabetes mellitus and adrenalitis are rare irAEs. Combination therapy (anti-CTLA-4 plus anti-PD-1/PD-L1) can be associated with an increased risk and prevalence of endocrine irAEs. In this paper we discuss the pathophysiological and clinical aspects of irAEs with specific emphasis on endocrine irAEs associated with ICIs. With a growing number of patients treated with ICIs, a tight collaboration among oncologists, endocrinologists and immunologists appears necessary when the circumstances are more challenging and for better management of severe endocrine irAEs. Further investigations are urgently needed to better understand the mechanisms by which different ICIs can induce a variety of endocrine irAEs.
Collapse
Affiliation(s)
- Giusy Elia
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy.
| | - Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy.
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy; WAO Center of Excellence, 80131, Naples, Italy; Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), 80131, Naples, Italy.
| | - Francesca Ragusa
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy.
| | - Sabrina Rosaria Paparo
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy.
| | - Ilaria Ruffilli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy.
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy; WAO Center of Excellence, 80131, Naples, Italy; Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), 80131, Naples, Italy.
| | - Poupak Fallahi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126, Pisa, Italy.
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy.
| |
Collapse
|
92
|
Cardioprotective Effects and Duration of Beta Blocker Therapy in Anthracycline-Treated Patients: A Systematic Review and Meta-analysis. Cardiovasc Toxicol 2019; 20:11-19. [DOI: 10.1007/s12012-019-09558-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
93
|
Mercurio V, Cuomo A, Della Pepa R, Ciervo D, Cella L, Pirozzi F, Parrella P, Campi G, Franco R, Varricchi G, Abete P, Marone G, Petretta M, Bonaduce D, Pacelli R, Picardi M, Tocchetti CG. What Is the Cardiac Impact of Chemotherapy and Subsequent Radiotherapy in Lymphoma Patients? Antioxid Redox Signal 2019; 31:1166-1174. [PMID: 31436110 DOI: 10.1089/ars.2019.7842] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Anthracyclines are widely used in anticancer protocols, but can induce cardiotoxicity by mechanisms that mainly involve oxidative damage and mitochondrial dysfunction. Radiotherapy (RT) can also impair cardiac function by promoting myocardial fibrosis, microvascular damage, and decreased density of myocardial capillaries. Hence, we aim at investigating prospectively whether RT impacts heart function in lymphoma patients who had been already treated with anthracyclines. Twenty-nine consecutive patients with Hodgkin or non-Hodgkin lymphomas underwent echocardiography at baseline (before antineoplastic treatments), and then every 2 months, until 6 months after treatment completion. Echo evaluation included standard two-dimensional and speckle tracking. Twenty-two patients treated with anthracycline-based regimens were eligible. Out of the 22 patients, 8 received chemotherapy (CT) only (subgroup 1), while 14 underwent RT after CT [subgroup 2 (S2)]. At the end of CT, ejection fraction was significantly reduced in the whole population. At 6 months after completion of therapies, E/E' increased and global longitudinal strain was compromised in S2, suggesting additional damage induced by RT after CT. On the basis of the data from our small prospective study, we can hypothesize that in lymphoma patients, anthracyclines can worsen cardiac function, and RT may have an additional unfavorable myocardial impact.
Collapse
Affiliation(s)
- Valentina Mercurio
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Alessandra Cuomo
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Roberta Della Pepa
- Department of Medicine and Surgery, Federico II University, Naples, Italy
| | - Deasy Ciervo
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Laura Cella
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Naples, Italy
| | - Flora Pirozzi
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Paolo Parrella
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Giacomo Campi
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Riccardo Franco
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Pasquale Abete
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Mario Petretta
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Domenico Bonaduce
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Roberto Pacelli
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Marco Picardi
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy.,Interdepartmental Center for Clinical and Translational Research, Federico II University, Naples, Italy
| |
Collapse
|
94
|
Varricchi G, de Paulis A, Marone G, Galli SJ. Future Needs in Mast Cell Biology. Int J Mol Sci 2019; 20:E4397. [PMID: 31500217 PMCID: PMC6769913 DOI: 10.3390/ijms20184397] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
The pathophysiological roles of mast cells are still not fully understood, over 140 years since their description by Paul Ehrlich in 1878. Initial studies have attempted to identify distinct "subpopulations" of mast cells based on a relatively small number of biochemical characteristics. More recently, "subtypes" of mast cells have been described based on the analysis of transcriptomes of anatomically distinct mouse mast cell populations. Although mast cells can potently alter homeostasis, in certain circumstances, these cells can also contribute to the restoration of homeostasis. Both solid and hematologic tumors are associated with the accumulation of peritumoral and/or intratumoral mast cells, suggesting that these cells can help to promote and/or limit tumorigenesis. We suggest that at least two major subsets of mast cells, MC1 (meaning anti-tumorigenic) and MC2 (meaning pro-tumorigenic), and/or different mast cell mediators derived from otherwise similar cells, could play distinct or even opposite roles in tumorigenesis. Mast cells are also strategically located in the human myocardium, in atherosclerotic plaques, in close proximity to nerves and in the aortic valve. Recent studies have revealed evidence that cardiac mast cells can participate both in physiological and pathological processes in the heart. It seems likely that different subsets of mast cells, like those of cardiac macrophages, can exert distinct, even opposite, effects in different pathophysiological processes in the heart. In this chapter, we have commented on possible future needs of the ongoing efforts to identify the diverse functions of mast cells in health and disease.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80138 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80138 Naples, Italy.
- WAO Center of Excellence, 80138 Naples, Italy.
| | - Amato de Paulis
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80138 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80138 Naples, Italy.
- WAO Center of Excellence, 80138 Naples, Italy.
| | - Gianni Marone
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80138 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80138 Naples, Italy.
- WAO Center of Excellence, 80138 Naples, Italy.
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), 80138 Naples, Italy.
| | - Stephen J Galli
- Departments of Pathology and of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5176, USA.
| |
Collapse
|
95
|
He T, Shen H, Zhu J, Zhu Y, He Y, Li Z, Lu H. Geniposide attenuates cadmium‑induced oxidative stress injury via Nrf2 signaling in osteoblasts. Mol Med Rep 2019; 20:1499-1508. [PMID: 31257486 PMCID: PMC6625402 DOI: 10.3892/mmr.2019.10396] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/29/2018] [Indexed: 11/13/2022] Open
Abstract
Geniposide, as a type of iridoid glycoside, has antioxidative capacity. However, the mechanism underlying the effect of geniposide in cadmium (Cd)-induced osteoblast injury remains only partly elucidated. In the present study, Cell Counting Kit-8 (CCK-8) was used to determine MC-3T3-E1 cell viability. Flow cytometry was used to determine the rate of apoptosis and levels of reactive oxygen species (ROS). Oxidative stress-related factors were assessed using enzyme-linked immunosorbent method (ELISA). Quantitative real-time polymerase chain reaction (qPCR) and western blotting were used to evaluate apoptosis- and bone formation-related genes and nuclear factor erythroid 2-related factor (Nrf2) signaling. It was demonstrated that geniposide increased the viability of the Cd-treated MC-3T3-E1 cells. Geniposide decreased apoptosis and ROS accumulation compared to these parameters in the Cd group. Geniposide attenuated oxidative stress-related factors, malondialdehyde and lactate dehydrogenase and increased antioxidant key enzyme superoxidase dismutase (SOD). The expression levels of Bax, Bcl-2 and survivin were modulated by geniposide. Additionally, the mRNA and protein expression of the receptor activator of NF-κB ligand (RANKL) and osterix were significantly increased, while osteoprotegerin was decreased by geniposide treatment compared to the Cd groups. Geniposide also enhanced Nrf2, heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1) expression. The present study identified a potential agent for the treatment of Cd-induced osteoblast injury.
Collapse
Affiliation(s)
- Tengfeng He
- Spine Department, Zhuji People's Hospital, Zhuji, Zhejiang 311800, P.R. China
| | - Huasong Shen
- Spine Department, Zhuji People's Hospital, Zhuji, Zhejiang 311800, P.R. China
| | - Jinke Zhu
- Spine Department, Zhuji People's Hospital, Zhuji, Zhejiang 311800, P.R. China
| | - Yan Zhu
- Spine Department, Zhuji People's Hospital, Zhuji, Zhejiang 311800, P.R. China
| | - Yan He
- Spine Department, Zhuji People's Hospital, Zhuji, Zhejiang 311800, P.R. China
| | - Zhiwen Li
- Spine Department, Zhuji People's Hospital, Zhuji, Zhejiang 311800, P.R. China
| | - Huanxing Lu
- Spine Department, Zhuji People's Hospital, Zhuji, Zhejiang 311800, P.R. China
| |
Collapse
|
96
|
Abushouk AI, Salem AMA, Saad A, Afifi AM, Afify AY, Afify H, Salem HSE, Ghanem E, Abdel-Daim MM. Mesenchymal Stem Cell Therapy for Doxorubicin-Induced Cardiomyopathy: Potential Mechanisms, Governing Factors, and Implications of the Heart Stem Cell Debate. Front Pharmacol 2019; 10:635. [PMID: 31258475 PMCID: PMC6586740 DOI: 10.3389/fphar.2019.00635] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 05/17/2019] [Indexed: 12/13/2022] Open
Abstract
Over the past decades, researchers have reported several mechanisms for doxorubicin (DOX)-induced cardiomyopathy, including oxidative stress, inflammation, and apoptosis. Another mechanism that has been suggested is that DOX interferes with the cell cycle and induces oxidative stress in C-kit+ cells (commonly known as cardiac progenitor cells), reducing their regenerative capacity. Cardiac regeneration through enhancing the regenerative capacity of these cells or administration of other stem cells types has been the axis of several studies over the past 20 years. Several experiments revealed that local or systemic injections with mesenchymal stem cells (MSCs) were associated with significantly improved cardiac function, ameliorated inflammatory response, and reduced myocardial fibrosis. They also showed that several factors can affect the outcome of MSC treatment for DOX cardiomyopathy, including the MSC type, dose, route, and timing of administration. However, there is growing evidence that the C-kit+ cells do not have a cardiac regenerative potential in the adult mammalian heart. Similarly, the protective mechanisms of MSCs against DOX-induced cardiomyopathy are not likely to include direct differentiation into cardiomyocytes and probably occur through paracrine secretion, antioxidant and anti-inflammatory effects. Better understanding of the involved mechanisms and the factors governing the outcomes of MSCs therapy are essential before moving to clinical application in patients with DOX-induced cardiomyopathy.
Collapse
Affiliation(s)
| | | | - Anas Saad
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed M Afifi
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Hesham Afify
- Wake Forest University, Winston-Salem, NC, United States
| | | | - Esraa Ghanem
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
97
|
Zhang X, Zhu Y, Dong S, Zhang A, Lu Y, Li Y, Lv S, Zhang J. Role of oxidative stress in cardiotoxicity of antineoplastic drugs. Life Sci 2019; 232:116526. [PMID: 31170418 DOI: 10.1016/j.lfs.2019.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/27/2019] [Accepted: 06/01/2019] [Indexed: 12/24/2022]
Abstract
Tumors and heart disease are two of the leading causes of human death. With the development of anti-cancer therapy, the survival rate of cancer patients has been significantly improved. But at the same time, the incidence of cardiovascular adverse events caused by cancer treatment has also been considerably increased, such as arrhythmia, left ventricular (LV) systolic and diastolic dysfunction, and even heart failure (HF), etc., which seriously affects the quality of life of cancer patients. More importantly, the occurrence of adverse events may lead to the adjustment or the cessation of anti-cancer treatment, which affects the survival rate of patients. Understanding the mechanism of cardiotoxicity (CTX) induced by antineoplastic drugs is the basis of adequate protection of the heart without impairing the efficacy of antineoplastic therapy. Based on current research, a large amount of evidence has shown that oxidative stress (OS) plays an essential role in CTX induced by antineoplastic drugs and participates in its toxic reaction directly and indirectly. Here, we will review the mechanism of action of OS in cardiac toxicity of antineoplastic drugs, to provide new ideas for researchers, and provide further guidance for clinical prevention and treatment of cardiac toxicity of anti-tumor drugs in the future.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Department of Cardiovascular Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Nankai, Tianjin, China
| | - Yaping Zhu
- Department of Cardiovascular Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Nankai, Tianjin, China
| | - Shaoyang Dong
- Department of Orthopedics of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Hebei Province of Traditional Chinese Medicine, Hebei Institute of Traditional Chinese Medicine, Shijiazhuang, Hebei, China
| | - Ao Zhang
- Epidemiology, College of Global Public Health, New York University, 726 broad way, NY, New York, USA
| | - Yanmin Lu
- Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Nankai, Tianjin, China
| | - Yanyang Li
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin Medical University Cancer Institute and Hospital, Hexi, Tianjin, China
| | - Shichao Lv
- Department of Cardiovascular Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Nankai, Tianjin, China.
| | - Junping Zhang
- Department of Cardiovascular Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Nankai, Tianjin, China.
| |
Collapse
|
98
|
Cuomo A, Rodolico A, Galdieri A, Russo M, Campi G, Franco R, Bruno D, Aran L, Carannante A, Attanasio U, Tocchetti CG, Varricchi G, Mercurio V. Heart Failure and Cancer: Mechanisms of Old and New Cardiotoxic Drugs in Cancer Patients. Card Fail Rev 2019; 5:112-118. [PMID: 31179022 PMCID: PMC6545979 DOI: 10.15420/cfr.2018.32.2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Although there have been many improvements in prognosis for patients with cancer, anticancer therapies are burdened by the risk of cardiovascular toxicity. Heart failure is one of the most dramatic clinical expressions of cardiotoxicity, and it may occur acutely or appear years after treatment. This article reviews the main mechanisms and clinical presentations of left ventricular dysfunction induced by some old and new cardiotoxic drugs in cancer patients, referring to the most recent advances in the field. The authors describe the mechanisms of cardiotoxicity induced by anthracyclines, which can lead to cardiovascular problems in up to 48% of patients who take them. The authors also describe mechanisms of cardiotoxicity induced by biological drugs that produce left ventricular dysfunction through secondary mechanisms. They outline the recent advances in immunotherapies, which have revolutionised anticancer therapies.
Collapse
Affiliation(s)
- Alessandra Cuomo
- Department of Translational Medical Sciences, Federico II University Naples, Italy
| | - Alessio Rodolico
- Department of Translational Medical Sciences, Federico II University Naples, Italy
| | - Amalia Galdieri
- Department of Translational Medical Sciences, Federico II University Naples, Italy
| | - Michele Russo
- Department of Translational Medical Sciences, Federico II University Naples, Italy
| | - Giacomo Campi
- Department of Translational Medical Sciences, Federico II University Naples, Italy
| | - Riccardo Franco
- Department of Translational Medical Sciences, Federico II University Naples, Italy
| | - Dalila Bruno
- Department of Translational Medical Sciences, Federico II University Naples, Italy
| | - Luisa Aran
- Department of Translational Medical Sciences, Federico II University Naples, Italy
| | - Antonio Carannante
- Department of Translational Medical Sciences, Federico II University Naples, Italy
| | - Umberto Attanasio
- Department of Translational Medical Sciences, Federico II University Naples, Italy
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences, Federico II University Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, Federico II University Naples, Italy
| | - Valentina Mercurio
- Department of Translational Medical Sciences, Federico II University Naples, Italy
| |
Collapse
|
99
|
The Role of Cardiac Magnetic Resonance Imaging to Detect Cardiac Toxicity From Cancer Therapeutics. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2019; 21:28. [PMID: 31104180 DOI: 10.1007/s11936-019-0732-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The emerging complexity of cardiac toxicity caused by cancer therapies has created demand for more advanced non-invasive methods to better evaluate cardiac structure, function, and myocardial tissue characteristics. Cardiac magnetic resonance imaging meets these needs without exposure to ionizing radiation, and with superior spatial resolution. RECENT FINDINGS Special applications of cardiac magnetic resonance (CMR) to assess for cancer therapy-induced cardiac toxicity include the detection of subclinical LV dysfunction through novel methods of measuring myocardial strain, detection of microcirculatory dysfunction, identification of LV and LA fibrosis, and more sensitive detection of inflammation caused by immune checkpoint inhibitors. CMR plays a significant role in the non-invasive workup of cardiac toxicity from cancer therapies, with recent advancements in the field that have opened avenues for further research and development.
Collapse
|
100
|
Russo M, Guida F, Paparo L, Trinchese G, Aitoro R, Avagliano C, Fiordelisi A, Napolitano F, Mercurio V, Sala V, Li M, Sorriento D, Ciccarelli M, Ghigo A, Hirsch E, Bianco R, Iaccarino G, Abete P, Bonaduce D, Calignano A, Berni Canani R, Tocchetti CG. The novel butyrate derivative phenylalanine-butyramide protects from doxorubicin-induced cardiotoxicity. Eur J Heart Fail 2019; 21:519-528. [PMID: 30843309 DOI: 10.1002/ejhf.1439] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/24/2018] [Accepted: 01/11/2019] [Indexed: 11/10/2022] Open
Abstract
AIMS Butyric acid (BUT), a short chain fatty acid produced daily by the gut microbiota, has proven beneficial in models of cardiovascular diseases. With advancements in cancer survival, an increasing number of patients are at risk of anticancer drug cardiotoxicity. Here we assess whether the novel BUT derivative phenylalanine-butyramide (FBA) protects from doxorubicin (DOXO) cardiotoxicity, by decreasing oxidative stress and improving mitochondrial function. METHODS AND RESULTS In C57BL6 mice, DOXO produced left ventricular dilatation assessed by echocardiography. FBA prevented left ventricular dilatation, fibrosis and cardiomyocyte apoptosis when co-administered with DOXO. DOXO increased atrial natriuretic peptide, brain natriuretic peptide, connective tissue growth factor, and matrix metalloproteinase-2 mRNAs, which were not elevated on co-treatment with FBA. DOXO, but not FBA + DOXO mice, also showed higher nitrotyrosine levels, and increased inducible nitric oxide synthase expression. Accordingly, DOXO hearts showed lower levels of intracellular catalase vs. sham, while pre-treatment with FBA prevented this decrease. We then assessed for reactive oxygen species (ROS) emission: DOXO induced increased activity of mitochondrial superoxide dismutase and higher production of H2 O2 , which were blunted by FBA pre-treatment. FBA also ameliorated mitochondrial state 3 and state 4 respiration rates that were compromised by DOXO. Furthermore, in DOXO animals, the mitochondrial degree of coupling was significantly increased vs. sham, while FBA was able to prevent such increase, contributing to limit ROS production, Finally, FBA reduced DOXO damage in human cellular models, and increased the tumour-killing action of DOXO. CONCLUSIONS Phenylalanine-butyramide protects against experimental doxorubicin cardiotoxicity. Such protection is accompanied by reduction in oxidative stress and amelioration of mitochondrial function.
Collapse
Affiliation(s)
- Michele Russo
- Department of Translational Medical Sciences, 'Federico II' University, Naples, Italy.,Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Fiorentina Guida
- Department of Translational Medical Sciences, 'Federico II' University, Naples, Italy
| | - Lorella Paparo
- Department of Translational Medical Sciences, 'Federico II' University, Naples, Italy
| | | | - Rosita Aitoro
- Department of Translational Medical Sciences, 'Federico II' University, Naples, Italy
| | | | - Antonella Fiordelisi
- Department of Advanced Biomedical Sciences, 'Federico II' University, Naples, Italy
| | - Fabiana Napolitano
- Department of Clinical Medicine and Surgery, 'Federico II' University, Naples, Italy
| | - Valentina Mercurio
- Department of Translational Medical Sciences, 'Federico II' University, Naples, Italy
| | - Valentina Sala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Mingchuan Li
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Daniela Sorriento
- Department of Advanced Biomedical Sciences, 'Federico II' University, Naples, Italy
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, 'Federico II' University, Naples, Italy.,Interdipartimental Center for Clinical and Translational Research (CIRCET), 'Federico II' University, Naples, Italy
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences, 'Federico II' University, Naples, Italy
| | - Pasquale Abete
- Department of Translational Medical Sciences, 'Federico II' University, Naples, Italy
| | - Domenico Bonaduce
- Department of Translational Medical Sciences, 'Federico II' University, Naples, Italy.,Task Force for the Microbiome Studies, 'Federico II' University, Naples, Italy
| | | | - Roberto Berni Canani
- Department of Translational Medical Sciences, 'Federico II' University, Naples, Italy.,Task Force for the Microbiome Studies, 'Federico II' University, Naples, Italy.,CEINGE Advanced Biotechnologies, 'Federico II' University, Naples, Italy.,European Laboratory for the Investigation of Food Induced Diseases (ELFID), 'Federico II' University, Naples, Italy
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences, 'Federico II' University, Naples, Italy.,Interdipartimental Center for Clinical and Translational Research (CIRCET), 'Federico II' University, Naples, Italy.,Task Force for the Microbiome Studies, 'Federico II' University, Naples, Italy
| |
Collapse
|