51
|
Oemer G, Koch J, Wohlfarter Y, Alam MT, Lackner K, Sailer S, Neumann L, Lindner HH, Watschinger K, Haltmeier M, Werner ER, Zschocke J, Keller MA. Phospholipid Acyl Chain Diversity Controls the Tissue-Specific Assembly of Mitochondrial Cardiolipins. Cell Rep 2021; 30:4281-4291.e4. [PMID: 32209484 DOI: 10.1016/j.celrep.2020.02.115] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/23/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiolipin (CL) is a phospholipid specific for mitochondrial membranes and crucial for many core tasks of this organelle. Its acyl chain configurations are tissue specific, functionally important, and generated via post-biosynthetic remodeling. However, this process lacks the necessary specificity to explain CL diversity, which is especially evident for highly specific CL compositions in mammalian tissues. To investigate the so far elusive regulatory origin of CL homeostasis in mice, we combine lipidomics, integrative transcriptomics, and data-driven machine learning. We demonstrate that not transcriptional regulation, but cellular phospholipid compositions are closely linked to the tissue specificity of CL patterns allowing artificial neural networks to precisely predict cross-tissue CL compositions in a consistent mechanistic specificity rationale. This is especially relevant for the interpretation of disease-related perturbations of CL homeostasis, by allowing differentiation between specific aberrations in CL metabolism and changes caused by global alterations in cellular (phospho-)lipid metabolism.
Collapse
Affiliation(s)
- Gregor Oemer
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Jakob Koch
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Yvonne Wohlfarter
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Mohammad T Alam
- Warwick Medical School, The University of Warwick, Warwick, CV4 7AL Coventry, UK
| | - Katharina Lackner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sabrina Sailer
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lukas Neumann
- Department of Basic Sciences in Engineering Science, University of Innsbruck, 6020 Innsbruck, Austria
| | - Herbert H Lindner
- Institute of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus Haltmeier
- Department of Mathematics, University of Innsbruck, 6020 Innsbruck, Austria
| | - Ernst R Werner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
52
|
Dahdah N, Gonzalez-Franquesa A, Samino S, Gama-Perez P, Herrero L, Perales JC, Yanes O, Malagón MDM, Garcia-Roves PM. Effects of Lifestyle Intervention in Tissue-Specific Lipidomic Profile of Formerly Obese Mice. Int J Mol Sci 2021; 22:3694. [PMID: 33916315 PMCID: PMC8037078 DOI: 10.3390/ijms22073694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/06/2023] Open
Abstract
Lipids are highly diverse in their composition, properties and distribution in different biological entities. We aim to establish the lipidomes of several insulin-sensitive tissues and to test their plasticity when divergent feeding regimens and lifestyles are imposed. Here, we report a proton nuclear magnetic resonance (1H-NMR) study of lipid abundance across 4 tissues of C57Bl6J male mice that includes the changes in the lipid profile after every lifestyle intervention. Every tissue analysed presented a specific lipid profile irrespective of interventions. Glycerolipids and fatty acids were most abundant in epididymal white adipose tissue (eWAT) followed by liver, whereas sterol lipids and phosphoglycerolipids were highly enriched in hypothalamus, and gastrocnemius had the lowest content in all lipid species compared to the other tissues. Both when subjected to a high-fat diet (HFD) and after a subsequent lifestyle intervention (INT), the lipidome of hypothalamus showed no changes. Gastrocnemius and liver revealed a pattern of increase in content in many lipid species after HFD followed by a regression to basal levels after INT, while eWAT lipidome was affected mainly by the fat composition of the administered diets and not their caloric density. Thus, the present study demonstrates a unique lipidome for each tissue modulated by caloric intake and dietary composition.
Collapse
MESH Headings
- Adipose Tissue, White/metabolism
- Animals
- Caloric Restriction
- Diabetes Mellitus, Experimental/etiology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/metabolism
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Healthy Lifestyle
- Hypothalamus/metabolism
- Lipidomics
- Liver/metabolism
- Male
- Mice, Inbred C57BL
- Muscle, Skeletal/metabolism
- Obesity/complications
- Obesity/diet therapy
- Obesity/metabolism
- Physical Conditioning, Animal
- Mice
Collapse
Affiliation(s)
- Norma Dahdah
- Department of Physiological Sciences, Universitat de Barcelona, 08907 Barcelona, Spain; (A.G.-F.); (P.G.-P.); (J.C.P.)
| | - Alba Gonzalez-Franquesa
- Department of Physiological Sciences, Universitat de Barcelona, 08907 Barcelona, Spain; (A.G.-F.); (P.G.-P.); (J.C.P.)
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sara Samino
- Universitat Rovira i Virgili, Department of Electronic Engineering & IISPV, 43004 Tarragona, Spain; (S.S.); (O.Y.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pau Gama-Perez
- Department of Physiological Sciences, Universitat de Barcelona, 08907 Barcelona, Spain; (A.G.-F.); (P.G.-P.); (J.C.P.)
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain;
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - José Carlos Perales
- Department of Physiological Sciences, Universitat de Barcelona, 08907 Barcelona, Spain; (A.G.-F.); (P.G.-P.); (J.C.P.)
- Nutrition, Metabolism and Gene Therapy Group, Diabetes and Metabolism Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), 08908 Barcelona, Spain
| | - Oscar Yanes
- Universitat Rovira i Virgili, Department of Electronic Engineering & IISPV, 43004 Tarragona, Spain; (S.S.); (O.Y.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria Del Mar Malagón
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Cell Biology, Physiology and Immunology, IMIBIC, Reina Sofía University Hospital, University of Córdoba, 14004 Cordoba, Spain
| | - Pablo Miguel Garcia-Roves
- Department of Physiological Sciences, Universitat de Barcelona, 08907 Barcelona, Spain; (A.G.-F.); (P.G.-P.); (J.C.P.)
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Nutrition, Metabolism and Gene Therapy Group, Diabetes and Metabolism Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), 08908 Barcelona, Spain
| |
Collapse
|
53
|
Joyce K, Fabra GT, Bozkurt Y, Pandit A. Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduct Target Ther 2021; 6:122. [PMID: 33737507 PMCID: PMC7973744 DOI: 10.1038/s41392-021-00512-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Biomaterials have had an increasingly important role in recent decades, in biomedical device design and the development of tissue engineering solutions for cell delivery, drug delivery, device integration, tissue replacement, and more. There is an increasing trend in tissue engineering to use natural substrates, such as macromolecules native to plants and animals to improve the biocompatibility and biodegradability of delivered materials. At the same time, these materials have favourable mechanical properties and often considered to be biologically inert. More importantly, these macromolecules possess innate functions and properties due to their unique chemical composition and structure, which increase their bioactivity and therapeutic potential in a wide range of applications. While much focus has been on integrating these materials into these devices via a spectrum of cross-linking mechanisms, little attention is drawn to residual bioactivity that is often hampered during isolation, purification, and production processes. Herein, we discuss methods of initial material characterisation to determine innate bioactivity, means of material processing including cross-linking, decellularisation, and purification techniques and finally, a biological assessment of retained bioactivity of a final product. This review aims to address considerations for biomaterials design from natural polymers, through the optimisation and preservation of bioactive components that maximise the inherent bioactive potency of the substrate to promote tissue regeneration.
Collapse
Affiliation(s)
- Kieran Joyce
- School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Georgina Targa Fabra
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Yagmur Bozkurt
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland.
| |
Collapse
|
54
|
Dingjan T, Futerman AH. The fine-tuning of cell membrane lipid bilayers accentuates their compositional complexity. Bioessays 2021; 43:e2100021. [PMID: 33656770 DOI: 10.1002/bies.202100021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/17/2023]
Abstract
Cell membranes are now emerging as finely tuned molecular systems, signifying that re-evaluation of our understanding of their structure is essential. Although the idea that cell membrane lipid bilayers do little more than give shape and form to cells and limit diffusion between cells and their environment is totally passé, the structural, compositional, and functional complexity of lipid bilayers often catches cell and molecular biologists by surprise. Models of lipid bilayer structure have developed considerably since the heyday of the fluid mosaic model, principally by the discovery of the restricted diffusion of membrane proteins and lipids within the plane of the bilayer. In reviewing this field, we now suggest that further refinement of current models is necessary and propose that describing lipid bilayers as "finely-tuned molecular assemblies" best portrays their complexity and function. Also see the video abstract here: https://www.youtube.com/watch?v=ddkP-QRZTl8.
Collapse
Affiliation(s)
- Tamir Dingjan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
55
|
Activation of G-protein-coupled receptors is thermodynamically linked to lipid solvation. Biophys J 2021; 120:1777-1787. [PMID: 33640381 DOI: 10.1016/j.bpj.2021.02.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/11/2021] [Accepted: 02/22/2021] [Indexed: 12/31/2022] Open
Abstract
Preferential lipid solvation of the G-protein-coupled A2A adenosine receptor (A2AR) is evaluated from 35 μs of all-atom molecular dynamics simulation. A coarse-grained transition matrix algorithm is developed to overcome slow equilibration of the first solvation shell, obtaining estimates of the free energy of solvation by different lipids for the receptor in different activation states. Results indicate preference for solvation by unsaturated chains, which favors the active receptor. A model for lipid-dependent G-protein-coupled receptor activity is proposed in which the chemical potential of lipids in the bulk membrane modulates receptor activity. The entropies associated with moving saturated and unsaturated lipids from bulk to A2AR's first solvation shell are evaluated. Overall, the acyl chains are more disordered (i.e., obtain a favorable entropic contribution) when partitioning to the receptor surface, and this effect is augmented for the saturated chains, which are relatively more ordered in bulk.
Collapse
|
56
|
Xu Z, You W, Chen W, Zhou Y, Nong Q, Valencak TG, Wang Y, Shan T. Single-cell RNA sequencing and lipidomics reveal cell and lipid dynamics of fat infiltration in skeletal muscle. J Cachexia Sarcopenia Muscle 2021; 12:109-129. [PMID: 33244879 PMCID: PMC7890272 DOI: 10.1002/jcsm.12643] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ageing is accompanied by sarcopenia and intramuscular fat (IMAT) infiltration. In skeletal muscle, fat infiltration is a common feature in several myopathies and is associated with muscular dysfunction and insulin resistance. However, the cellular origin and lipidomic and transcriptomic changes during fat infiltration in skeletal muscle remain unclear. METHODS In the current study, we generated a high IMAT-infiltrated skeletal muscle model by glycerol (GLY) injection. Single-cell RNA sequencing and lineage tracing were performed on GLY-injured skeletal muscle at 5 days post-injection (DPI) to identify the cell origins and dynamics. Lipidomics and RNA sequencing were performed on IMAT-infiltrated skeletal muscle at 14 DPI (or 17 DPI for the cold treatment) to analyse alterations of lipid compositions and gene expression levels. RESULTS We identified nine distinct major clusters including myeloid-derived cells (52.13%), fibroblast/fibro/adipogenic progenitors (FAPs) (23.24%), and skeletal muscle stem cells (2.02%) in GLY-injured skeletal muscle. Clustering and pseudotemporal trajectories revealed six subpopulations in fibroblast/FAPs and 10 subclusters in myeloid-derived cells. A subpopulation of myeloid-derived cells expressing adipocyte-enriched genes and Pdgfra- /Cd68+ cells displayed lipid droplets upon adipogenic induction, indicating their adipogenic potential. Lipidomic analysis revealed the changes of overall lipid classes composition (e.g. triglycerides (TAGs) increased by 19.3 times, P = 0.0098; sulfoquinovosyl diacylglycerol decreased by 83%, P = 0.0056) and in the distribution of lipids [e.g. TAGs (18:2/18:2/22:6) increased by 181.6 times, P = 0.021] between GLY-group and saline control. RNA-seq revealed 1847 up-regulated genes and 321 down-regulated genes and significant changes in lipid metabolism-related pathways (e.g. glycerolipid pathway and glycerophospholipid pathway) in our model of GLY-injured skeletal muscle. Notably, short-term cold exposure altered fatty acid composition (e.g. saturated fatty acid decreased by 6.4%, P = 0.058) in fat-infiltrated muscles through directly affecting lipid metabolism pathways including PI3K-AKT and MAPK signalling pathway. CONCLUSIONS Our results showed that a subpopulation of myeloid-derived cells may contribute to IMAT infiltration. GLY-induced IMAT infiltration changed the lipid composition and gene expression profiles. Short-term cold exposure might regulate lipid metabolism and its related signalling pathways in fat-infiltrated muscle. Our study provides a comprehensive resource describing the molecular signature of fat infiltration in skeletal muscle.
Collapse
Affiliation(s)
- Ziye Xu
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Laboratory of Animal Feed and Nutrition of Zhejiang ProvinceHangzhouChina
| | - Wenjing You
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Laboratory of Animal Feed and Nutrition of Zhejiang ProvinceHangzhouChina
| | - Wentao Chen
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Laboratory of Animal Feed and Nutrition of Zhejiang ProvinceHangzhouChina
| | - Yanbing Zhou
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Laboratory of Animal Feed and Nutrition of Zhejiang ProvinceHangzhouChina
| | - Qiuyun Nong
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Laboratory of Animal Feed and Nutrition of Zhejiang ProvinceHangzhouChina
| | | | - Yizhen Wang
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Laboratory of Animal Feed and Nutrition of Zhejiang ProvinceHangzhouChina
| | - Tizhong Shan
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Laboratory of Animal Feed and Nutrition of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
57
|
Kimura AK, Kimura T. Phosphatidylserine biosynthesis pathways in lipid homeostasis: Toward resolution of the pending central issue for decades. FASEB J 2020; 35:e21177. [PMID: 33205488 DOI: 10.1096/fj.202001802r] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 12/28/2022]
Abstract
Enzymatic control of lipid homeostasis in the cell is a vital element in the complex organization of life. Phosphatidylserine (PS) is an essential anionic phospholipid of cell membranes, and conducts numerous roles for their structural and functional integrity. In mammalian cells, two distinct enzymes phosphatidylserine synthases-1 (PSS1) and -2 (PSS2) in the mitochondria-associated membrane (MAM) in the ER perform de novo synthesis of PS. It is based on base-exchange reactions of the preexisting dominant phospholipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). While PSS2 specifically catalyzes the reaction "PE → PS," whether or not PSS1 is responsible for the same reaction along with the reaction "PC → PS" remains unsettled despite its fundamental impact on the major stoichiometry. We propose here that a key but the only report that appeared to have put scientists on hold for decades in answering to this issue may be viewed consistently with other available research reports; PSS1 utilizes the two dominant phospholipid classes at a similar intrinsic rate. In this review, we discuss the issue in view of the current information for the enzyme machineries, membrane structure and dynamics, intracellular network of lipid transport, and PS synthesis in health and disease. Resolution of the pending issue is thus critical in advancing our understanding of roles of the essential anionic lipid in biology, health, and disease.
Collapse
Affiliation(s)
- Atsuko K Kimura
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Tomohiro Kimura
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
58
|
Fernández-Vega A, Chicano-Gálvez E, Prentice BM, Anderson D, Priego-Capote F, López-Bascón MA, Calderón-Santiago M, Avendaño MS, Guzmán-Ruiz R, Tena-Sempere M, Fernández JA, Caprioli RM, Malagón MM. Optimization of a MALDI-Imaging protocol for studying adipose tissue-associated disorders. Talanta 2020; 219:121184. [PMID: 32887102 DOI: 10.1016/j.talanta.2020.121184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022]
Abstract
Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) is increasingly recognized for its potential in the discovery of novel biomarkers directly from tissue sections. However, there are no MALDI IMS studies as yet on the adipose tissue, a lipid-enriched tissue that plays a pivotal role in the development of obesity-associated disorders. Herein, we aimed at developing an optimized method for analyzing adipose tissue lipid composition under both physiological and pathological conditions by MALDI IMS. Our studies showed an exacerbated lipid delocalization from adipose tissue sections when conventional strategies were applied. However, our optimized method using conductive-tape sampling and 2,5-dihydroxybenzoic acid (DHB) as a matrix, preserved the anatomical organization and minimized lipid diffusion from sample sections. This method enabled the identification of a total of 625 down-regulated and 328 up-regulated m/z values in the adipose tissue from a rat model of extreme obesity as compared to lean animals. Combination of MALDI IMS and liquid chromatography (LC)-MS/MS data identified 44 differentially expressed lipid species between lean and obese animals, including phospholipids and sphingomyelins. Among the lipids identified, SM(d18:0_18:2), PE(P-16:0_20:0), and PC(O-16:0_16:1) showed a differential spatial distribution in the adipose tissue of lean vs. obese animals. In sum, our method provides a valuable new tool for research on adipose tissue that may pave the way for the identification of novel biomarkers of obesity and metabolic disease.
Collapse
Affiliation(s)
- A Fernández-Vega
- Dept. Cell Biology, Physiology, and Immunology, IMIBIC/University of Cordoba (UCO)/Reina Sofia University Hospital (HURS), Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Spain
| | | | - B M Prentice
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - D Anderson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - F Priego-Capote
- Department of Analytical Chemistry, IMIBIC/UCO/HURS, Cordoba, Spain
| | - M A López-Bascón
- Department of Analytical Chemistry, IMIBIC/UCO/HURS, Cordoba, Spain
| | | | - M S Avendaño
- Dept. Cell Biology, Physiology, and Immunology, IMIBIC/University of Cordoba (UCO)/Reina Sofia University Hospital (HURS), Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Spain
| | - R Guzmán-Ruiz
- Dept. Cell Biology, Physiology, and Immunology, IMIBIC/University of Cordoba (UCO)/Reina Sofia University Hospital (HURS), Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Spain
| | - M Tena-Sempere
- Dept. Cell Biology, Physiology, and Immunology, IMIBIC/University of Cordoba (UCO)/Reina Sofia University Hospital (HURS), Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Spain
| | - J A Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - R M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA; Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain; Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Department of Medicine, Vanderbilt University, Nashville, TN, 37232, USA
| | - M M Malagón
- Dept. Cell Biology, Physiology, and Immunology, IMIBIC/University of Cordoba (UCO)/Reina Sofia University Hospital (HURS), Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Spain.
| |
Collapse
|
59
|
Pereyra AS, Rajan A, Ferreira CR, Ellis JM. Loss of Muscle Carnitine Palmitoyltransferase 2 Prevents Diet-Induced Obesity and Insulin Resistance despite Long-Chain Acylcarnitine Accumulation. Cell Rep 2020; 33:108374. [PMID: 33176143 PMCID: PMC7680579 DOI: 10.1016/j.celrep.2020.108374] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/16/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
To assess the effects of acylcarnitine accumulation on muscle insulin sensitivity, a model of muscle acylcarnitine accumulation was generated by deleting carnitine palmitoyltransferase 2 (CPT2) specifically from skeletal muscle (Cpt2Sk-/- mice). CPT2 is an irreplaceable enzyme for mitochondrial long-chain fatty acid oxidation, converting matrix acylcarnitines to acyl-CoAs. Compared with controls, Cpt2Sk-/- muscles do not accumulate anabolic lipids but do accumulate ∼22-fold more long-chain acylcarnitines. High-fat-fed Cpt2Sk-/- mice resist weight gain, adiposity, glucose intolerance, insulin resistance, and impairments in insulin-induced Akt phosphorylation. Obesity resistance of Cpt2Sk-/- mice could be attributed to increases in lipid excretion via feces, GFD15 production, and energy expenditure. L-carnitine supplement intervention lowers acylcarnitines and improves insulin sensitivity independent of muscle mitochondrial fatty acid oxidative capacity. The loss of muscle CPT2 results in a high degree of long-chain acylcarnitine accumulation, simultaneously protecting against diet-induced obesity and insulin resistance.
Collapse
Affiliation(s)
- Andrea S Pereyra
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC 27834, USA
| | - Arvind Rajan
- Department of Chemistry, East Carolina University, Greenville, NC 27834, USA
| | | | - Jessica M Ellis
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC 27834, USA.
| |
Collapse
|
60
|
Szlasa W, Zendran I, Zalesińska A, Tarek M, Kulbacka J. Lipid composition of the cancer cell membrane. J Bioenerg Biomembr 2020; 52:321-342. [PMID: 32715369 PMCID: PMC7520422 DOI: 10.1007/s10863-020-09846-4] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022]
Abstract
Cancer cell possesses numerous adaptations to resist the immune system response and chemotherapy. One of the most significant properties of the neoplastic cells is the altered lipid metabolism, and consequently, the abnormal cell membrane composition. Like in the case of phosphatidylcholine, these changes result in the modulation of certain enzymes and accumulation of energetic material, which could be used for a higher proliferation rate. The changes are so prominent, that some lipids, such as phosphatidylserines, could even be considered as the cancer biomarkers. Additionally, some changes of biophysical properties of cell membranes lead to the higher resistance to chemotherapy, and finally to the disturbances in signalling pathways. Namely, the increased levels of certain lipids, like for instance phosphatidylserine, lead to the attenuation of the immune system response. Also, changes in lipid saturation prevent the cells from demanding conditions of the microenvironment. Particularly interesting is the significance of cell membrane cholesterol content in the modulation of metastasis. This review paper discusses the roles of each lipid type in cancer physiology. The review combined theoretical data with clinical studies to show novel therapeutic options concerning the modulation of cell membranes in oncology.
Collapse
Affiliation(s)
- Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Iga Zendran
- Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | | | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, F-54000, Nancy, France
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland.
| |
Collapse
|
61
|
Jové M, Mota-Martorell N, Pradas I, Galo-Licona JD, Martín-Gari M, Obis È, Sol J, Pamplona R. The Lipidome Fingerprint of Longevity. Molecules 2020; 25:molecules25184343. [PMID: 32971886 PMCID: PMC7570520 DOI: 10.3390/molecules25184343] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Lipids were determinants in the appearance and evolution of life. Recent studies disclose the existence of a link between lipids and animal longevity. Findings from both comparative studies and genetics and nutritional interventions in invertebrates, vertebrates, and exceptionally long-lived animal species—humans included—demonstrate that both the cell membrane fatty acid profile and lipidome are a species-specific optimized evolutionary adaptation and traits associated with longevity. All these emerging observations point to lipids as a key target to study the molecular mechanisms underlying differences in longevity and suggest the existence of a lipidome profile of long life.
Collapse
|
62
|
Prasinou P, Crisi PE, Chatgilialoglu C, Di Tommaso M, Sansone A, Gramenzi A, Belà B, De Santis F, Boari A, Ferreri C. The Erythrocyte Membrane Lipidome of Healthy Dogs: Creating a Benchmark of Fatty Acid Distribution and Interval Values. Front Vet Sci 2020; 7:502. [PMID: 32974399 PMCID: PMC7472600 DOI: 10.3389/fvets.2020.00502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
Molecular-based approaches are rapidly developing in medicine for the evaluation of physiological and pathological conditions and discovery of new biomarkers in prevention and therapy. Fatty acid diversity and roles in health and disease in humans are topical subjects of lipidomics. In particular, membrane fatty acid-based lipidomics provides molecular data of relevance in the study of human chronic diseases, connecting metabolic, and nutritional aspects to health conditions. In veterinary medicine, membrane lipidomics, and fatty acid profiles have not been developed yet in nutritional approaches to health and in disease conditions. Using a protocol widely tested in human profiling, in the present study erythrocyte membrane lipidome was examined in 68 clinically healthy dogs, with different ages, sex, and sizes. In particular, a cluster composed of 10 fatty acids, present in membrane glycerophospholipids and representative of structural and functional properties of cell membrane, was chosen, and quantitatively analyzed. The interval values and distribution for each fatty acid of the cluster were determined, providing the first panel describing the healthy dog lipidomic membrane profile, with interesting correlation to bodyweight increases. This molecular information can be advantageously developed as benchmark in veterinary medicine for the evaluation of metabolic and nutritional status in healthy and diseased dogs.
Collapse
Affiliation(s)
- Paraskevi Prasinou
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Paolo E Crisi
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | | | - Morena Di Tommaso
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Anna Sansone
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Alessandro Gramenzi
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Benedetta Belà
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Francesca De Santis
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Andrea Boari
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, University of Teramo, Teramo, Italy
| | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy
| |
Collapse
|
63
|
Koch J, Lackner K, Wohlfarter Y, Sailer S, Zschocke J, Werner ER, Watschinger K, Keller MA. Unequivocal Mapping of Molecular Ether Lipid Species by LC-MS/MS in Plasmalogen-Deficient Mice. Anal Chem 2020; 92:11268-11276. [PMID: 32692545 PMCID: PMC7439256 DOI: 10.1021/acs.analchem.0c01933] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Deficient ether lipid biosynthesis in rhizomelic chondrodysplasia punctata and other disorders is associated with a wide range of severe symptoms including small stature with proximal shortening of the limbs, contractures, facial dysmorphism, congenital cataracts, ichthyosis, spasticity, microcephaly, and mental disability. Mouse models are available but show less severe symptoms. In both humans and mice, it has remained elusive which of the symptoms can be attributed to lack of plasmanyl or plasmenyl ether lipids. The latter compounds, better known as plasmalogens, harbor a vinyl ether double bond conferring special chemical and physical properties. Discrimination between plasmanyl and plasmenyl ether lipids is a major analytical challenge, especially in complex lipid extracts with many isobaric species. Consequently, these lipids are often neglected also in recent lipidomic studies. Here, we present a comprehensive LC-MS/MS based approach that allows unequivocal distinction of these two lipid subclasses based on their chromatographic properties. The method was validated using a novel plasmalogen-deficient mouse model, which lacks plasmanylethanolamine desaturase and therefore cannot form plasmenyl ether lipids. We demonstrate that plasmanylethanolamine desaturase deficiency causes an accumulation of plasmanyl species, a too little studied but biologically important substance class.
Collapse
Affiliation(s)
- Jakob Koch
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Katharina Lackner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Yvonne Wohlfarter
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sabrina Sailer
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Ernst R Werner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
64
|
Tomczyk MM, Dolinsky VW. The Cardiac Lipidome in Models of Cardiovascular Disease. Metabolites 2020; 10:E254. [PMID: 32560541 PMCID: PMC7344916 DOI: 10.3390/metabo10060254] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. There are numerous factors involved in the development of CVD. Among these, lipids have an important role in maintaining the myocardial cell structure as well as cardiac function. Fatty acids (FA) are utilized for energy, but also contribute to the pathogenesis of CVD and heart failure. Advances in mass spectrometry methods have enabled the comprehensive analysis of a plethora of lipid species from a single sample comprised of a heterogeneous population of lipid molecules. Determining cardiac lipid alterations in different models of CVD identifies novel biomarkers as well as reveals molecular mechanisms that underlie disease development and progression. This information could inform the development of novel therapeutics in the treatment of CVD. Herein, we provide a review of recent studies of cardiac lipid profiles in myocardial infarction, obesity, and diabetic and dilated cardiomyopathy models of CVD by methods of mass spectrometry analysis.
Collapse
Affiliation(s)
- Mateusz M. Tomczyk
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children’s Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada;
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
- Rady Faculty of Health Science, College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Vernon W. Dolinsky
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children’s Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada;
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
- Rady Faculty of Health Science, College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
65
|
Ranjbar Jafarabadi A, Mashjoor S, Mohamadjafari Dehkordi S, Riyahi Bakhtiari A, Cappello T. Steroid Fingerprint Analysis of Endangered Caspian Seal ( Pusa caspica) through the Gorgan Bay (Caspian Sea). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7339-7353. [PMID: 32459473 DOI: 10.1021/acs.est.0c01479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The profile of steroid congeners was evaluated in Caspian seals Pusa caspica by age, sex, and tissue-specific bioaccumulation, and compared with that of abiotic matrices (seawater, surface sediment, and suspended particulate materials, SPMs) from Miankaleh Wildlife/Gorgan Bay, (Caspian Sea, Iran). To identify the level of human fecal contamination, ∑25 sterol congeners were measured in all abiotic/biotic samples, revealing coprostanol, a proxy for human feces, as the most abundant sterol (seawater: 45.1-20.3 ng L-1; surface sediment: 90.2-70.3 ng g-1 dw; SPMs: 187.7-157.6 ng g-1 dw). The quantification of ∑25 sterols in seals followed the order of brain > liver > kidney > heart > blood > spleen > muscle > intestine > blubber > fur, and in both sexes coprostanol level (8.95-21.01% of ∑25s) was higher in blubber and fur, followed by cholesterol in brain, liver, kidney, heart, and blood, cholestanone in intestine and muscle, and β-sitosterol in spleen. Though no age/sex differentiation was observed, the mean concentration of ∑25s was higher in male than females and pup. Different diagnostic ratios revealed sterols originating from human and nonhuman sewage sources. Findings pinpoint the urgent necessity to investigate the ecotoxicity of fecal sterols in mammals, and consequent implications for human health.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran 14115-111, Iran
| | - Sakineh Mashjoor
- Department of Marine biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Mohamadjafari Dehkordi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran 14115-111, Iran
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran 14115-111, Iran
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98122, Italy
| |
Collapse
|
66
|
Comprehensive Characterization of Phospholipid Isomers in Human Platelets. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00137-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
67
|
Site-Specific Lipidomic Signatures of Sea Lettuce ( Ulva spp., Chlorophyta) Hold the Potential to Trace Their Geographic Origin. Biomolecules 2020; 10:biom10030489. [PMID: 32210093 PMCID: PMC7175330 DOI: 10.3390/biom10030489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 12/24/2022] Open
Abstract
The wild harvest and aquaculture of Ulva spp. has deserved growing attention in Europe. However, the impact of geographical origin on the biochemical composition of different species and/or strains is yet to be described in detail. Hence, the present study aimed to detect the variability of the lipidome of different species and/or strains of Ulva originating from different geographic locations. We hypothesized that lipidomic signatures can be used to trace the geographic origin post-harvesting of these valuable green seaweeds. Ulva spp. was sampled from eight distinct ecosystems along the Atlantic Iberian coast and Ulva rigida was sourced from an aquaculture farm operating a land-based integrated production site. Results showed significant differences in the lipidomic profile displayed by Ulva spp. originating from different locations, namely, due to different levels of polyunsaturated betaine lipids and galactolipids; saturated betaine lipids and sulfolipids; and some phospholipid species. Overall, a set of 25 site-specific molecular lipid species provide a unique lipidomic signature for authentication and geographic origin certification of Ulva species. Present findings highlight the potential of lipidome plasticity as a proxy to fight fraudulent practices, but also to ensure quality control and prospect biomass for target bioactive compounds.
Collapse
|
68
|
Mallela SK, Mitrofanova A, Merscher S, Fornoni A. Regulation of the amount of ceramide-1-phosphate synthesized in differentiated human podocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158517. [PMID: 31487557 PMCID: PMC6832884 DOI: 10.1016/j.bbalip.2019.158517] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/09/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022]
Abstract
Sphingolipids have important functions as structural components of cells but they also function as signaling molecules regulating different cellular processes such as apoptosis, cell proliferation, cell migration, cell division and inflammation. Hence, a tight regulation of the sphingolipid homeostasis is essential to maintain proper cellular functions. Mammalian ORMDL proteins are orthologues of the yeast ORM1/2 proteins, which regulate ceramide synthesis in yeast. ORMDL proteins inhibit serine palmitoyltransferase (SPT), the enzyme regulating a rate-limiting step of the sphingolipid pathway to control the levels of ceramides and other sphingolipids. Sphingomyelinase phosphodiesterase like 3b (SMPDL3b) is a glycosylphosphatidylinositol (GPI) anchored protein in the plasma membrane (PM) and determines membrane fluidity in macrophages. We previously showed that differential expression of SMPDL3b alters the availability of Ceramide-1-phosphate (C1P) in human podocytes, which are terminally differentiated cells of the kidney filtration barrier. This observation lead us to investigate if SMPDL3b controls C1P availability in human podocytes by interfering with ceramide kinase (CERK) expression and function. We found that SMPDL3b interacts with CERK and can bind to C1P in vitro. Furthermore, CERK expression is reduced when SMPDL3b expression is silenced. These observations led us to propose that one of the mechanisms by which SMPDL3b influences the amount of C1P available in the podocytes is by interfering with the function of CERK thereby maintaining a balance in the levels of the C1P in podocytes.
Collapse
Affiliation(s)
- Shamroop Kumar Mallela
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
| | - Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
69
|
Pamplona R, Borras C, Jové M, Pradas I, Ferrer I, Viña J. Redox lipidomics to better understand brain aging and function. Free Radic Biol Med 2019; 144:310-321. [PMID: 30898667 DOI: 10.1016/j.freeradbiomed.2019.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 12/25/2022]
Abstract
Human prefrontal cortex (PFC) is a recently evolutionary emerged brain region involved in cognitive functions. Human cognitive abilities decline during aging. Yet the molecular mechanisms that sustain the preservation or deterioration of neurons and PFC functions are unknown. In this review, we focus on the role of lipids in human PFC aging. As the evolution of brain lipid concentrations is particularly accelerated in the human PFC, conferring a specific lipid profile, a brief approach to the lipidome of PFC was consider along with the relationship between lipids and lipoxidative damage, and the role of lipids in human PFC aging. In addition, the specific targets of lipoxidative damage in human PFC, the affected biological processes, and their potential role in the cognitive decline associated with aging are discussed. Finally, interventions designed to modify this process are considered. We propose that the dysfunction of key biological processes due to selective protein lipoxidation damage may have a role the cognitive decline of PFC during aging.
Collapse
Affiliation(s)
- Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), Lleida, Spain.
| | - Consuelo Borras
- Freshage Research Group-Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Spain.
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), Lleida, Spain
| | - Irene Pradas
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), Lleida, Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain; Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), ISCIII, Spain
| | - Jose Viña
- Freshage Research Group-Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Spain
| |
Collapse
|
70
|
Pradas I, Jové M, Cabré R, Ayala V, Mota-Martorell N, Pamplona R. Effects of Aging and Methionine Restriction on Rat Kidney Metabolome. Metabolites 2019; 9:E280. [PMID: 31739579 PMCID: PMC6918429 DOI: 10.3390/metabo9110280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
Methionine restriction (MetR) in animal models extends maximum longevity and seems to promote renoprotection by attenuating kidney injury. MetR has also been proven to affect several metabolic pathways including lipid metabolism. However, there is a lack of studies about the effect of MetR at old age on the kidney metabolome. In view of this, a mass spectrometry-based high-throughput metabolomic and lipidomic profiling was undertaken of renal cortex samples of three groups of male rats-An 8-month-old Adult group, a 26-month-old Aged group, and a MetR group that also comprised of 26-month-old rats but were subjected to an 80% MetR diet for 7 weeks. Additionally, markers of mitochondrial stress and protein oxidative damage were analyzed by mass spectrometry. Our results showed minor changes during aging in the renal cortex metabolome, with less than 59 differential metabolites between the Adult and Aged groups, which represents about 4% of changes in the kidney metabolome. Among the compounds identified are glycerolipids and lipid species derived from arachidonic acid metabolism. MetR at old age preferentially induces lipid changes affecting glycerophospholipids, docosanoids, and eicosanoids. No significant differences were observed between the experimental groups in the markers of mitochondrial stress and tissue protein damage. More than rejuvenation, MetR seems to induce a metabolic reprogramming.
Collapse
Affiliation(s)
| | | | | | | | | | - Reinald Pamplona
- Department of Experimental Medicine, Lleida University-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), 25198 Lleida, Spain; (I.P.); (M.J.); (R.C.); (V.A.); (N.M.-M.)
| |
Collapse
|
71
|
Integrative analysis of prognostic biomarkers derived from multiomics panels helps discrimination of chronic kidney disease trajectories in people with type 2 diabetes. Kidney Int 2019; 96:1381-1388. [PMID: 31679767 DOI: 10.1016/j.kint.2019.07.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/11/2019] [Accepted: 07/25/2019] [Indexed: 12/28/2022]
Abstract
Clinical risk factors explain only a fraction of the variability of estimated glomerular filtration rate (eGFR) decline in people with type 2 diabetes. Cross-omics technologies by virtue of a wide spectrum screening of plasma samples have the potential to identify biomarkers for the refinement of prognosis in addition to clinical variables. Here we utilized proteomics, metabolomics and lipidomics panel assay measurements in baseline plasma samples from the multinational PROVALID study (PROspective cohort study in patients with type 2 diabetes mellitus for VALIDation of biomarkers) of patients with incident or early chronic kidney disease (median follow-up 35 months, median baseline eGFR 84 mL/min/1.73 m2, urine albumin-to-creatinine ratio 8.1 mg/g). In an accelerated case-control study, 258 individuals with a stable eGFR course (median eGFR change 0.1 mL/min/year) were compared to 223 individuals with a rapid eGFR decline (median eGFR decline -6.75 mL/min/year) using Bayesian multivariable logistic regression models to assess the discrimination of eGFR trajectories. The analysis included 402 candidate predictors and showed two protein markers (KIM-1, NTproBNP) to be relevant predictors of the eGFR trajectory with baseline eGFR being an important clinical covariate. The inclusion of metabolomic and lipidomic platforms did not improve discrimination substantially. Predictions using all available variables were statistically indistinguishable from predictions using only KIM-1 and baseline eGFR (area under the receiver operating characteristic curve 0.63). Thus, the discrimination of eGFR trajectories in patients with incident or early diabetic kidney disease and maintained baseline eGFR was modest and the protein marker KIM-1 was the most important predictor.
Collapse
|
72
|
Bestard-Escalas J, Maimó-Barceló A, Pérez-Romero K, Lopez DH, Barceló-Coblijn G. Ins and Outs of Interpreting Lipidomic Results. J Mol Biol 2019; 431:5039-5062. [PMID: 31422112 DOI: 10.1016/j.jmb.2019.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
Membrane lipids are essential for life; however, research on how cells regulate cell lipid composition has been falling behind for quite some time. One reason was the difficulty in establishing analytical methods able to cope with the cell lipid repertoire. Development of a diversity of mass spectrometry-based technologies, including imaging mass spectrometry, has helped to demonstrate beyond doubt that the cell lipidome is not only greatly cell type dependent but also highly sensitive to any pathophysiological alteration such as differentiation or tumorigenesis. Interestingly, the current popularization of metabolomic studies among numerous disciplines has led many researchers to rediscover lipids. Hence, it is important to underscore the peculiarities of these metabolites and their metabolism, which are both radically different from protein and nucleic acid metabolism. Once differences in lipid composition have been established, researchers face a rather complex scenario, to investigate the signaling pathways and molecular mechanisms accounting for their results. Thus, a detail often overlooked, but of crucial relevance, is the complex networks of enzymes involved in controlling the level of each one of the lipid species present in the cell. In most cases, these enzymes are redundant and promiscuous, complicating any study on lipid metabolism, since the modification of one particular lipid enzyme impacts simultaneously on many species. Altogether, this review aims to describe the difficulties in delving into the regulatory mechanisms tailoring the lipidome at the activity, genetic, and epigenetic level, while conveying the numerous, stimulating, and sometimes unexpected research opportunities afforded by this type of studies.
Collapse
Affiliation(s)
- Joan Bestard-Escalas
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| | - Albert Maimó-Barceló
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| | - Karim Pérez-Romero
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| | - Daniel H Lopez
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| | - Gwendolyn Barceló-Coblijn
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain.
| |
Collapse
|