51
|
Kevin RC, Cairns EA, Boyd R, Arnold JC, Bowen MT, McGregor IS, Banister SD. Off-target pharmacological profiling of synthetic cannabinoid receptor agonists including AMB-FUBINACA, CUMYL-PINACA, PB-22, and XLR-11. Front Psychiatry 2022; 13:1048836. [PMID: 36590635 PMCID: PMC9798004 DOI: 10.3389/fpsyt.2022.1048836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Synthetic cannabinoid receptor agonists (SCRAs) are a diverse class of new psychoactive substances that have been associated with multiple instances and types of toxicity. Some SCRAs appear to carry a greater toxicological burden than others, or compared to the prototypical cannabis-derived agonist Δ9-tetrahydrocannabinol (Δ9-THC), despite a common primary mechanism of action via cannabinoid 1 (CB1) receptors. "Off-target" (i.e., non-CB1 receptor) effects could underpin this differential toxicity, although there are limited data around the activity of SCRAs at such targets. METHODS A selection of 7 SCRAs (AMB-FUBINACA, XLR11, PB-22, AKB-48, AB-CHMINICA, CUMYL-PINACA, and 4F-MDMB-BUTINACA), representing several distinct chemotypes and toxicological profiles, underwent a 30 μM single-point screen against 241 G protein-coupled receptor (GPCR) targets in antagonist and agonist mode using a cellular β-arrestin recruitment assay. Strong screening "hits" at specific GPCRs were followed up in detail using concentration-response assays with AMB-FUBINACA, a SCRA with a particularly notable history of toxicological liability. RESULTS The single-point screen yielded few hits in agonist mode for any compound aside from CB1 and CB2 receptors, but many hits in antagonist mode, including a range of chemokine receptors, the oxytocin receptor, and histamine receptors. Concentration-response experiments showed that AMB-FUBINACA inhibited most off-targets only at the highest 30 μM concentration, with inhibition of only a small subset of targets, including H1 histamine and α2B adrenergic receptors, at lower concentrations (≥1 μM). AMB-FUBINACA also produced concentration-dependent CB1 receptor signaling disruption at concentrations higher than 1 μM, but did not produce overt cytotoxicity beyond CP55,940 or Δ9-THC in CB1 expressing cells. DISCUSSION These results suggest that while some "off-targets" could possibly contribute to the SCRA toxidrome, particularly at high concentrations, CB1-mediated cellular dysfunction provides support for hypotheses concerning on-target, rather than off-target, toxicity. Further investigation of non-GPCR off-targets is warranted.
Collapse
Affiliation(s)
- Richard C Kevin
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown, NSW, Australia.,School of Pharmacy, The University of Sydney, Camperdown, NSW, Australia
| | - Elizabeth A Cairns
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown, NSW, Australia.,School of Psychology, The University of Sydney, Camperdown, NSW, Australia
| | - Rochelle Boyd
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown, NSW, Australia.,School of Psychology, The University of Sydney, Camperdown, NSW, Australia
| | - Jonathon C Arnold
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown, NSW, Australia.,School of Pharmacy, The University of Sydney, Camperdown, NSW, Australia
| | - Michael T Bowen
- School of Psychology, The University of Sydney, Camperdown, NSW, Australia.,Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Iain S McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown, NSW, Australia.,School of Psychology, The University of Sydney, Camperdown, NSW, Australia
| | - Samuel D Banister
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown, NSW, Australia.,School of Chemistry, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
52
|
Orazietti V, Basile G, Giorgetti R, Giorgetti A. Effects of synthetic cannabinoids on psychomotor, sensory and cognitive functions relevant for safe driving. Front Psychiatry 2022; 13:998828. [PMID: 36226105 PMCID: PMC9548613 DOI: 10.3389/fpsyt.2022.998828] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
Recreational use of Synthetic Cannabinoids (SCs), one of the largest groups of New Psychoactive Substances (NPS), has increased globally over the past few years. Driving is a structured process requiring the cooperation of several cognitive and psychomotor functions, organized in different levels of complexity. Each of these functions can be affected when Driving Under the Influence (DUI) of SCs. In order to reduce the likelihood of SC-related road accidents, it is essential to understand which areas of psychomotor performance are most affected by these substances, as well as the severity of impairment. For this purpose, a multiple database- literature review of recent experimental studies in humans and animals regarding the psychomotor effects of SCs has been performed. Despite the many limitations connected to experimental studies on humans, results showed a consistency between animal and human data. SCs appear to impair psychomotor performance in humans, affecting different domains related to safe driving even at low doses. Cases of DUI of SC have been repeatedly reported, although the exact prevalence is likely to be underestimated due to current analytical and interpretative issues. For this reason, an accurate physical examination performed by trained and experienced personnel has a primary role in recognizing signs of impairment in case of strong suspicion of SC consumption. The identification of a suspected case should be followed by reliable laboratory examination.
Collapse
Affiliation(s)
- Vasco Orazietti
- Department of Excellence of Biomedical Sciences and Public Health, Marche Polytechnic University of Ancona, Ancona, Italy
| | - Giuseppe Basile
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Galeazzi Orthopedics Institute, Milan, Italy
| | - Raffaele Giorgetti
- Department of Excellence of Biomedical Sciences and Public Health, Marche Polytechnic University of Ancona, Ancona, Italy
| | - Arianna Giorgetti
- Department of Excellence of Biomedical Sciences and Public Health, Marche Polytechnic University of Ancona, Ancona, Italy.,Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
53
|
Gilbert N, Costello A, Ellison JR, Khan U, Knight M, Linnell MJ, Ralphs R, Mewis RE, Sutcliffe OB. Synthesis, characterisation, detection and quantification of a novel hexyl-substituted synthetic cannabinoid receptor agonist: (S)-N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-hexyl-1H-indazole-3-carboxamide (ADB-HINACA). Forensic Chem 2021. [DOI: 10.1016/j.forc.2021.100354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
54
|
Ametovski A, Cairns EA, Grafinger KE, Cannaert A, Deventer MH, Chen S, Wu X, Shepperson CE, Lai F, Ellison R, Gerona R, Blakey K, Kevin R, McGregor IS, Hibbs DE, Glass M, Stove C, Auwärter V, Banister SD. NNL-3: A Synthetic Intermediate or a New Class of Hydroxybenzotriazole Esters with Cannabinoid Receptor Activity? ACS Chem Neurosci 2021; 12:4020-4036. [PMID: 34676751 DOI: 10.1021/acschemneuro.1c00348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) remain a prolific class of new psychoactive substances (NPS) and continue to expand rapidly. Despite the recent identification of hydroxybenzotriazole (HOBt) containing SCRAs in synthetic cannabis samples, there is currently no information regarding the pharmacological profile of these NPS with respect to human CB1 and CB2 receptors. In the current study, a series consisting of seven HOBt indole-, indazole-, and 7-azaindole-carboxylates bearing a range of N-alkyl substituents were synthesized and pharmacologically evaluated. Competitive binding assays at CB1 and CB2 demonstrated that all analogues except a 2-methyl-substituted derivative had low affinity for CB1 (Ki = 3.80-43.7 μM) and CB2 (Ki = 2.75-18.2 μM). A fluorometric functional assay revealed that 2-methylindole- and indole-derived HOBt carboxylates were potent and efficacious agonists of CB1 (EC50 = 12.0 and 63.7 nM; Emax = 118 and 120%) and CB2 (EC50 = 10.9 and 321 nM; Emax = 91 and 126%). All other analogues incorporating indazole and 7-azaindole cores and bearing a range of N1-substituents showed relatively low potency for CB1 and CB2. Additionally, a reporter assay monitoring β-arrestin 2 (βarr2) recruitment to the receptor revealed that the 2-methylindole example was the most potent and efficacious at CB1 (EC50 = 131 nM; Emax = 724%) and the most potent at CB2 (EC50 = 38.2 nM; Emax = 51%). As with the membrane potential assay, the indazole and other indole HOBt carboxylates were considerably less potent at both receptors, and analogues comprising a 7-azaindole core showed little activity. Taken together, these data suggest that NNL-3 demonstrates little CB1 receptor activity and is unlikely to be psychoactive in humans. NNL-3 is likely an unintended SCRA manufacturing byproduct. However, the synthesis of NNL-3 analogues proved simple and general, and some of these showed potent cannabimetic profiles in vitro, indicating that HOBt esters of this type may represent an emerging class of SCRA NPS.
Collapse
Affiliation(s)
- Adam Ametovski
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth A. Cairns
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Katharina Elisabeth Grafinger
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Marie H. Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Shuli Chen
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Xinyi Wu
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Caitlin E. Shepperson
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Felcia Lai
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Ross Ellison
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California, San Francisco, California 94143, United States
| | - Roy Gerona
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California, San Francisco, California 94143, United States
| | - Karen Blakey
- Illicit Drug Group, Forensic Chemistry, QHFSS, Queensland Health, Coopers Plains, Brisbane, QLD 4108, Australia
| | - Richard Kevin
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Iain S. McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | - David E. Hibbs
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Samuel D. Banister
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
55
|
Sharp P, Hudson S, Morley SR. Quantitation of Synthetic Cannabinoid Receptor Agonists in Postmortem Blood Using a Single Point Calibration. Acad Forensic Pathol 2021; 11:75-82. [PMID: 34567326 DOI: 10.1177/19253621211032511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/20/2021] [Indexed: 11/15/2022]
Abstract
Synthetic cannabinoid receptor agonists (SCRA) share minimal structural similarities to tetrahydrocannabinol or themselves. Due to their heterogeneous structures and the rapid appearance and disappearance of new SCRA on the drug scene, the quantitation of SCRA has not been attempted extensively. We present a wide series of SCRA concentrations based on a single-point calibration using peak height ratios for the extracted ion chromatogram of the protonated precursor ion against that of the internal standard. These concentrations are viewed as indicative only given the use of a single concentration "calibrator" based on the response of a deuterated analogue of a structurally related compound. What is of note, is that, despite the potential differences in potency the majority of SCRA seem to have relatively similar concentrations in postmortem cases.
Collapse
|
56
|
Bukke VN, Archana M, Villani R, Serviddio G, Cassano T. Pharmacological and Toxicological Effects of Phytocannabinoids and Recreational Synthetic Cannabinoids: Increasing Risk of Public Health. Pharmaceuticals (Basel) 2021; 14:ph14100965. [PMID: 34681189 PMCID: PMC8541640 DOI: 10.3390/ph14100965] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/01/2023] Open
Abstract
Synthetic Cannabinoids (CBs) are a novel class of psychoactive substances that have rapidly evolved around the world with the addition of diverse structural modifications to existing molecules which produce new structural analogues that can be associated with serious adverse health effects. Synthetic CBs represent the largest class of drugs detected by the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) with a total of 207 substances identified from 2008 to October 2020, and 9 compounds being reported for the first time. Synthetic CBs are sprayed on natural harmless herbs with an aim to mimic the euphoric effect of Cannabis. They are sold under different brand names including Black mamba, spice, K2, Bombay Blue, etc. As these synthetic CBs act as full agonists at the CB receptors, they are much more potent than natural Cannabis and have been increasingly associated with acute to chronic intoxications and death. Due to their potential toxicity and abuse, the US government has listed some synthetic CBs under schedule 1 classification. The present review aims to provide a focused overview of the literature concerning the development of synthetic CBs, their abuse, and potential toxicological effects including renal toxicity, respiratory depression, hyperemesis syndrome, cardiovascular effects, and a range of effects on brain function.
Collapse
|
57
|
Giovannini E, Giorgetti A, Pelletti G, Giusti A, Garagnani M, Pascali JP, Pelotti S, Fais P. Importance of dashboard camera (Dash Cam) analysis in fatal vehicle-pedestrian crash reconstruction. Forensic Sci Med Pathol 2021; 17:379-387. [PMID: 34013466 PMCID: PMC8413177 DOI: 10.1007/s12024-021-00382-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2021] [Indexed: 11/30/2022]
Abstract
The reconstruction of dynamic of traffic injuries remains a challenge in forensic pathology and is often based on circumstantial data. Dash Cams are digital video recorders which can be located inside a vehicle and continuously record the view through the windscreen, thus providing objective evidence. Here we present the case of a traffic crash in which a pedestrian was hit by an articulated lorry. The analysis of a video recorded from a Dash Cam retrieved inside the vehicle during the death scene investigation (DSI) was crucial in the reconstruction of the manner of death. Indeed, the death, which was initially assumed to be accidental, was finally deemed as a suicide on the basis of the video recording, which showed an intentional and sudden rush of the victim to the middle of the roadway. Advantages and disadvantages of the use of Dash Cams will be discussed, focusing on the profound differences in the related national and international regulations. Based on the present case, in traffic crashes, the search for Dash Cams during the DSI may be recommended and the video recordings should be analyzed in the setting of a multidisciplinary and multimodal evaluation of the case, for a proper reconstruction of the facts.
Collapse
Affiliation(s)
- Elena Giovannini
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Via Irnerio 49, 40126, Bologna, Italy
| | - Arianna Giorgetti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Via Irnerio 49, 40126, Bologna, Italy
| | - Guido Pelletti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Via Irnerio 49, 40126, Bologna, Italy.
| | - Alessio Giusti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Via Irnerio 49, 40126, Bologna, Italy
| | - Marco Garagnani
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Via Irnerio 49, 40126, Bologna, Italy
| | - Jennifer Paola Pascali
- Department of Cardiologic, Thoracic and Vascular Sciences, University of Padova, Via Giustiniani, 2 35127, Padova, Italy
| | - Susi Pelotti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Via Irnerio 49, 40126, Bologna, Italy
| | - Paolo Fais
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Via Irnerio 49, 40126, Bologna, Italy
| |
Collapse
|
58
|
Kavanagh P, Pechnikov A, Nikolaev I, Dowling G, Kolosova M, Grigoryev A. Detection of ADB-BUTINACA Metabolites in Human Urine, Blood, Kidney and Liver. J Anal Toxicol 2021; 46:641-650. [PMID: 34341821 DOI: 10.1093/jat/bkab088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/12/2021] [Accepted: 08/02/2021] [Indexed: 01/20/2023] Open
Abstract
The N-butyl indazole derivative, ADB-BUTINACA (ADB-BINACA), currently a drug of abuse in Russia, is reported to have a cannabinoid receptor (CB1) potency and efficacy almost 3 times higher than JWH-018. ADB-BUTINACA was detected in blood from patients with suspected drug intoxications, as well as in blood, kidney and liver samples collected during postmortem investigations. Using liquid chromatography-time-of-flight-mass spectrometry, a number of ADB-BUTINACA metabolites were tentatively identified in urine samples. These include products of mono- and dihydroxylation, hydroxylation of the N-butyl side chain and dehydrogenation, formation of a dihydrodiol, hydrolysis of the terminal amide group, N-dealkylation of the indazole and a combination of these reactions. The dihydrodiol was found to be the predominant metabolite, with its chromatographic peak area exceeding those of other metabolites by almost an order of magnitude. For the routine analysis of blood, liver and kidney samples, the dihydrodiol and monohydroxylated metabolites along with the parent compound are recommended as target analytes. The same metabolites in free and glucuronidated forms are also recommended for analytical confirmation in urine samples.
Collapse
Affiliation(s)
- Pierce Kavanagh
- Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health Sciences, Saint James's Hospital, Dublin D08 W9RT, Ireland
| | | | - Ivan Nikolaev
- Clinical and diagnostic Laboratory, Republican Narcological Dispensary, Pushkina str. 119, Ufa 450057, Russia
| | - Geraldine Dowling
- Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health Sciences, Saint James's Hospital, Dublin D08 W9RT, Ireland
- School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| | - Mariia Kolosova
- Clinical and diagnostic Laboratory, Regional Narcological Dispensary, Kombaynostroiteley str. 5, Krasnoyarsk 660048, Russia
| | - Andrej Grigoryev
- Bureau of Forensic-Medical Expertises, Forensic-Chemical Division, 1th Vladimirskaya str. 33, build. 1, Moscow 111401, Russia
| |
Collapse
|
59
|
'Synthetic cannabis': A dangerous misnomer. THE INTERNATIONAL JOURNAL OF DRUG POLICY 2021; 98:103396. [PMID: 34343944 DOI: 10.1016/j.drugpo.2021.103396] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/23/2022]
Abstract
The term 'synthetic cannabis' has been widely used in public discourse to refer to a group of cannabinoid receptor agonists. In this paper we detail the characteristics of these drugs, and present the case that the term is a misnomer. We describe the pharmacodynamics of these drugs, their epidemiology, mechanisms of action, physiological effects and how these differ substantially from delta-9-tetrahydrocannabinol (THC). We argue that not only is the term a misnomer, but it is one with negative clinical and public health implications. Rather, the substances referred to as 'synthetic cannabis' in public discourse should instead be referred to consistently as synthetic cannabinoid receptor agonists (SCRAs), a drug class distinct from plant-derived cannabinoids. SCRAs have greater potency and efficacy, and psychostimulant-like properties. While such terminology may be used in the scientific community, it is not widely used amongst the media, general public, people who use these drugs or may potentially do so. A new terminology has the potential to reduce the confusion and harms that result from the misnomer 'synthetic cannabis'. The constant evolution of this distinct drug class necessitates a range of distinct policy responses relating to terminology, harm reduction, epidemiology, treatment, and legal status.
Collapse
|
60
|
Molecular Mechanisms of Action of Novel Psychoactive Substances (NPS). A New Threat for Young Drug Users with Forensic-Toxicological Implications. Life (Basel) 2021; 11:life11050440. [PMID: 34068903 PMCID: PMC8156937 DOI: 10.3390/life11050440] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022] Open
Abstract
Novel psychoactive substances (NPS) represent a severe health risk for drug users. Even though the phenomenon has been growing since the early 2000s, the mechanisms of action of NPS at the receptors and beyond them are still scarcely understood. The aim of the present study was to provide a systematic review of the updated knowledge regarding the molecular mechanisms underlying the toxicity of synthetic opioids, cannabinoids, cathinones, and stimulants. The study was conducted on the PubMed database. Study eligibility criteria included relevance to the topic, English language, and time of publication (2010–2020). A combined Mesh and free-text protocols search was performed. Study selection was performed on the title/abstract and, in doubtful cases, on the full texts of papers. Of the 580 records identified through PubMed searching and reference checking, 307 were excluded by title/abstract and 78 additional papers were excluded after full-text reading, leaving a total of 155 included papers. Molecular mechanisms of synthetic opioids, synthetic cannabinoids, stimulants, psychedelics, and hallucinogens were reviewed and mostly involved both a receptor-mediated and non-receptor mediated cellular modulation with multiple neurotransmitters interactions. The molecular mechanisms underlying the action of NPS are more complex than expected, with a wide range of overlap among activated receptors and neurotransmitter systems. The peculiar action profile of single compounds does not necessarily reflect that of the structural class to which they belong, accounting for possible unexpected toxic reactions.
Collapse
|
61
|
Coccini T, De Simone U, Lonati D, Scaravaggi G, Marti M, Locatelli CA. MAM-2201, One of the Most Potent-Naphthoyl Indole Derivative-Synthetic Cannabinoids, Exerts Toxic Effects on Human Cell-Based Models of Neurons and Astrocytes. Neurotox Res 2021; 39:1251-1273. [PMID: 33945101 DOI: 10.1007/s12640-021-00369-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/26/2021] [Accepted: 04/25/2021] [Indexed: 01/04/2023]
Abstract
Considering the consequences on human health, in general population and workplace, associated with the use of new psychoactive substances and their continuous placing on the market, novel in vitro models for neurotoxicology research, applying human-derived CNS cells, may provide a means to understand the mechanistic basis of molecular and cellular alterations in brain. Cytotoxic effects of MAM-2201, a potent-naphthoyl indole derivative-synthetic cannabinoid, have been evaluated applying a panel of human cell-based models of neurons and astrocytes, testing different concentrations (1-30 µM) and exposure times (3-24-48 h). MAM-2201 induced toxicity in primary neuron-like cells (hNLCs), obtained from transdifferentiation of mesenchymal stem cells derived from human umbilical cord. Effects occurred in a concentration- and time-dependent manner. The lowest concentration affecting cell viability, metabolic function, apoptosis, morphology, and neuronal markers (MAP-2, NSE) was 5 μM, and even 1 μM induced apoptosis. Effects appeared early (3 h) and persisted after 24 and 48 h. Similar behavior was evidenced for human D384-astrocytes treated with MAM-2201. Differently, human SH-SY5Y-neurons, both differentiated and undifferentiated, were not sensitive to MAM-2201. On D384, the different altered endpoints were reversed, attenuated, or not antagonized by AM251 indicating that CB1 receptors may partially mediate MAM-2201-induced cytotoxicity. While in hNLCs, all toxic effects caused by MAM-2201 were apparently unrelated to CB-receptors since they were not evidenced by immunofluorescence. The present in vitro findings demonstrate the cytotoxicity of MAM-2201 on human primary neurons (hNLCs) and astrocytes cell line (D384), and support the use of these cellular models as species-specific in vitro tools suitable to clarify the neurotoxicity mechanisms of synthetic cannabinoids.
Collapse
Affiliation(s)
- T Coccini
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy.
| | - U De Simone
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - D Lonati
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - G Scaravaggi
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - M Marti
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, Ferrara, Italy.,Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Rome, Italy
| | - C A Locatelli
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| |
Collapse
|
62
|
A Systematic Study of the In Vitro Pharmacokinetics and Estimated Human In Vivo Clearance of Indole and Indazole-3-Carboxamide Synthetic Cannabinoid Receptor Agonists Detected on the Illicit Drug Market. Molecules 2021; 26:molecules26051396. [PMID: 33807614 PMCID: PMC7961380 DOI: 10.3390/molecules26051396] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022] Open
Abstract
In vitro pharmacokinetic studies were conducted on enantiomer pairs of twelve valinate or tert-leucinate indole and indazole-3-carboxamide synthetic cannabinoid receptor agonists (SCRAs) detected on the illicit drug market to investigate their physicochemical parameters and structure-metabolism relationships (SMRs). Experimentally derived Log D7.4 ranged from 2.81 (AB-FUBINACA) to 4.95 (MDMB-4en-PINACA) and all SCRAs tested were highly protein bound, ranging from 88.9 ± 0.49% ((R)-4F-MDMB-BINACA) to 99.5 ± 0.08% ((S)-MDMB-FUBINACA). Most tested SCRAs were cleared rapidly in vitro in pooled human liver microsomes (pHLM) and pooled cryopreserved human hepatocytes (pHHeps). Intrinsic clearance (CLint) ranged from 13.7 ± 4.06 ((R)-AB-FUBINACA) to 2944 ± 95.9 mL min−1 kg−1 ((S)-AMB-FUBINACA) in pHLM, and from 110 ± 34.5 ((S)-AB-FUBINACA) to 3216 ± 607 mL min−1 kg−1 ((S)-AMB-FUBINACA) in pHHeps. Predicted Human in vivo hepatic clearance (CLH) ranged from 0.34 ± 0.09 ((S)-AB-FUBINACA) to 17.79 ± 0.20 mL min−1 kg−1 ((S)-5F-AMB-PINACA) in pHLM and 1.39 ± 0.27 ((S)-MDMB-FUBINACA) to 18.25 ± 0.12 mL min−1 kg−1 ((S)-5F-AMB-PINACA) in pHHeps. Valinate and tert-leucinate indole and indazole-3-carboxamide SCRAs are often rapidly metabolised in vitro but are highly protein bound in vivo and therefore predicted in vivo CLH is much slower than CLint. This is likely to give rise to longer detection windows of these substances and their metabolites in urine, possibly as a result of accumulation of parent drug in lipid-rich tissues, with redistribution into the circulatory system and subsequent metabolism.
Collapse
|
63
|
Giorgetti A, Orazietti V, Busardò FP, Pirani F, Giorgetti R. Died with or Died of? Development and Testing of a SARS CoV-2 Significance Score to Assess the Role of COVID-19 in the Deaths of Affected Patients. Diagnostics (Basel) 2021; 11:190. [PMID: 33525705 PMCID: PMC7912253 DOI: 10.3390/diagnostics11020190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
Since December 2019, a new form of coronavirus, SARS-CoV-2, has spread from China to the whole word, raising concerns regarding Coronavirus Disease 2019 (COVID-19) endangering public health and life. Over 1.5 million deaths related with COVID-19 have been recorded worldwide, with wide variations among countries affected by the pandemic and continuously growing numbers. The aim of this paper was to provide an overview of the literature cases of deaths involving COVID-19 and to evaluate the application of the COVID-19 Significance Score (CSS) in the classification of SARS CoV-2-related fatalities, comparing it with the Hamburg rating scale. The results obtained allowed us to highlight that CSS used after a complete accurate post-mortem examination, coupled to the retrieval of in vivo data, post-mortem radiology, histology and toxicology, as well as to additional required analyses (e.g., electronic microscopy) is a useful and concise tool in the assessment of the cause of death and the role played by this virus. A shared use of this scale might hopefully lower the inhomogeneities in forensic evaluation of SARS CoV-2-related fatalities.
Collapse
Affiliation(s)
- Arianna Giorgetti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy;
| | - Vasco Orazietti
- Department of Excellence of Biomedical Sciences and Public Health, University “Politecnica delle Marche” of Ancona, Via Conca 71, 60126 Ancona, Italy; (V.O.); (F.P.B.); (R.G.)
| | - Francesco Paolo Busardò
- Department of Excellence of Biomedical Sciences and Public Health, University “Politecnica delle Marche” of Ancona, Via Conca 71, 60126 Ancona, Italy; (V.O.); (F.P.B.); (R.G.)
| | - Filippo Pirani
- Department of Excellence of Biomedical Sciences and Public Health, University “Politecnica delle Marche” of Ancona, Via Conca 71, 60126 Ancona, Italy; (V.O.); (F.P.B.); (R.G.)
| | - Raffaele Giorgetti
- Department of Excellence of Biomedical Sciences and Public Health, University “Politecnica delle Marche” of Ancona, Via Conca 71, 60126 Ancona, Italy; (V.O.); (F.P.B.); (R.G.)
| |
Collapse
|
64
|
Determination of the Synthetic Cannabinoids JWH-122, JWH-210, UR-144 in Oral Fluid of Consumers by GC-MS and Quantification of Parent Compounds and Metabolites by UHPLC-MS/MS. Int J Mol Sci 2020; 21:ijms21249414. [PMID: 33321929 PMCID: PMC7764284 DOI: 10.3390/ijms21249414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022] Open
Abstract
The consumption of synthetic cannabinoids (SCs) has significantly increased in the last decade and the analysis of SCs and their metabolites in human specimens is gaining interest in clinical and forensic toxicology. A pilot study has been carried out using a combination of an initial last generation gas chromatography-mass spectrometry (GC-MS) screening method for the determination of JWH-122, JWH-210, UR-144) in oral fluid (OF) of consumers and an ultra-high performance liquid chromatography high resolution mass spectrometry (UHPLC-HRMS) confirmatory method for the quantification of the parent compounds and their metabolites in the same biological matrix. OF samples were simply liquid-liquid extracted before injecting in both chromatographic systems. The developed methods have been successfully validated and were linear from limit of quantification (LOQ) to 50 ng/mL OF. Recovery of analytes was always higher than 70% and matrix effect always lower than 15% whereas intra-assay and inter-assay precision and accuracy were always better than 16%. After smoking 1 mg JWH-122 or UR-144 and 3 mg JWH-210, maximum concentration of 4.00-3.14 ng/mL JWH-122, 8.10-7.30 ng/mL JWH-210 ng/mL and 7.40 and 6.81 ng/mL UR-144 were measured by GC-MS and UHPLC-HRMS respectively at 20 min after inhalation. Metabolites of JWH 122 and 210 were quantified in OF by UHPLC-HRMS, while that of UR144 was only detectable in traces. Our results provide for the first time information about disposition of these SCs and their metabolites in consumers OF. Last generation GC-MS has proven useful tool to identify and quantify parent SCs whereas UHPLC-HRMS also confirmed the presence of SCs metabolites in the OF of SCs consumers.
Collapse
|
65
|
Malaca S, Lo Faro AF, Tamborra A, Pichini S, Busardò FP, Huestis MA. Toxicology and Analysis of Psychoactive Tryptamines. Int J Mol Sci 2020; 21:E9279. [PMID: 33291798 PMCID: PMC7730282 DOI: 10.3390/ijms21239279] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022] Open
Abstract
Our understanding of tryptamines is poor due to the lack of data globally. Tryptamines currently are not part of typical toxicology testing regimens and their contribution to drug overdoses may be underestimated. Although their prevalence was low, it is increasing. There are few published data on the many new compounds, their mechanisms of action, onset and duration of action, toxicity, signs and symptoms of intoxication and analytical methods to identify tryptamines and their metabolites. We review the published literature and worldwide databases to describe the newest tryptamines, their toxicology, chemical structures and reported overdose cases. Tryptamines are 5-HT2A receptor agonists that produce altered perceptions of reality. Currently, the most prevalent tryptamines are 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DiPT), 5-methoxy-N,N- diallyltryptamine (5-MeO-DALT) and dimethyltryptamine (DMT). From 2015 to 2020, 22 new analytical methods were developed to identify/quantify tryptamines and metabolites in biological samples, primarily by liquid chromatography tandem mass spectrometry. The morbidity accompanying tryptamine intake is considerable and it is critical for clinicians and laboratorians to be informed of the latest data on this public health threat.
Collapse
Affiliation(s)
- Sara Malaca
- Department of Excellence of Biomedical Sciences and Public Health, University “Politecnica delle Marche” of Ancona, Via Tronto 10, 60126 Ancona, Italy; (S.M.); (A.F.L.F.); (A.T.)
| | - Alfredo Fabrizio Lo Faro
- Department of Excellence of Biomedical Sciences and Public Health, University “Politecnica delle Marche” of Ancona, Via Tronto 10, 60126 Ancona, Italy; (S.M.); (A.F.L.F.); (A.T.)
| | - Alice Tamborra
- Department of Excellence of Biomedical Sciences and Public Health, University “Politecnica delle Marche” of Ancona, Via Tronto 10, 60126 Ancona, Italy; (S.M.); (A.F.L.F.); (A.T.)
| | - Simona Pichini
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, V.Le Regina Elena 299, 00161 Rome, Italy;
| | - Francesco Paolo Busardò
- Department of Excellence of Biomedical Sciences and Public Health, University “Politecnica delle Marche” of Ancona, Via Tronto 10, 60126 Ancona, Italy; (S.M.); (A.F.L.F.); (A.T.)
| | - Marilyn A. Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, 1020 Walnut St, Philadelphia, PA 19144, USA;
| |
Collapse
|
66
|
YETER O. Simultaneous determination of 4F-MDMB BINACA, a new synthetic cannabinoid, and its metabolites in human blood samples by LC-MS/MS. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2020. [DOI: 10.18596/jotcsa.770427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
67
|
Pellegrini M, Marchei E, Papaseit E, Farré M, Zaami S. UHPLC-HRMS and GC-MS Screening of a Selection of Synthetic Cannabinoids and Metabolites in Urine of Consumers. ACTA ACUST UNITED AC 2020; 56:medicina56080408. [PMID: 32823724 PMCID: PMC7466350 DOI: 10.3390/medicina56080408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022]
Abstract
Background and Objectives: The use of synthetic cannabinoids has increased around the world. As a result, the implementation of accurate analysis in human biological matrices is relevant and fundamental. Two different analytical technologies, ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) and high-sensitivity gas chromatography-mass spectrometry (GC-MS) were used for the determination of three synthetic cannabinoids JWH-122, JWH 210, UR-144 and their metabolites in urine of consumers. Materials and Methods: Sample preparation included an initial hydrolysis with β-glucuronidase and liquid-liquid extraction. The UHPLC-HRMS method included a Kinetex 2.6 u Biphenyl 100A (100 × 2.1 mm, 2.6 μm) (Phenomenex, Italy) column with a gradient mobile phase consisting of mobile phase A (ammonium formate 2mM in water, 0.1% formic acid) and mobile phase B (ammonium formate 2mM in methanol/acetonitrile 50:50 (v/v), 0.1% formic acid) and a full-scan data-dependent MS2 (ddMS2) mode was used (mass range 100-1000 m/z). The GC-MS method employed an ultra-Inert Intuvo GC column (HP-5MS UI, 30 m × 250 µm i.d, film thickness 0.25 µm; Agilent Technologies, Santa Clara, CA, USA) and electron-impact (EI) mass spectra were recorded in total ion monitoring mode (scan range 40-550 m/z). Results: Both methods have been successfully used for screening of parent synthetic cannabinoids and their metabolites in urine samples of consumers. Conclusions: The screening method applied JWH-122, JWH-210, UR-144 and their metabolites in urine of consumers can be applied to other compounds of the JWH family.
Collapse
Affiliation(s)
- Manuela Pellegrini
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, V.Le Regina Elena 299, 00161 Rome, Italy; (M.P.); (E.M.)
| | - Emilia Marchei
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, V.Le Regina Elena 299, 00161 Rome, Italy; (M.P.); (E.M.)
| | - Esther Papaseit
- Clinical Pharmacology Unit, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), 08916 Badalona, Spain; (E.P.); (M.F.)
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Spain
| | - Magí Farré
- Clinical Pharmacology Unit, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), 08916 Badalona, Spain; (E.P.); (M.F.)
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Spain
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University, 00161 Rome, Italy
- Correspondence: ; Tel.: +39-0649912226
| |
Collapse
|
68
|
Morrow PL, Stables S, Kesha K, Tse R, Kappatos D, Pandey R, Russell S, Linsell O, McCarthy MJ, Spark A, Vertes D, Triggs Y, McCarthy S, Cuthers N, Massey R. An outbreak of deaths associated with AMB-FUBINACA in Auckland NZ. EClinicalMedicine 2020; 25:100460. [PMID: 32743487 PMCID: PMC7385440 DOI: 10.1016/j.eclinm.2020.100460] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AMB-FUBINACA is a synthetic cannabinoid that has been associated with periodic outbreaks of acute poisonings, but few fatalities. In late May, June and July 2017 Auckland, New Zealand, experienced an outbreak of deaths associated with AMB-FUBINACA that continued at a rate of about 2-3 per month through February 2019. The aim of this study was to define the demographic, circumstantial, pathological and toxicological characteristics of this outbreak. METHODS All records of the Northern Forensic Pathology Service, Auckland Hospital, were reviewed in which the word "AMB-FUBINACA" was referenced, including initial police reports, autopsy reports and toxicology reports. Recorded data included age, sex, race/ethnicity, times and locations, cause of death, autopsy and toxicology findings, and a brief summary of the circumstances of death. Descriptive statistics were performed using IBM® SPSS® Statistics Version 24 and Microsoft® Excel® Version 14.7.2. FINDINGS Sixty-four cases were identified. One sudden infant death and five cases where cause of death was due to trauma were excluded. Of the remaining 58 cases, 88% were male. Mean age was 42 years. In 95% of the deaths, AMB-FUBINACA alone or in combination with alcohol or another drug was listed as the primary or contributory cause of death. In 41 cases postmortem blood concentrations of AMB-FUBINACA acid were available, ranging from <45 ng/mL to >1000 ng/mL, mean 229 ng/mL, median 140 ng/mL. Comorbidities identified included mixed intoxications (29%), heart disease (47%) and obesity (16%). A mental health diagnosis was reported in 50%, and 40% were on antipsychotic medications. INTERPRETATION This study presents characteristics, comorbidities and toxicological findings in a unique outbreak of deaths associated with the synthetic cannabinoid AMB-FUBINACA in Auckland, NZ. FUNDING All work was funded as part of the usual employment of the authors in their respective institutions. No special funding sources are reported.
Collapse
Affiliation(s)
- Paul L Morrow
- Northern Forensic Pathology Service, LabPlus, Gate 4 Grafton Rd, Auckland City Hospital, PO Box 110031, Auckland 1148, New Zealand
- Corresponding author.
| | - Simon Stables
- Northern Forensic Pathology Service, LabPlus, Gate 4 Grafton Rd, Auckland City Hospital, PO Box 110031, Auckland 1148, New Zealand
| | - Kilak Kesha
- Northern Forensic Pathology Service, LabPlus, Gate 4 Grafton Rd, Auckland City Hospital, PO Box 110031, Auckland 1148, New Zealand
| | - Rexson Tse
- Northern Forensic Pathology Service, LabPlus, Gate 4 Grafton Rd, Auckland City Hospital, PO Box 110031, Auckland 1148, New Zealand
| | - Diana Kappatos
- Institute of Environmental Science and Research (ESR), 34 Kenepuru Dr, Kenepuru, Porirua 5022, New Zealand
| | - Rishi Pandey
- Institute of Environmental Science and Research (ESR), 34 Kenepuru Dr, Kenepuru, Porirua 5022, New Zealand
| | - Sarah Russell
- Institute of Environmental Science and Research (ESR), 34 Kenepuru Dr, Kenepuru, Porirua 5022, New Zealand
| | - Oliver Linsell
- Institute of Environmental Science and Research (ESR), 34 Kenepuru Dr, Kenepuru, Porirua 5022, New Zealand
| | - Mary Jane McCarthy
- Institute of Environmental Science and Research (ESR), 34 Kenepuru Dr, Kenepuru, Porirua 5022, New Zealand
| | - Amy Spark
- Northern Forensic Pathology Service, LabPlus, Gate 4 Grafton Rd, Auckland City Hospital, PO Box 110031, Auckland 1148, New Zealand
| | - Dianne Vertes
- Northern Forensic Pathology Service, LabPlus, Gate 4 Grafton Rd, Auckland City Hospital, PO Box 110031, Auckland 1148, New Zealand
| | - Yvonne Triggs
- Northern Forensic Pathology Service, LabPlus, Gate 4 Grafton Rd, Auckland City Hospital, PO Box 110031, Auckland 1148, New Zealand
| | - Sinead McCarthy
- Northern Forensic Pathology Service, LabPlus, Gate 4 Grafton Rd, Auckland City Hospital, PO Box 110031, Auckland 1148, New Zealand
| | | | | |
Collapse
|
69
|
Walle N, Nordmeier F, Doerr AA, Peters B, Laschke MW, Menger MD, Schmidt PH, Meyer MR, Schaefer N. Comparison of in vitro and in vivo models for the elucidation of metabolic patterns of 7-azaindole-derived synthetic cannabinoids exemplified using cumyl-5F-P7AICA. Drug Test Anal 2020; 13:74-90. [PMID: 32678962 DOI: 10.1002/dta.2899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 02/06/2023]
Abstract
Due to the dynamic market involving synthetic cannabinoids (SCs), the determination of analytical targets is challenging in clinical and forensic toxicology. SCs usually undergo extensive metabolism, and therefore their main metabolites must be identified for the detection in biological matrices, particularly in urine. Controlled human studies are usually not possible for ethical reasons; thus, alternative models must be used. The aim of this work was to predict the in vitro and in vivo metabolic patterns of 7-azaindole-derived SCs using 1-(5-fluoropentyl)-N-(2-phenylpropan-2-yl)-1H-pyrollo[2,3-b]pyridin-3-carboxamide (cumyl-5F-P7AICA) as an example. Different in vitro (pooled human liver S9 fraction, pooled human liver microsomes, and pig liver microsomes) and in vivo (rat and pig) systems were compared. Monooxygenase isoenzymes responsible for the most abundant phase I steps, namely oxidative defluorination (OF) followed by carboxylation, monohydroxylation, and ketone formation, were identified. In both in vivo models, OF/carboxylation and N-dealkylation/monohydroxylation/sulfation could be detected. Regarding pHS9 and pig urine, monohydroxylation/sulfation or glucuronidation was also abundant. Furthermore, the parent compound could still be detected in all models. Initial monooxygenase activity screening revealed the involvement of CYP2C19, CYP3A4, and CYP3A5. Therefore, in addition to the parent compound, the OF/carboxylated and monohydroxylated (and sulfated or glucuronidated) metabolites can be recommended as urinary targets. In comparison to literature, the pig model predicts best the human metabolic pattern of cumyl-5F-P7AICA. Furthermore, the pig model should be suitable to mirror the time-dependent excretion pattern of parent compounds and metabolites.
Collapse
Affiliation(s)
- Nadja Walle
- Institute of Legal Medicine, Saarland University, Homburg, Germany
| | | | - Adrian A Doerr
- Institute of Legal Medicine, Saarland University, Homburg, Germany
| | - Benjamin Peters
- Institute of Legal Medicine, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Peter H Schmidt
- Institute of Legal Medicine, Saarland University, Homburg, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Nadine Schaefer
- Institute of Legal Medicine, Saarland University, Homburg, Germany
| |
Collapse
|