51
|
Yuan Y, Scheben A, Edwards D, Chan TF. Toward haplotype studies in polyploid plants to assist breeding. MOLECULAR PLANT 2021; 14:1969-1972. [PMID: 34775108 DOI: 10.1016/j.molp.2021.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Yuxuan Yuan
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, Australia
| | - Ting-Fung Chan
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
52
|
Friel J, Bombarely A, Fornell CD, Luque F, Fernández-Ocaña AM. Comparative Analysis of Genotyping by Sequencing and Whole-Genome Sequencing Methods in Diversity Studies of Olea europaea L. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112514. [PMID: 34834877 PMCID: PMC8622120 DOI: 10.3390/plants10112514] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 05/11/2023]
Abstract
Olive, Olea europaea L., is a tree of great economic and cultural importance in the Mediterranean basin. Thousands of cultivars have been described, of which around 1200 are conserved in the different olive germplasm banks. The genetic characterisation of these cultivars can be performed in different ways. Whole-genome sequencing (WGS) provides more information than the reduced representation methods such as genotype by sequencing (GBS), but at a much higher cost. This may change as the cost of sequencing continues to drop, but, currently, genotyping hundreds of cultivars using WGS is not a realistic goal for most research groups. Our aim is to systematically compare both methodologies applied to olive genotyping and summarise any possible recommendations for the geneticists and molecular breeders of the olive scientific community. In this work, we used a selection of 24 cultivars from an olive core collection from the World Olive Germplasm Collection of the Andalusian Institute of Agricultural and Fisheries Research and Training (WOGBC), which represent the most of the cultivars present in cultivated fields over the world. Our results show that both methodologies deliver similar results in the context of phylogenetic analysis and popular population genetic analysis methods such as clustering. Furthermore, WGS and GBS datasets from different experiments can be merged in a single dataset to perform these analytical methodologies with proper filtering. We also tested the influence of the different olive reference genomes in this type of analysis, finding that they have almost no effect when estimating genetic relationships. This work represents the first comparative study between both sequencing techniques in olive. Our results demonstrate that the use of GBS is a perfectly viable option for replacing WGS and reducing research costs when the goal of the experiment is to characterise the genetic relationship between different accessions. Besides this, we show that it is possible to combine variants from GBS and WGS datasets, allowing the reuse of publicly available data.
Collapse
Affiliation(s)
- James Friel
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20122 Milan, Italy; (J.F.); (A.B.)
| | - Aureliano Bombarely
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20122 Milan, Italy; (J.F.); (A.B.)
- Instituto de Biologıa Molecular y Celular de Plantas (IBMCP), CSIC, Universitat Politecnica de Valencia, 46011 Valencia, Spain
| | - Carmen Dorca Fornell
- Departamento de Didáctica de las Matemáticas y las Ciencias Experimentales, Facultad de Educación, Universidad Internacional de la Rioja (UNIR), 26006 Logroño, Spain;
| | - Francisco Luque
- Instituto Universitario de Investigación en Olivar y Aceites de Oliva (INUO), Universidad de Jaén, 23071 Jaén, Spain;
| | - Ana Maria Fernández-Ocaña
- Departamento de Biología Animal, Biologia Vegetal y Ecología, Facultad de Ciencias Experimentales, Campus de Las Lagunillas s/n, Universidad de Jaén UJA, 23071 Jaén, Spain
- Correspondence:
| |
Collapse
|
53
|
Subedi M, Neff E, Davis TM. Developing Chenopodium ficifolium as a potential B genome diploid model system for genetic characterization and improvement of allotetraploid quinoa (Chenopodium quinoa). BMC PLANT BIOLOGY 2021; 21:490. [PMID: 34696717 PMCID: PMC8543794 DOI: 10.1186/s12870-021-03270-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Quinoa (Chenopodium quinoa) is a high-value grain known for its excellent nutritional balance. It is an allotetraploid species (AABB, 2n = 4x = 36) formed by the hybridization between AA and BB genome diploid (2n = 2x = 18) species. This study reports genetic studies in Chenopodium ficifolium as a potential B genome diploid model system to simplify the genetic studies of quinoa including gene identification and marker-assisted breeding. RESULTS Portsmouth, New Hampshire and Quebec City, Quebec accessions of C. ficifolium were used to develop an F2 population segregating for agronomically relevant traits including flowering time, plant height, the number of branches, branch angle, and internode length. Marker-trait associations were identified for the FLOWERING LOCUS T-LIKE 1 (FTL1) marker gene, where the alternate alleles (A1/A2) were segregating among the F2 generation plants in association with flowering time, plant height, and the number of branches. There was a strong correlation of the flowering time trait with both plant height and the number of branches. Thus, a possible multifaceted functional role for FTL1 may be considered. The parental Portsmouth and Quebec City accessions were homozygous for the alternate FTL1 alleles, which were found to be substantially diverged. SNPs were identified in the FTL1 coding sequence that could have some functional significance in relation to the observed trait variation. CONCLUSION These results draw further attention to the possible functional roles of the FTL1 locus in Chenopodium and justify continued exploration of C. ficifolium as a potential diploid model system for the genetic study of quinoa. We expect our findings to aid in quinoa breeding as well as to any studies related to the Chenopodium genus.
Collapse
Affiliation(s)
- Madhav Subedi
- Department of Biological Sciences, University of New Hampshire, Durham, USA.
| | - Erin Neff
- Department of Biological Sciences, University of New Hampshire, Durham, USA
| | - Thomas M Davis
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, USA
| |
Collapse
|
54
|
The Dynamism of Transposon Methylation for Plant Development and Stress Adaptation. Int J Mol Sci 2021; 22:ijms222111387. [PMID: 34768817 PMCID: PMC8583499 DOI: 10.3390/ijms222111387] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Plant development processes are regulated by epigenetic alterations that shape nuclear structure, gene expression, and phenotypic plasticity; these alterations can provide the plant with protection from environmental stresses. During plant growth and development, these processes play a significant role in regulating gene expression to remodel chromatin structure. These epigenetic alterations are mainly regulated by transposable elements (TEs) whose abundance in plant genomes results in their interaction with genomes. Thus, TEs are the main source of epigenetic changes and form a substantial part of the plant genome. Furthermore, TEs can be activated under stress conditions, and activated elements cause mutagenic effects and substantial genetic variability. This introduces novel gene functions and structural variation in the insertion sites and primarily contributes to epigenetic modifications. Altogether, these modifications indirectly or directly provide the ability to withstand environmental stresses. In recent years, many studies have shown that TE methylation plays a major role in the evolution of the plant genome through epigenetic process that regulate gene imprinting, thereby upholding genome stability. The induced genetic rearrangements and insertions of mobile genetic elements in regions of active euchromatin contribute to genome alteration, leading to genomic stress. These TE-mediated epigenetic modifications lead to phenotypic diversity, genetic variation, and environmental stress tolerance. Thus, TE methylation is essential for plant evolution and stress adaptation, and TEs hold a relevant military position in the plant genome. High-throughput techniques have greatly advanced the understanding of TE-mediated gene expression and its associations with genome methylation and suggest that controlled mobilization of TEs could be used for crop breeding. However, development application in this area has been limited, and an integrated view of TE function and subsequent processes is lacking. In this review, we explore the enormous diversity and likely functions of the TE repertoire in adaptive evolution and discuss some recent examples of how TEs impact gene expression in plant development and stress adaptation.
Collapse
|
55
|
Lhamo D, Wang C, Gao Q, Luan S. Recent Advances in Genome-wide Analyses of Plant Potassium Transporter Families. Curr Genomics 2021; 22:164-180. [PMID: 34975289 PMCID: PMC8640845 DOI: 10.2174/1389202922666210225083634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/30/2020] [Accepted: 01/26/2021] [Indexed: 12/19/2022] Open
Abstract
Plants require potassium (K+) as a macronutrient to support numerous physiological processes. Understanding how this nutrient is transported, stored, and utilized within plants is crucial for breeding crops with high K+ use efficiency. As K+ is not metabolized, cross-membrane transport becomes a rate-limiting step for efficient distribution and utilization in plants. Several K+ transporter families, such as KUP/HAK/KT and KEA transporters and Shaker-like and TPK channels, play dominant roles in plant K+ transport processes. In this review, we provide a comprehensive contemporary overview of our knowledge about these K+ transporter families in angiosperms, with a major focus on the genome-wide identification of K+ transporter families, subcellular localization, spatial expression, function and regulation. We also expanded the genome-wide search for the K+ transporter genes and examined their tissue-specific expression in Camelina sativa, a polyploid oil-seed crop with a potential to adapt to marginal lands for biofuel purposes and contribution to sustainable agriculture. In addition, we present new insights and emphasis on the study of K+ transporters in polyploids in an effort to generate crops with high K+ Utilization Efficiency (KUE).
Collapse
Affiliation(s)
- Dhondup Lhamo
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Chao Wang
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Qifei Gao
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Sheng Luan
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
56
|
Dong MY, Lei L, Fan XW, Li YZ. Analyses of open-access multi-omics data sets reveal genetic and expression characteristics of maize ZmCCT family genes. AOB PLANTS 2021; 13:plab048. [PMID: 34567492 PMCID: PMC8459886 DOI: 10.1093/aobpla/plab048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Flowering in maize (Zea mays) is influenced by photoperiod. The CO, CO-like/COL and TOC1 (CCT) domain protein-encoding genes in maize, ZmCCTs, are particularly important for photoperiod sensitivity. However, little is known about CCT protein-encoding gene number across plant species or among maize inbred lines. Therefore, we analysed CCT protein-encoding gene number across plant species, and characterized ZmCCTs in different inbred lines, including structural variations (SVs), copy number variations (CNVs), expression under stresses, dark-dark (DD) and dark-light (DL) cycles, interaction network and associations with maize quantitative trait loci (QTLs) by referring to the latest v4 genome data of B73. Gene number varied greatly across plant species, more in polyploids than in diploids. The numbers of ZmCCTs identified were 58 in B73, 59 in W22, 48 in Mo17, and 57 in Huangzao4 for temperate maize inbred lines, and 68 in tropical maize inbred line SK. Some ZmCCTs underwent duplications and presented chromosome collinearity. Structural variations and CNVs were found but they had no germplasm specificity. Forty-two ZmCCTs responded to stresses. Expression of 37 ZmCCTs in embryonic leaves during seed germination of maize under DD and DL cycles was roughly divided into five patterns of uphill pattern, downhill-pattern, zigzag-pattern, └-pattern and ⅃-pattern, indicating some of them have a potential to perceive dark and/or dark-light transition. Thirty-three ZmCCTs were co-expressed with 218 other maize genes; and 24 ZmCCTs were associated with known QTLs. The data presented in this study will help inform further functions of ZmCCTs.
Collapse
Affiliation(s)
- Ming-You Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, P. R. China
| | - Ling Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, P. R. China
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, P. R. China
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
57
|
Gechev T, Lyall R, Petrov V, Bartels D. Systems biology of resurrection plants. Cell Mol Life Sci 2021; 78:6365-6394. [PMID: 34390381 PMCID: PMC8558194 DOI: 10.1007/s00018-021-03913-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Plant species that exhibit vegetative desiccation tolerance can survive extreme desiccation for months and resume normal physiological activities upon re-watering. Here we survey the recent knowledge gathered from the sequenced genomes of angiosperm and non-angiosperm desiccation-tolerant plants (resurrection plants) and highlight some distinct genes and gene families that are central to the desiccation response. Furthermore, we review the vast amount of data accumulated from analyses of transcriptomes and metabolomes of resurrection species exposed to desiccation and subsequent rehydration, which allows us to build a systems biology view on the molecular and genetic mechanisms of desiccation tolerance in plants.
Collapse
Affiliation(s)
- Tsanko Gechev
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv, 4000, Bulgaria.
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen Str., Plovdiv, 4000, Bulgaria.
| | - Rafe Lyall
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv, 4000, Bulgaria
| | - Veselin Petrov
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv, 4000, Bulgaria
- Department of Plant Physiology, Biochemistry and Genetics, Agricultural University - Plovdiv, 12, Mendeleev Str, Plovdiv, 4000, Bulgaria
| | | |
Collapse
|
58
|
Venezia M, Creasey Krainer KM. Current Advancements and Limitations of Gene Editing in Orphan Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:742932. [PMID: 34630494 PMCID: PMC8493294 DOI: 10.3389/fpls.2021.742932] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/20/2021] [Indexed: 05/23/2023]
Abstract
Gene editing provides precise, heritable genome mutagenesis without permanent transgenesis, and has been widely demonstrated and applied in planta. In the past decade, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) has revolutionized the application of gene editing in crops, with mechanistic advances expanding its potential, including prime editing and base editing. To date, CRISPR/Cas has been utilized in over a dozen orphan crops with diverse genetic backgrounds, leading to novel alleles and beneficial phenotypes for breeders, growers, and consumers. In conjunction with the adoption of science-based regulatory practices, there is potential for CRISPR/Cas-mediated gene editing in orphan crop improvement programs to solve a plethora of agricultural problems, especially impacting developing countries. Genome sequencing has progressed, becoming more affordable and applicable to orphan crops. Open-access resources allow for target gene identification and guide RNA (gRNA) design and evaluation, with modular cloning systems and enzyme screening methods providing experimental feasibility. While the genomic and mechanistic limitations are being overcome, crop transformation and regeneration continue to be the bottleneck for gene editing applications. International collaboration between all stakeholders involved in crop improvement is vital to provide equitable access and bridge the scientific gap between the world's most economically important crops and the most under-researched crops. This review describes the mechanisms and workflow of CRISPR/Cas in planta and addresses the challenges, current applications, and future prospects in orphan crops.
Collapse
|
59
|
Melnikova NV, Pushkova EN, Dvorianinova EM, Beniaminov AD, Novakovskiy RO, Povkhova LV, Bolsheva NL, Snezhkina AV, Kudryavtseva AV, Krasnov GS, Dmitriev AA. Genome Assembly and Sex-Determining Region of Male and Female Populus × sibirica. FRONTIERS IN PLANT SCIENCE 2021; 12:625416. [PMID: 34567016 PMCID: PMC8455832 DOI: 10.3389/fpls.2021.625416] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The genus Populus is presented by dioecious species, and it became a promising object to study the genetics of sex in plants. In this work, genomes of male and female Populus × sibirica individuals were sequenced for the first time. To achieve high-quality genome assemblies, we used Oxford Nanopore Technologies and Illumina platforms. A protocol for the isolation of long and pure DNA from young poplar leaves was developed, which enabled us to obtain 31 Gb (N50 = 21 kb) for the male poplar and 23 Gb (N50 = 24 kb) for the female one using the MinION sequencer. Genome assembly was performed with different tools, and Canu provided the most complete and accurate assemblies with a length of 818 Mb (N50 = 1.5 Mb) for the male poplar and 816 Mb (N50 = 0.5 Mb) for the female one. After polishing with Racon and Medaka (Nanopore reads) and then with POLCA (Illumina reads), assembly completeness was 98.45% (87.48% duplicated) for the male and 98.20% (76.77% duplicated) for the female according to BUSCO (benchmarking universal single-copy orthologs). A high proportion of duplicated BUSCO and the increased genome size (about 300 Mb above the expected) pointed at the separation of haplotypes in a large part of male and female genomes of P. × sibirica. Due to this, we were able to identify two haplotypes of the sex-determining region (SDR) in both assemblies; and one of these four SDR haplotypes, in the male genome, contained partial repeats of the ARR17 gene (Y haplotype), while the rest three did not (X haplotypes). The analysis of the male P. × sibirica SDR suggested that the Y haplotype originated from P. nigra, while the X haplotype is close to P. trichocarpa and P. balsamifera species. Moreover, we revealed a Populus-specific repeat that could be involved in translocation of the ARR17 gene or its part to the SDR of P. × sibirica and other Populus species. The obtained results expand our knowledge on SDR features in the genus Populus and poplar phylogeny.
Collapse
Affiliation(s)
- Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina M. Dvorianinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Artemy D. Beniaminov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Liubov V. Povkhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
60
|
LeafGo: Leaf to Genome, a quick workflow to produce high-quality de novo plant genomes using long-read sequencing technology. Genome Biol 2021; 22:256. [PMID: 34479618 PMCID: PMC8414726 DOI: 10.1186/s13059-021-02475-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Currently, different sequencing platforms are used to generate plant genomes and no workflow has been properly developed to optimize time, cost, and assembly quality. We present LeafGo, a complete de novo plant genome workflow, that starts from tissue and produces genomes with modest laboratory and bioinformatic resources in approximately 7 days and using one long-read sequencing technology. LeafGo is optimized with ten different plant species, three of which are used to generate high-quality chromosome-level assemblies without any scaffolding technologies. Finally, we report the diploid genomes of Eucalyptus rudis and E. camaldulensis and the allotetraploid genome of Arachis hypogaea.
Collapse
|
61
|
VanWallendael A, Alvarez M. Alignment-free methods for polyploid genomes: Quick and reliable genetic distance estimation. Mol Ecol Resour 2021; 22:612-622. [PMID: 34478242 DOI: 10.1111/1755-0998.13499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 08/20/2021] [Indexed: 01/10/2023]
Abstract
Polyploid genomes pose several inherent challenges to population genetic analyses. While alignment-based methods are fundamentally limited in their applicability to polyploids, alignment-free methods bypass most of these limits. We investigated the use of Mash, a k-mer analysis tool that uses the MinHash method to reduce complexity in large genomic data sets, for basic population genetic analyses of polyploid sequences. We measured the degree to which Mash correctly estimated pairwise genetic distance in simulated haploid and polyploid short-read sequences with various levels of missing data. Mash-based estimates of genetic distance were comparable to alignment-based estimates, and were less impacted by missing data. We also used Mash to analyse publicly available short-read data for three polyploid and one diploid species, then compared Mash results to published results. For both simulated and real data, Mash accurately estimated pairwise genetic differences for polyploids as well as diploids as much as 476 times faster than alignment-based methods, though we found that Mash genetic distance estimates could be biased by per-sample read depth. Mash may be a particularly useful addition to the toolkit of polyploid geneticists for rapid confirmation of alignment-based results and for basic population genetics in reference-free systems or those with only poor-quality sequence data available.
Collapse
Affiliation(s)
- Acer VanWallendael
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Mariano Alvarez
- Biology Department, Wesleyan University, Middletown, CT, USA
| |
Collapse
|
62
|
Li HL, Wu L, Dong Z, Jiang Y, Jiang S, Xing H, Li Q, Liu G, Tian S, Wu Z, Bin Wu, Li Z, Zhao P, Zhang Y, Tang J, Xu J, Huang K, Liu X, Zhang W, Liao Q, Ren Y, Huang X, Li Q, Li C, Wang Y, Xavier-Ravi B, Li H, Liu Y, Wan T, Liu Q, Zou Y, Jian J, Xia Q, Liu Y. Haplotype-resolved genome of diploid ginger (Zingiber officinale) and its unique gingerol biosynthetic pathway. HORTICULTURE RESEARCH 2021; 8:189. [PMID: 34354044 PMCID: PMC8342499 DOI: 10.1038/s41438-021-00627-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/20/2021] [Accepted: 07/13/2021] [Indexed: 05/18/2023]
Abstract
Ginger (Zingiber officinale), the type species of Zingiberaceae, is one of the most widespread medicinal plants and spices. Here, we report a high-quality, chromosome-scale reference genome of ginger 'Zhugen', a traditionally cultivated ginger in Southwest China used as a fresh vegetable, assembled from PacBio long reads, Illumina short reads, and high-throughput chromosome conformation capture (Hi-C) reads. The ginger genome was phased into two haplotypes, haplotype 1 (1.53 Gb with a contig N50 of 4.68 M) and haplotype 0 (1.51 Gb with a contig N50 of 5.28 M). Homologous ginger chromosomes maintained excellent gene pair collinearity. In 17,226 pairs of allelic genes, 11.9% exhibited differential expression between alleles. Based on the results of ginger genome sequencing, transcriptome analysis, and metabolomic analysis, we proposed a backbone biosynthetic pathway of gingerol analogs, which consists of 12 enzymatic gene families, PAL, C4H, 4CL, CST, C3'H, C3OMT, CCOMT, CSE, PKS, AOR, DHN, and DHT. These analyses also identified the likely transcription factor networks that regulate the synthesis of gingerol analogs. Overall, this study serves as an excellent resource for further research on ginger biology and breeding, lays a foundation for a better understanding of ginger evolution, and presents an intact biosynthetic pathway for species-specific gingerol biosynthesis.
Collapse
Affiliation(s)
- Hong-Lei Li
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
- Engineering Research Center for Special Plant Seedlings of Chongqing, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Lin Wu
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
- Engineering Research Center for Special Plant Seedlings of Chongqing, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, China
| | - Yusong Jiang
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
- Engineering Research Center for Special Plant Seedlings of Chongqing, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Sanjie Jiang
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Haitao Xing
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
- Engineering Research Center for Special Plant Seedlings of Chongqing, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Qiang Li
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
- Engineering Research Center for Special Plant Seedlings of Chongqing, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Guocheng Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Shuming Tian
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
- College of Biology and Food Engineering, Chongqign Three Gorges University, Wanzhou, Chongqing, China
| | - Zhangyan Wu
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Bin Wu
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Zhexin Li
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
- Engineering Research Center for Special Plant Seedlings of Chongqing, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, China
| | - Jianmin Tang
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
- Engineering Research Center for Special Plant Seedlings of Chongqing, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Jiabao Xu
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Ke Huang
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
- Engineering Research Center for Special Plant Seedlings of Chongqing, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Xia Liu
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
- Engineering Research Center for Special Plant Seedlings of Chongqing, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Wenlin Zhang
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
- Engineering Research Center for Special Plant Seedlings of Chongqing, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Qinhong Liao
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
- Engineering Research Center for Special Plant Seedlings of Chongqing, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Yun Ren
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
- Engineering Research Center for Special Plant Seedlings of Chongqing, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Xinzheng Huang
- Department of Entomology and MOAKey Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Haidian, Beijing, China
| | - Qingzhi Li
- Jinan Second Agricultural Science Research Institute, Jinan, Shandong, China
| | - Chengyong Li
- Jinan Second Agricultural Science Research Institute, Jinan, Shandong, China
| | - Yi Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, China
| | | | - Honghai Li
- Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Yang Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, China
- Fairy Lake Botanical Garden and Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Tao Wan
- Fairy Lake Botanical Garden and Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Qinhu Liu
- Ningyang Science and Technology Bureau, Taian, Shandong, China
| | - Yong Zou
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China.
- Engineering Research Center for Special Plant Seedlings of Chongqing, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China.
| | - Jianbo Jian
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, China.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing, China.
| | - Yiqing Liu
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China.
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China.
| |
Collapse
|
63
|
Bohutínská M, Handrick V, Yant L, Schmickl R, Kolář F, Bomblies K, Paajanen P. De Novo Mutation and Rapid Protein (Co-)evolution during Meiotic Adaptation in Arabidopsis arenosa. Mol Biol Evol 2021; 38:1980-1994. [PMID: 33502506 PMCID: PMC8097281 DOI: 10.1093/molbev/msab001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A sudden shift in environment or cellular context necessitates rapid adaptation. A dramatic example is genome duplication, which leads to polyploidy. In such situations, the waiting time for new mutations might be prohibitive; theoretical and empirical studies suggest that rapid adaptation will largely rely on standing variation already present in source populations. Here, we investigate the evolution of meiosis proteins in Arabidopsis arenosa, some of which were previously implicated in adaptation to polyploidy, and in a diploid, habitat. A striking and unexplained feature of prior results was the large number of amino acid changes in multiple interacting proteins, especially in the relatively young tetraploid. Here, we investigate whether selection on meiosis genes is found in other lineages, how the polyploid may have accumulated so many differences, and whether derived variants were selected from standing variation. We use a range-wide sample of 145 resequenced genomes of diploid and tetraploid A. arenosa, with new genome assemblies. We confirmed signals of positive selection in the polyploid and diploid lineages they were previously reported in and find additional meiosis genes with evidence of selection. We show that the polyploid lineage stands out both qualitatively and quantitatively. Compared with diploids, meiosis proteins in the polyploid have more amino acid changes and a higher proportion affecting more strongly conserved sites. We find evidence that in tetraploids, positive selection may have commonly acted on de novo mutations. Several tests provide hints that coevolution, and in some cases, multinucleotide mutations, might contribute to rapid accumulation of changes in meiotic proteins.
Collapse
Affiliation(s)
- Magdalena Bohutínská
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| | - Vinzenz Handrick
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Levi Yant
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic.,Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Kirsten Bomblies
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom.,Plant Evolutionary Genetics, Department of Biology, Institute of Molecular Plant Biology, ETH Zürich, Zurich, Switzerland
| | - Pirita Paajanen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
64
|
Milosavljevic S, Kuo T, Decarli S, Mohn L, Sese J, Shimizu KK, Shimizu-Inatsugi R, Robinson MD. ARPEGGIO: Automated Reproducible Polyploid EpiGenetic GuIdance workflOw. BMC Genomics 2021; 22:547. [PMID: 34273949 PMCID: PMC8285871 DOI: 10.1186/s12864-021-07845-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 06/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whole genome duplication (WGD) events are common in the evolutionary history of many living organisms. For decades, researchers have been trying to understand the genetic and epigenetic impact of WGD and its underlying molecular mechanisms. Particular attention was given to allopolyploid study systems, species resulting from an hybridization event accompanied by WGD. Investigating the mechanisms behind the survival of a newly formed allopolyploid highlighted the key role of DNA methylation. With the improvement of high-throughput methods, such as whole genome bisulfite sequencing (WGBS), an opportunity opened to further understand the role of DNA methylation at a larger scale and higher resolution. However, only a few studies have applied WGBS to allopolyploids, which might be due to lack of genomic resources combined with a burdensome data analysis process. To overcome these problems, we developed the Automated Reproducible Polyploid EpiGenetic GuIdance workflOw (ARPEGGIO): the first workflow for the analysis of epigenetic data in polyploids. This workflow analyzes WGBS data from allopolyploid species via the genome assemblies of the allopolyploid's parent species. ARPEGGIO utilizes an updated read classification algorithm (EAGLE-RC), to tackle the challenge of sequence similarity amongst parental genomes. ARPEGGIO offers automation, but more importantly, a complete set of analyses including spot checks starting from raw WGBS data: quality checks, trimming, alignment, methylation extraction, statistical analyses and downstream analyses. A full run of ARPEGGIO outputs a list of genes showing differential methylation. ARPEGGIO was made simple to set up, run and interpret, and its implementation ensures reproducibility by including both package management and containerization. RESULTS We evaluated ARPEGGIO in two ways. First, we tested EAGLE-RC's performance with publicly available datasets given a ground truth, and we show that EAGLE-RC decreases the error rate by 3 to 4 times compared to standard approaches. Second, using the same initial dataset, we show agreement between ARPEGGIO's output and published results. Compared to other similar workflows, ARPEGGIO is the only one supporting polyploid data. CONCLUSIONS The goal of ARPEGGIO is to promote, support and improve polyploid research with a reproducible and automated set of analyses in a convenient implementation. ARPEGGIO is available at https://github.com/supermaxiste/ARPEGGIO .
Collapse
Affiliation(s)
- Stefan Milosavljevic
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Tony Kuo
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Canada
| | - Samuele Decarli
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Lucas Mohn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jun Sese
- AIST Artificial Intelligence Research Center, Tokyo, Japan
- Humanome Lab Inc., Chuo-ku, Tokyo, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Mark D Robinson
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland.
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
65
|
Sutton JM, Millwood JD, Case McCormack A, Fierst JL. Optimizing experimental design for genome sequencing and assembly with Oxford Nanopore Technologies. GIGABYTE 2021; 2021:gigabyte27. [PMID: 36824342 PMCID: PMC9650304 DOI: 10.46471/gigabyte.27] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/05/2021] [Indexed: 11/09/2022] Open
Abstract
High quality reference genome sequences are the core of modern genomics. Oxford Nanopore Technologies (ONT) produces inexpensive DNA sequences, but has high error rates, which make sequence assembly and analysis difficult as genome size and complexity increases. Robust experimental design is necessary for ONT genome sequencing and assembly, but few studies have addressed eukaryotic organisms. Here, we present novel results using simulated and empirical ONT and DNA libraries to identify best practices for sequencing and assembly for several model species. We find that the unique error structure of ONT libraries causes errors to accumulate and assembly statistics plateau as sequence depth increases. High-quality assembled eukaryotic sequences require high-molecular-weight DNA extractions that increase sequence read length, and computational protocols that reduce error through pre-assembly correction and read selection. Our quantitative results will be helpful for researchers seeking guidance for de novo assembly projects.
Collapse
Affiliation(s)
- John M. Sutton
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487-0344, USA
| | - Joshua D. Millwood
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487-0344, USA
| | - A. Case McCormack
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487-0344, USA
| | - Janna L. Fierst
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487-0344, USA
| |
Collapse
|
66
|
Sharma P, Al-Dossary O, Alsubaie B, Al-Mssallem I, Nath O, Mitter N, Rodrigues Alves Margarido G, Topp B, Murigneux V, Kharabian Masouleh A, Furtado A, Henry RJ. Improvements in the sequencing and assembly of plant genomes. GIGABYTE 2021; 2021:gigabyte24. [PMID: 36824328 PMCID: PMC9631998 DOI: 10.46471/gigabyte.24] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/03/2021] [Indexed: 11/09/2022] Open
Abstract
Advances in DNA sequencing have made it easier to sequence and assemble plant genomes. Here, we extend an earlier study, and compare recent methods for long read sequencing and assembly. Updated Oxford Nanopore Technology software improved assemblies. Using more accurate sequences produced by repeated sequencing of the same molecule (Pacific Biosciences HiFi) resulted in less fragmented assembly of sequencing reads. Using data for increased genome coverage resulted in longer contigs, but reduced total assembly length and improved genome completeness. The original model species, Macadamia jansenii, was also compared with three other Macadamia species, as well as avocado (Persea americana) and jojoba (Simmondsia chinensis). In these angiosperms, increasing sequence data volumes caused a linear increase in contig size, decreased assembly length and further improved already high completeness. Differences in genome size and sequence complexity influenced the success of assembly. Advances in long read sequencing technology continue to improve plant genome sequencing and assembly. However, results were improved by greater genome coverage, with the amount needed to achieve a particular level of assembly being species dependent.
Collapse
Affiliation(s)
- Priyanka Sharma
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Othman Al-Dossary
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University, Al Hofuf, Saudi Arabia
| | - Bader Alsubaie
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University, Al Hofuf, Saudi Arabia
| | - Ibrahim Al-Mssallem
- College of Agriculture and Food Sciences, King Faisal University, Al Hofuf, Saudi Arabia
| | - Onkar Nath
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Gabriel Rodrigues Alves Margarido
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil
| | - Bruce Topp
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | | | | | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
67
|
Schumacher C, Thümecke S, Schilling F, Köhl K, Kopka J, Sprenger H, Hincha DK, Walther D, Seddig S, Peters R, Zuther E, Haas M, Horn R. Genome-Wide Approach to Identify Quantitative Trait Loci for Drought Tolerance in Tetraploid Potato ( Solanum tuberosum L.). Int J Mol Sci 2021; 22:ijms22116123. [PMID: 34200118 PMCID: PMC8201130 DOI: 10.3390/ijms22116123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 11/20/2022] Open
Abstract
Drought represents a major abiotic stress factor negatively affecting growth, yield and tuber quality of potatoes. Quantitative trait locus (QTL) analyses were performed in cultivated potatoes for drought tolerance index DRYM (deviation of relative starch yield from the experimental median), tuber starch content, tuber starch yield, tuber fresh weight, selected transcripts and metabolites under control and drought stress conditions. Eight genomic regions of major interest for drought tolerance were identified, three representing standalone DRYM QTL. Candidate genes, e.g., from signaling pathways for ethylene, abscisic acid and brassinosteroids, and genes encoding cell wall remodeling enzymes were identified within DRYM QTL. Co-localizations of DRYM QTL and QTL for tuber starch content, tuber starch yield and tuber fresh weight with underlying genes of the carbohydrate metabolism were observed. Overlaps of DRYM QTL with metabolite QTL for ribitol or galactinol may indicate trade-offs between starch and compatible solute biosynthesis. Expression QTL confirmed the drought stress relevance of selected transcripts by overlaps with DRYM QTL. Bulked segregant analyses combined with next-generation sequencing (BSAseq) were used to identify mutations in genes under the DRYM QTL on linkage group 3. Future analyses of identified genes for drought tolerance will give a better insight into drought tolerance in potatoes.
Collapse
Affiliation(s)
- Christina Schumacher
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany; (C.S.); (S.T.); (F.S.)
| | - Susanne Thümecke
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany; (C.S.); (S.T.); (F.S.)
| | - Florian Schilling
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany; (C.S.); (S.T.); (F.S.)
| | - Karin Köhl
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (K.K.); (J.K.); (H.S.); (D.K.H.); (D.W.); (E.Z.); (M.H.)
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (K.K.); (J.K.); (H.S.); (D.K.H.); (D.W.); (E.Z.); (M.H.)
| | - Heike Sprenger
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (K.K.); (J.K.); (H.S.); (D.K.H.); (D.W.); (E.Z.); (M.H.)
| | - Dirk Karl Hincha
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (K.K.); (J.K.); (H.S.); (D.K.H.); (D.W.); (E.Z.); (M.H.)
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (K.K.); (J.K.); (H.S.); (D.K.H.); (D.W.); (E.Z.); (M.H.)
| | - Sylvia Seddig
- Institute for Resistance Research and Stress Tolerance, Julius-Kühn Institut, Federal Research Centre for Cultivated Plants, Rudolf-Schick-Platz 3, 18190 Sanitz, Germany;
| | - Rolf Peters
- Landwirtschaftskammer Niedersachsen, Dethlingen 14, 29633 Munster, Germany;
| | - Ellen Zuther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (K.K.); (J.K.); (H.S.); (D.K.H.); (D.W.); (E.Z.); (M.H.)
| | - Manuela Haas
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (K.K.); (J.K.); (H.S.); (D.K.H.); (D.W.); (E.Z.); (M.H.)
| | - Renate Horn
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany; (C.S.); (S.T.); (F.S.)
- Correspondence:
| |
Collapse
|
68
|
Anjanappa RB, Gruissem W. Current progress and challenges in crop genetic transformation. JOURNAL OF PLANT PHYSIOLOGY 2021; 261:153411. [PMID: 33872932 DOI: 10.1016/j.jplph.2021.153411] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 05/14/2023]
Abstract
Plant transformation remains the most sought-after technology for functional genomics and crop genetic improvement, especially for introducing specific new traits and to modify or recombine already existing traits. Along with many other agricultural technologies, the global production of genetically engineered crops has steadily grown since they were first introduced 25 years ago. Since the first transfer of DNA into plant cells using Agrobacterium tumefaciens, different transformation methods have enabled rapid advances in molecular breeding approaches to bring crop varieties with novel traits to the market that would be difficult or not possible to achieve with conventional breeding methods. Today, transformation to produce genetically engineered crops is the fastest and most widely adopted technology in agriculture. The rapidly increasing number of sequenced plant genomes and information from functional genomics data to understand gene function, together with novel gene cloning and tissue culture methods, is further accelerating crop improvement and trait development. These advances are welcome and needed to make crops more resilient to climate change and to secure their yield for feeding the increasing human population. Despite the success, transformation remains a bottleneck because many plant species and crop genotypes are recalcitrant to established tissue culture and regeneration conditions, or they show poor transformability. Improvements are possible using morphogenetic transcriptional regulators, but their broader applicability remains to be tested. Advances in genome editing techniques and direct, non-tissue culture-based transformation methods offer alternative approaches to enhance varietal development in other recalcitrant crops. Here, we review recent developments in plant transformation and regeneration, and discuss opportunities for new breeding technologies in agriculture.
Collapse
Affiliation(s)
- Ravi B Anjanappa
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Wilhelm Gruissem
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland; Advanced Plant Biotechnology Center, National Chung Hsing University, 145 Xingda Road, Taichung City 402, Taiwan.
| |
Collapse
|
69
|
Recursive Test of Hardy-Weinberg Equilibrium in Tetraploids. Trends Genet 2021; 37:504-513. [DOI: 10.1016/j.tig.2020.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023]
|
70
|
Šlenker M, Kantor A, Marhold K, Schmickl R, Mandáková T, Lysak MA, Perný M, Caboňová M, Slovák M, Zozomová-Lihová J. Allele Sorting as a Novel Approach to Resolving the Origin of Allotetraploids Using Hyb-Seq Data: A Case Study of the Balkan Mountain Endemic Cardamine barbaraeoides. FRONTIERS IN PLANT SCIENCE 2021; 12:659275. [PMID: 33995457 PMCID: PMC8115912 DOI: 10.3389/fpls.2021.659275] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/10/2021] [Indexed: 05/19/2023]
Abstract
Mountains of the Balkan Peninsula are significant biodiversity hotspots with great species richness and a large proportion of narrow endemics. Processes that have driven the evolution of the rich Balkan mountain flora, however, are still insufficiently explored and understood. Here we focus on a group of Cardamine (Brassicaceae) perennials growing in wet, mainly mountainous habitats. It comprises several Mediterranean endemics, including those restricted to the Balkan Peninsula. We used target enrichment with genome skimming (Hyb-Seq) to infer their phylogenetic relationships, and, along with genomic in situ hybridization (GISH), to resolve the origin of tetraploid Cardamine barbaraeoides endemic to the Southern Pindos Mts. (Greece). We also explored the challenges of phylogenomic analyses of polyploid species and developed a new approach of allele sorting into homeologs that allows identifying subgenomes inherited from different progenitors. We obtained a robust phylogenetic reconstruction for diploids based on 1,168 low-copy nuclear genes, which suggested both allopatric and ecological speciation events. In addition, cases of plastid-nuclear discordance, in agreement with divergent nuclear ribosomal DNA (nrDNA) copy variants in some species, indicated traces of interspecific gene flow. Our results also support biogeographic links between the Balkan and Anatolian-Caucasus regions and illustrate the contribution of the latter region to high Balkan biodiversity. An allopolyploid origin was inferred for C. barbaraeoides, which highlights the role of mountains in the Balkan Peninsula both as refugia and melting pots favoring species contacts and polyploid evolution in response to Pleistocene climate-induced range dynamics. Overall, our study demonstrates the importance of a thorough phylogenomic approach when studying the evolution of recently diverged species complexes affected by reticulation events at both diploid and polyploid levels. We emphasize the significance of retrieving allelic and homeologous variation from nuclear genes, as well as multiple nrDNA copy variants from genome skim data.
Collapse
Affiliation(s)
- Marek Šlenker
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Adam Kantor
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Karol Marhold
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czechia
| | - Terezie Mandáková
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Martin A. Lysak
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | | | - Michaela Caboňová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Slovák
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Judita Zozomová-Lihová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
71
|
Glover N, Sheppard S, Dessimoz C. Homoeolog Inference Methods Requiring Bidirectional Best Hits or Synteny Miss Many Pairs. Genome Biol Evol 2021; 13:6237894. [PMID: 33871639 PMCID: PMC8214411 DOI: 10.1093/gbe/evab077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Homoeologs are pairs of genes or chromosomes in the same species that originated by speciation and were brought back together in the same genome by allopolyploidization. Bioinformatic methods for accurate homoeology inference are crucial for studying the evolutionary consequences of polyploidization, and homoeology is typically inferred on the basis of bidirectional best hit (BBH) and/or positional conservation (synteny). However, these methods neglect the fact that genes can duplicate and move, both prior to and after the allopolyploidization event. These duplications and movements can result in many-to-many and/or nonsyntenic homoeologs-which thus remain undetected and unstudied. Here, using the allotetraploid upland cotton (Gossypium hirsutum) as a case study, we show that conventional approaches indeed miss a substantial proportion of homoeologs. Additionally, we found that many of the missed pairs of homoeologs are broadly and highly expressed. A gene ontology analysis revealed a high proportion of the nonsyntenic and non-BBH homoeologs to be involved in protein translation and are likely to contribute to the functional repertoire of cotton. Thus, from an evolutionary and functional genomics standpoint, choosing a homoeolog inference method which does not solely rely on 1:1 relationship cardinality or synteny is crucial for not missing these potentially important homoeolog pairs.
Collapse
Affiliation(s)
- Natasha Glover
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Center for Integrative Genomics, University of Lausanne, Switzerland.,Department of Computational Biology, University of Lausanne, Switzerland
| | | | - Christophe Dessimoz
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Center for Integrative Genomics, University of Lausanne, Switzerland.,Department of Computational Biology, University of Lausanne, Switzerland.,Department of Genetics, Evolution, and Environment, University College London, United Kingdom.,Department of Computer Science, University College London, United Kingdom
| |
Collapse
|
72
|
Wang L, Yang X, Gao Y, Yang S. Genome-Wide Identification and Characterization of TALE Superfamily Genes in Soybean ( Glycine max L.). Int J Mol Sci 2021; 22:4117. [PMID: 33923457 PMCID: PMC8073939 DOI: 10.3390/ijms22084117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
The three-amino-acid-loop-extension (TALE) superfamily genes broadly existed in plants, which played important roles in plant growth, development and abiotic stress responses. In this study, we identified 68 Glycine max TALE (GmTALE) superfamily members. Phylogenetic analysis divided the GmTALE superfamily into the BEL1-like (BLH/BELL homeodomain) and the KNOX (KNOTTED-like homeodomain) subfamilies. Moreover, the KNOX subfamily could be further categorized into three clades (KNOX Class I, KNOX Class II and KNOX Class III). The GmTALE genes showed similarities in the gene structures in the same subfamily or clade, whose coding proteins exhibited analogous motif and conserved domain compositions. Besides, synteny analyses and evolutionary constraint evaluations of the TALE members among soybean and different species provided more clues for GmTALE superfamily evolution. The cis-element analyses in gene promoter regions and relevant gene expression profiling revealed different regulating roles of GmTALE genes during soybean plant development, saline and dehydration stresses. Genome-wide characterization, evolution, and expression profile analyses of GmTALE genes can pave the way for future gene functional research and facilitate their roles for applications in genetic improvement on soybean in saline and dehydration stresses.
Collapse
Affiliation(s)
| | | | | | - Shouping Yang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (L.W.); (X.Y.); (Y.G.)
| |
Collapse
|
73
|
Yu H, Lin T, Meng X, Du H, Zhang J, Liu G, Chen M, Jing Y, Kou L, Li X, Gao Q, Liang Y, Liu X, Fan Z, Liang Y, Cheng Z, Chen M, Tian Z, Wang Y, Chu C, Zuo J, Wan J, Qian Q, Han B, Zuccolo A, Wing RA, Gao C, Liang C, Li J. A route to de novo domestication of wild allotetraploid rice. Cell 2021; 184:1156-1170.e14. [PMID: 33539781 DOI: 10.1016/j.cell.2021.01.013] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 12/02/2020] [Accepted: 01/11/2021] [Indexed: 12/25/2022]
Abstract
Cultivated rice varieties are all diploid, and polyploidization of rice has long been desired because of its advantages in genome buffering, vigorousness, and environmental robustness. However, a workable route remains elusive. Here, we describe a practical strategy, namely de novo domestication of wild allotetraploid rice. By screening allotetraploid wild rice inventory, we identified one genotype of Oryza alta (CCDD), polyploid rice 1 (PPR1), and established two important resources for its de novo domestication: (1) an efficient tissue culture, transformation, and genome editing system and (2) a high-quality genome assembly discriminated into two subgenomes of 12 chromosomes apiece. With these resources, we show that six agronomically important traits could be rapidly improved by editing O. alta homologs of the genes controlling these traits in diploid rice. Our results demonstrate the possibility that de novo domesticated allotetraploid rice can be developed into a new staple cereal to strengthen world food security.
Collapse
Affiliation(s)
- Hong Yu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Tao Lin
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Huilong Du
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingkun Zhang
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingjiang Chen
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhui Jing
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Liquan Kou
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuxiu Li
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Gao
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Liang
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangdong Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Zhilan Fan
- National Field Genebank for Wild Rice (Guangzhou), Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yuntao Liang
- Rice Research Institute, Guangxi Academy of Agricultural Science, Nanning 530007, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingsheng Chen
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixi Tian
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yonghong Wang
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Bin Han
- National Center of Plant Gene Research Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200233, China
| | - Andrea Zuccolo
- Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa 56127, Italy
| | - Rod A Wing
- Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Caixia Gao
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
74
|
Whibley A, Kelley JL, Narum SR. The changing face of genome assemblies: Guidance on achieving high-quality reference genomes. Mol Ecol Resour 2021; 21:641-652. [PMID: 33326691 DOI: 10.1111/1755-0998.13312] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022]
Abstract
The quality of genome assemblies has improved rapidly in recent years due to continual advances in sequencing technology, assembly approaches, and quality control. In the field of molecular ecology, this has led to the development of exceptional quality genome assemblies that will be important long-term resources for broader studies into ecological, conservation, evolutionary, and population genomics of naturally occurring species. Moreover, the extent to which a single reference genome represents the diversity within a species varies: pan-genomes will become increasingly important ecological genomics resources, particularly in systems found to have considerable presence-absence variation in their functional content. Here, we highlight advances in technology that have raised the bar for genome assembly and provide guidance on standards to achieve exceptional quality reference genomes. Key recommendations include the following: (a) Genome assemblies should include long-read sequencing except in rare cases where it is effectively impossible to acquire adequately preserved samples needed for high molecular weight DNA standards. (b) At least one scaffolding approach should be included with genome assembly such as Hi-C or optical mapping. (c) Genome assemblies should be carefully evaluated, this may involve utilising short read data for genome polishing, error correction, k-mer analyses, and estimating the percent of reads that map back to an assembly. Finally, a genome assembly is most valuable if all data and methods are made publicly available and the utility of a genome for further studies is verified through examples. While these recommendations are based on current technology, we anticipate that future advances will push the field further and the molecular ecology community should continue to adopt new approaches that attain the highest quality genome assemblies.
Collapse
Affiliation(s)
| | | | - Shawn R Narum
- University of Idaho, Moscow, ID, USA.,Columbia River Inter-Tribal Fish Commission, Hagerman, ID, USA
| |
Collapse
|
75
|
Della Coletta R, Qiu Y, Ou S, Hufford MB, Hirsch CN. How the pan-genome is changing crop genomics and improvement. Genome Biol 2021; 22:3. [PMID: 33397434 PMCID: PMC7780660 DOI: 10.1186/s13059-020-02224-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/07/2020] [Indexed: 01/13/2023] Open
Abstract
Crop genomics has seen dramatic advances in recent years due to improvements in sequencing technology, assembly methods, and computational resources. These advances have led to the development of new tools to facilitate crop improvement. The study of structural variation within species and the characterization of the pan-genome has revealed extensive genome content variation among individuals within a species that is paradigm shifting to crop genomics and improvement. Here, we review advances in crop genomics and how utilization of these tools is shifting in light of pan-genomes that are becoming available for many crop species.
Collapse
Affiliation(s)
- Rafael Della Coletta
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 USA
| | - Yinjie Qiu
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 USA
| | - Shujun Ou
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Matthew B. Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Candice N. Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 USA
| |
Collapse
|
76
|
Della Coletta R, Qiu Y, Ou S, Hufford MB, Hirsch CN. How the pan-genome is changing crop genomics and improvement. Genome Biol 2021. [PMID: 33397434 DOI: 10.1186/s13059-020-02224-2228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Crop genomics has seen dramatic advances in recent years due to improvements in sequencing technology, assembly methods, and computational resources. These advances have led to the development of new tools to facilitate crop improvement. The study of structural variation within species and the characterization of the pan-genome has revealed extensive genome content variation among individuals within a species that is paradigm shifting to crop genomics and improvement. Here, we review advances in crop genomics and how utilization of these tools is shifting in light of pan-genomes that are becoming available for many crop species.
Collapse
Affiliation(s)
- Rafael Della Coletta
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Yinjie Qiu
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Shujun Ou
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA.
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
77
|
Senkoro AM, Talhinhas P, Simões F, Batista-Santos P, Shackleton CM, Voeks RA, Marques I, Ribeiro-Barros AI. The genetic legacy of fragmentation and overexploitation in the threatened medicinal African pepper-bark tree, Warburgia salutaris. Sci Rep 2020; 10:19725. [PMID: 33184322 PMCID: PMC7661512 DOI: 10.1038/s41598-020-76654-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/28/2020] [Indexed: 11/09/2022] Open
Abstract
The pepper-bark tree (Warburgia salutaris) is one of the most highly valued medicinal plant species worldwide. Native to southern Africa, this species has been extensively harvested for the bark, which is widely used in traditional health practices. Illegal harvesting coupled with habitat degradation has contributed to fragmentation of populations and a severe decline in its distribution. Even though the species is included in the IUCN Red List as Endangered, genetic data that would help conservation efforts and future re-introductions are absent. We therefore developed new molecular markers to understand patterns of genetic diversity, structure, and gene flow of W. salutaris in one of its most important areas of occurrence (Mozambique). In this study, we have shown that, despite fragmentation and overexploitation, this species maintains a relatively high level of genetic diversity supporting the existence of random mating. Two genetic groups were found corresponding to the northern and southern locations. Our study suggests that, if local extinctions occurred in Mozambique, the pepper-bark tree persisted in sufficient numbers to retain a large proportion of genetic diversity. Management plans should concentrate on maintaining this high level of genetic variability through both in and ex-situ conservation actions.
Collapse
Affiliation(s)
- Annae M Senkoro
- Department of Environmental Science, Rhodes University, Grahamstown, 6140, South Africa.,Departmento de Ciências Biológicas, Universidade Eduardo Mondlane CP 257, Maputo, Moçambique
| | - Pedro Talhinhas
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Fernanda Simões
- Instituto Nacional de Investigação Agrária E Veterinária, Av. da República, Quinta Marquês, Edificio Sede, 2780-157, Oeiras, Portugal
| | - Paula Batista-Santos
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Charlie M Shackleton
- Department of Environmental Science, Rhodes University, Grahamstown, 6140, South Africa
| | - Robert A Voeks
- Department of Geography and the Environment, California State University, 800 N State College Blvd, FullertonFullerton, CA, 92831, USA
| | - Isabel Marques
- Forest Research Centre (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal.
| | - Ana I Ribeiro-Barros
- Forest Research Centre (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal.
| |
Collapse
|
78
|
Zhou C, Olukolu B, Gemenet DC, Wu S, Gruneberg W, Cao MD, Fei Z, Zeng ZB, George AW, Khan A, Yencho GC, Coin LJM. Assembly of whole-chromosome pseudomolecules for polyploid plant genomes using outbred mapping populations. Nat Genet 2020; 52:1256-1264. [PMID: 33128049 DOI: 10.1038/s41588-020-00717-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 09/15/2020] [Indexed: 12/31/2022]
Abstract
Despite advances in sequencing technologies, assembly of complex plant genomes remains elusive due to polyploidy and high repeat content. Here we report PolyGembler for grouping and ordering contigs into pseudomolecules by genetic linkage analysis. Our approach also provides an accurate method with which to detect and fix assembly errors. Using simulated data, we demonstrate that our approach is of high accuracy and outperforms three existing state-of-the-art genetic mapping tools. Particularly, our approach is more robust to the presence of missing genotype data and genotyping errors. We used our method to construct pseudomolecules for allotetraploid lawn grass utilizing PacBio long reads in combination with restriction site-associated DNA sequencing, and for diploid Ipomoea trifida and autotetraploid potato utilizing contigs assembled from Illumina reads in combination with genotype data generated by single-nucleotide polymorphism arrays and genotyping by sequencing, respectively. We resolved 13 assembly errors for a published I. trifida genome assembly and anchored eight unplaced scaffolds in the published potato genome.
Collapse
Affiliation(s)
- Chenxi Zhou
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Bode Olukolu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Dorcus C Gemenet
- International Potato Center, Lima, Peru
- CGIAR Excellence in Breeding Platform, International Maize and Wheat Improvement Center, Nairobi, Kenya
| | - Shan Wu
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | | | - Minh Duc Cao
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Zhao-Bang Zeng
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Andrew W George
- Data61, Commonwealth Scientific and Industrial Research Organisation, Brisbane, Queensland, Australia
| | - Awais Khan
- International Potato Center, Lima, Peru
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY, USA
| | - G Craig Yencho
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA
| | - Lachlan J M Coin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia.
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
79
|
Zhou Q, Tang D, Huang W, Yang Z, Zhang Y, Hamilton JP, Visser RGF, Bachem CWB, Robin Buell C, Zhang Z, Zhang C, Huang S. Haplotype-resolved genome analyses of a heterozygous diploid potato. Nat Genet 2020; 52:1018-1023. [PMID: 32989320 PMCID: PMC7527274 DOI: 10.1038/s41588-020-0699-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Potato (Solanum tuberosum L.) is the most important tuber crop worldwide. Efforts are underway to transform the crop from a clonally propagated tetraploid into a seed-propagated, inbred-line-based hybrid, but this process requires a better understanding of potato genome. Here, we report the 1.67-Gb haplotype-resolved assembly of a diploid potato, RH89-039-16, using a combination of multiple sequencing strategies, including circular consensus sequencing. Comparison of the two haplotypes revealed ~2.1% intragenomic diversity, including 22,134 predicted deleterious mutations in 10,642 annotated genes. In 20,583 pairs of allelic genes, 16.6% and 30.8% exhibited differential expression and methylation between alleles, respectively. Deleterious mutations and differentially expressed alleles were dispersed throughout both haplotypes, complicating strategies to eradicate deleterious alleles or stack beneficial alleles via meiotic recombination. This study offers a holistic view of the genome organization of a clonally propagated diploid species and provides insights into technological evolution in resolving complex genomes.
Collapse
Affiliation(s)
- Qian Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen, China
| | - Dié Tang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wu Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongmin Yang
- College of Horticulture, Northwest Agriculture and Forest University, Yangling, China
| | - Yu Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - John P Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Richard G F Visser
- Plant Breeding, Wageningen University and Research, Wageningen, the Netherlands
| | | | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Zhonghua Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Chunzhi Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
80
|
Ton LB, Neik TX, Batley J. The Use of Genetic and Gene Technologies in Shaping Modern Rapeseed Cultivars ( Brassica napus L.). Genes (Basel) 2020; 11:E1161. [PMID: 33008008 PMCID: PMC7600269 DOI: 10.3390/genes11101161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/27/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
Since their domestication, Brassica oilseed species have undergone progressive transformation allied with the development of breeding and molecular technologies. The canola (Brassica napus) crop has rapidly expanded globally in the last 30 years with intensive innovations in canola varieties, providing for a wider range of markets apart from the food industry. The breeding efforts of B. napus, the main source of canola oil and canola meal, have been mainly focused on improving seed yield, oil quality, and meal quality along with disease resistance, abiotic stress tolerance, and herbicide resistance. The revolution in genetics and gene technologies, including genetic mapping, molecular markers, genomic tools, and gene technology, especially gene editing tools, has allowed an understanding of the complex genetic makeup and gene functions in the major bioprocesses of the Brassicales, especially Brassica oil crops. Here, we provide an overview on the contributions of these technologies in improving the major traits of B. napus and discuss their potential use to accomplish new improvement targets.
Collapse
Affiliation(s)
- Linh Bao Ton
- School of Biological Science, The University of Western Australia, Perth, WA 6009, Australia;
| | - Ting Xiang Neik
- Sunway College Kuala Lumpur, No. 2, Jalan Universiti, Bandar Sunway, Selangor 47500, Malaysia;
| | - Jacqueline Batley
- School of Biological Science, The University of Western Australia, Perth, WA 6009, Australia;
| |
Collapse
|
81
|
Comparative Genomic Analyses and a Novel Linkage Map for Cisco ( Coregonus artedi) Provide Insights into Chromosomal Evolution and Rediploidization Across Salmonids. G3-GENES GENOMES GENETICS 2020; 10:2863-2878. [PMID: 32611547 PMCID: PMC7407451 DOI: 10.1534/g3.120.401497] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Whole-genome duplication (WGD) is hypothesized to be an important evolutionary mechanism that can facilitate adaptation and speciation. Genomes that exist in states of both diploidy and residual tetraploidy are of particular interest, as mechanisms that maintain the ploidy mosaic after WGD may provide important insights into evolutionary processes. The Salmonidae family exhibits residual tetraploidy, and this, combined with the evolutionary diversity formed after an ancestral autotetraploidization event, makes this group a useful study system. In this study, we generate a novel linkage map for cisco (Coregonus artedi), an economically and culturally important fish in North America and a member of the subfamily Coregoninae, which previously lacked a high-density haploid linkage map. We also conduct comparative genomic analyses to refine our understanding of chromosomal fusion/fission history across salmonids. To facilitate this comparative approach, we use the naming strategy of protokaryotype identifiers (PKs) to associate duplicated chromosomes to their putative ancestral state. The female linkage map for cisco contains 20,292 loci, 3,225 of which are likely within residually tetraploid regions. Comparative genomic analyses revealed that patterns of residual tetrasomy are generally conserved across species, although interspecific variation persists. To determine the broad-scale retention of residual tetrasomy across the salmonids, we analyze sequence similarity of currently available genomes and find evidence of residual tetrasomy in seven of the eight chromosomes that have been previously hypothesized to show this pattern. This interspecific variation in extent of rediploidization may have important implications for understanding salmonid evolutionary histories and informing future conservation efforts.
Collapse
|
82
|
Henry RJ. Innovations in plant genetics adapting agriculture to climate change. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:168-173. [PMID: 31836470 DOI: 10.1016/j.pbi.2019.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/01/2019] [Accepted: 11/20/2019] [Indexed: 05/25/2023]
Abstract
Developing new genotypes of plants is one of the key options for adaptation of agriculture to climate change. Plants may be required to provide resilience in changed climates or support the migration of agriculture to new regions. Very different genotypes may be required to perform in the modified environments of protected agriculture. Consumers will continue to demand taste, convenience, healthy and safe food and sustainably and ethically produced food, despite the greater challenges of climate in the future. Improving the nutritional value of foods in response to climate change is a significant challenge. Genomic sequences of relevant germplasm and an understanding of the functional role of alleles controlling key traits will be an enabling platform for this innovation.
Collapse
Affiliation(s)
- Robert J Henry
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld 4072 Australia.
| |
Collapse
|
83
|
Yuan Y, Chung CYL, Chan TF. Advances in optical mapping for genomic research. Comput Struct Biotechnol J 2020; 18:2051-2062. [PMID: 32802277 PMCID: PMC7419273 DOI: 10.1016/j.csbj.2020.07.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022] Open
Abstract
Recent advances in optical mapping have allowed the construction of improved genome assemblies with greater contiguity. Optical mapping also enables genome comparison and identification of large-scale structural variations. Association of these large-scale genomic features with biological functions is an important goal in plant and animal breeding and in medical research. Optical mapping has also been used in microbiology and still plays an important role in strain typing and epidemiological studies. Here, we review the development of optical mapping in recent decades to illustrate its importance in genomic research. We detail its applications and algorithms to show its specific advantages. Finally, we discuss the challenges required to facilitate the optimization of optical mapping and improve its future development and application.
Collapse
Key Words
- 3D, three-dimensional
- DBG, de Bruijn graph
- DLS, direct label and strain
- DNA, deoxyribonucleic acid
- Genome assembly
- Hi-C, high-throughput chromosome conformation capture
- Mb, million base pair
- Next generation sequencing
- OLC, overlap-layout-consensus
- Optical mapping
- PCR, polymerase chain reaction
- PacBio, Pacific Biosciences
- SRS, short-read sequencing
- SV, structural variation
- Structural variation
- bp, base pair
- kb, kilobase pair
Collapse
Affiliation(s)
- Yuxuan Yuan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
- AoE Centre for Genomic Studies on Plant-Environment Interaction for Sustainable Agriculture and Food Security, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Claire Yik-Lok Chung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
- AoE Centre for Genomic Studies on Plant-Environment Interaction for Sustainable Agriculture and Food Security, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
84
|
Jung H, Jeon MS, Hodgett M, Waterhouse P, Eyun SI. Comparative Evaluation of Genome Assemblers from Long-Read Sequencing for Plants and Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7670-7677. [PMID: 32530283 DOI: 10.1021/acs.jafc.0c01647] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The availability of recent state-of-the-art long-read sequencing technologies has significantly increased the ease and speed of producing high-quality plant genome assemblies. A wide variety of genome-related software tools are now available and they are typically benchmarked using microbial or model eukaryotic genomes such as Arabidopsis and rice. However, many plant species have much larger and more complex genomes than these, and the choice of tools, parameters, and/or strategies that can be used is not always obvious. Thus, we have compared the metrics of assemblies generated by various pipelines to discuss how assembly quality can be affected by two different assembly strategies. First, we focused on optimizing read preprocessing and assembler variables using eight different de novo assemblers on five different Pacific Biosciences long-read datasets of diploid and tetraploid species. Then, we examined a single scaffolding tool (quickmerge) that has been employed for the postprocessing step. We then merged the outputs from multiple assemblies to produce a higher quality consensus assembly. Then, we benchmarked the assemblies for completeness and accuracy (assembly metrics and BUSCO), computer memory, and CPU times. Two lightweight assemblers, Miniasm/Minimap/Racon and WTDBG, were deemed good for novice users because they involved smaller required learning curves and light computational resources. However, two heavyweight tools, CANU and Flye, should be the first choice when the goal is to achieve accurate and complete assemblies. Our results will provide valuable guidance in future plant genome projects and beyond.
Collapse
Affiliation(s)
- Hyungtaek Jung
- Centre for Agriculture and Biocommodities, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Min-Seung Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Matthew Hodgett
- Information Technology Services, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Peter Waterhouse
- Centre for Agriculture and Biocommodities, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
85
|
Manimekalai R, Suresh G, Govinda Kurup H, Athiappan S, Kandalam M. Role of NGS and SNP genotyping methods in sugarcane improvement programs. Crit Rev Biotechnol 2020; 40:865-880. [PMID: 32508157 DOI: 10.1080/07388551.2020.1765730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Sugarcane (Saccharum spp.) is one of the most economically significant crops because of its high sucrose content and it is a promising biomass feedstock for biofuel production. Sugarcane genome sequencing and analysis is a difficult task due to its heterozygosity and polyploidy. Long sequence read technologies, PacBio Single-Molecule Real-Time (SMRT) sequencing, the Illumina TruSeq, and the Oxford Nanopore sequencing could solve the problem of genome assembly. On the applications side, next generation sequencing (NGS) technologies played a major role in the discovery of single nucleotide polymorphism (SNP) and the development of low to high throughput genotyping platforms. The two mainstream high throughput genotyping platforms are the SNP microarray and genotyping by sequencing (GBS). This paper reviews the NGS in sugarcane genomics, genotyping methodologies, and the choice of these methods. Array-based SNP genotyping is robust, provides consistent SNPs, and relatively easier downstream data analysis. The GBS method identifies large scale SNPs across the germplasm. A combination of targeted GBS and array-based genotyping methods should be used to increase the accuracy of genomic selection and marker-assisted breeding.
Collapse
Affiliation(s)
- Ramaswamy Manimekalai
- Crop Improvement Division, ICAR - Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, India
| | - Gayathri Suresh
- Crop Improvement Division, ICAR - Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, India
| | - Hemaprabha Govinda Kurup
- Crop Improvement Division, ICAR - Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, India
| | - Selvi Athiappan
- Crop Improvement Division, ICAR - Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, India
| | - Mallikarjuna Kandalam
- Business Development, Asia Pacific Japan region, Thermo Fisher Scientific, Waltham, MA, USA
| |
Collapse
|
86
|
Chen H, Zeng Y, Yang Y, Huang L, Tang B, Zhang H, Hao F, Liu W, Li Y, Liu Y, Zhang X, Zhang R, Zhang Y, Li Y, Wang K, He H, Wang Z, Fan G, Yang H, Bao A, Shang Z, Chen J, Wang W, Qiu Q. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nat Commun 2020; 11:2494. [PMID: 32427850 PMCID: PMC7237683 DOI: 10.1038/s41467-020-16338-x] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Artificially improving traits of cultivated alfalfa (Medicago sativa L.), one of the most important forage crops, is challenging due to the lack of a reference genome and an efficient genome editing protocol, which mainly result from its autotetraploidy and self-incompatibility. Here, we generate an allele-aware chromosome-level genome assembly for the cultivated alfalfa consisting of 32 allelic chromosomes by integrating high-fidelity single-molecule sequencing and Hi-C data. We further establish an efficient CRISPR/Cas9-based genome editing protocol on the basis of this genome assembly and precisely introduce tetra-allelic mutations into null mutants that display obvious phenotype changes. The mutated alleles and phenotypes of null mutants can be stably inherited in generations in a transgene-free manner by cross pollination, which may help in bypassing the debate about transgenic plants. The presented genome and CRISPR/Cas9-based transgene-free genome editing protocol provide key foundations for accelerating research and molecular breeding of this important forage crop.
Collapse
Affiliation(s)
- Haitao Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Guangdong Sanjie Forage Biotechnology Co., Ltd., 510630, Guangzhou, China
- Sanjie Institute of Forage, 712100, Yangling, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204, Kunming, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yan Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204, Kunming, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, 730000, Lanzhou, China
| | - Lingli Huang
- Guangdong Sanjie Forage Biotechnology Co., Ltd., 510630, Guangzhou, China
- Sanjie Institute of Forage, 712100, Yangling, China
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Bolin Tang
- Guangdong Sanjie Forage Biotechnology Co., Ltd., 510630, Guangzhou, China
- Sanjie Institute of Forage, 712100, Yangling, China
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, 730000, Lanzhou, China
| | - He Zhang
- BGI-Qingdao, 266555, Qingdao, China
| | - Fei Hao
- Center of Special Environmental Biomechanics & Biomedical Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Wei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Guangdong Sanjie Forage Biotechnology Co., Ltd., 510630, Guangzhou, China
- Sanjie Institute of Forage, 712100, Yangling, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204, Kunming, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Youhan Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, 650223, Kunming, China
| | - Yanbin Liu
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, 730000, Lanzhou, China
| | - Xiaoshuang Zhang
- Guangdong Sanjie Forage Biotechnology Co., Ltd., 510630, Guangzhou, China
- Sanjie Institute of Forage, 712100, Yangling, China
| | - Ru Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Yesheng Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
| | - Yongxin Li
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Hua He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, 650223, Kunming, China
| | - Zhongkai Wang
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China
| | | | - Hui Yang
- Center of Special Environmental Biomechanics & Biomedical Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Aike Bao
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, 730000, Lanzhou, China
| | - Zhanhuan Shang
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, 730000, Lanzhou, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, 650223, Kunming, China.
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China.
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China.
| |
Collapse
|
87
|
Davis TM, Yang Y, Mahoney LL, Frailey DC. A pentaploid-based linkage map of the ancestral octoploid strawberry Fragaria virginiana reveals instances of sporadic hyper-recombination. HORTICULTURE RESEARCH 2020; 7:77. [PMID: 32411378 PMCID: PMC7206004 DOI: 10.1038/s41438-020-0308-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 05/04/2023]
Abstract
The first high-resolution genetic linkage map of the ancestral octoploid (2n = 8x = 56) strawberry species, Fragaria virginiana, was constructed using segregation data obtained from a pentaploid progeny population. This novel mapping population of size 178 was generated by crossing highly heterozygous F. virginiana hybrid "LB48" as a paternal parent with diploid (2n = 2x = 14) Fragaria vesca "Hawaii 4". The LB48 linkage map comprises 6055 markers genotyped on the Axiom® IStraw90 strawberry SNP array. The map consists of 28 linkage groups (LGs) organized into seven homoeology groups of four LGs each, and excludes a small 29th LG of undefined homoeology. One member of each homoeology group was assignable to an "A" subgenome associated with ancestral diploid Fragaria vesca, while no other subgenomes were defined. Despite an intriguing discrepancy within homoeology group VI, synteny comparisons with the previously published Fragaria ×ananassa DA × MO linkage map revealed substantial agreement. Following initial map construction, examination of crossover distributions revealed that six of the total 5162 (=29 chromosomes/individual × 178 individuals) chromosomes making up the data set exhibited abnormally high crossover counts, ranging from 15 to 48 crossovers per chromosome, as compared with the overall mean of 0.66 crossovers per chromosome. Each of these six hyper-recombinant (HypR) chromosomes occurred in a different LG and in a different individual. When calculated upon exclusion of the six HypR chromosomes, the canonical (i.e., broadly representative) LB48 map had 1851 loci distributed over a total map length of 1873 cM, while their inclusion increased the number of loci by 130, and the overall map length by 91 cM. Discovery of these hyper-recombinant chromosomes points to the existence of a sporadically acting mechanism that, if identified and manipulable, could be usefully harnessed for multiple purposes by geneticists and breeders.
Collapse
Affiliation(s)
- Thomas M. Davis
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH 03824 USA
| | - Yilong Yang
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH 03824 USA
| | - Lise L. Mahoney
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH 03824 USA
| | - Daniel C. Frailey
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH 03824 USA
| |
Collapse
|
88
|
Hojsgaard D. Apomixis Technology: Separating the Wheat from the Chaff. Genes (Basel) 2020; 11:E411. [PMID: 32290084 PMCID: PMC7231277 DOI: 10.3390/genes11040411] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Projections indicate that current plant breeding approaches will be unable to incorporate the global crop yields needed to deliver global food security. Apomixis is a disruptive innovation by which a plant produces clonal seeds capturing heterosis and gene combinations of elite phenotypes. Introducing apomixis into hybrid cultivars is a game-changing development in the current plant breeding paradigm that will accelerate the generation of high-yield cultivars. However, apomixis is a developmentally complex and genetically multifaceted trait. The central problem behind current constraints to apomixis breeding is that the genomic configuration and molecular mechanism that initiate apomixis and guide the formation of a clonal seed are still unknown. Today, not a single explanation about the origin of apomixis offer full empirical coverage, and synthesizing apomixis by manipulating individual genes has failed or produced little success. Overall evidence suggests apomixis arise from a still unknown single event molecular mechanism with multigenic effects. Disentangling the genomic basis and complex genetics behind the emergence of apomixis in plants will require the use of novel experimental approaches benefiting from Next Generation Sequencing technologies and targeting not only reproductive genes, but also the epigenetic and genomic configurations associated with reproductive phenotypes in homoploid sexual and apomictic carriers. A comprehensive picture of most regulatory changes guiding apomixis emergence will be central for successfully installing apomixis into the target species by exploiting genetic modification techniques.
Collapse
Affiliation(s)
- Diego Hojsgaard
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University of Göttingen, Untere Karspüle 2, D-37073-1 Göttingen, Germany
| |
Collapse
|
89
|
Michael TP, VanBuren R. Building near-complete plant genomes. CURRENT OPINION IN PLANT BIOLOGY 2020; 54:26-33. [PMID: 31981929 DOI: 10.1016/j.pbi.2019.12.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 05/23/2023]
Abstract
Plant genomes span several orders of magnitude in size, vary in levels of ploidy and heterozygosity, and contain old and recent bursts of transposable elements, which render them challenging but interesting to assemble. Recent advances in single molecule sequencing and physical mapping technologies have enabled high-quality, chromosome scale assemblies of plant species with increasing complexity and size. Single molecule reads can now exceed megabases in length, providing unprecedented opportunities to untangle genomic regions missed by short read technologies. However, polyploid and heterozygous plant genomes are still difficult to assemble but provide opportunities for new tools and approaches. Haplotype phasing, structural variant analysis and de novo pan-genomics are the emerging frontiers in plant genome assembly.
Collapse
Affiliation(s)
- Todd P Michael
- Informatics Department, J. Craig Venter Institute, La Jolla, CA, USA.
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
90
|
Hu G, Grover CE, Arick MA, Liu M, Peterson DG, Wendel JF. Homoeologous gene expression and co-expression network analyses and evolutionary inference in allopolyploids. Brief Bioinform 2020; 22:1819-1835. [PMID: 32219306 PMCID: PMC7986634 DOI: 10.1093/bib/bbaa035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/06/2020] [Accepted: 02/24/2020] [Indexed: 12/29/2022] Open
Abstract
Polyploidy is a widespread phenomenon throughout eukaryotes. Due to the coexistence of duplicated genomes, polyploids offer unique challenges for estimating gene expression levels, which is essential for understanding the massive and various forms of transcriptomic responses accompanying polyploidy. Although previous studies have explored the bioinformatics of polyploid transcriptomic profiling, the causes and consequences of inaccurate quantification of transcripts from duplicated gene copies have not been addressed. Using transcriptomic data from the cotton genus (Gossypium) as an example, we present an analytical workflow to evaluate a variety of bioinformatic method choices at different stages of RNA-seq analysis, from homoeolog expression quantification to downstream analysis used to infer key phenomena of polyploid expression evolution. In general, EAGLE-RC and GSNAP-PolyCat outperform other quantification pipelines tested, and their derived expression dataset best represents the expected homoeolog expression and co-expression divergence. The performance of co-expression network analysis was less affected by homoeolog quantification than by network construction methods, where weighted networks outperformed binary networks. By examining the extent and consequences of homoeolog read ambiguity, we illuminate the potential artifacts that may affect our understanding of duplicate gene expression, including an overestimation of homoeolog co-regulation and the incorrect inference of subgenome asymmetry in network topology. Taken together, our work points to a set of reasonable practices that we hope are broadly applicable to the evolutionary exploration of polyploids.
Collapse
Affiliation(s)
- Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Mark A Arick
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Meiling Liu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Daniel G Peterson
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
91
|
Shirasawa K, Esumi T, Hirakawa H, Tanaka H, Itai A, Ghelfi A, Nagasaki H, Isobe S. Phased genome sequence of an interspecific hybrid flowering cherry, 'Somei-Yoshino' (Cerasus × yedoensis). DNA Res 2020; 26:379-389. [PMID: 31334758 PMCID: PMC6796508 DOI: 10.1093/dnares/dsz016] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/26/2019] [Indexed: 12/17/2022] Open
Abstract
We report the phased genome sequence of an interspecific hybrid, the flowering cherry ‘Somei-Yoshino’ (Cerasus × yedoensis). The sequence data were obtained by single-molecule real-time sequencing technology, split into two subsets based on genome information of the two probable ancestors, and assembled to obtain two haplotype phased genome sequences of the interspecific hybrid. The resultant genome assembly consisting of the two haplotype sequences spanned 690.1 Mb with 4,552 contigs and an N50 length of 1.0 Mb. We predicted 95,076 high-confidence genes, including 94.9% of the core eukaryotic genes. Based on a high-density genetic map, we established a pair of eight pseudomolecule sequences, with highly conserved structures between the two haplotype sequences with 2.4 million sequence variants. A whole genome resequencing analysis of flowering cherries suggested that ‘Somei-Yoshino’ might be derived from a cross between C. spachiana and either C. speciosa or its relatives. A time-course transcriptome analysis of floral buds and flowers suggested comprehensive changes in gene expression in floral bud development towards flowering. These genome and transcriptome data are expected to provide insights into the evolution and cultivation of flowering cherry and the molecular mechanism underlying flowering.
Collapse
|
92
|
Scalabrin S, Toniutti L, Di Gaspero G, Scaglione D, Magris G, Vidotto M, Pinosio S, Cattonaro F, Magni F, Jurman I, Cerutti M, Suggi Liverani F, Navarini L, Del Terra L, Pellegrino G, Ruosi MR, Vitulo N, Valle G, Pallavicini A, Graziosi G, Klein PE, Bentley N, Murray S, Solano W, Al Hakimi A, Schilling T, Montagnon C, Morgante M, Bertrand B. A single polyploidization event at the origin of the tetraploid genome of Coffea arabica is responsible for the extremely low genetic variation in wild and cultivated germplasm. Sci Rep 2020; 10:4642. [PMID: 32170172 PMCID: PMC7069947 DOI: 10.1038/s41598-020-61216-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/20/2020] [Indexed: 11/09/2022] Open
Abstract
The genome of the allotetraploid species Coffea arabica L. was sequenced to assemble independently the two component subgenomes (putatively deriving from C. canephora and C. eugenioides) and to perform a genome-wide analysis of the genetic diversity in cultivated coffee germplasm and in wild populations growing in the center of origin of the species. We assembled a total length of 1.536 Gbp, 444 Mb and 527 Mb of which were assigned to the canephora and eugenioides subgenomes, respectively, and predicted 46,562 gene models, 21,254 and 22,888 of which were assigned to the canephora and to the eugeniodes subgenome, respectively. Through a genome-wide SNP genotyping of 736 C. arabica accessions, we analyzed the genetic diversity in the species and its relationship with geographic distribution and historical records. We observed a weak population structure due to low-frequency derived alleles and highly negative values of Taijma’s D, suggesting a recent and severe bottleneck, most likely resulting from a single event of polyploidization, not only for the cultivated germplasm but also for the entire species. This conclusion is strongly supported by forward simulations of mutation accumulation. However, PCA revealed a cline of genetic diversity reflecting a west-to-east geographical distribution from the center of origin in East Africa to the Arabian Peninsula. The extremely low levels of variation observed in the species, as a consequence of the polyploidization event, make the exploitation of diversity within the species for breeding purposes less interesting than in most crop species and stress the need for introgression of new variability from the diploid progenitors.
Collapse
Affiliation(s)
- Simone Scalabrin
- IGA Technology Services S.r.l., via Jacopo Linussio 51, I-33100, Udine, Italy
| | - Lucile Toniutti
- World Coffee Research, 5 avenue du grand chêne, 34270, Saint-Mathieu-de-Tréviers, France.
| | - Gabriele Di Gaspero
- Istituto di Genomica Applicata, via Jacopo Linussio 51, I-33100, Udine, Italy
| | - Davide Scaglione
- IGA Technology Services S.r.l., via Jacopo Linussio 51, I-33100, Udine, Italy
| | - Gabriele Magris
- Istituto di Genomica Applicata, via Jacopo Linussio 51, I-33100, Udine, Italy.,University of Udine, Department of Agricultural Food, Environmental and Animal Sciences, via delle scienze 206, I-33100, Udine, Italy
| | - Michele Vidotto
- IGA Technology Services S.r.l., via Jacopo Linussio 51, I-33100, Udine, Italy
| | - Sara Pinosio
- Istituto di Genomica Applicata, via Jacopo Linussio 51, I-33100, Udine, Italy.,Institute of Biosciences and Bioresources, National Research Council, via Madonna del Piano 10, I-50019, Sesto Fiorentino (FI), Italy
| | - Federica Cattonaro
- IGA Technology Services S.r.l., via Jacopo Linussio 51, I-33100, Udine, Italy
| | - Federica Magni
- IGA Technology Services S.r.l., via Jacopo Linussio 51, I-33100, Udine, Italy
| | - Irena Jurman
- Istituto di Genomica Applicata, via Jacopo Linussio 51, I-33100, Udine, Italy
| | - Mario Cerutti
- Luigi Lavazza S.p.A., Innovation Center, I-10156, Torino, Italy
| | - Furio Suggi Liverani
- Illycaffè S.p.A., Research & Innovation, via Flavia 110, I-34147, Trieste, Italy
| | - Luciano Navarini
- Illycaffè S.p.A., Research & Innovation, via Flavia 110, I-34147, Trieste, Italy
| | - Lorenzo Del Terra
- Illycaffè S.p.A., Research & Innovation, via Flavia 110, I-34147, Trieste, Italy
| | | | | | - Nicola Vitulo
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Giorgio Valle
- CRIBI, Università degli Studi di Padova, viale G. Colombo 3, I-35121, Padova, Italy
| | | | - Giorgio Graziosi
- Department of Life Sciences, University of Trieste, I-34148, Trieste, Italy
| | - Patricia E Klein
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| | - Nolan Bentley
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| | - Seth Murray
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | | | - Amin Al Hakimi
- Faculty of Agriculture, Sana'a University, Sana'a, Yemen
| | - Timothy Schilling
- World Coffee Research, 5 avenue du grand chêne, 34270, Saint-Mathieu-de-Tréviers, France
| | - Christophe Montagnon
- World Coffee Research, 5 avenue du grand chêne, 34270, Saint-Mathieu-de-Tréviers, France
| | - Michele Morgante
- Istituto di Genomica Applicata, via Jacopo Linussio 51, I-33100, Udine, Italy.,University of Udine, Department of Agricultural Food, Environmental and Animal Sciences, via delle scienze 206, I-33100, Udine, Italy
| | - Benoit Bertrand
- CIRAD, IPME, 34 398, Montpellier, France.,UMR IPME, Univ. Montpellier, IRD, CIRAD, 34 398, Montpellier, France
| |
Collapse
|
93
|
Kyriakidou M, Anglin NL, Ellis D, Tai HH, Strömvik MV. Genome assembly of six polyploid potato genomes. Sci Data 2020; 7:88. [PMID: 32161269 PMCID: PMC7066127 DOI: 10.1038/s41597-020-0428-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Genome assembly of polyploid plant genomes is a laborious task as they contain more than two copies of the genome, are often highly heterozygous with a high level of repetitive DNA. Next Generation genome sequencing data representing one Chilean and five Peruvian polyploid potato (Solanum spp.) landrace genomes was used to construct genome assemblies comprising five taxa. Third Generation sequencing data (Linked and Long-read data) was used to improve the assembly for one of the genomes. Native landraces are valuable genetic resources for traits such as disease and pest resistance, environmental tolerance and other qualities of interest such as nutrition and fiber for breeding programs. The need for conservation and enhanced understanding of genetic diversity of cultivated potato from South America is also crucial to North American and European cultivars. Here, we report draft genomes from six polyploid potato landraces representing five taxa, illustrating how Third Generation Sequencing can aid in assembling polyploid genomes.
Collapse
Affiliation(s)
- Maria Kyriakidou
- Department of Plant Science, McGill University, 21111 Lakeshore Rd., Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
| | - Noelle L Anglin
- CIP-International Potato Center, Avenida La Molina 1895, Lima, 12, Peru
| | - David Ellis
- CIP-International Potato Center, Avenida La Molina 1895, Lima, 12, Peru
| | - Helen H Tai
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, PO Box 20280, 850 Lincoln Rd., Fredericton, NB, E3B 4Z7, Canada
| | - Martina V Strömvik
- Department of Plant Science, McGill University, 21111 Lakeshore Rd., Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada.
| |
Collapse
|
94
|
Alqudah AM, Sallam A, Stephen Baenziger P, Börner A. GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: lessons from Barley - A review. J Adv Res 2020; 22:119-135. [PMID: 31956447 PMCID: PMC6961222 DOI: 10.1016/j.jare.2019.10.013] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/07/2019] [Accepted: 10/31/2019] [Indexed: 11/28/2022] Open
Abstract
Understanding the genetic complexity of traits is an important objective of small grain temperate cereals yield and adaptation improvements. Bi-parental quantitative trait loci (QTL) linkage mapping is a powerful method to identify genetic regions that co-segregate in the trait of interest within the research population. However, recently, association or linkage disequilibrium (LD) mapping using a genome-wide association study (GWAS) became an approach for unraveling the molecular genetic basis underlying the natural phenotypic variation. Many causative allele(s)/loci have been identified using the power of this approach which had not been detected in QTL mapping populations. In barley (Hordeum vulgare L.), GWAS has been successfully applied to define the causative allele(s)/loci which can be used in the breeding crop for adaptation and yield improvement. This promising approach represents a tremendous step forward in genetic analysis and undoubtedly proved it is a valuable tool in the identification of candidate genes. In this review, we describe the recently used approach for genetic analyses (linkage mapping or association mapping), and then provide the basic genetic and statistical concepts of GWAS, and subsequently highlight the genetic discoveries using GWAS. The review explained how the candidate gene(s) can be detected using state-of-art bioinformatic tools.
Collapse
Affiliation(s)
- Ahmad M. Alqudah
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, 71526- Assiut, Egypt
| | - P. Stephen Baenziger
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, 68583-Lincoln, NE, USA
| | - Andreas Börner
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| |
Collapse
|
95
|
Pollo SMJ, Reiling SJ, Wit J, Workentine ML, Guy RA, Batoff GW, Yee J, Dixon BR, Wasmuth JD. Benchmarking hybrid assemblies of Giardia and prediction of widespread intra-isolate structural variation. Parasit Vectors 2020; 13:108. [PMID: 32111234 PMCID: PMC7048089 DOI: 10.1186/s13071-020-3968-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/13/2020] [Indexed: 01/02/2023] Open
Abstract
Background Currently available short read genome assemblies of the tetraploid protozoan parasite Giardia intestinalis are highly fragmented, highlighting the need for improved genome assemblies at a reasonable cost. Long nanopore reads are well suited to resolve repetitive genomic regions resulting in better quality assemblies of eukaryotic genomes. Subsequent addition of highly accurate short reads to long-read assemblies further improves assembly quality. Using this hybrid approach, we assembled genomes for three Giardia isolates, two with published assemblies and one novel, to evaluate the improvement in genome quality gained from long reads. We then used the long reads to predict structural variants to examine this previously unexplored source of genetic variation in Giardia. Methods With MinION reads for each isolate, we assembled genomes using several assemblers specializing in long reads. Assembly metrics, gene finding, and whole genome alignments to the reference genomes enabled direct comparison to evaluate the performance of the nanopore reads. Further improvements from adding Illumina reads to the long-read assemblies were evaluated using gene finding. Structural variants were predicted from alignments of the long reads to the best hybrid genome for each isolate and enrichment of key genes was analyzed using random genome sampling and calculation of percentiles to find thresholds of significance. Results Our hybrid assembly method generated reference quality genomes for each isolate. Consistent with previous findings based on SNPs, examination of heterozygosity using the structural variants found that Giardia BGS was considerably more heterozygous than the other isolates that are from Assemblage A. Further, each isolate was shown to contain structural variant regions enriched for variant-specific surface proteins, a key class of virulence factor in Giardia. Conclusions The ability to generate reference quality genomes from a single MinION run and a multiplexed MiSeq run enables future large-scale comparative genomic studies within the genus Giardia. Further, prediction of structural variants from long reads allows for more in-depth analyses of major sources of genetic variation within and between Giardia isolates that could have effects on both pathogenicity and host range.![]()
Collapse
Affiliation(s)
- Stephen M J Pollo
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Host-Parasite Interactions Training Program, University of Calgary, Calgary, AB, Canada
| | - Sarah J Reiling
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, Canada
| | - Janneke Wit
- Host-Parasite Interactions Training Program, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Matthew L Workentine
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Rebecca A Guy
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - G William Batoff
- Department of Biology, Biochemistry and Molecular Biology Program, Trent University, Peterborough, ON, Canada
| | - Janet Yee
- Department of Biology, Biochemistry and Molecular Biology Program, Trent University, Peterborough, ON, Canada
| | - Brent R Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, Canada
| | - James D Wasmuth
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada. .,Host-Parasite Interactions Training Program, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
96
|
Abstract
Background: Data sets from long-read sequencing platforms (Oxford Nanopore Technologies and Pacific Biosciences) allow for most prokaryote genomes to be completely assembled - one contig per chromosome or plasmid. However, the high per-read error rate of long-read sequencing necessitates different approaches to assembly than those used for short-read sequencing. Multiple assembly tools (assemblers) exist, which use a variety of algorithms for long-read assembly. Methods: We used 500 simulated read sets and 120 real read sets to assess the performance of six long-read assemblers (Canu, Flye, Miniasm/Minipolish, Raven, Redbean and Shasta) across a wide variety of genomes and read parameters. Assemblies were assessed on their structural accuracy/completeness, sequence identity, contig circularisation and computational resources used. Results: Canu v1.9 produced moderately reliable assemblies but had the longest runtimes of all assemblers tested. Flye v2.6 was more reliable and did particularly well with plasmid assembly. Miniasm/Minipolish v0.3 was the only assembler which consistently produced clean contig circularisation. Raven v0.0.5 was the most reliable for chromosome assembly, though it did not perform well on small plasmids and had circularisation issues. Redbean v2.5 and Shasta v0.3.0 were computationally efficient but more likely to produce incomplete assemblies. Conclusions: Of the assemblers tested, Flye, Miniasm/Minipolish and Raven performed best overall. However, no single tool performed well on all metrics, highlighting the need for continued development on long-read assembly algorithms.
Collapse
Affiliation(s)
- Ryan R. Wick
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Kathryn E. Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| |
Collapse
|
97
|
Abstract
Background: Data sets from long-read sequencing platforms (Oxford Nanopore Technologies and Pacific Biosciences) allow for most prokaryote genomes to be completely assembled - one contig per chromosome or plasmid. However, the high per-read error rate of long-read sequencing necessitates different approaches to assembly than those used for short-read sequencing. Multiple assembly tools (assemblers) exist, which use a variety of algorithms for long-read assembly. Methods: We used 500 simulated read sets and 120 real read sets to assess the performance of seven long-read assemblers (Canu, Flye, Miniasm/Minipolish, NECAT, Raven, Redbean and Shasta) across a wide variety of genomes and read parameters. Assemblies were assessed on their structural accuracy/completeness, sequence identity, contig circularisation and computational resources used. Results: Canu v1.9 produced moderately reliable assemblies but had the longest runtimes of all assemblers tested. Flye v2.7 was more reliable and did particularly well with plasmid assembly. Miniasm/Minipolish v0.3 and NECAT v20200119 were the most likely to produce clean contig circularisation. Raven v0.0.8 was the most reliable for chromosome assembly, though it did not perform well on small plasmids and had circularisation issues. Redbean v2.5 and Shasta v0.4.0 were computationally efficient but more likely to produce incomplete assemblies. Conclusions: Of the assemblers tested, Flye, Miniasm/Minipolish and Raven performed best overall. However, no single tool performed well on all metrics, highlighting the need for continued development on long-read assembly algorithms.
Collapse
Affiliation(s)
- Ryan R. Wick
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Kathryn E. Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| |
Collapse
|
98
|
Abstract
Background: Data sets from long-read sequencing platforms (Oxford Nanopore Technologies and Pacific Biosciences) allow for most prokaryote genomes to be completely assembled - one contig per chromosome or plasmid. However, the high per-read error rate of long-read sequencing necessitates different approaches to assembly than those used for short-read sequencing. Multiple assembly tools (assemblers) exist, which use a variety of algorithms for long-read assembly. Methods: We used 500 simulated read sets and 120 real read sets to assess the performance of eight long-read assemblers (Canu, Flye, Miniasm/Minipolish, NECAT, NextDenovo/NextPolish, Raven, Redbean and Shasta) across a wide variety of genomes and read parameters. Assemblies were assessed on their structural accuracy/completeness, sequence identity, contig circularisation and computational resources used. Results: Canu v2.0 produced reliable assemblies and was good with plasmids, but it performed poorly with circularisation and had the longest runtimes of all assemblers tested. Flye v2.8 was also reliable and made the smallest sequence errors, though it used the most RAM. Miniasm/Minipolish v0.3/v0.1.3 was the most likely to produce clean contig circularisation. NECAT v20200119 was reliable and good at circularisation but tended to make larger sequence errors. NextDenovo/NextPolish v2.3.0/v1.2.4 was reliable with chromosome assembly but bad with plasmid assembly. Raven v1.1.10 was the most reliable for chromosome assembly, though it did not perform well on small plasmids and had circularisation issues. Redbean v2.5 and Shasta v0.5.1 were computationally efficient but more likely to produce incomplete assemblies. Conclusions: Of the assemblers tested, Flye, Miniasm/Minipolish and Raven performed best overall. However, no single tool performed well on all metrics, highlighting the need for continued development on long-read assembly algorithms.
Collapse
Affiliation(s)
- Ryan R. Wick
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Kathryn E. Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| |
Collapse
|
99
|
Abstract
Background: Data sets from long-read sequencing platforms (Oxford Nanopore Technologies and Pacific Biosciences) allow for most prokaryote genomes to be completely assembled - one contig per chromosome or plasmid. However, the high per-read error rate of long-read sequencing necessitates different approaches to assembly than those used for short-read sequencing. Multiple assembly tools (assemblers) exist, which use a variety of algorithms for long-read assembly. Methods: We used 500 simulated read sets and 120 real read sets to assess the performance of eight long-read assemblers (Canu, Flye, Miniasm/Minipolish, NECAT, NextDenovo/NextPolish, Raven, Redbean and Shasta) across a wide variety of genomes and read parameters. Assemblies were assessed on their structural accuracy/completeness, sequence identity, contig circularisation and computational resources used. Results: Canu v2.1 produced reliable assemblies and was good with plasmids, but it performed poorly with circularisation and had the longest runtimes of all assemblers tested. Flye v2.8 was also reliable and made the smallest sequence errors, though it used the most RAM. Miniasm/Minipolish v0.3/v0.1.3 was the most likely to produce clean contig circularisation. NECAT v20200803 was reliable and good at circularisation but tended to make larger sequence errors. NextDenovo/NextPolish v2.3.1/v1.3.1 was reliable with chromosome assembly but bad with plasmid assembly. Raven v1.3.0 was reliable for chromosome assembly, though it did not perform well on small plasmids and had circularisation issues. Redbean v2.5 and Shasta v0.7.0 were computationally efficient but more likely to produce incomplete assemblies. Conclusions: Of the assemblers tested, Flye, Miniasm/Minipolish, NextDenovo/NextPolish and Raven performed best overall. However, no single tool performed well on all metrics, highlighting the need for continued development on long-read assembly algorithms.
Collapse
Affiliation(s)
- Ryan R. Wick
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Kathryn E. Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| |
Collapse
|
100
|
Isobe S, Shirasawa K, Hirakawa H. Current status in whole genome sequencing and analysis of Ipomoea spp. PLANT CELL REPORTS 2019; 38:1365-1371. [PMID: 31468128 PMCID: PMC6797701 DOI: 10.1007/s00299-019-02464-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/19/2019] [Indexed: 05/03/2023]
Abstract
The recent advances of next-generation sequencing have made it possible to construct reference genome sequences in divergent species. However, de novo assembly at the chromosome level remains challenging in polyploid species, due to the existence of more than two pairs of homoeologous chromosomes in one nucleus. Cultivated sweet potato (Ipomoea batatas (L.) Lam) is a hexaploid species with 90 chromosomes (2n = 6X = 90). Although the origin of sweet potato is also still under discussion, diploid relative species, I. trifida and I. triloba have been considered as one of the most possible progenitors. In this manuscript, we review the recent results and activities of whole-genome sequencing in the genus Ipomoea series Batatas, I. trifida, I. triloba and sweet potato (I. batatas). Most of the results of genome assembly suggest that the genomes of sweet potato consist of two pairs and four pairs of subgenomes, i.e., B1B1B2B2B2B2. The results also revealed the relation between sweet potato and other Ipomoea species. Together with the development of bioinformatics approaches, the large-scale publicly available genome and transcript sequence resources and international genome sequencing streams are expected to promote the genome sequence dissection in sweet potato.
Collapse
Affiliation(s)
- Sachiko Isobe
- Kazusa DNA Research Institute, Kazusa-Kamatari 2-6-7, Kisarazu, Chiba, Japan.
| | - Kenta Shirasawa
- Kazusa DNA Research Institute, Kazusa-Kamatari 2-6-7, Kisarazu, Chiba, Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, Kazusa-Kamatari 2-6-7, Kisarazu, Chiba, Japan
| |
Collapse
|