51
|
Lucero I. Written in the Body?: Healing the Epigenetic Molecular Wounds of Complex Trauma Through Empathy and Kindness. JOURNAL OF CHILD & ADOLESCENT TRAUMA 2018; 11:443-455. [PMID: 32318167 PMCID: PMC7163842 DOI: 10.1007/s40653-018-0205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
While research on the biological/genetic approach to trauma transmission has become increasingly abundant over the past 15 years, this research has been primarily limited to scientific research journals and has not yet significantly appeared in practice journals, graduate programs, clinical settings, or policy decisions. This paper aims to develop a bridge across disciplines, integrating a review of biological science literature with mental health literature to provide a multidisciplinary overview of the role of epigenetic mechanisms in the transmission of complex trauma. Such a multidisciplinary overview is important in allowing professionals across disciplines to approach their work with a more complete understanding of the way in which ecological systems shape trauma transmission and healing. While encouraging collaboration between researchers and providers across fields, this paper argues that to heal the person, one must first work to heal the environment.
Collapse
Affiliation(s)
- Ivana Lucero
- School of Social Work, Simmons College, Boston, MA 02115 USA
| |
Collapse
|
52
|
Cutuli D, Berretta E, Laricchiuta D, Caporali P, Gelfo F, Petrosini L. Pre-reproductive Parental Enriching Experiences Influence Progeny's Developmental Trajectories. Front Behav Neurosci 2018; 12:254. [PMID: 30483072 PMCID: PMC6240645 DOI: 10.3389/fnbeh.2018.00254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/10/2018] [Indexed: 01/09/2023] Open
Abstract
While the positive effects of environmental enrichment (EE) applied after weaning, in adulthood, during aging, or even in the presence of brain damage have been widely described, the transgenerational effects of pre-reproductive EE have been less examined. And yet, this issue is remarkable given that parental environmental experience may imprint offspring’s phenotype over generations through many epigenetic processes. Interactions between individual and environment take place lifelong even before conception. In fact, the environment pre-reproductively experienced by the mother and/or the father exerts a substantial impact on neural development and motor and cognitive performances of the offspring, even if not directly exposed to social, cognitive, physical and/or motor enrichment. Furthermore, pre-reproductive parental enrichment exerts a transgenerational impact on coping response to stress as well as on the social behavior of the offspring. Among the effects of pre-reproductive parental EE, a potentiation of the maternal care and a decrease in global methylation levels in the frontal cortex and hippocampus of the progeny have been described. Finally, pre-reproductive EE modifies different pathways of neuromodulation in the brain of the offspring (involving brain-derived neurotrophic factor, oxytocin and glucocorticoid receptors). The present review highlights the importance of pre-reproductive parental enrichment in altering the performances not only of animals directly experiencing it, but also of their progeny, thus opening the way to new hypotheses on the inheritance mechanisms of behavioral traits.
Collapse
Affiliation(s)
- Debora Cutuli
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| | - Erica Berretta
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| | - Daniela Laricchiuta
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| | - Paola Caporali
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| | - Francesca Gelfo
- Fondazione Santa Lucia, Rome, Italy.,Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | - Laura Petrosini
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
53
|
Prenatal and postnatal experiences associated with epigenetic changes in the adult mouse brain. Behav Brain Res 2018; 359:143-148. [PMID: 30385366 DOI: 10.1016/j.bbr.2018.10.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/01/2018] [Accepted: 10/28/2018] [Indexed: 12/29/2022]
Abstract
To analyze the influences of early-life history on the brain epigenome, the offspring of mouse dams kept in an enriched or standard environment were exposed postnatally to enriched, standard, or adverse conditions. The methylation patterns of 7 candidate genes (9 loci) involved in developmental programming of stress vulnerability/resilience and psychiatric disease were analyzed in 6 brain regions of adult male and female mice. Exposure to an enriched prenatal environment was associated with widespread epigenetic changes (all of small effect size), affecting 29 of 324 (9%) gene/region-specific methylation patterns. The effects of either adverse or enriched postnatal conditions were tested separately in the two prenatal cohorts. Significant changes were observed in 2 of 324 (0.6%) loci in offspring of dams in a standard environment and 6 of 324 (1.9%) loci in animals that were exposed prenatally to an enriched environment. Prenatal life experiences appear to have a bigger effect on the adult brain epigenome than postnatal experiences. Positive prenatal life experiences may increase epigenetic plasticity of the brain later in life. All observed between-group differences were sex-specific, consistent with largely different developmental trajectories of the male and female brain. Multiple changes of small effect size are consistent with a multifactorial model of developmental programming of adult behavior and disease susceptibility.
Collapse
|
54
|
Köhler JC, Gröger N, Lesse A, Guara Ciurana S, Rether K, Fegert J, Bock J, Braun K. Early-Life Adversity Induces Epigenetically Regulated Changes in Hippocampal Dopaminergic Molecular Pathways. Mol Neurobiol 2018; 56:3616-3625. [PMID: 30173406 PMCID: PMC6476847 DOI: 10.1007/s12035-018-1199-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/26/2018] [Indexed: 12/17/2022]
Abstract
Early-life adversity (ELA) represents a major risk factor for the development of behavioral dysfunctions and mental disorders later in life. On the other hand, dependent on type, time point, and duration, ELA exposure can also induce adaptations, which result in better stress coping and resilience later in life. Guided by the hypothesis that chronic exposure to ELA results in dysfunctional brain and behavior, whereas short exposure to ELA may result in resilience, the behavioral and neurobiological consequences of long-term separation stress (LTSS) and short-term separation stress (STSS) were compared in a mouse model for ELA. In line with our hypothesis, we found that LTSS induced depressive-like behavior, whereas STSS reduced depressive-like behavioral symptoms. We then tested the hypothesis that the opposite behavioral outcomes of the two stress paradigms may be mediated by functional, epigenetically regulated changes of dopaminergic modulation in the hippocampal formation. We found that STSS exposure elevated dopamine receptor D1 (DRD1) gene expression and decreased gene expression of its downstream modulator DARPP-32 (32-kDa dopamine- and cAMP-regulated phosphoprotein), which was paralleled by decreased H3 acetylation at its gene promoter region. In contrast, LTSS elevated DARPP-32 gene expression, which was not paralleled by changes in histone acetylation and DRD1 gene expression. These findings indicate that short- and long-term neonatal exposure to ELA induces changes in dopaminergic molecular pathways, some of which are epigenetically regulated and which either alleviate or aggravate depressive-like symptoms later in life.
Collapse
Affiliation(s)
- Jana C Köhler
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Leipziger Straße 44, Bldg. 91, 39120, Magdeburg, Germany.,PG "Epigenetics and Structural Plasticity", Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - N Gröger
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Leipziger Straße 44, Bldg. 91, 39120, Magdeburg, Germany
| | - A Lesse
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Leipziger Straße 44, Bldg. 91, 39120, Magdeburg, Germany
| | - S Guara Ciurana
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Leipziger Straße 44, Bldg. 91, 39120, Magdeburg, Germany
| | - K Rether
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Leipziger Straße 44, Bldg. 91, 39120, Magdeburg, Germany
| | - J Fegert
- Klinik für Kinder- und Jugendpsychiatrie/Psychotherapie, Universitätsklinikum Ulm, Ulm, Germany
| | - J Bock
- PG "Epigenetics and Structural Plasticity", Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Katharina Braun
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Leipziger Straße 44, Bldg. 91, 39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
55
|
Keller SM, Doherty TS, Roth TL. Pharmacological Manipulation of DNA Methylation in Adult Female Rats Normalizes Behavioral Consequences of Early-Life Maltreatment. Front Behav Neurosci 2018; 12:126. [PMID: 30008666 PMCID: PMC6034089 DOI: 10.3389/fnbeh.2018.00126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/06/2018] [Indexed: 01/03/2023] Open
Abstract
Exposure to adversity early in development alters brain and behavioral trajectories. Data continue to accumulate that epigenetic mechanisms are a mediating factor between early-life adversity and adult behavioral phenotypes. Previous work from our laboratory has shown that female Long-Evans rats exposed to maltreatment during infancy display both aberrant forced swim behavior and patterns of brain DNA methylation in adulthood. Therefore, we examined the possibility of rescuing the aberrant forced swim behavior in maltreated-adult females by administering an epigenome-modifying drug (zebularine) at a dose previously shown to normalize DNA methylation. We found that zebularine normalized behavior in the forced swim test in maltreated females such that they performed at the levels of controls (females that had been exposed to only nurturing care during infancy). These data help link DNA methylation to an adult phenotype in our maltreatment model, and more broadly provide additional evidence that non-targeted epigenetic manipulations can change behavior associated with early-life adversity.
Collapse
Affiliation(s)
- Samantha M Keller
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Tiffany S Doherty
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Tania L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
56
|
Marzi SJ, Sugden K, Arseneault L, Belsky DW, Burrage J, Corcoran DL, Danese A, Fisher HL, Hannon E, Moffitt TE, Odgers CL, Pariante C, Poulton R, Williams BS, Wong CC, Mill J, Caspi A. Analysis of DNA Methylation in Young People: Limited Evidence for an Association Between Victimization Stress and Epigenetic Variation in Blood. Am J Psychiatry 2018; 175:517-529. [PMID: 29325449 PMCID: PMC5988939 DOI: 10.1176/appi.ajp.2017.17060693] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE DNA methylation has been proposed as an epigenetic mechanism by which early-life experiences become "embedded" in the genome and alter transcriptional processes to compromise health. The authors sought to investigate whether early-life victimization stress is associated with genome-wide DNA methylation. METHOD The authors tested the hypothesis that victimization is associated with DNA methylation in the Environmental Risk (E-Risk) Longitudinal Study, a nationally representative 1994-1995 birth cohort of 2,232 twins born in England and Wales and assessed at ages 5, 7, 10, 12, and 18 years. Multiple forms of victimization were ascertained in childhood and adolescence (including physical, sexual, and emotional abuse; neglect; exposure to intimate-partner violence; bullying; cyber-victimization; and crime). RESULTS Epigenome-wide analyses of polyvictimization across childhood and adolescence revealed few significant associations with DNA methylation in peripheral blood at age 18, but these analyses were confounded by tobacco smoking and/or did not survive co-twin control tests. Secondary analyses of specific forms of victimization revealed sparse associations with DNA methylation that did not replicate across different operationalizations of the same putative victimization experience. Hypothesis-driven analyses of six candidate genes in the stress response (NR3C1, FKBP5, BDNF, AVP, CRHR1, SLC6A4) did not reveal predicted associations with DNA methylation in probes annotated to these genes. CONCLUSIONS Findings from this epidemiological analysis of the epigenetic effects of early-life stress do not support the hypothesis of robust changes in DNA methylation in victimized young people. We need to come to terms with the possibility that epigenetic epidemiology is not yet well matched to experimental, nonhuman models in uncovering the biological embedding of stress.
Collapse
Affiliation(s)
- Sarah J. Marzi
- From the Social, Genetic, and Developmental Psychiatry Research Centre, the Department of Child and Adolescent Psychiatry, and the Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London; the National and Specialist Clinic for Child Traumatic Stress and Anxiety Disorders, South London and Maudsley NHS Foundation Trust, London; the Department of Psychology and Neuroscience, Social Science Research Institute, and the Center for Genomic and
| | - Karen Sugden
- From the Social, Genetic, and Developmental Psychiatry Research Centre, the Department of Child and Adolescent Psychiatry, and the Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London; the National and Specialist Clinic for Child Traumatic Stress and Anxiety Disorders, South London and Maudsley NHS Foundation Trust, London; the Department of Psychology and Neuroscience, Social Science Research Institute, and the Center for Genomic and
| | - Louise Arseneault
- From the Social, Genetic, and Developmental Psychiatry Research Centre, the Department of Child and Adolescent Psychiatry, and the Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London; the National and Specialist Clinic for Child Traumatic Stress and Anxiety Disorders, South London and Maudsley NHS Foundation Trust, London; the Department of Psychology and Neuroscience, Social Science Research Institute, and the Center for Genomic and
| | - Daniel W. Belsky
- From the Social, Genetic, and Developmental Psychiatry Research Centre, the Department of Child and Adolescent Psychiatry, and the Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London; the National and Specialist Clinic for Child Traumatic Stress and Anxiety Disorders, South London and Maudsley NHS Foundation Trust, London; the Department of Psychology and Neuroscience, Social Science Research Institute, and the Center for Genomic and
| | - Joe Burrage
- From the Social, Genetic, and Developmental Psychiatry Research Centre, the Department of Child and Adolescent Psychiatry, and the Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London; the National and Specialist Clinic for Child Traumatic Stress and Anxiety Disorders, South London and Maudsley NHS Foundation Trust, London; the Department of Psychology and Neuroscience, Social Science Research Institute, and the Center for Genomic and
| | - David L. Corcoran
- From the Social, Genetic, and Developmental Psychiatry Research Centre, the Department of Child and Adolescent Psychiatry, and the Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London; the National and Specialist Clinic for Child Traumatic Stress and Anxiety Disorders, South London and Maudsley NHS Foundation Trust, London; the Department of Psychology and Neuroscience, Social Science Research Institute, and the Center for Genomic and
| | - Andrea Danese
- From the Social, Genetic, and Developmental Psychiatry Research Centre, the Department of Child and Adolescent Psychiatry, and the Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London; the National and Specialist Clinic for Child Traumatic Stress and Anxiety Disorders, South London and Maudsley NHS Foundation Trust, London; the Department of Psychology and Neuroscience, Social Science Research Institute, and the Center for Genomic and
| | - Helen L. Fisher
- From the Social, Genetic, and Developmental Psychiatry Research Centre, the Department of Child and Adolescent Psychiatry, and the Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London; the National and Specialist Clinic for Child Traumatic Stress and Anxiety Disorders, South London and Maudsley NHS Foundation Trust, London; the Department of Psychology and Neuroscience, Social Science Research Institute, and the Center for Genomic and
| | - Eilis Hannon
- From the Social, Genetic, and Developmental Psychiatry Research Centre, the Department of Child and Adolescent Psychiatry, and the Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London; the National and Specialist Clinic for Child Traumatic Stress and Anxiety Disorders, South London and Maudsley NHS Foundation Trust, London; the Department of Psychology and Neuroscience, Social Science Research Institute, and the Center for Genomic and
| | - Terrie E. Moffitt
- From the Social, Genetic, and Developmental Psychiatry Research Centre, the Department of Child and Adolescent Psychiatry, and the Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London; the National and Specialist Clinic for Child Traumatic Stress and Anxiety Disorders, South London and Maudsley NHS Foundation Trust, London; the Department of Psychology and Neuroscience, Social Science Research Institute, and the Center for Genomic and
| | - Candice L. Odgers
- From the Social, Genetic, and Developmental Psychiatry Research Centre, the Department of Child and Adolescent Psychiatry, and the Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London; the National and Specialist Clinic for Child Traumatic Stress and Anxiety Disorders, South London and Maudsley NHS Foundation Trust, London; the Department of Psychology and Neuroscience, Social Science Research Institute, and the Center for Genomic and
| | - Carmine Pariante
- From the Social, Genetic, and Developmental Psychiatry Research Centre, the Department of Child and Adolescent Psychiatry, and the Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London; the National and Specialist Clinic for Child Traumatic Stress and Anxiety Disorders, South London and Maudsley NHS Foundation Trust, London; the Department of Psychology and Neuroscience, Social Science Research Institute, and the Center for Genomic and
| | - Richie Poulton
- From the Social, Genetic, and Developmental Psychiatry Research Centre, the Department of Child and Adolescent Psychiatry, and the Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London; the National and Specialist Clinic for Child Traumatic Stress and Anxiety Disorders, South London and Maudsley NHS Foundation Trust, London; the Department of Psychology and Neuroscience, Social Science Research Institute, and the Center for Genomic and
| | - Benjamin S. Williams
- From the Social, Genetic, and Developmental Psychiatry Research Centre, the Department of Child and Adolescent Psychiatry, and the Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London; the National and Specialist Clinic for Child Traumatic Stress and Anxiety Disorders, South London and Maudsley NHS Foundation Trust, London; the Department of Psychology and Neuroscience, Social Science Research Institute, and the Center for Genomic and
| | - Chloe C.Y. Wong
- From the Social, Genetic, and Developmental Psychiatry Research Centre, the Department of Child and Adolescent Psychiatry, and the Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London; the National and Specialist Clinic for Child Traumatic Stress and Anxiety Disorders, South London and Maudsley NHS Foundation Trust, London; the Department of Psychology and Neuroscience, Social Science Research Institute, and the Center for Genomic and
| | - Jonathan Mill
- From the Social, Genetic, and Developmental Psychiatry Research Centre, the Department of Child and Adolescent Psychiatry, and the Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London; the National and Specialist Clinic for Child Traumatic Stress and Anxiety Disorders, South London and Maudsley NHS Foundation Trust, London; the Department of Psychology and Neuroscience, Social Science Research Institute, and the Center for Genomic and
| | - Avshalom Caspi
- From the Social, Genetic, and Developmental Psychiatry Research Centre, the Department of Child and Adolescent Psychiatry, and the Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London; the National and Specialist Clinic for Child Traumatic Stress and Anxiety Disorders, South London and Maudsley NHS Foundation Trust, London; the Department of Psychology and Neuroscience, Social Science Research Institute, and the Center for Genomic and
| |
Collapse
|
57
|
Broin PÓ, Beckert MV, Takahashi T, Izumi T, Ye K, Kang G, Pouso P, Topolski M, Pena JL, Hiroi N. Computational Analysis of Neonatal Mouse Ultrasonic Vocalization. CURRENT PROTOCOLS IN MOUSE BIOLOGY 2018; 8:e46. [PMID: 29927553 PMCID: PMC6055925 DOI: 10.1002/cpmo.46] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Neonatal vocalization is structurally altered in mouse models of autism spectrum disorder (ASD). Our published data showed that pup vocalization, under conditions of maternal separation, contains sequences whose alterations in a genetic mouse model of ASD impair social communication between pups and mothers. We describe details of a method which reveals the statistical structure of call sequences that are functionally critical for optimal maternal care. Entropy analysis determines the degree of non-random call sequencing. A Markov model determines the actual call sequences used by pups. Sparse partial least squares discriminant analysis (sPLS-DA) identifies call sequences that differentiate groups and reveals the degrees of individual variability in call sequences between groups. These three sets of analyses can be used to identify the otherwise hidden call structure that is altered in mouse models of developmental neuropsychiatric disorders, including not only autism but also schizophrenia. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Pilib Ó Broin
- School of Mathematics, Statistics & Applied Mathematics,
National University of Ireland Galway, Galway, Ireland
| | - Michael V. Beckert
- Department of Neuroscience, Albert Einstein College of Medicine,
Bronx, NY, USA
| | - Tomohisa Takahashi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein
College of Medicine, Bronx, NY, USA
| | - Takeshi Izumi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein
College of Medicine, Bronx, NY, USA
| | - Kenny Ye
- Department of Epidemiology & Population Health, Albert
Einstein College of Medicine, Bronx, NY, USA
| | - Gina Kang
- Department of Psychiatry and Behavioral Sciences, Albert Einstein
College of Medicine, Bronx, NY, USA
| | - Patricia Pouso
- Department of Psychiatry and Behavioral Sciences, Albert Einstein
College of Medicine, Bronx, NY, USA
| | - Mackenzie Topolski
- Department of Psychiatry and Behavioral Sciences, Albert Einstein
College of Medicine, Bronx, NY, USA
| | - Jose L. Pena
- Department of Neuroscience, Albert Einstein College of Medicine,
Bronx, NY, USA
| | - Noboru Hiroi
- Department of Neuroscience, Albert Einstein College of Medicine,
Bronx, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein
College of Medicine, Bronx, NY, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx,
NY, USA
| |
Collapse
|
58
|
Novick AM, Levandowski ML, Laumann LE, Philip NS, Price LH, Tyrka AR. The effects of early life stress on reward processing. J Psychiatr Res 2018; 101:80-103. [PMID: 29567510 PMCID: PMC5889741 DOI: 10.1016/j.jpsychires.2018.02.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 01/19/2023]
Abstract
Early life stress (ELS), in the form of childhood maltreatment, abuse, or neglect, increases the risk for psychiatric sequelae later in life. The neurobiology of response to early stress and of reward processing overlap substantially, leading to the prediction that reward processing may be a primary mediator of the effects of early life stress. We describe a growing body of literature investigating the effects of early life stressors on reward processing in animals and humans. Despite variation in the reviewed studies, an emerging pattern of results indicates that ELS results in deficits of ventral striatum-related functions of reward responsiveness and approach motivation, especially when the stressor is experienced in early in development. For stressors experienced later in the juvenile period and adolescence, the animal literature suggests an opposite effect, in which ELS results in increased hedonic drive. Future research in this area will help elucidate the transdiagnostic impact of early life stress, and therefore potentially identify and intervene with at-risk youth, prior to the emergence of clinical psychopathology.
Collapse
Affiliation(s)
- Andrew M. Novick
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA,Corresponding author: Andrew M Novick, MD PhD, Butler Hospital, 345 Blackstone Blvd, Providence, RI 02906, USA,
| | - Mateus L. Levandowski
- Developmental Cognitive Neuroscience Lab (DCNL), Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Laura E. Laumann
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| | - Noah S. Philip
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA,Center for Neurorestoration and Neurotechnology, Providence VA, Providence, RI, USA
| | - Lawrence H. Price
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Audrey R. Tyrka
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
59
|
Di Segni M, Andolina D, Ventura R. Long-term effects of early environment on the brain: Lesson from rodent models. Semin Cell Dev Biol 2018; 77:81-92. [DOI: 10.1016/j.semcdb.2017.09.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/20/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022]
|
60
|
Burns SB, Szyszkowicz JK, Luheshi GN, Lutz PE, Turecki G. Plasticity of the epigenome during early-life stress. Semin Cell Dev Biol 2018; 77:115-132. [DOI: 10.1016/j.semcdb.2017.09.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/08/2017] [Accepted: 09/22/2017] [Indexed: 12/22/2022]
|
61
|
Neonatal Colonic Inflammation Epigenetically Aggravates Epithelial Inflammatory Responses to Injury in Adult Life. Cell Mol Gastroenterol Hepatol 2018; 6:65-78. [PMID: 29928672 PMCID: PMC6008258 DOI: 10.1016/j.jcmgh.2018.02.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/01/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Early life adversity is considered a risk factor for the development of gastrointestinal diseases, including inflammatory bowel disease. We hypothesized that early life colonic inflammation causes susceptibility to aggravated overexpression of interleukin (IL)1β. METHODS We developed a 2-hit rat model in which neonatal inflammation (NI) and adult inflammation (AI) were induced by trinitrobenzene sulfonic acid. RESULTS Aggravated immune responses were observed in NI + AI rats, including a sustained up-regulation of IL1β and other cytokines. In parallel with exacerbated loss of inhibitor of kappa B alpha expression, NI + AI rats showed hyperacetylation of histone H4K12 and increased V-Rel Avian Reticuloendotheliosis Viral Oncogene Homolog A binding on the IL1B promoter, accompanied by high levels of norepinephrine/epinephrine. Propranolol, a β-blocker, markedly ameliorated the inflammatory response and IL1β overexpression by mitigating against epigenetic modifications. Adrenalectomy abrogated NI-induced disease susceptibility whereas yohimbine sensitized the epithelium for exacerbated immune response. The macrophages of NI rats produced more IL1β than controls after exposure to lipopolysaccharide (LPS), suggesting hypersensitization; incubation with LPS plus Foradil (Sigma, St. Louis, MO), a β2-agonist, induced a greater IL1β expression than LPS alone. Epinephrine and Foradil also exacerbated LPS-induced IL1β activation in human THP-1-derived macrophages, by increasing acetylated H4K12, and these increases were abrogated by propranolol. CONCLUSIONS NI sensitizes the colon epithelium for exacerbated IL1β activation by increasing stress hormones that induce histone hyperacetylation, allowing greater access of nuclear factor-κB to the IL1B promoter and rendering the host susceptible to aggravated immune responses. Our findings suggest that β blockers have a therapeutic potential for inflammatory bowel disease susceptibility and establish a novel paradigm whereby NI induces epigenetic susceptibility to inflammatory bowel disease.
Collapse
Key Words
- AI, adult inflammation
- ChIP, chromatin immunoprecipitation
- Ctl, control
- Early Life Adversity
- Epinephrine
- H4K12ac, acetylated HRK12
- HDAC, histone deacetylase
- Histone Acetylation
- IBD, inflammatory bowel disease
- IL, interleukin
- Inflammatory Bowel Disease
- IκB, inhibitor of kappa B alpha
- LPS, lipopolysaccharide
- MPO, myeloperoxidase
- NF-κB
- NF-κB, nuclear factor-κB
- NI, neonatal inflammation
- PCR, polymerase chain reaction
- PMA, phorbol 12-myristate 13-acetate
- RNAP II, RNA polymerase II
- RelA, V-Rel Avian Reticuloendotheliosis Viral Oncogene Homolog A
- TNBS, 2,4,6-trinitrobenzene sulfonic acid
- Tnf, tumor necrosis factor
- mRNA, messenger RNA
Collapse
|
62
|
Doherty TS, Roth TL. Epigenetic Landscapes of the Adversity-Exposed Brain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:1-19. [PMID: 29933946 DOI: 10.1016/bs.pmbts.2017.11.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is understood that adversity during development has the power to alter behavioral trajectories, and the role of the epigenome in that relationship is currently under intense investigation. Several studies in both nonhuman animals and humans have established a link between early adversity and epigenetic regulation of genes heavily implicated in the stress response, plasticity and cognition, and psychiatric disorders such as depression and anxiety. Thus the relatively recent surge of studies centering on the epigenetic outcomes of stress has great potential to inform treatments and interventions for psychiatric disorder precipitated by early adversity. Here we review what we know and what we do not know, and suggest approaches to help further elucidate the relationship between early adversity, epigenetics, and behavior.
Collapse
Affiliation(s)
| | - Tania L Roth
- University of Delaware, Newark, DE, United States.
| |
Collapse
|
63
|
Kundakovic M. Sex-Specific Epigenetics: Implications for Environmental Studies of Brain and Behavior. Curr Environ Health Rep 2018; 4:385-391. [PMID: 28986864 DOI: 10.1007/s40572-017-0172-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW This review discusses the current state of knowledge on sex differences in the epigenetic regulation in the brain and highlights its relevance for the environmental studies of brain and behavior. RECENT FINDINGS Recent evidence shows that epigenetic mechanisms are involved in the control of brain sexual differentiation and in memory-enhancing effects of estradiol in females. In addition, several studies have implicated epigenetic dysregulation as an underlying mechanism for sex-specific neurobehavioral effects of environmental exposures. The area of sex-specific neurepigenetics has a great potential to improve our understanding of brain function in health and disease. Future neuropigenetic studies will require the inclusion of males and females and would ideally account for the fluctuating hormonal status in females which is likely to affect the epigenome. The implementation of cutting-edge methods that include epigenomic characterization of specific cell types using latest next-generation sequencing approaches will further advance the area.
Collapse
Affiliation(s)
- Marija Kundakovic
- Department of Biological Sciences, Fordham University, 441 E. Fordham Road, Larkin Hall, Room 160, Bronx, NY, 10458, USA.
| |
Collapse
|
64
|
Ershov NI, Bondar NP, Lepeshko AA, Reshetnikov VV, Ryabushkina JA, Merkulova TI. Consequences of early life stress on genomic landscape of H3K4me3 in prefrontal cortex of adult mice. BMC Genomics 2018; 19:93. [PMID: 29504911 PMCID: PMC5836825 DOI: 10.1186/s12864-018-4479-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Maternal separation models in rodents are widely used to establish molecular mechanisms underlying prolonged effects of early life adversity on neurobiological and behavioral outcomes in adulthood. However, global epigenetic signatures following early life stress in these models remain unclear. Results In this study, we carried out a ChIP-seq analysis of H3K4 trimethylation profile in the prefrontal cortex of adult male mice with a history of early life stress. Two types of stress were used: prolonged separation of pups from their mothers (for 3 h once a day, maternal separation, MS) and brief separation (for 15 min once a day, handling, HD). Adult offspring in the MS group demonstrated reduced locomotor activity in the open field test accompanied by reduced exploratory activity, while the HD group showed decreased anxiety-like behavior only. In a group of maternal separation, we have found a small number (45) of slightly up-regulated peaks, corresponding to promoters of 70 genes, while no changes were observed in a group of handling. Among the genes whose promoters have differential enrichment of H3K4me3, the most relevant ones participate in gene expression regulation, modulation of chromatin structure and mRNA processing. For two genes, Ddias and Pip4k2a, increased H3K4me3 levels were associated with the increased mRNA expression in MS group. Conclusion The distribution of H3K4me3 in prefrontal cortex showed relatively low variability across all individuals, and only some subtle changes were revealed in mice with a history of early life stress. It is possible that the observed long-lasting behavioral alterations induced by maternal separation are mediated by other epigenetic mechanisms, or other brain structures are responsible for these effects. Electronic supplementary material The online version of this article (10.1186/s12864-018-4479-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nikita I Ershov
- Laboratory of Gene Expression Regulation, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Prospect Lavrentyeva, 630090, Novosibirsk, Russia
| | - Natalya P Bondar
- Laboratory of Gene Expression Regulation, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Prospect Lavrentyeva, 630090, Novosibirsk, Russia. .,Novosibirsk National Research State University, 2 Pirogov Street, 630090, Novosibirsk, Russia.
| | - Arina A Lepeshko
- Laboratory of Gene Expression Regulation, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Prospect Lavrentyeva, 630090, Novosibirsk, Russia.,Novosibirsk National Research State University, 2 Pirogov Street, 630090, Novosibirsk, Russia
| | - Vasiliy V Reshetnikov
- Laboratory of Gene Expression Regulation, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Prospect Lavrentyeva, 630090, Novosibirsk, Russia
| | - Julia A Ryabushkina
- Novosibirsk National Research State University, 2 Pirogov Street, 630090, Novosibirsk, Russia
| | - Tatiana I Merkulova
- Laboratory of Gene Expression Regulation, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Prospect Lavrentyeva, 630090, Novosibirsk, Russia.,Novosibirsk National Research State University, 2 Pirogov Street, 630090, Novosibirsk, Russia
| |
Collapse
|
65
|
Bolton JL, Molet J, Regev L, Chen Y, Rismanchi N, Haddad E, Yang DZ, Obenaus A, Baram TZ. Anhedonia Following Early-Life Adversity Involves Aberrant Interaction of Reward and Anxiety Circuits and Is Reversed by Partial Silencing of Amygdala Corticotropin-Releasing Hormone Gene. Biol Psychiatry 2018; 83:137-147. [PMID: 29033027 PMCID: PMC5723546 DOI: 10.1016/j.biopsych.2017.08.023] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Anhedonia, the diminished ability to experience pleasure, is an important dimensional entity linked to depression, schizophrenia, and other emotional disorders, but its origins and mechanisms are poorly understood. We have previously identified anhedonia, manifest as decreased sucrose preference and social play, in adolescent male rats that experienced chronic early-life adversity/stress (CES). Here we probed the molecular, cellular, and circuit processes underlying CES-induced anhedonia and tested them mechanistically. METHODS We examined functional brain circuits and neuronal populations activated by social play in adolescent CES and control rats. Structural connectivity between stress- and reward-related networks was probed using high-resolution diffusion tensor imaging, and cellular/regional activation was probed using c-Fos. We employed viral-genetic approaches to reduce corticotropin-releasing hormone (Crh) expression in the central nucleus of the amygdala in anhedonic rats, and tested for anhedonia reversal in the same animals. RESULTS Sucrose preference was reduced in adolescent CES rats. Social play, generally considered an independent measure of pleasure, activated brain regions involved in reward circuitry in both control and CES groups. In CES rats, social play activated Crh-expressing neurons in the central nucleus of the amygdala, typically involved in anxiety/fear, indicating aberrant functional connectivity of pleasure/reward and fear circuits. Diffusion tensor imaging tractography revealed increased structural connectivity of the amygdala to the medial prefrontal cortex in CES rats. Crh-short hairpin RNA, but not control short hairpin RNA, given into the central nucleus of the amygdala reversed CES-induced anhedonia without influencing other emotional measures. CONCLUSIONS These findings robustly demonstrate aberrant interactions of stress and reward networks after early-life adversity and suggest mechanistic roles for Crh-expressing amygdala neurons in emotional deficits portending major neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jessica L. Bolton
- Department of Anatomy/Neurobiology, University of California- Irvine,Department of Pediatrics, University of California- Irvine
| | - Jenny Molet
- Department of Anatomy/Neurobiology, University of California- Irvine,Department of Pediatrics, University of California- Irvine
| | - Limor Regev
- Department of Pediatrics, University of California- Irvine
| | - Yuncai Chen
- Department of Pediatrics, University of California- Irvine
| | - Neggy Rismanchi
- Department of Anatomy/Neurobiology, University of California- Irvine
| | | | - Derek Z. Yang
- Department of Anatomy/Neurobiology, University of California- Irvine
| | - Andre Obenaus
- Department of Pediatrics, University of California- Irvine
| | - Tallie Z. Baram
- Department of Anatomy/Neurobiology, University of California- Irvine,Department of Pediatrics, University of California- Irvine,Corresponding Author: Tallie Z. Baram, MD, PhD, Pediatrics and Anatomy/Neurobiology, University of California-Irvine, Medical Sciences I, ZOT: 4475, Irvine, CA 92697-4475, USA, Tel: 949.824.6478; Fax: 949.824.1106;
| |
Collapse
|
66
|
Effects of Early-Life Stress on Social and Anxiety-Like Behaviors in Adult Mice: Sex-Specific Effects. Behav Neurol 2018; 2018:1538931. [PMID: 29619126 PMCID: PMC5818933 DOI: 10.1155/2018/1538931] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/18/2017] [Accepted: 12/05/2017] [Indexed: 12/15/2022] Open
Abstract
Stressful events in an early postnatal period have critical implications for the individual's life and can increase later risk for psychiatric disorders. The aim of this study was to investigate the influence of early-life stress on the social behavior of adult male and female mice. C57Bl/6 mice were exposed to maternal separation (MS, 3 h once a day) or handling (HD, 15 min once a day) on postnatal day 2 through 14. Adult male and female mice were tested for social behavior in the social interaction test and for individual behavior in the plus-maze and open-field tests. Female mice exposed to maternal separation had increased social behavior and increased anxiety. MS male mice had no changes in social behavior but had significantly disrupted individual behavior, including locomotor and exploratory activity. Handling had positive effects on social behavior in males and females and decreased anxiety in males. Our results support the hypothesis that brief separation of pups from their mothers (handling), which can be considered as moderate stress, may result in future positive changes in behavior. Maternal separation has deleterious effects on individual behavior and significant sex-specific effects on social behavior.
Collapse
|
67
|
Barnett Burns S, Almeida D, Turecki G. The Epigenetics of Early Life Adversity: Current Limitations and Possible Solutions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:343-425. [DOI: 10.1016/bs.pmbts.2018.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
68
|
Parent J, Parade SH, Laumann LE, Ridout KK, Yang BZ, Marsit CJ, Seifer R, Tyrka AR. Dynamic stress-related epigenetic regulation of the glucocorticoid receptor gene promoter during early development: The role of child maltreatment. Dev Psychopathol 2017; 29:1635-1648. [PMID: 29162170 PMCID: PMC5726533 DOI: 10.1017/s0954579417001298] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Epigenetics processes may play a vital role in the biological embedding of early environmental adversity and the development of psychopathology. Accumulating evidence suggests that maltreatment is linked to methylation of the glucocorticoid receptor gene, nuclear receptor subfamily 3, group C, member 1 (NR3C1), which is a key regulator of the hypothalamus-pituitary-adrenal axis. However, prior work has been exclusively cross-sectional, greatly constraining our understanding of stress-related epigenetic processes over time. In the current study, we examined the effect of maltreatment and other adversity on change in NR3C1 methylation among at-risk preschoolers to begin to characterize within-child epigenetic changes during this sensitive developmental period. Participants were 260 preschoolers (3-5 years old, 53.8% female), including 51.5% with moderate to severe maltreatment in the past 6 months. Child protection records, semistructured interviews, and parent reports were used to assess child stress exposure. Methylation of exons 1D and 1F of NR3C1 via saliva DNA were measured at two time points approximately 6 months apart. Results indicate that maltreated children evidence higher baseline levels of NR3C1 methylation, significant decreases in methylation over time, and then at follow-up, lower levels of methylation, relative to nonmaltreated preschoolers. Findings from the current study highlight the complex nature of stress-related epigenetic processes during early development.
Collapse
Affiliation(s)
- Justin Parent
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University
- Bradley/Hasbro Children’s Research Center, E. P. Bradley Hospital
- Center for Children and Families, Department of Psychology, Florida International University
| | - Stephanie H. Parade
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University
- Bradley/Hasbro Children’s Research Center, E. P. Bradley Hospital
| | - Laura E. Laumann
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital
| | - Kathryn K. Ridout
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital
| | - Bao-Zhu Yang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Carmen J. Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University
| | - Ronald Seifer
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University
- Bradley/Hasbro Children’s Research Center, E. P. Bradley Hospital
| | - Audrey R. Tyrka
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital
| |
Collapse
|
69
|
Ratnu VS, Emami MR, Bredy TW. Genetic and epigenetic factors underlying sex differences in the regulation of gene expression in the brain. J Neurosci Res 2017; 95:301-310. [PMID: 27870402 DOI: 10.1002/jnr.23886] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/13/2016] [Accepted: 07/25/2016] [Indexed: 12/14/2022]
Abstract
There are inherent biological differences between males and females that contribute to sex differences in brain function and to many sex-specific illnesses and disorders. Traditionally, it has been thought that such differences are due largely to hormonal regulation; however, there are also genetic and epigenetic effects caused by the inheritance and unequal dosage of genes located on the X and Y chromosomes. Here we discuss the evidence in favor of a genetic and epigenetic basis for sexually dimorphic behavior, as a consequence of underlying differences in the regulation of genes that drive brain function. A better understanding of sex-specific molecular processes in the brain will provide further insight for the development of novel therapeutic approaches for the treatment of neuropsychiatric disorders characterized by sex differences. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vikram S Ratnu
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael R Emami
- Department of Neurobiology and Behavior, University of California, Irvine, California
| | - Timothy W Bredy
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.,Department of Neurobiology and Behavior, University of California, Irvine, California
| |
Collapse
|
70
|
Blaze J, Asok A, Borrelli K, Tulbert C, Bollinger J, Ronca AE, Roth TL. Intrauterine exposure to maternal stress alters Bdnf IV DNA methylation and telomere length in the brain of adult rat offspring. Int J Dev Neurosci 2017; 62:56-62. [PMID: 28330827 PMCID: PMC5600826 DOI: 10.1016/j.ijdevneu.2017.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 12/16/2022] Open
Abstract
DNA methylation (addition of methyl groups to cytosines) and changes in telomere length (TTAGGG repeats on the ends of chromosomes) are two molecular modifications that result from stress and could contribute to the long-term effects of intrauterine exposure to maternal stress on offspring behavior. Here, we measured methylation of DNA associated with the Brain-derived neurotrophic factor (Bdnf) gene, a gene important in development and plasticity, and telomere length in the brains of adult rat male and female offspring whose mothers were exposed to unpredictable and variable stressors throughout gestation. Males exposed to prenatal stress had greater methylation (Bdnf IV) in the medial prefrontal cortex (mPFC) compared to non-stressed male controls and stressed females. Further, prenatally-stressed animals had shorter telomeres than controls in the mPFC. Together findings indicate a long-term impact of prenatal stress on brain DNA methylation and telomere biology with relevance for behavioral and health outcomes, and contribute to a growing literature linking stress to intergenerational molecular changes.
Collapse
Affiliation(s)
- Jennifer Blaze
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE,United States
| | - Arun Asok
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE,United States
| | - Kristyn Borrelli
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE,United States
| | - Christina Tulbert
- Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Justin Bollinger
- Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - April E Ronca
- Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, United States; Program in Neuroscience, Wake Forest School of Medicine, Winston-Salem, NC, United States; Space Biosciences Research Division, NASA Ames Research Center, Moffett Field, CA
| | - Tania L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE,United States.
| |
Collapse
|
71
|
Doherty TS, Blaze J, Keller SM, Roth TL. Phenotypic outcomes in adolescence and adulthood in the scarcity-adversity model of low nesting resources outside the home cage. Dev Psychobiol 2017; 59:703-714. [PMID: 28767135 PMCID: PMC5569321 DOI: 10.1002/dev.21547] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/27/2017] [Indexed: 01/10/2023]
Abstract
Early life adversity is known to disrupt behavioral trajectories and many rodent models have been developed to characterize these stress-induced outcomes. One example is the scarcity-adversity model of low nesting resources. This model employs resource scarcity (i.e., low nesting materials) to elicit adverse caregiving conditions (including maltreatment) toward rodent neonates. Our lab utilizes a version of this model wherein caregiving exposures occur outside the home cage during the first postnatal week. The aim of this study was to determine adolescent and adult phenotypic outcomes associated with this model, including assessment of depressive- and anxiety-like behaviors and performance in different cognitive domains. Exposure to adverse caregiving had no effect on adolescent behavioral performance whereas exposure significantly impaired adult behavioral performance. Further, adult behavioral assays revealed substantial differences between sexes. Overall, data demonstrate the ability of repeated exposure to brief bouts of maltreatment outside the home cage in infancy to impact the development of several behavioral domains later in life.
Collapse
Affiliation(s)
- Tiffany S. Doherty
- Department of Psychological and Brain Sciences, University of Delaware,
Newark DE 19716
| | | | | | - Tania L. Roth
- Department of Psychological and Brain Sciences, University of Delaware,
Newark DE 19716
| |
Collapse
|
72
|
Caregiver maltreatment causes altered neuronal DNA methylation in female rodents. Dev Psychopathol 2017; 29:477-489. [PMID: 28401839 DOI: 10.1017/s0954579417000128] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Negative experiences with a caregiver during infancy can result in long-term changes in brain function and behavior, but underlying mechanisms are not well understood. It is our central hypothesis that brain and behavior changes are conferred by early childhood adversity through epigenetic changes involving DNA methylation. Using a rodent model of early-life caregiver maltreatment (involving exposure to an adverse caregiving environment for postnatal days 1-7), we have previously demonstrated abnormal methylation of DNA associated with the brain-derived neurotrophic factor (Bdnf) gene in the medial prefrontal cortex (mPFC) of adult rats. The aim of the current study was to characterize Bdnf DNA methylation in specific cell populations within the mPFC. In the prefrontal cortex, there is approximately twice as many neurons as glia, and studies have recently shown differential and distinctive DNA methylation patterns in neurons versus nonneurons. Here, we extracted nuclei from the mPFC of adult animals that had experienced maltreatment and used fluorescence-activated cell sorting to isolate cell types before performing bisulfite sequencing to estimate methylation of cytosine-guanine sites. Our data indicate that early-life stress induced methylation of DNA associated with Bdnf IV in a cell-type and sex-specific manner. Specifically, females that experienced early-life maltreatment exhibited greater neuronal cytosine-guanine methylation compared to controls, while no changes were detected in Bdnf methylation in males regardless of cell type. These changes localize the specificity of our previous findings to mPFC neurons and highlight the capacity of maltreatment to cause methylation changes that are likely to have functional consequences for neuronal function.
Collapse
|
73
|
Maternal separation induces hippocampal changes in cadherin-1 ( CDH-1 ) mRNA and recognition memory impairment in adolescent mice. Neurobiol Learn Mem 2017; 141:157-167. [DOI: 10.1016/j.nlm.2017.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/16/2017] [Accepted: 04/17/2017] [Indexed: 01/09/2023]
|
74
|
Bolton JL, Molet J, Ivy A, Baram TZ. New insights into early-life stress and behavioral outcomes. Curr Opin Behav Sci 2017; 14:133-139. [PMID: 28413813 DOI: 10.1016/j.cobeha.2016.12.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Adverse early-life experiences, including various forms of early-life stress, have consistently been linked with vulnerability to cognitive and emotional disorders later in life. Understanding the mechanisms underlying the enduring consequences of early-life stress is an active area of research, because this knowledge is critical for developing potential interventions. Animal models of early-life stress typically rely on manipulating maternal/parental presence and care, because these are the major source of early-life experiences in humans. Diverse models have been created, and have resulted in a wealth of behavioral outcomes. Here we focus on recent findings highlighting early-life stress-induced behavioral disturbances, ranging from hippocampus-dependent memory deficits to problems with experiencing pleasure (anhedonia). The use of naturalistic animal models of chronic early-life stress provides insight into the spectrum of cognitive and emotional outcomes and enables probing the underlying mechanisms using molecular-, cellular-, and network-level approaches.
Collapse
Affiliation(s)
- Jessica L Bolton
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, California 92697-4475.,Department of Pediatrics, University of California-Irvine, Irvine, California 92697-4475
| | - Jenny Molet
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, California 92697-4475.,Department of Pediatrics, University of California-Irvine, Irvine, California 92697-4475
| | - Autumn Ivy
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, California 92697-4475.,Department of Pediatrics, University of California-Irvine, Irvine, California 92697-4475
| | - Tallie Z Baram
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, California 92697-4475.,Department of Pediatrics, University of California-Irvine, Irvine, California 92697-4475
| |
Collapse
|
75
|
Bondar NP, Merkulova TI. Brain-derived neurotrophic factor and early-life stress: Multifaceted interplay. J Biosci 2017; 41:751-758. [PMID: 27966494 DOI: 10.1007/s12038-016-9648-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The brain-derived neurotrophic factor (BDNF) is a key regulator of neural development and plasticity. Longterm changes in the BDNF pathway are associated with childhood adversity and adult depression symptoms. Initially, stress-induced decreases in the BDNF pathway were found in some studies, but subsequent reports indicated the relationship between stress and BDNF to be much more complex, and the concept was significantly revised. In the present mini-review, we focus on the structure and regulation of the Bbnf gene as well as on the stress-BDNF interactions under early-life adverse conditions.
Collapse
Affiliation(s)
- Natalya P Bondar
- Laboratory of Gene Expression Regulation, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia,
| | | |
Collapse
|
76
|
Effects of early-life stress on cognitive function and hippocampal structure in female rodents. Neuroscience 2017; 342:101-119. [DOI: 10.1016/j.neuroscience.2015.08.024] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/06/2015] [Accepted: 08/12/2015] [Indexed: 01/30/2023]
|
77
|
Parade SH, Ridout KK, Seifer R, Armstrong DA, Marsit CJ, McWilliams MA, Tyrka AR. Methylation of the Glucocorticoid Receptor Gene Promoter in Preschoolers: Links With Internalizing Behavior Problems. Child Dev 2016; 87:86-97. [PMID: 26822445 DOI: 10.1111/cdev.12484] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Accumulating evidence suggests that early adversity is linked to methylation of the glucocorticoid receptor (GR) gene, NR3C1, which is a key regulator of the hypothalamic-pituitary-adrenal axis. Yet no prior work has considered the contribution of methylation of NR3C1 to emerging behavior problems and psychopathology in childhood. This study examined the links between methylation of NR3C1 and behavior problems in preschoolers. Data were drawn from a sample of preschoolers with early adversity (n = 171). Children ranged in age from 3 to 5 years, were racially and ethnically diverse, and nearly all qualified for public assistance. Seventy-one children had child welfare documentation of moderate to severe maltreatment in the past 6 months. Structured record review and interviews in the home were used to assess early adversity. Parents reported on child internalizing and externalizing behavior problems. Methylation of NR3C1 at exons 1D , 1F , and 1H were measured via sodium bisulfite pyrosequencing from saliva DNA. Methylation of NR3C1 at exons 1D and 1F was positively associated with internalizing (r = .21, p < .01 and r = .23, p < .01, respectively), but not externalizing, behavior problems. Furthermore, NR3C1 methylation mediated effects of early adversity on internalizing behavior problems. These results suggest that methylation of NR3C1 contributes to psychopathology in young children, and NR3C1 methylation from saliva DNA is salient to behavioral outcomes.
Collapse
Affiliation(s)
| | | | - Ronald Seifer
- Alpert Medical School of Brown University.,E. P. Bradley Hospital
| | | | | | | | - Audrey R Tyrka
- Alpert Medical School of Brown University.,Butler Hospital
| |
Collapse
|
78
|
Hoban A, Moloney R, Golubeva A, McVey Neufeld K, O’Sullivan O, Patterson E, Stanton C, Dinan T, Clarke G, Cryan J. Behavioural and neurochemical consequences of chronic gut microbiota depletion during adulthood in the rat. Neuroscience 2016; 339:463-477. [DOI: 10.1016/j.neuroscience.2016.10.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/05/2016] [Accepted: 10/02/2016] [Indexed: 12/22/2022]
|
79
|
Wearick-Silva LE, Marshall P, Viola TW, Centeno-Silva A, de Azeredo LA, Orso R, Li X, Donadio MV, Bredy TW, Grassi-Oliveira R. Running during adolescence rescues a maternal separation-induced memory impairment in female mice: Potential role of differential exon-specific BDNF expression. Dev Psychobiol 2016; 59:268-274. [PMID: 27807856 DOI: 10.1002/dev.21487] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/19/2016] [Indexed: 12/19/2022]
Abstract
Exposure to early life stress has been associated with memory impairments related to changes in brain-derived neurotrophic factor (BDNF) signaling. However, the potential impact of physical exercise to reverse these effects of maternal separation has been under investigated. Mice were subjected to maternal separation during the first 2 weeks of life and then exposed to a 3-week running protocol during adolescence. The spontaneous object recognition task was performed during adolescence followed by analysis of hippocampal expression of exons I, IV, and IX of the BDNF gene. As expected, maternal separation impaired recognition memory and this effect was reversed by exercise. In addition, running increased BDNF exon I expression, but decreased expression of BDNF exon IV in all groups, while exon IX expression increased only in MS animals exposed to exercise. Our data suggest that memory deficits can be attenuated by exercise and specific transcripts of the BDNF gene are dynamically regulated following both MS and exercise.
Collapse
Affiliation(s)
- Luis Eduardo Wearick-Silva
- Graduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.,Developmental Cognitive Neuroscience Laboratory (DCNL) Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Paul Marshall
- Department of Neurobiology and Behavior, University of California - Irvine, Irvine, California
| | - Thiago Wendt Viola
- Graduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.,Developmental Cognitive Neuroscience Laboratory (DCNL) Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Anderson Centeno-Silva
- Graduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.,Developmental Cognitive Neuroscience Laboratory (DCNL) Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Lucas Araújo de Azeredo
- Graduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.,Developmental Cognitive Neuroscience Laboratory (DCNL) Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Rodrigo Orso
- Graduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.,Developmental Cognitive Neuroscience Laboratory (DCNL) Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Xiang Li
- Department of Neurobiology and Behavior, University of California - Irvine, Irvine, California
| | - Márcio V Donadio
- Graduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Timothy W Bredy
- Department of Neurobiology and Behavior, University of California - Irvine, Irvine, California
| | - Rodrigo Grassi-Oliveira
- Graduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.,Developmental Cognitive Neuroscience Laboratory (DCNL) Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
80
|
McCoy CR, Rana S, Stringfellow SA, Day JJ, Wyss JM, Clinton SM, Kerman IA. Neonatal maternal separation stress elicits lasting DNA methylation changes in the hippocampus of stress-reactive Wistar Kyoto rats. Eur J Neurosci 2016; 44:2829-2845. [PMID: 27643783 DOI: 10.1111/ejn.13404] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/13/2016] [Accepted: 09/13/2016] [Indexed: 01/21/2023]
Abstract
Early-life stress (ELS) can alter neurodevelopment in variable ways, ranging from producing deleterious outcomes to stress resilience. While most ELS studies focus on its harmful effects, recent work by our laboratory and others shows that ELS elicits positive effects in certain individuals. We exposed Wistar Kyoto (WKY) rats, known for a stress reactive, anxiety/depression-like phenotype, to maternal separation (MS), a model of ELS. MS exposure elicited anxiolytic and antidepressant behavioral effects as well as improved cardiovascular function in adult WKY offspring. This study interrogates an epigenetic mechanism (DNA methylation) that may confer the adaptive effects of MS in WKY offspring. We quantified global genome methylation levels in limbic brain regions of adult WKYs exposed to daily 180-min MS or neonatal handling from postnatal day 1-14. MS exposure triggered dramatic DNA hypermethylation specifically in the hippocampus. Next-generation sequencing methylome profiling revealed reduced methylation at intragenic sites within two key nodes of insulin signaling pathways: the insulin receptor and one of its major downstream targets, mitogen-activated protein kinase kinase kinase 5 (Map3k5). We then tested the hypothesis that enhancing DNA methylation in WKY rats would elicit adaptive changes akin to the effects of MS. Dietary methyl donor supplementation improved WKY rats' anxiety/depression-like behaviors and also improved cardiovascular measures, similar to previous observations following MS. Overall, these data suggest a potential molecular mechanism that mediates a predicted adaptive response, whereby ELS induces DNA methylation changes in the brain that may contribute to successful stress coping and adaptive physiological changes in adulthood.
Collapse
Affiliation(s)
- Chelsea R McCoy
- School of Neuroscience, Virginia Tech University, 1981 Kraft Drive, 2012 ILSB, Blacksburg, VA, 24060, USA
| | - Samir Rana
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, AL, USA
| | | | - Jeremy J Day
- Department of Neurobiology, University of Alabama, Birmingham, AL, USA
| | - J Michael Wyss
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, AL, USA
| | - Sarah M Clinton
- School of Neuroscience, Virginia Tech University, 1981 Kraft Drive, 2012 ILSB, Blacksburg, VA, 24060, USA
| | - Ilan A Kerman
- School of Neuroscience, Virginia Tech University, 1981 Kraft Drive, 2012 ILSB, Blacksburg, VA, 24060, USA.,Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| |
Collapse
|
81
|
Childhood adversity and epigenetic regulation of glucocorticoid signaling genes: Associations in children and adults. Dev Psychopathol 2016; 28:1319-1331. [PMID: 27691985 DOI: 10.1017/s0954579416000870] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Early childhood experiences have lasting effects on development, including the risk for psychiatric disorders. Research examining the biologic underpinnings of these associations has revealed the impact of childhood maltreatment on the physiologic stress response and activity of the hypothalamus-pituitary-adrenal axis. A growing body of literature supports the hypothesis that environmental exposures mediate their biological effects via epigenetic mechanisms. Methylation, which is thought to be the most stable form of epigenetic change, is a likely mechanism by which early life exposures have lasting effects. We present recent evidence related to epigenetic regulation of genes involved in hypothalamus-pituitary-adrenal axis regulation, namely, the glucocorticoid receptor gene (nuclear receptor subfamily 3, group C, member 1 [NR3C1]) and FK506 binding protein 51 gene (FKBP5), after childhood adversity and associations with risk for psychiatric disorders. Implications for the development of interventions and future research are discussed.
Collapse
|
82
|
Epigenetic legacy of parental experiences: Dynamic and interactive pathways to inheritance. Dev Psychopathol 2016; 28:1219-1228. [PMID: 27687718 DOI: 10.1017/s0954579416000808] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The quality of the environment experienced by an individual across his or her lifespan can result in a unique developmental trajectory with consequences for adult phenotype and reproductive success. However, it is also evident that these experiences can impact the development of offspring with continued effect on subsequent generations. Epigenetic mechanisms have been proposed as a mediator of both these within- and across-generation effects, and there is increasing evidence to support the role of environmentally induced changes in DNA methylation, posttranslational histone modifications, and noncoding RNAs in predicting these outcomes. Advances in our understanding of these molecular modifications contribute to increasingly nuanced perspectives on plasticity and transmission of phenotypes across generations. A challenge that emerges from this research is in how we integrate these "new" perspectives with traditional views of development, reproduction, and inheritance. This paper will highlight evidence suggestive of an epigenetic impact of the environment on mothers, fathers, and their offspring, and illustrate the importance of considering the dynamic nature of reproduction and development and inclusive views of inheritance within the evolving field of behavioral and environmental epigenetics.
Collapse
|
83
|
McInnis CM, Venu S, Park JH. Steroid-independent male sexual behavior in B6D2F2 male mice. Horm Behav 2016; 85:26-29. [PMID: 27476435 DOI: 10.1016/j.yhbeh.2016.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/19/2016] [Accepted: 07/27/2016] [Indexed: 11/16/2022]
Abstract
It is well established that male sexual behavior (MSB) is regulated by gonadal steroids; however, individual differences in MSB, independent of gonadal steroids, are prevalent across a wide range of species, and further investigation is necessary to advance our understanding of steroid-independent MSB. Studies utilizing B6D2F1 hybrid male mice in which a significant proportion retain MSB after long-term orchidectomy, identified as steroid-independent-maters (SI-maters), have begun to unravel the genetic underpinnings of steroid-independent MSB. A recent study demonstrated that steroid-independent MSB is a heritable behavioral phenotype that is mainly passed down from B6D2F1 hybrid SI-maters when crossed with C57BL6J female mice. To begin to uncover whether the strain of the dam plays a role in the inheritance of steroid-independent MSB, B6D2F1 hybrid females were crossed with B6D2F1 hybrid males. While the present study confirms the finding that steroid-independent MSB is a heritable behavioral phenotype and that SI-mater sires are more likely to pass down some components of MSB than SI-non-maters to their offspring, it also reveals that the B6D2F2 male offspring that were identified as SI-maters that displayed the full repertoire of steroid-independent MSB had the same probability of being sired from either a B6D2F1 SI-mater or SI-non-mater. These results, in conjunction with previous findings, indicate that the specific chromosomal loci pattern that codes for steroid-independent MSB in the B6D2F2 male offspring may result regardless of whether the father was a SI-mater or SI-non-mater, and that the maternal strain may be an important factor in the inheritance of steroid-independent MSB.
Collapse
Affiliation(s)
- Christine M McInnis
- Psychology Department, University of Massachusetts, Boston, Boston, MA 02125, United States.
| | - Samitha Venu
- Psychology Department, University of Massachusetts, Boston, Boston, MA 02125, United States
| | - Jin Ho Park
- Psychology Department, University of Massachusetts, Boston, Boston, MA 02125, United States
| |
Collapse
|
84
|
Viola TW, Wearick-Silva LE, De Azeredo LA, Centeno-Silva A, Murphy C, Marshall P, Li X, Singewald N, Garcia F, Bredy TW, Grassi-Oliveira R. Increased cocaine-induced conditioned place preference during periadolescence in maternally separated male BALB/c mice: the role of cortical BDNF, microRNA-212, and MeCP2. Psychopharmacology (Berl) 2016; 233:3279-88. [PMID: 27392631 DOI: 10.1007/s00213-016-4373-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/18/2016] [Indexed: 12/15/2022]
Abstract
RATIONALE Early life stress is a major risk factor for cocaine addiction; however, the underlying molecular mechanisms remain relatively unexplored. MicroRNA-212 (miR-212) and methyl CpG binding protein 2 (MeCP2) have recently emerged as key regulators of brain-derived neurotrophic factor (BDNF) signaling during the acquisition and maintenance of cocaine-seeking behaviors. OBJECTIVES We therefore investigated the effect of maternal separation (MS) on cocaine-induced conditioned place preference (CPP) during periadolescence and how this influences miR-212, Mecp2, and Bdnf expressions in the prefrontal cortex. METHODS Male BALB/c mice subjected to MS (3 h/day) from postnatal day 2 to 15 or normal animal facility rearing (AFR) were tested for CPP at postnatal day 45, or not exposed to experimental manipulations (drug-naïve animals). Cultured primary cortical neurons were used to determine miR-212 expression changes following depolarization by KCL treatment. RESULTS MS increased cocaine-induced CPP and decreased Bdnf exon IV expression, which correlated with higher CPP scores in such animals. An experience-dependent decrease in miR-212 expression was observed following CPP test. This effect was mimicked in primary cortical neurons in vitro, under activity-dependent conditions. In contrast, increased Mecp2 expression was found after CPP test, suggesting an opposing relationship between miR-212 and Mecp2 expression following cocaine place preference acquisition. However, these effects were not present in mice exposed to MS. CONCLUSIONS Together, our results suggest that early life stress can enhance the motivational salience for cocaine-paired cues during periadolescence, and that altered expression of miR-212, Mecp2, and Bdnf in the prefrontal cortex is involved in this process.
Collapse
Affiliation(s)
- Thiago Wendt Viola
- Postgraduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Developmental Cognitive Neuroscience Lab (DCNL), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Avenida Ipiranga, 6681, prédio 11, sala 928, Porto Alegre, 90619-900, RS, Brazil
| | - Luis Eduardo Wearick-Silva
- Postgraduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Developmental Cognitive Neuroscience Lab (DCNL), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Avenida Ipiranga, 6681, prédio 11, sala 928, Porto Alegre, 90619-900, RS, Brazil
| | - Lucas Araújo De Azeredo
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Avenida Ipiranga, 6681, prédio 11, sala 928, Porto Alegre, 90619-900, RS, Brazil.,Postgraduate Program in Medicine and Health Sciences, PUCRS, Porto Alegre, RS, Brazil
| | - Anderson Centeno-Silva
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Avenida Ipiranga, 6681, prédio 11, sala 928, Porto Alegre, 90619-900, RS, Brazil
| | - Conor Murphy
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Paul Marshall
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, 92697, CA, USA
| | - Xiang Li
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, 92697, CA, USA
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Frederico Garcia
- Department of Psychiatry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Timothy W Bredy
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, 92697, CA, USA.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Rodrigo Grassi-Oliveira
- Postgraduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil. .,Developmental Cognitive Neuroscience Lab (DCNL), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Avenida Ipiranga, 6681, prédio 11, sala 928, Porto Alegre, 90619-900, RS, Brazil.
| |
Collapse
|
85
|
Stockman SL, McCarthy MM. Predator odor exposure of rat pups has opposite effects on play by juvenile males and females. Pharmacol Biochem Behav 2016; 152:20-29. [PMID: 27569603 DOI: 10.1016/j.pbb.2016.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/10/2016] [Accepted: 08/24/2016] [Indexed: 11/17/2022]
Abstract
Juvenile social play behavior is one of the earliest sexually differentiated behaviors to emerge. In rats, as with most other species that play, males engage in more rough-and-tumble play compared to females. Exposure to early life adversity is a major driver of adult health and can manifest differently in males and females. However, the effects of adverse early life exposure on play behavior in the juvenile period are poorly understood. To address this, male and female neonatal rats were exposed to predator odor (PO), for 5min/day on PN1-PN3. At the time of exposure to PO, both male and female pups suppressed ultrasonic vocalization and displayed more freezing behavior. Circulating corticosterone increased in males immediately following PO exposure but not in females. The enduring effects of PO exposure were opposite in males compared to females in that PO exposed males decreased social play, while PO exposed females increased play behavior compared to same sex controls. PO exposure did not significantly affect cell genesis in the neonatal dentate gyrus of either sex. PO exposure did not affect anxiety-like behavior assessed in the juvenile period or in adulthood, nor did it affect social interactions in adulthood. This work provides new insight into how sex may interact with adverse early life events to contribute to development of the social consequences of such exposures.
Collapse
Affiliation(s)
- Sara L Stockman
- University of Maryland School of Medicine, 655 West Baltimore Street, Bressler Research Building 5-014, Baltimore, MD 21201, United States.
| | - Margaret M McCarthy
- University of Maryland School of Medicine, 655 West Baltimore Street, Bressler Research Building 5-014, Baltimore, MD 21201, United States.
| |
Collapse
|
86
|
Zupan B, Sharma A, Frazier A, Klein S, Toth M. Programming social behavior by the maternal fragile X protein. GENES, BRAIN, AND BEHAVIOR 2016; 15:578-87. [PMID: 27198123 PMCID: PMC9879598 DOI: 10.1111/gbb.12298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 01/28/2023]
Abstract
The developing fetus and neonate are highly sensitive to maternal environment. Besides the well-documented effects of maternal stress, nutrition and infections, maternal mutations, by altering the fetal, perinatal and/or early postnatal environment, can impact the behavior of genetically normal offspring. Mutation/premutation in the X-linked FMR1 (encoding the translational regulator FMRP) in females, although primarily responsible for causing fragile X syndrome (FXS) in their children, may also elicit such maternal effects. We showed that a deficit in maternal FMRP in mice results in hyperactivity in the genetically normal offspring. To test if maternal FMRP has a broader intergenerational effect, we measured social behavior, a core dimension of neurodevelopmental disorders, in offspring of FMRP-deficient dams. We found that male offspring of Fmr1(+/-) mothers, independent of their own Fmr1 genotype, exhibit increased approach and reduced avoidance toward conspecific strangers, reminiscent of 'indiscriminate friendliness' or the lack of stranger anxiety, diagnosed in neglected children and in patients with Asperger's and Williams syndrome. Furthermore, social interaction failed to activate mesolimbic/amygdala regions, encoding social aversion, in these mice, providing a neurobiological basis for the behavioral abnormality. This work identifies a novel role for FMRP that extends its function beyond the well-established genetic function into intergenerational non-genetic inheritance/programming of social behavior and the corresponding neuronal circuit. As FXS premutation and some psychiatric conditions that can be associated with reduced FMRP expression are more prevalent in mothers than full FMR1 mutation, our findings potentially broaden the significance of FMRP-dependent programming of social behavior beyond the FXS population.
Collapse
Affiliation(s)
- B. Zupan
- Weill Cornell Medical College, Department of Pharmacology, New York, NY, 10065, USA,Vassar College, Department of Psychology, Poughkeepsie, NY, 12604, USA
| | - A. Sharma
- Weill Cornell Medical College, Department of Pharmacology, New York, NY, 10065, USA
| | - A. Frazier
- Vassar College, Department of Psychology, Poughkeepsie, NY, 12604, USA
| | - S. Klein
- Weill Cornell Medical College, Department of Pharmacology, New York, NY, 10065, USA
| | - M. Toth
- Weill Cornell Medical College, Department of Pharmacology, New York, NY, 10065, USA
| |
Collapse
|
87
|
Tractenberg SG, Levandowski ML, de Azeredo LA, Orso R, Roithmann LG, Hoffmann ES, Brenhouse H, Grassi-Oliveira R. An overview of maternal separation effects on behavioural outcomes in mice: Evidence from a four-stage methodological systematic review. Neurosci Biobehav Rev 2016; 68:489-503. [PMID: 27328784 DOI: 10.1016/j.neubiorev.2016.06.021] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/13/2016] [Accepted: 06/16/2016] [Indexed: 01/08/2023]
Abstract
Early life stress (ELS) developmental effects have been widely studied by preclinical researchers. Despite the growing body of evidence from ELS models, such as the maternal separation paradigm, the reported results have marked inconsistencies. The maternal separation model has several methodological pitfalls that could influence the reliability of its results. Here, we critically review 94 mice studies that addressed the effects of maternal separation on behavioural outcomes. We also discuss methodological issues related to the heterogeneity of separation protocols and the quality of reporting methods. Our findings indicate a lack of consistency in maternal separation effects: major studies of behavioural and biological phenotypes failed to find significant deleterious effects. Furthermore, we identified several specific variations in separation methodological procedures. These methodological variations could contribute to the inconsistency of maternal separation effects by producing different degrees of stress exposure in maternal separation-reared pups. These methodological problems, together with insufficient reporting, might lead to inaccurate and unreliable effect estimates in maternal separation studies.
Collapse
Affiliation(s)
- Saulo G Tractenberg
- Developmental Cognitive Neuroscience Lab (DCNL), Post-Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), 6681 Ipiranga Avenue, Building 11, Room 928 Porto Alegre, RS, Brazil
| | - Mateus L Levandowski
- Developmental Cognitive Neuroscience Lab (DCNL), Post-Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), 6681 Ipiranga Avenue, Building 11, Room 928 Porto Alegre, RS, Brazil
| | - Lucas Araújo de Azeredo
- Developmental Cognitive Neuroscience Lab (DCNL), Post-Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), 6681 Ipiranga Avenue, Building 11, Room 928 Porto Alegre, RS, Brazil; Post-Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Rodrigo Orso
- Developmental Cognitive Neuroscience Lab (DCNL), Post-Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), 6681 Ipiranga Avenue, Building 11, Room 928 Porto Alegre, RS, Brazil
| | - Laura G Roithmann
- Developmental Cognitive Neuroscience Lab (DCNL), Post-Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), 6681 Ipiranga Avenue, Building 11, Room 928 Porto Alegre, RS, Brazil
| | - Emerson S Hoffmann
- Developmental Cognitive Neuroscience Lab (DCNL), Post-Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), 6681 Ipiranga Avenue, Building 11, Room 928 Porto Alegre, RS, Brazil
| | - Heather Brenhouse
- Department of Psychology, Northeastern University, 125 Nightingale Hall, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab (DCNL), Post-Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), 6681 Ipiranga Avenue, Building 11, Room 928 Porto Alegre, RS, Brazil; Post-Graduate Program in Pediatrics and Children Healths, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
| |
Collapse
|
88
|
Rana S, Pugh PC, Katz E, Stringfellow SA, Lin CP, Wyss JM, Stauss HM, White CR, Clinton SM, Kerman IA. Independent effects of early-life experience and trait aggression on cardiovascular function. Am J Physiol Regul Integr Comp Physiol 2016; 311:R272-86. [PMID: 27280432 DOI: 10.1152/ajpregu.00505.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/17/2016] [Indexed: 12/19/2022]
Abstract
Early-life experience (ELE) can significantly affect life-long health and disease, including cardiovascular function. Specific dimensions of emotionality also modify risk of disease, and aggressive traits along with social inhibition have been established as independent vulnerability factors for the progression of cardiovascular disease. Yet, the biological mechanisms mediating these associations remain poorly understood. The present study utilized the inherently stress-susceptible and socially inhibited Wistar-Kyoto rats to determine the potential influences of ELE and trait aggression (TA) on cardiovascular parameters throughout the lifespan. Pups were exposed to maternal separation (MS), consisting of daily 3-h separations of the entire litter from postnatal day (P)1 to P14. The rats were weaned at P21, and as adults were instrumented for chronic radiotelemetry recordings of blood pressure and heart rate (HR). Adult aggressive behavior was assessed using the resident-intruder test, which demonstrated that TA was independent of MS exposure. MS-exposed animals (irrespective of TA) had significantly lower resting HR accompanied by increases in HR variability. No effects of MS on resting blood pressure were detected. In contrast, TA correlated with increased resting mean, systolic, and diastolic arterial pressures but had no effect on HR. TA rats (relative to nonaggressive animals) also manifested increased wall-to-lumen ratio in the thoracic aorta, increased sensitivity to phenylephrine-induced vascular contractility, and increased norepinephrine content in the heart. Together these data suggest that ELE and TA are independent factors that impact baseline cardiovascular function.
Collapse
Affiliation(s)
- Samir Rana
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama; Cell, Molecular, and Developmental Biology, Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Phyllis C Pugh
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Erin Katz
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sara A Stringfellow
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chee Paul Lin
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, Alabama
| | - J Michael Wyss
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Harald M Stauss
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
| | - C Roger White
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sarah M Clinton
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama; School of Neuroscience, Virginia Tech, Blacksburg, Virginia; and
| | - Ilan A Kerman
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama; School of Neuroscience, Virginia Tech, Blacksburg, Virginia; and Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| |
Collapse
|
89
|
Gröger N, Matas E, Gos T, Lesse A, Poeggel G, Braun K, Bock J. The transgenerational transmission of childhood adversity: behavioral, cellular, and epigenetic correlates. J Neural Transm (Vienna) 2016; 123:1037-52. [DOI: 10.1007/s00702-016-1570-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 05/02/2016] [Indexed: 12/21/2022]
|
90
|
Methylation of exons 1D, 1F, and 1H of the glucocorticoid receptor gene promoter and exposure to adversity in preschool-aged children. Dev Psychopathol 2016; 27:577-85. [PMID: 25997773 DOI: 10.1017/s0954579415000176] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Epigenetic modifications to the genome are a key mechanism involved in the biological encoding of experience. Animal studies and a growing body of literature in humans have shown that early adversity is linked to methylation of the gene for the glucocorticoid receptor (GR), which is a key regulator of the hypothalamic-pituitary-adrenal axis as well as a broad range of physiological systems including metabolic and immune function. One hundred eighty-four families participated, including n = 74 with child welfare documentation of moderate-severe maltreatment in the past 6 months. Children ranged in age from 3 to 5 years, and were racially and ethnically diverse. Structured record review and interviews in the home were used to assess a history of maltreatment, other traumas, and contextual life stressors, and a composite variable assessed the number exposures to these adversities. Methylation of regions 1(D), 1(F), and 1(H) of the GR gene was measured via sodium bisulfite pyrosequencing. The composite measure of adversity was positively correlated with methylation at exons 1(D) and 1(F) in the promoter of the GR gene. Individual stress measures were significantly associated with a several CpG sites in these regions. GR gene methylation may be a mechanism of the biobehavioral effects of adverse exposures in young children.
Collapse
|
91
|
Exposure to early adversity: Points of cross-species translation that can lead to improved understanding of depression. Dev Psychopathol 2016; 27:477-91. [PMID: 25997766 DOI: 10.1017/s0954579415000103] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The relationship between developmental exposure to adversity and affective disorders is reviewed. Adversity discussed herein includes physical and sexual abuse, neglect, or loss of a caregiver in humans. While these stressors can occur at any point during development, the unique temporal relationship to specific depressive symptoms was the focus of discussion. Further influences of stress exposure during sensitive periods can vary by gender and duration of abuse as well. Data from animal studies are presented to provide greater translational and causal understanding of how sensitive periods, different types of psychosocial stressors, and sex interact to produce depressive-like behaviors. Findings from maternal separation, isolation rearing, chronic variable stress, and peer-peer rearing paradigms clarify interpretation about how various depressive behaviors are influenced by age of exposure. Depressive behaviors are broken down into the following categories: mood and affect, anhedonia, energy, working memory, sleep-wake, appetite changes, suicide, and general malaise. Cross-species evidence from humans, nonhuman primates, rats, and mice within each of these categories is discussed. In conclusion, sensitive periods for affective-related behaviors (anxiety, mood, and controllability) occur earlier in life, while other aspects of depression are associated with adversity later during adolescence.
Collapse
|
92
|
Keller SM, Roth TL. Environmental influences on the female epigenome and behavior. ENVIRONMENTAL EPIGENETICS 2016; 2:dvw007. [PMID: 27746953 PMCID: PMC5065103 DOI: 10.1093/eep/dvw007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
Environmental factors have long-lasting effects on brain development and behavior. One way experiences are propagated is via epigenetic modifications to the genome. Environmentally-driven epigenetic modifications show incredible brain region- and sex-specificity, and many brain regions affected are ones involved in maternal behavior. In rodent models, females are typically the primary caregiver and thus, any environmental factors that modulate the epigenotype of the mother could have consequences for her current and future offspring. Here we review evidence of the susceptibility of the female epigenome to environmental factors, with a focus on brain regions involved in maternal behavior. Accordingly, implications for interventions that target the mother's epigenome and parenting behavior are discussed.
Collapse
Affiliation(s)
- Samantha M. Keller
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Tania L. Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
93
|
Dimatelis JJ, Vermeulen IM, Bugarith K, Stein DJ, Russell VA. Female rats are resistant to developing the depressive phenotype induced by maternal separation stress. Metab Brain Dis 2016; 31:109-19. [PMID: 26344502 DOI: 10.1007/s11011-015-9723-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
Many stress-related psychiatric disorders are more common in women than in men. We aimed to determine how female rats respond to maternal separation (MS; removal of the dam from the litter for 3 h/day from postnatal day (P) 2-14)). A subset of MS females were also exposed to chronic constant light for 3 weeks during adolescence (P42-63) to investigate whether the antidepressant effect of light treatment, previously observed in male rats, could be seen in female rats. Ultrasonic vocalizations (22 kHz) were recorded and the forced swim test was conducted immediately after light exposure (P65-67) and 33 days later (P98-99) to determine depressive-like behaviour. Key proteins in the MAPK signal transduction pathway (MKP-1, phospho-ERK, total ERK) and a synaptosomal marker (synaptophysin) were measured in the ventral hippocampus. We found that MS decreased the duration of 22 kHz vocalizations at P65 which was reversed by subsequent light. Light exposure increased time spent in the inner zone of the open field and the number of 22 kHz calls in response to novelty at P98. MS decreased the time females spent immobile and increased time actively swimming in the forced swim test at P67 but not at P99. MKP-1 and synaptophysin levels remained unchanged while MS decreased phospho-ERK levels in the ventral hippocampus. In contrast to clinical findings, the results suggest that female rats may be resistant to MS-induced depression-like behaviour. The behavioural effects of MS and light treatment in female rats may involve the MAPK/ERK signal transduction pathway.
Collapse
Affiliation(s)
- J J Dimatelis
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, South Africa, 7925.
| | - I M Vermeulen
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, South Africa, 7925.
| | - K Bugarith
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, South Africa, 7925.
| | - D J Stein
- Department of Psychiatry and Mental Health, Groote Schuur Hospital, MRC Unit on Anxiety & Stress Disorders, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| | - V A Russell
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, South Africa, 7925.
| |
Collapse
|
94
|
Braithwaite EC, Kundakovic M, Ramchandani PG, Murphy SE, Champagne FA. Maternal prenatal depressive symptoms predict infant NR3C1 1F and BDNF IV DNA methylation. Epigenetics 2016; 10:408-17. [PMID: 25875334 DOI: 10.1080/15592294.2015.1039221] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Prenatal maternal psychological distress increases risk for adverse infant outcomes. However, the biological mechanisms underlying this association remain unclear. Prenatal stress can impact fetal epigenetic regulation that could underlie changes in infant stress responses. It has been suggested that maternal glucocorticoids may mediate this epigenetic effect. We examined this hypothesis by determining the impact of maternal cortisol and depressive symptoms during pregnancy on infant NR3C1 and BDNF DNA methylation. Fifty-seven pregnant women were recruited during the second or third trimester. Participants self-reported depressive symptoms and salivary cortisol samples were collected diurnally and in response to a stressor. Buccal swabs for DNA extraction and DNA methylation analysis were collected from each infant at 2 months of age, and mothers were assessed for postnatal depressive symptoms. Prenatal depressive symptoms significantly predicted increased NR3C1 1F DNA methylation in male infants (β = 2.147, P = 0.044). Prenatal depressive symptoms also significantly predicted decreased BDNF IV DNA methylation in both male and female infants (β = -3.244, P = 0.013). No measure of maternal cortisol during pregnancy predicted infant NR3C1 1F or BDNF promoter IV DNA methylation. Our findings highlight the susceptibility of males to changes in NR3C1 DNA methylation and present novel evidence for altered BDNF IV DNA methylation in response to maternal depression during pregnancy. The lack of association between maternal cortisol and infant DNA methylation suggests that effects of maternal depression may not be mediated directly by glucocorticoids. Future studies should consider other potential mediating mechanisms in the link between maternal mood and infant outcomes.
Collapse
Affiliation(s)
- E C Braithwaite
- a Department of Psychiatry; University of Oxford; Warneford Hospital ; Oxford , UK
| | | | | | | | | |
Collapse
|
95
|
Effects of the Social Environment and Stress on Glucocorticoid Receptor Gene Methylation: A Systematic Review. Biol Psychiatry 2016; 79:87-96. [PMID: 25687413 PMCID: PMC4466091 DOI: 10.1016/j.biopsych.2014.11.022] [Citation(s) in RCA: 419] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 11/26/2014] [Accepted: 11/26/2014] [Indexed: 02/08/2023]
Abstract
The early-life social environment can induce stable changes that influence neurodevelopment and mental health. Research focused on early-life adversity revealed that early-life experiences have a persistent impact on gene expression and behavior through epigenetic mechanisms. The hypothalamus-pituitary-adrenal axis is sensitive to changes in the early-life environment that associate with DNA methylation of a neuron-specific exon 17 promoter of the glucocorticoid receptor (GR) (Nr3c1). Since initial findings were published in 2004, numerous reports have investigated GR gene methylation in relationship to early-life experience, parental stress, and psychopathology. We conducted a systematic review of this growing literature, which identified 40 articles (13 animal and 27 human studies) published since 2004. The majority of these examined the GR exon variant 1F in humans or the GR17 in rats, and 89% of human studies and 70% of animal studies of early-life adversity reported increased methylation at this exon variant. All the studies investigating exon 1F/17 methylation in conditions of parental stress (one animal study and seven human studies) also reported increased methylation. Studies examining psychosocial stress and psychopathology had less consistent results, with 67% of animal studies reporting increased exon 17 methylation and 17% of human studies reporting increased exon 1F methylation. We found great consistency among studies investigating early-life adversity and the effect of parental stress, even if the precise phenotype and measures of social environment adversity varied among studies. These results are encouraging and warrant further investigation to better understand correlates and characteristics of these associations.
Collapse
|
96
|
Fiori LM, Turecki G. Investigating epigenetic consequences of early-life adversity: some methodological considerations. Eur J Psychotraumatol 2016; 7:31593. [PMID: 27837582 PMCID: PMC5106862 DOI: 10.3402/ejpt.v7.31593] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 12/22/2022] Open
Abstract
Stressful and traumatic events occurring during early childhood have been consistently associated with the development of psychiatric disorders later in life. This relationship may be mediated in part by epigenetic mechanisms, such as DNA methylation, which are influenced by the early-life environment. Epigenetic patterns can have lifelong effects on gene expression and on the functioning of biological processes relevant to stress reactivity and psychopathology. Optimization of epigenetic research activity necessitates a discussion surrounding the methodologies used for DNA methylation analysis, selection of tissue sources, and timing of psychological and biological assessments. Recent studies related to early-life adversity and methylation, including both candidate gene and epigenome-wide association studies, have drawn from the variety of available techniques to generate interesting data in the field. Further discussion is warranted to address the limitations inherent to this field of research, along with future directions for epigenetic studies of adversity-related psychopathology.
Collapse
Affiliation(s)
- Laura M Fiori
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Québec, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Québec, Canada;
| |
Collapse
|
97
|
Molet J, Heins K, Zhuo X, Mei YT, Regev L, Baram TZ, Stern H. Fragmentation and high entropy of neonatal experience predict adolescent emotional outcome. Transl Psychiatry 2016; 6:e702. [PMID: 26731439 PMCID: PMC5068874 DOI: 10.1038/tp.2015.200] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/30/2015] [Accepted: 11/05/2015] [Indexed: 01/22/2023] Open
Abstract
Vulnerability to emotional disorders including depression derives from interactions between genes and environment, especially during sensitive developmental periods. Across evolution, maternal care is a key source of environmental sensory signals to the developing brain, and a vast body of work has linked quantitative and qualitative aspects of maternal care to emotional outcome in children and animals. However, the fundamental properties of maternal signals, that promote advantageous vs pathological outcomes in the offspring, are unknown and have been a topic of intense study. We studied emotional outcomes of adolescent rats reared under routine or impoverished environments, and used mathematical approaches to analyze the nurturing behaviors of the dams. Unexpectedly, whereas the quantity and typical qualities of maternal care behaviors were indistinguishable in the two environments, their patterns and rhythms differed drastically and influenced emotional outcomes. Specifically, unpredictable, fragmented maternal care patterns translated into high-entropy rates of sensory signals to the offspring in the impoverished cages. During adolescence, these offspring had significant reductions in sucrose preference and in peer-play, two independent measures of the ability to experience pleasure. This adolescent anhedonia, often a harbinger of later depression, was not accompanied by measures of anxiety or helplessness. Dopaminergic pleasure circuits underlying anhedonia are engaged by predictable sequences of events, and predictable sensory signals during neonatal periods may be critical for their maturation. Conversely, unpredictability maternal-derived signals may disrupt these developmental processes, provoking anhedonia. In sum, high-entropy and fragmented patterns of maternal-derived sensory input to the developing brain predicts, and might promote, the development of anhedonia in rodents, with potential clinical implications.
Collapse
Affiliation(s)
- J Molet
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - K Heins
- Department of Statistics, Donald Bren School of Information and Computer Sciences, University of California-Irvine, Irvine, CA, USA
| | - X Zhuo
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Y T Mei
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - L Regev
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - T Z Baram
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA, USA,Department of Pediatrics, University of California-Irvine, Irvine, CA, USA,Department of Neurology, School of Medicine, University of California-Irvine, Irvine, CA, USA,Departments of Pediatrics; Anatomy/Neurobiology; Neurology, University of California-Irvine, Medical Sciences I, ZOT: 4475, Irvine, CA 92697-4475, USA. E-mail:
| | - H Stern
- Department of Statistics, Donald Bren School of Information and Computer Sciences, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
98
|
Drury SS, Sánchez MM, Gonzalez A. When mothering goes awry: Challenges and opportunities for utilizing evidence across rodent, nonhuman primate and human studies to better define the biological consequences of negative early caregiving. Horm Behav 2016; 77:182-92. [PMID: 26506032 PMCID: PMC4802164 DOI: 10.1016/j.yhbeh.2015.10.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 11/22/2022]
Abstract
This article is part of a Special Issue "Parental Care".Across mammalian species, mothers shape socio-emotional development and serve as essential external regulators of infant physiology, brain development, behavior patterns, and emotional regulation. Caregiving quality, consistency and predictability shape the infant's underlying neurobiological processes. Although the requirements for "optimal" caregiving differ across species, the negative long-term consequences of the absence of needed caregiving (e.g. neglect) or the presence of harmful/aversive caregiving (e.g. physical abuse), are translatable across species. Recognizing the significant potential of cross species comparisons in terms of defining underlying mechanisms, effective translation requires consideration of the evolutionary, ecological, and fundamental biological and developmental differences between and among species. This review provides both an overview of several success stories of cross-species translations in relation to negative caregiving and a template for future studies seeking to most effectively define the underlying biological processes and advance research dedicated to mitigating the lasting negative health consequences of child maltreatment.
Collapse
Affiliation(s)
- Stacy S Drury
- Tulane University School of Medicine, Department of Psychiatry and Behavioral Sciences, 1430 Tulane Ave, #8055, New Orleans, LA 70112, United States.
| | - Mar M Sánchez
- Department of Psychiatry & Behavioral Science, School of Medicine, Emory University, Atlanta, GA 20322, United States; Yerkes National Primate Research Center, Emory University, Atlanta, GA 20329, United States
| | - Andrea Gonzalez
- Offord Centre for Child Studies, McMaster University, Department of Psychiatry and Behavioural Neurosciences, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
99
|
Matas E, Bock J, Braun K. The Impact of Parent-Infant Interaction on Epigenetic Plasticity Mediating Synaptic Adaptations in the Infant Brain. Psychopathology 2016; 49:201-210. [PMID: 27668788 DOI: 10.1159/000448055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/26/2016] [Indexed: 11/19/2022]
Abstract
The development of the brain depends on an individual's nature (genes) and nurture (environments). This interaction between genetic predispositions and environmental events during brain development drives the maturation of functional brain circuits such as sensory, motor, emotional, and complex cognitive pathways. Adverse environmental conditions such as early life stress can interfere with the functional development of emotional and cognitive brain systems and thereby increase the risk of developing psychiatric disorders later in life. In order to develop more efficient and individualized protective and therapeutic interventions, it is essential to understand how environmental stressors during infancy affect cellular and molecular mechanisms involved in brain maturation. Animal models of early life stress have been able to reveal brain structural and metabolic changes in prefrontolimbic circuits, which are time, brain region, neuron, and sex specific. By focusing on animal models of separation stress during infancy, this review highlights epigenetic and cytoarchitectural modifications which are assumed to mediate lasting changes of brain function and behavior.
Collapse
Affiliation(s)
- Emmanuel Matas
- Department of Zoology/Developmental Neurobiology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | | | | |
Collapse
|
100
|
Daskalakis NP, De Kloet ER, Yehuda R, Malaspina D, Kranz TM. Early Life Stress Effects on Glucocorticoid-BDNF Interplay in the Hippocampus. Front Mol Neurosci 2015; 8:68. [PMID: 26635521 PMCID: PMC4644789 DOI: 10.3389/fnmol.2015.00068] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/27/2015] [Indexed: 11/19/2022] Open
Abstract
Early life stress (ELS) is implicated in the etiology of multiple psychiatric disorders. Important biological effects of ELS are manifested in stress-susceptible regions of the hippocampus and are partially mediated by long-term effects on glucocorticoid (GC) and/or neurotrophin signaling pathways. GC-signaling mediates the regulation of stress response to maintain homeostasis, while neurotrophin signaling plays a key role in neuronal outgrowth and is crucial for axonal guidance and synaptic integrity. The neurotrophin and GC-signaling pathways co-exist throughout the central nervous system (CNS), particularly in the hippocampus, which has high expression levels of glucocorticoid-receptors (GR) and mineralocorticoid-receptors (MR) as well as brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase receptor B (TrkB). This review addresses the effects of ELS paradigms on GC- and BDNF-dependent mechanisms and their crosstalk in the hippocampus, including potential implications for the pathogenesis of common stress-related disorders.
Collapse
Affiliation(s)
- Nikolaos P Daskalakis
- Traumatic Stress Studies Division and Laboratory of Molecular Neuropsychiatry, Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York, NY, USA ; Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center Bronx, NY, USA
| | - Edo Ronald De Kloet
- Department of Medical Pharmacology, Leiden Academic Centre for Drug Research Leiden, Netherlands ; Department of Endocrinology and Metabolism, Leiden University Medical Center, Leiden University Leiden, Netherlands
| | - Rachel Yehuda
- Traumatic Stress Studies Division and Laboratory of Molecular Neuropsychiatry, Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York, NY, USA ; Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center Bronx, NY, USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Dolores Malaspina
- Department of Psychiatry, New York University School of Medicine New York, NY, USA
| | - Thorsten M Kranz
- Departments of Cell Biology, Physiology and Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University New York, NY, USA
| |
Collapse
|