51
|
Fontana BD, Müller TE, Cleal M, de Abreu MS, Norton WHJ, Demin KA, Amstislavskaya TG, Petersen EV, Kalueff AV, Parker MO, Rosemberg DB. Using zebrafish (Danio rerio) models to understand the critical role of social interactions in mental health and wellbeing. Prog Neurobiol 2021; 208:101993. [PMID: 33440208 DOI: 10.1016/j.pneurobio.2021.101993] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/24/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Social behavior represents a beneficial interaction between conspecifics that is critical for maintaining health and wellbeing. Dysfunctional or poor social interaction are associated with increased risk of physical (e.g., vascular) and psychiatric disorders (e.g., anxiety, depression, and substance abuse). Although the impact of negative and positive social interactions is well-studied, their underlying mechanisms remain poorly understood. Zebrafish have well-characterized social behavior phenotypes, high genetic homology with humans, relative experimental simplicity and the potential for high-throughput screens. Here, we discuss the use of zebrafish as a candidate model organism for studying the fundamental mechanisms underlying social interactions, as well as potential impacts of social isolation on human health and wellbeing. Overall, the growing utility of zebrafish models may improve our understanding of how the presence and absence of social interactions can differentially modulate various molecular and physiological biomarkers, as well as a wide range of other behaviors.
Collapse
Affiliation(s)
- Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK.
| | - Talise E Müller
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil; Laboratory of Experimental Neuropscychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Madeleine Cleal
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - William H J Norton
- Department of Neuroscience, Psychology and Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Scientific Research Center of Radiology and Surgical Technologies, St. Petersburg, Russia
| | | | - Elena V Petersen
- Laboratory of Molecular Biology, Neuroscience and Bioscreening, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Beibei, Chongqing, China; Ural Federal University, Ekaterinburg, Russia
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Denis B Rosemberg
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil; Laboratory of Experimental Neuropscychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA.
| |
Collapse
|
52
|
Understanding stress: Insights from rodent models. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2:100013. [PMID: 36246514 PMCID: PMC9559100 DOI: 10.1016/j.crneur.2021.100013] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 02/01/2023] Open
Abstract
Through incorporating both physical and psychological forms of stressors, a variety of rodent models have provided important insights into the understanding of stress physiology. Rodent models also have provided significant information with regards to the mechanistic basis of the pathophysiology of stress-related disorders such as anxiety disorders, depressive illnesses, cognitive impairment and post-traumatic stress disorder. Additionally, rodent models of stress have served as valuable tools in the area of drug screening and drug development for treatment of stress-induced conditions. Although rodent models do not accurately reproduce the biochemical or physiological parameters of stress response and cannot fully mimic the natural progression of human disorders, yet, animal research has provided answers to many important scientific questions. In this review article, important studies utilizing a variety of stress models are described in terms of their design and apparatus, with specific focus on their capabilities to generate reliable behavioral and biochemical read-out. The review focusses on the utility of rodent models by discussing examples in the literature that offer important mechanistic insights into physiologically relevant questions. The review highlights the utility of rodent models of stress as important tools for advancing the mission of scientific research and inquiry. Stressful life events may lead to the onset of severe psychopathologies in humans. Rodents may model many features of stress exposure in human populations. Induction of stress via pharmacological and psychological manipulations alter rodent behavior. Mechanistic rodent studies reveal key molecular targets critical for new therapeutic targets.
Collapse
|
53
|
Bendersky CJ, Milian AA, Andrus MD, De La Torre U, Walker DM. Long-Term Impacts of Post-weaning Social Isolation on Nucleus Accumbens Function. Front Psychiatry 2021; 12:745406. [PMID: 34616326 PMCID: PMC8488119 DOI: 10.3389/fpsyt.2021.745406] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023] Open
Abstract
Adolescence is a period of incredible change, especially within the brain's reward circuitry. Stress, including social isolation, during this time has profound effects on behaviors associated with reward and other neuropsychiatric disorders. Because the Nucleus Accumbens (NAc), is crucial to the integration of rewarding stimuli, the NAc is especially sensitive to disruptions by adolescent social isolation stress. This review highlights the long-term behavioral consequences of adolescent social isolation rearing on the NAc. It will discuss the cellular and molecular changes within the NAc that might underlie the long-term effects on behavior. When available sex-specific effects are discussed. Finally by mining publicly available data we identify, for the first time, key transcriptional profiles induced by adolescence social isolation in genes associated with dopamine receptor 1 and 2 medium spiny neurons and genes associated with cocaine self-administration. Together, this review provides a comprehensive discussion of the wide-ranging long-term impacts of adolescent social isolation on the dopaminergic system from molecules through behavior.
Collapse
Affiliation(s)
- Cari J Bendersky
- Department of Behavioral Neuroscience, Oregon Health and Science and University, Portland, OR, United States
| | - Allison A Milian
- Department of Behavioral Neuroscience, Oregon Health and Science and University, Portland, OR, United States
| | - Mason D Andrus
- Department of Behavioral Neuroscience, Oregon Health and Science and University, Portland, OR, United States
| | - Ubaldo De La Torre
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Deena M Walker
- Department of Behavioral Neuroscience, Oregon Health and Science and University, Portland, OR, United States
| |
Collapse
|
54
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
55
|
Tsuda MC, Mahdi S, Namchuk A, Wu TJ, Lucki I. Vendor differences in anxiety-like behaviors in female and male Sprague Dawley rats. Physiol Behav 2020; 227:113131. [PMID: 32791181 DOI: 10.1016/j.physbeh.2020.113131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/22/2020] [Accepted: 08/07/2020] [Indexed: 01/25/2023]
Abstract
Although Sprague Dawley outbred rats are commonly used in behavioral, physiological, and pharmacological studies, dramatic differences in responses may emerge from rats obtained from different suppliers even when sex, age, and environmental conditions are maintained constant. In the present study, we compared behavioral responses on three tests related to anxiety of Sprague Dawley female and male rats obtained from three different vendors in the United States: Charles River, Envigo, and Taconic. All rats were tested in the open field, light-dark box, and elevated zero maze. We found reduced time spent in the center area of the open field and decreased light compartment duration in the light-dark box test in female and male rats from Taconic compared to Charles River and Envigo rats, suggesting anxiety-like behaviors differ between the three vendors. No vendor differences were found on performance in the elevated zero maze. Furthermore, the contribution of stress hormones to vendor differences was examined by measuring serum corticosterone levels in rats 30 min after exposure to the elevated zero maze. There were no vendor differences in corticosterone levels, suggesting that endogenous levels of stress hormones most likely did not contribute to vendor differences in anxiety-like behaviors. Collectively, these findings highlight the importance of vendor selection of the Sprague Dawley stock for research involving behavioral tests related to anxiety.
Collapse
Affiliation(s)
- Mumeko C Tsuda
- Rat Behavior Core, Uniformed Services University, Bethesda, MD, USA.
| | - Sumayyah Mahdi
- Department of Obstetrics and Gynecology, Uniformed Services University, Bethesda, MD, USA
| | - Amanda Namchuk
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD, USA
| | - T John Wu
- Rat Behavior Core, Uniformed Services University, Bethesda, MD, USA; Department of Obstetrics and Gynecology, Uniformed Services University, Bethesda, MD, USA
| | - Irwin Lucki
- Rat Behavior Core, Uniformed Services University, Bethesda, MD, USA; Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
56
|
Prolonged Social Isolation, Started Early in Life, Impairs Cognitive Abilities in Rats Depending on Sex. Brain Sci 2020; 10:brainsci10110799. [PMID: 33143056 PMCID: PMC7692092 DOI: 10.3390/brainsci10110799] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 11/23/2022] Open
Abstract
Background: The chronic stress of social isolation is a valid predictor of cognitive pathology. This study aimed to compare the effects of long-term social isolation on female versus male Wistar rats’ learning and memory. We hypothesized that prolonged social isolation stress, which starts early in life, would affect learning in a sex-dependent manner. Methods: Social isolation started at the edge of early to mid-adolescence and lasted 9 months. The rat’s cognitive abilities were assessed by habituation and reactivity to novelty in the open field (OF) test, spatial memory in the Morris water maze (MWM), and the conditioned passive avoidance (PA) reflex. Basal serum corticosterone levels were assessed using an enzyme-linked immunosorbent assay. Results: Regardless of the housing conditions, females habituated to the OF under low illumination slower than males. Under bright light, the single-housed rats showed hyporeactivity to novelty. In the MWM, all the rats learned to locate the platform; however, on the first training day, the single-housed females’ speed was lower relative to other groups. Four months later, in the post-reminder probe trial, the single-housed rats reached the area around the platform site later, and only males, regardless of housing conditions, preferred the target quadrant. Single-housed rats, irrespective of sex, showed a PA deficit. There was a more pronounced conditioned fear in the single-housed males than in females. In both male and female rats, basal corticosterone levels in rat blood serum after 9 months of social isolation did not differ from that in the group-housed rats of the corresponding sex. Meanwhile, females’ basal corticosterone level was higher than in males, regardless of the housing conditions. The relative weight of the adrenal glands was increased only in single-housed females. Conclusions: Under long-term social isolation, started early in life, single-housed females compared with males showed more pronounced cognitive impairments in the MWM and PA paradigm, findings that specify their greater vulnerability to the stress of prolonged social isolation.
Collapse
|
57
|
Social isolation in rats: Effects on animal welfare and molecular markers for neuroplasticity. PLoS One 2020; 15:e0240439. [PMID: 33108362 PMCID: PMC7591026 DOI: 10.1371/journal.pone.0240439] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 09/27/2020] [Indexed: 12/18/2022] Open
Abstract
Early life stress compromises brain development and can contribute to the development of mental illnesses. A common animal model used to study different facets of psychiatric disorders is social isolation from early life on. In rats, this isolation can induce long-lasting alterations in molecular expression and in behavior. Since social isolation models severe psychiatric symptoms, it is to be expected that it affects the overall wellbeing of the animals. As also promoted by the 3Rs principle, though, it is pivotal to decrease the burden of laboratory animals by limiting the number of subjects (reduce, replace) and by improving the animals’ wellbeing (refine). The aim of this study was therefore to test possible refinement strategies such as resocialization and mere adult social isolation. We examined whether the alternatives still triggered the necessary phenotype while minimizing the stress load on the animals. Interestingly, we did not find reduced wellbeing-associated burrowing performance in isolated rats. The hyperactive phenotype seen in socially isolated animals was observed for rats undergoing the adult-only isolation, but resocializing ameliorated the locomotor abnormality. Isolation strongly affected markers of neuroplasticity in the prefrontal cortex independent of timing: mRNA levels of Arc, Bdnf and the pool of Bdnf transcripts with the 3’ long UTR were reduced in all groups. Bdnf splice variant IV expression was reduced in lifelong-isolated animals. Some of these deficits normalized after resocialization; likewise, exon VI Bdnf mRNA levels were reduced only in animals persistently isolated. Conversely, social deprivation did not affect the expression of Gad67 and Pvb, two GABAergic markers, whereas changes occurred in the expression of dopamine d1 and d2 receptors. As adult isolation was sufficient to trigger the hyperactive phenotype and impaired neuroplasticity in the prefrontal cortex, it could be a candidate for a refinement strategy for certain research questions. To fully grade the severity of post-weaning social isolation and the alternatives, adult isolation and resocialization, a more profound and multimodal assessment approach is necessary.
Collapse
|
58
|
Kaneda Y, Kawata A, Suzuki K, Matsunaga D, Yasumatsu M, Ishiwata T. Comparison of neurotransmitter levels, physiological conditions, and emotional behavior between isolation-housed rats with group-housed rats. Dev Psychobiol 2020; 63:452-460. [PMID: 32945540 DOI: 10.1002/dev.22036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/17/2020] [Accepted: 08/25/2020] [Indexed: 11/11/2022]
Abstract
Brain monoaminergic neurotransmitters, such as dopamine (DA), serotonin (5-HT), and noradrenaline (NA), play crucial roles in neuronal and physiological functions, including social behaviors. Isolation housing may induce behavioral and neurochemical abnormalities in rats, although its influence on neurotransmitter levels remains obscure. This study investigated the influence of isolation- or group-housing on core body temperature (Tcore ), locomotor activity (ACT), emotional behavior, and neurotransmitter levels in male Wistar rats. Behavioral changes were monitored using the open field test (OFT) and social interaction test (SIT). After 4 weeks, brain tissues were collected to quantify 5-HT, DA, and NA concentrations. Body weight and basal Tcore during both the light and dark phase were higher in isolation-housed than in group-housed rats, although no significant difference was seen in ACT. No significant differences were observed during the OFT. Isolation-housed rats showed increased line crossing and decreased social behavior during the SIT. Isolation-housed rats exhibited decreased levels of 5-HT in the caudate putamen and amygdala, and elevated and decreased NA levels in the paraventricular hypothalamic nucleus and hippocampus, respectively. However, DA levels were unaffected. Thus, housing environments may affect brain areas that regulate various neuronal and physiological functions, such as memory, stress responses, and emotional behavior.
Collapse
Affiliation(s)
- Yuta Kaneda
- Graduate School of Community & Human Services, Rikkyo University, Saitama, Japan
| | - Akira Kawata
- Graduate School of Community & Human Services, Rikkyo University, Saitama, Japan
| | - Kota Suzuki
- Graduate School of Community & Human Services, Rikkyo University, Saitama, Japan
| | - Daisuke Matsunaga
- Graduate School of Community & Human Services, Rikkyo University, Saitama, Japan
| | - Mikinobu Yasumatsu
- Graduate School of Community & Human Services, Rikkyo University, Saitama, Japan
| | - Takayuki Ishiwata
- Graduate School of Community & Human Services, Rikkyo University, Saitama, Japan
| |
Collapse
|
59
|
Gabriel P, Mastracchio TA, Bordner K, Jeffrey R. Impact of enriched environment during adolescence on adult social behavior, hippocampal synaptic density and dopamine D2 receptor expression in rats. Physiol Behav 2020; 226:113133. [PMID: 32795458 DOI: 10.1016/j.physbeh.2020.113133] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/20/2020] [Accepted: 08/10/2020] [Indexed: 01/24/2023]
Abstract
Environmental enrichment (EE) is one experimental manipulation that induces changes in the brain. However, it is important to distinguish between physical and social components of enrichment. To this end we established four groups of rats reared in different enriched environments during the adolescent period. Our results indicate heightened social memory and increased spine density in dentate gyrus specifically in socially enriched animals. Physical enrichment increased spine density in CA1. Dopamine D2 receptor expression in hippocampus was decreased across all enrichment conditions. Altogether, our results demonstrate differing effects of physical and social enrichment, supporting an important role for environment in synaptogenesis, behavior, and dopaminergic signaling.
Collapse
Affiliation(s)
- Paul Gabriel
- Department of Biology, Southern Connecticut State University, New Haven CT, USA
| | | | - Kelly Bordner
- Department of Psychology, Southern Connecticut State University, New Haven CT, USA
| | - Rachel Jeffrey
- Department of Biology, Southern Connecticut State University, New Haven CT, USA.
| |
Collapse
|
60
|
Orben A, Tomova L, Blakemore SJ. The effects of social deprivation on adolescent development and mental health. THE LANCET. CHILD & ADOLESCENT HEALTH 2020. [PMID: 32540024 DOI: 10.31234/osf.io/7afmd] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Adolescence (the stage between 10 and 24 years) is a period of life characterised by heightened sensitivity to social stimuli and the increased need for peer interaction. The physical distancing measures mandated globally to contain the spread of COVID-19 are radically reducing adolescents' opportunities to engage in face-to-face social contact outside their household. In this interdisciplinary Viewpoint, we describe literature from a variety of domains that highlight how social deprivation in adolescence might have far-reaching consequences. Human studies have shown the importance of peer acceptance and peer influence in adolescence. Animal research has shown that social deprivation and isolation have unique effects on brain and behaviour in adolescence compared with other stages of life. However, the decrease in adolescent face-to-face contact might be less detrimental due to widespread access to digital forms of social interaction through technologies such as social media. The findings reviewed highlight how physical distancing might have a disproportionate effect on an age group for whom peer interaction is a vital aspect of development.
Collapse
Affiliation(s)
- Amy Orben
- Medical Research Council Cognition and Brain Sciences Unit and Emmanuel College, University of Cambridge, Cambridge, UK
| | - Livia Tomova
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah-Jayne Blakemore
- Department of Psychology, University of Cambridge, Cambridge, UK; UCL Institute of Cognitive Neuroscience, University College London, London, UK.
| |
Collapse
|
61
|
Orben A, Tomova L, Blakemore SJ. The effects of social deprivation on adolescent development and mental health. THE LANCET. CHILD & ADOLESCENT HEALTH 2020; 4:634-640. [PMID: 32540024 PMCID: PMC7292584 DOI: 10.1016/s2352-4642(20)30186-3] [Citation(s) in RCA: 500] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022]
Abstract
Adolescence (the stage between 10 and 24 years) is a period of life characterised by heightened sensitivity to social stimuli and the increased need for peer interaction. The physical distancing measures mandated globally to contain the spread of COVID-19 are radically reducing adolescents' opportunities to engage in face-to-face social contact outside their household. In this interdisciplinary Viewpoint, we describe literature from a variety of domains that highlight how social deprivation in adolescence might have far-reaching consequences. Human studies have shown the importance of peer acceptance and peer influence in adolescence. Animal research has shown that social deprivation and isolation have unique effects on brain and behaviour in adolescence compared with other stages of life. However, the decrease in adolescent face-to-face contact might be less detrimental due to widespread access to digital forms of social interaction through technologies such as social media. The findings reviewed highlight how physical distancing might have a disproportionate effect on an age group for whom peer interaction is a vital aspect of development.
Collapse
Affiliation(s)
- Amy Orben
- Medical Research Council Cognition and Brain Sciences Unit and Emmanuel College, University of Cambridge, Cambridge, UK
| | - Livia Tomova
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah-Jayne Blakemore
- Department of Psychology, University of Cambridge, Cambridge, UK; UCL Institute of Cognitive Neuroscience, University College London, London, UK.
| |
Collapse
|
62
|
Rivera-Irizarry JK, Skelly MJ, Pleil KE. Social Isolation Stress in Adolescence, but not Adulthood, Produces Hypersocial Behavior in Adult Male and Female C57BL/6J Mice. Front Behav Neurosci 2020; 14:129. [PMID: 32792924 PMCID: PMC7394086 DOI: 10.3389/fnbeh.2020.00129] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/30/2020] [Indexed: 12/23/2022] Open
Abstract
Chronic stress during the developmental period of adolescence increases susceptibility to many neuropsychiatric diseases in adulthood, including anxiety, affective, and alcohol/substance use disorders. Preclinical rodent models of adolescent stress have produced varying results that are species, strain, sex, and laboratory-dependent. However, adolescent social isolation is a potent stressor in humans that has been reliably modeled in male rats, increasing adult anxiety-like and alcohol drinking behaviors, among others. In this study, we examined the generalizability and sex-dependence of this model in C57BL/6J mice, the most commonly used rodent strain in neuroscience research. We also performed a parallel study using social isolation in adulthood to understand the impact of adult social isolation on basal behavioral phenotypes. We found that 6 weeks of social isolation with minimal handling in adolescence through early adulthood [postnatal day (PD) 28-70] produced a hypersocial phenotype in both male and female mice and an anxiolytic phenotype in the elevated plus-maze in female mice. However, it had no effects in other assays for avoidance behavior or on fear conditioning, alcohol drinking, reward or aversion sensitivity, or novel object exploration in either sex. In contrast, 6 weeks of social isolation in adulthood beginning at PD77 produced an anxiogenic phenotype in the light/dark box but had no effects on any other assays. Altogether, our results suggest that: (1) adolescence is a critical period for social stress in C57BL/6J mice, producing aberrant social behavior in a sex-independent manner; and (2) chronic individual housing in adulthood does not alter basal behavioral phenotypes that may confound interpretation of behavior following other laboratory manipulations.
Collapse
Affiliation(s)
- Jean K. Rivera-Irizarry
- Graduate Program in Neuroscience, Weill Cornell Medicine Graduate School of Medical Sciences, Cornell University, New York, NY, United States
| | - Mary Jane Skelly
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Kristen E. Pleil
- Graduate Program in Neuroscience, Weill Cornell Medicine Graduate School of Medical Sciences, Cornell University, New York, NY, United States
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, United States
- Graduate Program in Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
63
|
Lin CC, Chen TY, Cheng PY, Liu YP. Early life social experience affects adulthood fear extinction deficit and associated dopamine profile abnormalities in a rat model of PTSD. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109914. [PMID: 32165120 DOI: 10.1016/j.pnpbp.2020.109914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/13/2020] [Accepted: 03/06/2020] [Indexed: 12/20/2022]
Abstract
Individuals may develop fear extinction deficits after life-threatening traumatic events; such deficits indicate posttraumatic stress disorder (PTSD). Because the occurrence of this disorder differs among people who have experienced trauma, hidden underlying factors should be determined. Increasing evidence suggests the involvement of neuronal dysregulation of information processes or cognitive function during development. This neuronal dysregulation is caused by disturbances in dopamine (DA) transmission within the fear circuit, which comprises the medial prefrontal cortex (mPFC), amygdala, and hippocampus. Single prolonged stress (SPS) combined with an isolation rearing (IR) paradigm was used to randomly assign rats to four groups [social rearing-no SPS (SR-NS), SR-SPS, IR-NS, and IR-SPS], and their performance in prepulse inhibition (PPI) and on Pavlovian fear conditioning tests was assessed. Tissue DA levels and the expression of DA receptors (D1R and D2R) in the fear circuit were measured at the end of the experiment. Our results indicated that PPI deficits and fear extinction problems were specific to rats subjected to IR and SPS, respectively. Furthermore, IR-induced PPI deficits were not influenced by SPS, but SPS-induced fear extinction retrieval impairment could be adjusted according to previous IR experiences. Neurochemically, tissue DA levels and D1R expression in the mPFC and amygdala were nonspecifically reduced by IR and SPS, whereas D2R expression in the mPFC and amygdala was higher in IR-SPS than in SR-SPS rats. These findings suggest that early life experiences may influence fear responses in adulthood through a change in DA profiles within the fear circuit.
Collapse
Affiliation(s)
- Chen-Cheng Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; Department of Psychiatry, Cheng Hsin General Hospital, Taipei 11220, Taiwan; Laboratory of Cognitive Neuroscience, Department of Physiology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Tzung-Yan Chen
- Department of Psychiatry, Cheng Hsin General Hospital, Taipei 11220, Taiwan; Laboratory of Cognitive Neuroscience, Department of Physiology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Pao-Yun Cheng
- Department of Physiology, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Yia-Ping Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; Department of Psychiatry, Cheng Hsin General Hospital, Taipei 11220, Taiwan; Laboratory of Cognitive Neuroscience, Department of Physiology, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
64
|
Keesom SM, Hurley LM. Silence, Solitude, and Serotonin: Neural Mechanisms Linking Hearing Loss and Social Isolation. Brain Sci 2020; 10:brainsci10060367. [PMID: 32545607 PMCID: PMC7349698 DOI: 10.3390/brainsci10060367] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
For social animals that communicate acoustically, hearing loss and social isolation are factors that independently influence social behavior. In human subjects, hearing loss may also contribute to objective and subjective measures of social isolation. Although the behavioral relationship between hearing loss and social isolation is evident, there is little understanding of their interdependence at the level of neural systems. Separate lines of research have shown that social isolation and hearing loss independently target the serotonergic system in the rodent brain. These two factors affect both presynaptic and postsynaptic measures of serotonergic anatomy and function, highlighting the sensitivity of serotonergic pathways to both types of insult. The effects of deficits in both acoustic and social inputs are seen not only within the auditory system, but also in other brain regions, suggesting relatively extensive effects of these deficits on serotonergic regulatory systems. Serotonin plays a much-studied role in depression and anxiety, and may also influence several aspects of auditory cognition, including auditory attention and understanding speech in challenging listening conditions. These commonalities suggest that serotonergic pathways are worthy of further exploration as potential intervening mechanisms between the related conditions of hearing loss and social isolation, and the affective and cognitive dysfunctions that follow.
Collapse
Affiliation(s)
- Sarah M. Keesom
- Department of Biology, Utica College, Utica, NY 13502, USA
- Correspondence:
| | - Laura M. Hurley
- Center for the Integrative Study of Animal Behavior, Department of Biology, Indiana University, Bloomington, IN 47405, USA;
| |
Collapse
|
65
|
Brenes JC, Fornaguera J, Sequeira-Cordero A. Environmental Enrichment and Physical Exercise Attenuate the Depressive-Like Effects Induced by Social Isolation Stress in Rats. Front Pharmacol 2020; 11:804. [PMID: 32547399 PMCID: PMC7272682 DOI: 10.3389/fphar.2020.00804] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
We assessed the antidepressant-like effects of environmental enrichment (EE) and physical exercise (PE) compared with the selective serotonin reuptake inhibitor fluoxetine against the depression-related neurobehavioral alterations induced by postweaning social isolation (SI) in rats. After 1 month of SI, rats were submitted to PE (treadmill), EE, or fluoxetine (10 mg/kg), which were compared with naïve SI and group-housed rats. After 1 month, behavior was analyzed in the open field (OFT), the sucrose preference (SPT), and the forced swimming (FST) tests. Afterward, the hippocampal serotonin contents, its metabolite, and turnover were measured. SI induced a depression-related phenotype characterized by a marginal bodyweight gain, anxiety, anhedonia, behavioral despair, and alterations of serotonin metabolism. EE produced the widest and largest antidepressive-like effect, followed by PE and fluoxetine, which were almost equivalent. The treatments, however, affected differentially the neurobehavioral domains investigated. EE exerted its largest effect on anhedonia and was the only treatment inducing anxiolytic-like effects. Fluoxetine, in contrast, produced its largest effect on serotonin metabolism, followed by its anti-behavioral despair action. PE was a middle-ground treatment with broader behavioral outcomes than fluoxetine, but ineffective to reverse the serotonergic alterations induced by SI. The most responsive test to the treatments was the FST, followed closely by the SPT. Although OFT locomotion and body weight varied considerably between groups, they were barely responsive to PE and fluoxetine. From a translational standpoint, our data suggest that exercise and recreational activities may have broader health benefits than antidepressants to overcome confinement and the consequences of chronic stress.
Collapse
Affiliation(s)
- Juan C Brenes
- Institute for Psychological Research, University of Costa Rica, San José, Costa Rica.,Neuroscience Research Center, University of Costa Rica, San José, Costa Rica
| | - Jaime Fornaguera
- Neuroscience Research Center, University of Costa Rica, San José, Costa Rica.,Biochemistry Department, School of Medicine, University of Costa Rica, San José, Costa Rica
| | - Andrey Sequeira-Cordero
- Neuroscience Research Center, University of Costa Rica, San José, Costa Rica.,Institute of Health Research, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
66
|
Conserved Serotonergic Background of Experience-Dependent Behavioral Responsiveness in Zebrafish ( Danio rerio). J Neurosci 2020; 40:4551-4564. [PMID: 32350040 DOI: 10.1523/jneurosci.2178-19.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 01/28/2023] Open
Abstract
Forming effective responses to threatening stimuli requires the adequate and coordinated emergence of stress-related internal states. Such ability depends on early-life experiences and, in connection, the adequate formation of neuromodulatory systems, particularly serotonergic signaling. Here, we assess the serotonergic background of experience-dependent behavioral responsiveness using male and female zebrafish (Danio rerio). For the first time, we have characterized a period during behavioral metamorphosis in which zebrafish are highly reactive to their environment. Absence of social stimuli during this phase established by isolated rearing fundamentally altered the behavioral phenotype of postmetamorphic zebrafish in a challenge-specific manner, partially due to reduced responsiveness and an inability to develop stress-associated arousal state. In line with this, isolation differentially affected whole-brain serotonergic signaling in resting and stress-induced conditions, an effect that was localized in the dorsal pallium and was negatively associated with responsiveness. Administration of the serotonin receptor 1A partial agonist buspirone prevented the isolation-induced serotonin response to novelty in the level of the whole brain and the forebrain as well, without affecting catecholamine levels, and rescued stress-induced arousal along with challenge-induced behaviors, which together indicates functional connection between these changes. In summary, there is a consistent negative association between behavioral responsiveness and serotonergic signaling in zebrafish, which is well recognizable through the modifying effects of developmental perturbation and pharmacological manipulations as well. Our results imply a conserved serotonergic mechanism that context-dependently modulates environmental reactivity and is highly sensitive to experiences acquired during a specific early-life time window, a phenomenon that was previously only suggested in mammals.SIGNIFICANCE STATEMENT The ability to respond to challenges is a fundamental factor in survival. We show that zebrafish that lack appropriate social stimuli in a sensitive developmental period show exacerbated alertness in nonstressful conditions while failing to react adequately to stressors. This shift is reflected inversely by central serotonergic signaling, a system that is implicated in numerous mental disorders in humans. Serotonergic changes in brain regions modulating responsivity and behavioral impairment were both prevented by the pharmacological blockade of serotonergic function. These results imply a serotonergic mechanism in zebrafish that transmits early-life experiences to the later phenotype by shaping stress-dependent behavioral reactivity, a phenomenon that was previously only suggested in mammals. Zebrafish provide new insights into early-life-dependent neuromodulation of behavioral stress-responses.
Collapse
|
67
|
Park HS, Kim TW, Park SS, Lee SJ. Swimming exercise ameliorates mood disorder and memory impairment by enhancing neurogenesis, serotonin expression, and inhibiting apoptosis in social isolation rats during adolescence. J Exerc Rehabil 2020; 16:132-140. [PMID: 32509697 PMCID: PMC7248435 DOI: 10.12965/jer.2040216.108] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/27/2020] [Indexed: 12/20/2022] Open
Abstract
Social isolation during adolescence is associated with anxiety, depres-sion, and memory impairment. Exercise has been reported as a positive effect on brain function, especially hippocampus. The present study ex-amined the effect of swimming exercise on apoptosis, cell proliferation, and serotonin expression in social isolation rats during adolescence stage. Social isolation started at postnatal day 21 and continued for 6 weeks. The rats in the swimming group were forced to swim for 60 min once daily during 6 days per week for 6 consecutive weeks. The rats in the social isolation during adolescence showed anxiety, depression, short-term memory impairment. Social isolation facilitated apoptosis and inhibited cell proliferation and differentiation. Social isolation sup-pressed expression of serotonin, brain-derived neurotrophic factor, and tyrosine kinase B. Swimming exercise alleviated anxiety, depression, short-term impairment. Swimming exercise suppressed apoptosis, en-hanced neurogenesis, and increased serotonin expression. In our study, swimming exercise ameliorates mood disorder and memory impairment by enhancing neurogenesis and serotonin expression and inhibiting apoptosis in social isolation.
Collapse
Affiliation(s)
- Hye-Sang Park
- Department of Kinesiology, College of Public Health and Cardiovascular Research Center, Lewis Katz school of Medicine, Temple University, Philadelphia, PA, USA
| | - Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea.,Exercise Rehabilitation Research Institute, Department of Exercise & Health Science, Sangmyung University, Seoul, Korea
| | - Sang-Seo Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sam-Jun Lee
- Department of Sport Rehabiliation, Tongmyong University, Busan, Korea
| |
Collapse
|
68
|
Begni V, Zampar S, Longo L, Riva MA. Sex Differences in the Enduring Effects of Social Deprivation during Adolescence in Rats: Implications for Psychiatric Disorders. Neuroscience 2020; 437:11-22. [PMID: 32334072 DOI: 10.1016/j.neuroscience.2020.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/14/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
The exposure to adverse environmental situations during sensitive periods of development may induce re-organizational effects on different systems and increase the vulnerability to develop psychiatric disorders later in life. The adolescent period has been demonstrated extremely susceptible to stressful events. However, most of the studies focused on the immediate effects of stress exposure and few of them investigated sex differences. This raised the question if these modulations might also be long-lasting and how the differential maturational events taking place during adolescence between males and females might have a role in the detrimental effects of stress. Given the importance of social play for the right maturation of behavior during adolescence, we used the preclinical model of social deprivation, based on the lack of all social contacts, for four weeks after weaning, followed by re-socialization until adulthood. We found that both male and female animals reared in isolation during adolescence developed an anhedonic phenotype at adulthood, without any impairments in the cognitive domain. At molecular level, these functional changes were associated with sex-specific impairments in the expression of neuroplastic markers as well as of hypothalamic-pituitary-adrenal axis-related genes. Lastly, we also reported anatomically-selective changes associated with the enduring effects of social isolation.
Collapse
Affiliation(s)
- Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan Italy.
| | - Silvia Zampar
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan Italy
| | - Linda Longo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan Italy.
| |
Collapse
|
69
|
The Levels of Monoamines and Their Metabolites in the Brain Structures of Rats Subjected to Two- and Three-Month-Long Social Isolation. Bull Exp Biol Med 2020; 168:605-609. [PMID: 32249401 DOI: 10.1007/s10517-020-04761-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Indexed: 10/24/2022]
Abstract
The levels of monoamines and their metabolites in the brain structures of adult Wistar rats subjected to post-weaning social isolation for 2 and 3 months were analyzed by HPLC with electrochemical detection. We have previously shown that these rats consistently demonstrate increased aggressiveness and, as a rule, impairment of short-term habituation. Two-monthlong social isolation was accompanied by a reduction in serotonin content and its increased turnover judging from the 5-HIAA/5-HT ratio in the hippocampus; three-month-long isolation was associated with increased levels of serotonin and reduction in its turnover in the amygdala. At this term, the level of dopamine metabolite 3-methoxytyramine tended to increase in the amygdala. In the frontal cortex, a tendency to a decrease in 5-HT level was found. These findings suggest that more prolonged post-weaning social isolation is accompanied by reorganization of neural networks in the brain cortex, which can serve as the pathophysiological basis for psychoemotional disorders.
Collapse
|
70
|
Oliver DK, Intson K, Sargin D, Power SK, McNabb J, Ramsey AJ, Lambe EK. Chronic social isolation exerts opposing sex-specific consequences on serotonin neuronal excitability and behaviour. Neuropharmacology 2020; 168:108015. [PMID: 32092443 DOI: 10.1016/j.neuropharm.2020.108015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022]
Abstract
Social isolation raises the risk for mood disorders associated with serotonergic disruption. Yet, the underlying mechanisms by which the stress of social isolation increases risk are not well understood. Men and women are differently vulnerable; however, this modulating role of sex is challenging to study in humans under carefully controlled conditions. Therefore, we investigated this question in mice of both sexes, asking how the long-term stress of social isolation (from weaning into adulthood) affects the excitability of serotonin neurons in the dorsal raphe nucleus as well as mouse behaviour. The electrophysiological experiments and the first set of behavioural tests were conducted in young adult mice, with additional behavioural assays completed as the mice matured to assess the stability of their behavioural phenotype. We found that social isolation exerted seemingly-opposite effects in male and female mice, relative to their respective group-housed littermate controls. This distinctive pattern was observed for the effect of social isolation on the control of serotonergic neuron excitability via the SK family of calcium-activated potassium channels. Furthermore, we observed a similar and consistent pattern on tests relevant to assessing the efficacy of anti-depressant medicines, including the forced swim test, the novelty-suppressed feeding test, and the sucrose preference test. These findings underscore the concept that stress-elicited illness manifests distinctly in males and females and that treatments aimed at restoring serotonergic function may require a sex-specific approach. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- David K Oliver
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katheron Intson
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Derya Sargin
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Saige K Power
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Janice McNabb
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Amy J Ramsey
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Evelyn K Lambe
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of OBGYN, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
71
|
Sargin D, Chottekalapanda RU, Perit KE, Yao V, Chu D, Sparks DW, Kalik S, Power SK, Troyanskaya OG, Schmidt EF, Greengard P, Lambe EK. Mapping the physiological and molecular markers of stress and SSRI antidepressant treatment in S100a10 corticostriatal neurons. Mol Psychiatry 2020; 25:1112-1129. [PMID: 31431686 PMCID: PMC7031043 DOI: 10.1038/s41380-019-0473-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/08/2019] [Accepted: 05/17/2019] [Indexed: 12/01/2022]
Abstract
In mood disorders, psychomotor and sensory abnormalities are prevalent, disabling, and intertwined with emotional and cognitive symptoms. Corticostriatal neurons in motor and somatosensory cortex are implicated in these symptoms, yet mechanisms of their vulnerability are unknown. Here, we demonstrate that S100a10 corticostriatal neurons exhibit distinct serotonin responses and have increased excitability, compared with S100a10-negative neurons. We reveal that prolonged social isolation disrupts the specific serotonin response which gets restored by chronic antidepressant treatment. We identify cell-type-specific transcriptional signatures in S100a10 neurons that contribute to serotonin responses and strongly associate with psychomotor and somatosensory function. Our studies provide a strong framework to understand the pathogenesis and create new avenues for the treatment of mood disorders.
Collapse
Affiliation(s)
- Derya Sargin
- 0000 0001 2157 2938grid.17063.33Department of Physiology, University of Toronto, Toronto, ON Canada
| | - Revathy U. Chottekalapanda
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065 USA
| | - Kristina E. Perit
- 0000 0001 2157 2938grid.17063.33Department of Physiology, University of Toronto, Toronto, ON Canada
| | - Victoria Yao
- 0000 0001 2097 5006grid.16750.35Department of Computer Science, Princeton University, Princeton, NJ 08544 USA ,0000 0001 2097 5006grid.16750.35Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544 USA
| | - Duong Chu
- 0000 0001 2157 2938grid.17063.33Department of Physiology, University of Toronto, Toronto, ON Canada
| | - Daniel W. Sparks
- 0000 0001 2157 2938grid.17063.33Department of Physiology, University of Toronto, Toronto, ON Canada
| | - Salina Kalik
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065 USA
| | - Saige K. Power
- 0000 0001 2157 2938grid.17063.33Department of Physiology, University of Toronto, Toronto, ON Canada
| | - Olga G. Troyanskaya
- 0000 0001 2097 5006grid.16750.35Department of Computer Science, Princeton University, Princeton, NJ 08544 USA ,0000 0001 2097 5006grid.16750.35Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544 USA ,grid.430264.7Flatiron Institute, Simons Foundation, New York, NY 10010 USA
| | - Eric F. Schmidt
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular Biology, The Rockefeller University, New York, NY 10065 USA
| | - Paul Greengard
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065 USA
| | - Evelyn K. Lambe
- 0000 0001 2157 2938grid.17063.33Department of Physiology, University of Toronto, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of OBGYN, University of Toronto, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, University of Toronto, Toronto, ON Canada
| |
Collapse
|
72
|
Almeida J, Oliveira LA, Benini R, Crestani CC. Role of hippocampal nitrergic neurotransmission in behavioral and cardiovascular dysfunctions evoked by chronic social stress. Nitric Oxide 2020; 94:114-124. [DOI: 10.1016/j.niox.2019.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022]
|
73
|
Liu Y, Lv L, Wang L, Zhong Y. Social Isolation Induces Rac1-Dependent Forgetting of Social Memory. Cell Rep 2019; 25:288-295.e3. [PMID: 30304669 DOI: 10.1016/j.celrep.2018.09.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/20/2018] [Accepted: 09/11/2018] [Indexed: 11/18/2022] Open
Abstract
Social isolation (SI) has detrimental effects on human and animal cognitive functions. In particular, acute isolation in adult mice impairs social recognition memory (SRM). Previous accounts of this impairment have focused primarily on memory consolidation. However, the current study suggests that impaired SRM results from enhanced forgetting. SI accelerates SRM decay without affecting memory formation. The impairment is caused by elevated Rac1 activity in the hippocampus. Using adeno-associated-virus-based genetic manipulation, we found that inhibition of Rac1 activity blocked forgetting of SRM in isolated adult mice, whereas activation of Rac1 accelerated forgetting in group-housed mice. Moreover, resocialization reversed the accelerated forgetting following isolation in correlation with suppression of Rac1 activity. In addition, accelerated long-term potentiation (LTP) decay in isolated mice brain slices was rescued by inhibition of Rac1 activity. Taken together, the findings lead us to conclude that social memory deficits in isolated mice are mediated by enhanced Rac1-dependent forgetting.
Collapse
Affiliation(s)
- Yunlong Liu
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li Lv
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lianzhang Wang
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Zhong
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
74
|
Evans O, Rodríguez-Borillo O, Font L, Currie PJ, Pastor R. Alcohol Binge Drinking and Anxiety-Like Behavior in Socialized Versus Isolated C57BL/6J Mice. Alcohol Clin Exp Res 2019; 44:244-254. [PMID: 31713874 DOI: 10.1111/acer.14236] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Binge alcohol drinking has been characterized as a key feature of alcoholism. The drinking-in-the-dark (DID) preclinical model, a procedure that promotes high levels of ethanol (EtOH) intake in short periods of time, has been extensively used to investigate neuropharmacological and genetic determinants of binge-like EtOH consumption. Using DID methodology, alcohol-preferring strains of mice such as C57BL/6J (B6) mice consume enough EtOH to achieve blood concentrations (≥1.0 mg/ml) associated with behavioral intoxication (i.e., motor incoordination). DID procedures typically involve the use of socially isolated animals (single-housed prior to and during the experiment). Previous research indicates that stress associated with social isolation can induce anxiety-like behavior and promote increases in EtOH intake. The present study investigates the role of housing conditions in anxiety-like behavior and binge-like EtOH intake using a DID procedure. METHODS Male and female B6 mice were isolated or pair-housed for a period of 6 weeks prior to evaluation of anxiety-like (elevated plus maze, light and dark box, open field) and drinking (water, 10% sucrose, 10 to 30% EtOH) behavior. In order to measure intake, a variation of the standard DID procedure using a removable, transparent, and perforated plastic barrier strip (designed to temporarily divide the cage in 2) was introduced. This allowed for individual intake records (2-hour test) of isolated and socially housed animals. RESULTS Increased anxiety-like behavior and reduced sucrose consumption were found in isolated mice. The effects of housing conditions on EtOH intake were sex- and concentration-dependent. In male mice, isolation increased 20 and 30% EtOH intake. In females, however, an increased intake of EtOH (30%) was found in socialized animals. No effects of housing or sex were found at EtOH 10%. CONCLUSIONS Together with previous literature, the present study suggests that social isolation can promote anxiety-associated behavior and produce sex-dependent changes in binge-like EtOH consumption.
Collapse
Affiliation(s)
- Ophelia Evans
- Department of Psychology, Reed College, Portland, Oregon
| | | | - Laura Font
- Area de Psicobiología, Universitat Jaume I, Castellón, Spain
| | - Paul J Currie
- Department of Psychology, Reed College, Portland, Oregon
| | - Raúl Pastor
- Department of Psychology, Reed College, Portland, Oregon.,Area de Psicobiología, Universitat Jaume I, Castellón, Spain
| |
Collapse
|
75
|
Rosuvastatin improves olanzapine's effects on behavioral impairment and hippocampal, hepatic and metabolic damages in isolated reared male rats. Behav Brain Res 2019; 378:112305. [PMID: 31634496 DOI: 10.1016/j.bbr.2019.112305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/29/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIM Schizophrenia is a chronic, disabling neurological illness. This study investigated the effect of rosuvastatin (RSU) addition to the antipsychotic drug: olanzapine (OLZ) in treatment of post-weaning isolation rearing (IR) damaging effect and assessed behavioral impairment, metabolic and hepatic abnormalities, oxidative stress, and inflammatory markers. METHODS Treatment with OLZ (6 mg/kg, P.O.) and/or RSU (10 mg/kg, I.P.) have been started 6 weeks after isolation. We assessed behavioral tests, serum cortisol level, and hippocampal content of neurotransmitters. In addition, we assessed histopathology, inflammatory and oxidative stress markers of hippocampus, liver and adipose tissue RESULTS: Treatment of IR animals with OLZ, and/or RSU significantly counteracted the changes in hippocampus, liver and adipose tissue induced by post-weaning IR. Co-treatment of IR rats with both OLZ and RSU showed additive effects in some areas like improving both tumor necrosis factor alpha (TNFα) in both hippocampus and liver, histopathology of liver, oxidative stress markers of adipose tissue, β3 adrenergic receptors (ADRβ3), serum cortisol and total cholesterol. In addition, RSU alone alleviated the damage of IR rats by the same efficacy as OLZ with more benefit in cognition and exploration. CONCLUSION post-weaning IR as a model has behavioral, hippocampal, hepatic and marked metabolic changes more relevant to schizophrenia than drug-induced models. These effects were ameliorated by RSU and/or OLZ that are explained by their antioxidant, anti-inflammatory, anti-stress and anti-hyperlipidemic properties. Interestingly, co-treatment with both drugs showed a better effect.
Collapse
|
76
|
Freeman AR, Wood TJ, Bairos-Novak KR, Anderson WG, Hare JF. Gone girl: Richardson's ground squirrel offspring and neighbours are resilient to female removal. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190904. [PMID: 31598313 PMCID: PMC6774953 DOI: 10.1098/rsos.190904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/23/2019] [Indexed: 05/21/2023]
Abstract
Within matrilineal societies, the presence of mothers and female kin can greatly enhance survival and reproductive success owing to kin-biased alarm calling, cooperation in territory defence, protection from infanticidal conspecifics, joint care of young and enhanced access to resources. The removal of mothers by predators or disease is expected to increase the stress experienced by offspring via activation of their hypothalamic-pituitary-adrenal axis, increasing circulating glucocorticoids and reducing offspring survival and reproductive success. Yet, few studies have removed mothers in the post-weaning period to examine the assumed physiological and fitness consequences associated with these mortality events. We examined how the loss of a mother affects juvenile Richardson's ground squirrels' (Urocitellus richardsonii) faecal glucocorticoid metabolites and their survival. Given that neighbours are often close kin, we further hypothesized that conspecific removal would similarly diminish the fitness of neighbouring individuals. Upon removing the mother, we detected no impact on offspring or neighbouring conspecific faecal glucocorticoid metabolites in the removal year, or on overwinter survival in the following year. Furthermore, no impact on neighbour reproductive success was detected. Given the high predation rates of ground squirrels in wild populations, resilience to a changing social environment would prove adaptive for both surviving kin and non-kin.
Collapse
Affiliation(s)
- Angela R. Freeman
- Department of Psychology, Cornell University, Ithaca, NY, USA
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Thomas J. Wood
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kevin R. Bairos-Novak
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - W. Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James F. Hare
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
77
|
Sánchez-González A, Oliveras I, Río-Álamos C, Piludu MA, Gerbolés C, Tapias-Espinosa C, Tobeña A, Aznar S, Fernández-Teruel A. Dissociation between schizophrenia-relevant behavioral profiles and volumetric brain measures after long-lasting social isolation in Roman rats. Neurosci Res 2019; 155:43-55. [PMID: 31306676 DOI: 10.1016/j.neures.2019.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 11/29/2022]
Abstract
Social isolation rearing of rodents is an environmental manipulation known to induce or potentiate psychotic-like symptoms and attentional and cognitive impairments relevant for schizophrenia. When subjected to a 28-week isolation rearing treatment, the Roman high-avoidance (RHA-I) rats display the common behavioral social isolation syndrome, with prepulse inhibition (PPI) deficits, hyperactivity, increased anxiety responses and learning/memory impairments when compared to their low-avoidance (RLA-I) counterparts. These results add face validity to the RHA-I rats as an animal model for schizophrenia-relevant behavioral and cognitive profiles and confirm previous results. The aim here was to further investigate the neuroanatomical effects of the isolation rearing, estimated through volume differences in medial prefrontal cortex (mPFC), dorsal striatum (dSt) and hippocampus (HPC). Results showed a global increase in volume in the mPFC in the isolated rats of both strains, as well as strain effects (RLA > RHA) in the three brain regions. These unexpected but robust results, might have unveiled some kind of compensatory mechanisms due to the particularly long-lasting isolation rearing period, much longer than those commonly used in the literature (which usually range from 4 to 12 weeks).
Collapse
Affiliation(s)
- A Sánchez-González
- Dept. Psychiatry & Forensic Medicine, Institute of Neurosciences, Universidad Autónoma de Barcelona, Barcelona, Spain.
| | - I Oliveras
- Dept. Psychiatry & Forensic Medicine, Institute of Neurosciences, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - C Río-Álamos
- Dept. Psychology, School of Medicine, Austral University of Chile, Valdivia, Chile
| | - M A Piludu
- Dept. of Life and Environmental Sciences, Section of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cagliari, Italy
| | - C Gerbolés
- Dept. Psychiatry & Forensic Medicine, Institute of Neurosciences, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - C Tapias-Espinosa
- Dept. Psychiatry & Forensic Medicine, Institute of Neurosciences, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - A Tobeña
- Dept. Psychiatry & Forensic Medicine, Institute of Neurosciences, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - S Aznar
- Research Laboratory for Stereology and Neuroscience, Bispebjerg and Frederiksberg Hospitals, Copenhagen, Denmark.
| | - A Fernández-Teruel
- Dept. Psychiatry & Forensic Medicine, Institute of Neurosciences, Universidad Autónoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
78
|
Voluntary ethanol consumption during early social isolation and responding for ethanol in adulthood. Alcohol 2019; 77:1-10. [PMID: 30240808 DOI: 10.1016/j.alcohol.2018.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 11/23/2022]
Abstract
Little is known about the influence of rearing environments concurrent with voluntary intermittent access to ethanol on subsequent adult ethanol-related behaviors. Previous research has shown that adult rats reared in post-weaning, social isolation conditions (IC) respond more for operant ethanol compared to laboratory standard conditions (SC). Ethanol-exposed adolescents tend to consume more ethanol in adulthood than rats exposed as adults. The current study examined voluntary ethanol consumption during adolescence between IC and SC rats, subsequent operant responding for ethanol, and extinction of responding in the same rats as adults. Differences in ethanol metabolism may alter the amount of reward value per unit of ethanol consumed. Therefore, the current study also examined blood ethanol concentrations (BEC) between IC rats and SC rats. Ethanol-naïve Long-Evans rats arrived in the lab at postnatal day (PND) 21 and were separated into either IC or SC where they remained for the duration of the experiments. On PND 27, rats received intermittent access to 20% ethanol (3 days/week) for 4 or 6 weeks. Rats in the 6-week cohort were then trained to lever press for 20% ethanol in 30-min sessions followed by extinction. A separate cohort was reared in IC or SC, injected with 1.5 or 3.0 g/kg of ethanol (intraperitoneally [i.p.]), followed by BEC measurement. Overall, IC rats had higher ethanol preference and consumption during adolescence/early adulthood. IC and SC rats did not differ in their rates of operant responding for ethanol, and SC rats responded more than IC rats during extinction. There were no differences in BEC between IC and SC rats. These findings highlight the importance of the environment during rat adolescent development with isolation conditions increasing binge-like drinking and ethanol preference after 3-4 weeks without differences in metabolism as a potential factor. Additionally, the findings indicate that intermittent adolescent access to ethanol may change typical differences in operant responding patterns between IC and SC rats in adulthood.
Collapse
|
79
|
Walker DM, Cunningham AM, Gregory JK, Nestler EJ. Long-Term Behavioral Effects of Post-weaning Social Isolation in Males and Females. Front Behav Neurosci 2019; 13:66. [PMID: 31031604 PMCID: PMC6470390 DOI: 10.3389/fnbeh.2019.00066] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/14/2019] [Indexed: 11/13/2022] Open
Abstract
Adolescence is a developmental period associated with vast neural and behavioral changes which are accompanied by altered sensitivity to stimuli, both stressful and rewarding. Perturbations, especially stressful stimuli, during this period have been shown to alter behavior in adulthood. Social isolation rearing is one such perturbation. This review highlights the long-term behavioral consequences of adolescent social isolation rearing in rodents with a specific focus on anxiety- and addiction-related behaviors. Sex-specific effects are discussed where data are available. We then consider changes in monoaminergic neurotransmission as one possible mechanism for the behavioral effects described. This research on both normative and perturbed adolescent development is crucial to understanding and treating the increased vulnerability to psychiatric disorders seen in humans during this life stage.
Collapse
Affiliation(s)
- Deena M Walker
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ashley M Cunningham
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jill K Gregory
- Academic IT: Instructional Technology Group, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eric J Nestler
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
80
|
Famitafreshi H, Karimian M. Social Isolation Rearing Induces Neuropsychiatric Diseases: Updated Overview. MOLECULAR NEUROPSYCHIATRY 2019; 4:190-195. [PMID: 30815454 DOI: 10.1159/000495659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022]
Abstract
Neuropsychiatric and neurologic diseases cause a great burden for individuals, families, and societies. Social isolation rearing can trigger a variety of psychiatric diseases. New advances suggest that epigenetic factors along with other neurochemical changes can be an important topic in neuropsychiatric diseases. It is thought that the prevention of social isolation rearing that occurs around birth can reduce the occurrence of neuropsychiatric diseases. It has been suggested that the environment can induce epigenetic alternation. So, for the diagnosis of a proportion of neuropsychiatric diseases, assessing epigenetic factors may be helpful. Also, apart from epigenetic factors, new advances have been made about new mechanisms of and treatments for such a disorder.
Collapse
Affiliation(s)
- Hamidreza Famitafreshi
- Physiology Department, Tehran University of Medical Sciences - International Campus, Tehran, Iran
| | - Morteza Karimian
- Physiology Department, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
81
|
Parra-Montes de Oca MA, Gutiérrez-Mariscal M, Salmerón-Jiménez MF, Jaimes-Hoy L, Charli JL, Joseph-Bravo P. Voluntary Exercise-Induced Activation of Thyroid Axis and Reduction of White Fat Depots Is Attenuated by Chronic Stress in a Sex Dimorphic Pattern in Adult Rats. Front Endocrinol (Lausanne) 2019; 10:418. [PMID: 31297093 PMCID: PMC6607407 DOI: 10.3389/fendo.2019.00418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/11/2019] [Indexed: 12/25/2022] Open
Abstract
The activity of the hypothalamus-pituitary-thyroid (HPT) axis is inhibited by energy deficit, by acute or chronic stress, but activated by cold exposure or exercise. Because stress curtails acute cold induced activation of HPT, we evaluated the effect of chronic stress on HPT axis response to voluntary exercise, a persistent energy-demanding situation. Adult male and female Wistar rats were exposed to restraint stress, 30 min/day for 2 weeks, or to isolation (Iso) [post-natal day [PND] 30-63]. Exercise was performed (7 p.m.-7 a.m.) in a running wheel, sedentary controls stayed in individual cages (Sed); at 7 a.m. they were housed with their cage mate or individually (Iso); food intake by the exercised group was measured day and night to pair-fed Sed. At sacrifice, hormones, mRNA levels and tissue weights were quantified. Control or restrained adult rats had access to running wheel daily for 2 weeks. Compared to C, exercise decreased white adipose tissue (WAT) mass in females and males, increased hypothalamic paraventricular nucleus (PVN)-Trh expression in males proportionally to exercise performed, and increased TSH and T4 serum concentration in females. These changes were not detected in restrained groups. Starting at PND 63 control (2/cage) and isolated (1/cage) rats either exercised on 10 alternated nights or were sedentary. In control male animals, compared to Sed rats, exercise did not decrease WAT mass, nor changed HPT axis activity, but increased Pomc and deiodinase 2 (Dio2) expression in mediobasal hypothalamus (MBH), adrenergic receptor β3 and uncoupling protein-1 in brown adipose tissue. In control female animals, exercise decreased WAT mass, increased Pomc, Dio2, and Trhde expression in MBH, and TSH serum concentration. Iso females had lower TSH and T4 serum concentration, Dio2 and Trhde expression in MBH than controls. The stress response was higher in isolated males than females, but in males it did not alter the effects of exercise, in contrast to isolated females that had a blunted response to exercise compared to controls. In conclusion, chronic stress interferes with metabolic effects produced by exercise, such as loss of WAT mass, coincident with dampening of HPT activity.
Collapse
|
82
|
Abstract
Characterized by the switch of manic and depressive phases, bipolar disorder was described as early as the fifth century BC. Nevertheless up to date, the underlying neurobiology is still largely unclear, assuming a multifactor genesis with both biological-genetic and psychosocial factors. Significant process has been achieved in recent years in researching the causes of bipolar disorder with modern molecular biological (e.g., genetic and epigenetic studies) and imaging techniques (e.g., positron emission tomography (PET) and functional magnetic resonance imaging (fMRI)). In this chapter we will first summarize our recent knowledge on the etiology of bipolar disorder. We then discuss how several factors observed to contribute to bipolar disorder in human patients can be manipulated to generate rodent models for bipolar disorder. Finally, we will give an overview on behavioral test that can be used to assess bipolar-disorder-like behavior in rodents.
Collapse
Affiliation(s)
- Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, Bochum, Germany.
| | - Georg Juckel
- Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, Bochum, Germany
| |
Collapse
|
83
|
Narayanan SN, Kumar RS. An improved light dark box test by using a real-time video tracking system. ACTA BIOLOGICA HUNGARICA 2018; 69:371-384. [PMID: 30587025 DOI: 10.1556/018.69.2018.4.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the behavioral science field, many of the oldest tests have still most frequently been used almost in the same way for decades. The subjective influence of human observer and the large inter-observer and interlab differences are substantial among these tests. This necessitates the possibility of using technological innovations for behavioral science to obtain new parameters, results and insights as well. The light-dark box (LDB) test is a characteristic tool used to assess anxiety in rodents. A complete behavioral analysis (including both anxiety and locomotion parameters) is not possible by performing traditional LDB test protocol, as it lacks the usage of a real-time video recording of the test. In the current report, we describe an improved approach to conduct LDB test using a real-time video tracking system.
Collapse
Affiliation(s)
- Sareesh Naduvil Narayanan
- Department of Physiology, Melaka Manipal Medical College (Manipal Campus), Manipal University, Manipal 576104, India
- Department of Physiology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, PO Box. 11172, Ras Al Khaimah, UAE
| | - Raju Suresh Kumar
- Department of Physiology, Melaka Manipal Medical College (Manipal Campus), Manipal University, Manipal 576104, India
- College of Science and Health Professions – Jeddah, King Saud Bin Abdulaziz University for Health Sciences, National Guard Health Affairs, P. O. Box 9515, Jeddah 21423, Kingdom of Saudi Arabia
| |
Collapse
|
84
|
Keesom SM, Morningstar MD, Sandlain R, Wise BM, Hurley LM. Social isolation reduces serotonergic fiber density in the inferior colliculus of female, but not male, mice. Brain Res 2018; 1694:94-103. [DOI: 10.1016/j.brainres.2018.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/15/2018] [Accepted: 05/11/2018] [Indexed: 12/26/2022]
|
85
|
Negative consequences of early-life adversity on substance use as mediated by corticotropin-releasing factor modulation of serotonin activity. Neurobiol Stress 2018; 9:29-39. [PMID: 30151419 PMCID: PMC6108067 DOI: 10.1016/j.ynstr.2018.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/11/2018] [Accepted: 08/05/2018] [Indexed: 01/01/2023] Open
Abstract
Early-life adversity is associated with increased risk for substance abuse in later life, with women more likely to report past and current stress as a mediating factor in their substance use and relapse as compared to men. Preclinical models of neonatal and peri-adolescent (early through late adolescence) stress all support a direct relationship between experiences of early-life adversity and adult substance-related behaviors, and provide valuable information regarding the underlying neurobiology. This review will provide an overview of these animal models and how these paradigms alter drug and alcohol consumption and/or seeking in male and female adults. An introduction to the corticotropin-releasing factor (CRF) and serotonin systems, their development and their interactions at the level of the dorsal raphe will be provided, illustrating how this particular stress system is sexually dimorphic, and is well positioned to be affected by stressors early in development and throughout maturation. A model for CRF-serotonin interactions in the dorsal raphe and how these influence dopaminergic activity within the nucleus accumbens and subsequent reward-associated behaviors will be provided, and alterations to the activity of this system following early-life adversity will be identified. Overall, converging findings suggest that early-life adversity has long-term effects on the functioning of the CRF-serotonin system, highlighting a potentially important and targetable mediator linking stress to addiction. Future work should focus on identifying the exact mechanisms that promote long-term changes to the expression and activity of CRF receptors in the dorsal raphe. Moreover, it is important to clarify whether similar neurobiological mechanisms exist for males and females, given the sexual dimorphism both in CRF receptors and serotonin indices in the dorsal raphe and in the behavioral outcomes of early-life adversity. Early life stress increases risk for substance abuse in adulthood. Stress and drugs increase CRF which alters serotonin release in the brain. CRF2 receptor expression in the dorsal raphe is altered by early life stress. Resultant changes to serotonin output facilitates dopamine in the accumbens. CRF2-sertotonin-dopamine interactions may link early life stress with substance abuse.
Collapse
Key Words
- 5-HIAA, 5–Hydroxyindoleacetic Acid
- BNST, Bed Nucleus of the Stria Terminalis
- CRF, Corticotropin-Releasing Factor
- CRF-BP, Corticotropin-Releasing Factor Binding Protein
- CeA, Central Nucleus of the Amygdala
- Corticotropin-releasing factor
- Dorsal raphe nucleus
- Drug reward
- Early-life stress
- LC, Locus Coeruleus
- MDMA, 3,4-Methylenedioxymethamphetamine
- NAc, Nucleus Accumbens
- NMDA, N-methyl-d-aspartate
- PND, Postnatal Day
- Serotonin
- Sex differences
- TPH2, Tryptophan Hydroxylase 2
- VTA, Ventral Tegmental Area
- dRN, Dorsal Raphe Nucleus
Collapse
|
86
|
Mumtaz F, Khan MI, Zubair M, Dehpour AR. Neurobiology and consequences of social isolation stress in animal model-A comprehensive review. Biomed Pharmacother 2018; 105:1205-1222. [PMID: 30021357 DOI: 10.1016/j.biopha.2018.05.086] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/10/2018] [Accepted: 05/18/2018] [Indexed: 12/09/2022] Open
Abstract
The brain is a vital organ, susceptible to alterations under genetic influences and environmental experiences. Social isolation (SI) acts as a stressor which results in alterations in reactivity to stress, social behavior, function of neurochemical and neuroendocrine system, physiological, anatomical and behavioral changes in both animal and humans. During early stages of life, acute or chronic SIS has been proposed to show signs and symptoms of psychiatric and neurological disorders such as anxiety, depression, schizophrenia, epilepsy and memory loss. Exposure to social isolation stress induces a variety of endocrinological changes including the activation of hypothalamic-pituitary-adrenal (HPA) axis, culminating in the release of glucocorticoids (GCs), release of catecholamines, activation of the sympatho-adrenomedullary system, release of Oxytocin and vasopressin. In several regions of the central nervous system (CNS), SIS alters the level of neurotransmitter such as dopamine, serotonin, gamma aminobutyric acid (GABA), glutamate, nitrergic system and adrenaline as well as leads to alteration in receptor sensitivity of N-methyl-D-aspartate (NMDA) and opioid system. A change in the function of oxidative and nitrosative stress (O&NS) mediated mitochondrial dysfunction, inflammatory factors, neurotrophins and neurotrophicfactors (NTFs), early growth response transcription factor genes (Egr) and C-Fos expression are also involved as a pathophysiological consequences of SIS which induce neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Faiza Mumtaz
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Muhammad Imran Khan
- Department of Pharmacy, Kohat University of Science and Technology, 26000 Kohat, KPK, Pakistan; Drug Detoxification Health Welfare Research Center, Bannu, KPK, Pakistan
| | - Muhammad Zubair
- Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, PR China
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
87
|
Three-Week Isolation Does Not Lead to Depressive-Like Disorders in Rats. Bull Exp Biol Med 2018; 165:181-183. [DOI: 10.1007/s10517-018-4125-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 10/28/2022]
|
88
|
Novick AM, Levandowski ML, Laumann LE, Philip NS, Price LH, Tyrka AR. The effects of early life stress on reward processing. J Psychiatr Res 2018; 101:80-103. [PMID: 29567510 PMCID: PMC5889741 DOI: 10.1016/j.jpsychires.2018.02.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 01/19/2023]
Abstract
Early life stress (ELS), in the form of childhood maltreatment, abuse, or neglect, increases the risk for psychiatric sequelae later in life. The neurobiology of response to early stress and of reward processing overlap substantially, leading to the prediction that reward processing may be a primary mediator of the effects of early life stress. We describe a growing body of literature investigating the effects of early life stressors on reward processing in animals and humans. Despite variation in the reviewed studies, an emerging pattern of results indicates that ELS results in deficits of ventral striatum-related functions of reward responsiveness and approach motivation, especially when the stressor is experienced in early in development. For stressors experienced later in the juvenile period and adolescence, the animal literature suggests an opposite effect, in which ELS results in increased hedonic drive. Future research in this area will help elucidate the transdiagnostic impact of early life stress, and therefore potentially identify and intervene with at-risk youth, prior to the emergence of clinical psychopathology.
Collapse
Affiliation(s)
- Andrew M. Novick
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA,Corresponding author: Andrew M Novick, MD PhD, Butler Hospital, 345 Blackstone Blvd, Providence, RI 02906, USA,
| | - Mateus L. Levandowski
- Developmental Cognitive Neuroscience Lab (DCNL), Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Laura E. Laumann
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| | - Noah S. Philip
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA,Center for Neurorestoration and Neurotechnology, Providence VA, Providence, RI, USA
| | - Lawrence H. Price
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Audrey R. Tyrka
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
89
|
Tapias-Espinosa C, Río-Álamos C, Sampedro-Viana D, Gerbolés C, Oliveras I, Sánchez-González A, Tobeña A, Fernández-Teruel A. Increased exploratory activity in rats with deficient sensorimotor gating: a study of schizophrenia-relevant symptoms with genetically heterogeneous NIH-HS and Roman rat strains. Behav Processes 2018; 151:96-103. [DOI: 10.1016/j.beproc.2018.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 12/24/2022]
|
90
|
Lukkes JL, Meda S, Norman KJ, Andersen SL. Anhedonic behavior and γ-amino butyric acid during a sensitive period in female rats exposed to early adversity. J Psychiatr Res 2018; 100:8-15. [PMID: 29471082 PMCID: PMC6295145 DOI: 10.1016/j.jpsychires.2018.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/22/2017] [Accepted: 02/08/2018] [Indexed: 12/15/2022]
Abstract
Early life adversity increases depressive behavior that emerges during adolescence. Sensitive periods have been associated with fewer GABAergic interneurons, especially parvalbumin (PV), brain derived growth factor, and its receptor, TrkB. Here, maternal separation (MS) and social isolation (ISO) were used to establish a sensitive period for anhedonic depression using the learned helplessness (LH) paradigm. Female Sprague-Dawley rat pups underwent MS for 4-h/day or received typical care (CON) between postnatal days 2-20; for the ISO condition, separate cohorts were individually housed between days 20-40 or served as controls (CON2). Anhedonia was defined by dichotomizing subjects into two groups based on one standard deviation of the mean number of escapes for the CON group (<14). This approach categorized 22% of CON subjects and 44% of MS subjects as anhedonic (p < 0.05), similar to the prevalence in maltreated human populations. Only 12.5% of ISO rats met criterion versus 28.5% in CON2 rats. Levels of PV and TrkB were reduced in the amygdala and prelimbic prefrontal cortex (PFC) in MS rats with <14 escapes, but elevated in behaviorally resilient MS rats (>13 escapes). The number of escapes in MS subjects significantly correlated with PV and TrkB levels (PFC: r = 0.93 and 0.91 and amygdala: r = 0.63 and 0.81, respectively; n = 9), but not in CON/ISO/CON2 subjects. Calretinin, but not calbindin, was elevated in the amygdala of MS subjects. These data suggest that low levels of PV and TrkB double the risk for anhedonia in females with an MS history compared to normal adolescent females.
Collapse
Affiliation(s)
- Jodi L. Lukkes
- Laboratory for Developmental Neuropharmacology, McLean Hospital,Harvard Medical School
| | - Shirisha Meda
- Laboratory for Developmental Neuropharmacology, McLean Hospital
| | - Kevin J. Norman
- Laboratory for Developmental Neuropharmacology, McLean Hospital
| | - Susan L. Andersen
- Laboratory for Developmental Neuropharmacology, McLean Hospital,Harvard Medical School,to whom correspondence should be addressed: 115 Mill Street, Mailstop 333, Belmont, MA 02478, Tel: (617)-855-3211, FAX: (617)-855-3479,
| |
Collapse
|
91
|
Lo Iacono L, Carola V. The impact of adolescent stress experiences on neurobiological development. Semin Cell Dev Biol 2018; 77:93-103. [DOI: 10.1016/j.semcdb.2017.09.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/18/2017] [Accepted: 09/29/2017] [Indexed: 01/23/2023]
|
92
|
Sex- and Age-dependent Effects of Orexin 1 Receptor Blockade on Open-Field Behavior and Neuronal Activity. Neuroscience 2018; 381:11-21. [PMID: 29678754 DOI: 10.1016/j.neuroscience.2018.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/02/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022]
Abstract
Adolescence is a sensitive and critical period in brain development where psychiatric disorders such as anxiety, depression and post-traumatic stress disorder are more likely to emerge following a stressful life event. Females are two times more likely to suffer from psychiatric disorders than males. Patients with these disorders show alterations in orexins (also called hypocretins), important neuropeptides that regulate arousal, wakefulness and the hypothalamic-pituitary-adrenal axis activity. Little is known on the role of orexins in mediating arousal behaviors in male and female rats during adolescence or adulthood. Here, we examine the influence of orexin 1 receptor blockade by SB334867 in open-field behavior in male and female rats during early adolescence (PND 31-33) or adulthood (PND 75-77). Animals were injected with 0 (vehicle), 1, 10, or 30 mg/kg SB334867 (i.p.). Thirty minutes later, they were placed in an open field, and behavior and neuronal activity (c-Fos) were assessed. In adolescent males, SB334867 significantly increased immobility in the 10 mg/kg group compared to vehicle. However, this increase in immobility in adolescent males was not observed in adolescent females. In contrast to adolescent males, adult males in the 10 mg/kg dose group showed the opposite effect on immobility compared to vehicle. These results indicate that 10 mg/kg dose of SB334867 has opposing effects in adolescent and adult males, but few effects in adolescent and adult females. Differences in functional networks between limbic regions may underlie these effects of orexin receptor blockade that are sex- and age-dependent in rats.
Collapse
|
93
|
Arakawa H. Ethological approach to social isolation effects in behavioral studies of laboratory rodents. Behav Brain Res 2018; 341:98-108. [DOI: 10.1016/j.bbr.2017.12.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/15/2017] [Accepted: 12/17/2017] [Indexed: 12/31/2022]
|
94
|
Regenass W, Möller M, Harvey BH. Studies into the anxiolytic actions of agomelatine in social isolation reared rats: Role of corticosterone and sex. J Psychopharmacol 2018; 32:134-145. [PMID: 29082818 DOI: 10.1177/0269881117735769] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Anxiety disorders are severely disabling, while current pharmacological treatments are complicated by delayed onset, low remission rates and side-effects. Sex is also noted to contribute towards illness severity and treatment response. Agomelatine is a melatonin (MT1/MT2) agonist and serotonin (5-HT2C) antagonist purported to be anxiolytic in clinical and some pre-clinical studies. We undertook a detailed analysis of agomelatine's anxiolytic activity in a neurodevelopmental model of anxiety, the social isolation reared rat. Rats received sub-chronic treatment with vehicle or agomelatine (40 mg/kg per day intraperitoneally at 16:00 h for 16 days), with behaviour analysed in the open field test, social interaction test and elevated plus maze. The contribution of corticosterone and sex was also studied. Social isolation rearing increased locomotor activity and reduced social interaction in the social interaction test, and was anxiogenic in the elevated plus maze in males and females. Agomelatine reversed these behaviours. Male and female social isolation reared rats developed anxiety-like behaviours to a similar degree, although response to agomelatine was superior in male rats. Social isolation rearing decreased plasma corticosterone in both sexes and tended to higher levels in females, although agomelatine did not affect corticosterone in either sex. Concluding, agomelatine is anxiolytic in SIR rats, although correcting altered corticosterone could not be implicated. Sex-related differences in the response to agomelatine are evident.
Collapse
Affiliation(s)
- Wilmie Regenass
- 1 Department of Pharmacology, School of Pharmacy, North West University, Potchefstroom, South Africa.,2 Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| | - Marisa Möller
- 1 Department of Pharmacology, School of Pharmacy, North West University, Potchefstroom, South Africa.,2 Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| | - Brian H Harvey
- 1 Department of Pharmacology, School of Pharmacy, North West University, Potchefstroom, South Africa.,2 Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| |
Collapse
|
95
|
Keesom SM, Sloss BG, Erbowor-Becksen Z, Hurley LM. Social experience alters socially induced serotonergic fluctuations in the inferior colliculus. J Neurophysiol 2017; 118:3230-3241. [DOI: 10.1152/jn.00431.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/18/2022] Open
Abstract
Past social experience and current social context shape the responses of animals to social signals. The serotonergic system is one potential mechanism by which both experiential and contextual factors could be conveyed to sensory systems, such as the auditory system, for multiple reasons. 1) Many features of the serotonergic system are sensitive to social experience. 2) Elevations in serotonergic activity are triggered by social partners, and variations in socially triggered serotonergic responses reflect behavioral differences among social encounters. 3) Serotonin is an auditory neuromodulator, altering how auditory neurons respond to sounds including conspecific vocalizations. In this study, we tested how social experience influences the socially triggered serotonergic response in the inferior colliculus, an auditory midbrain region with an important role in vocalization processing. We used carbon fiber voltammetry to measure serotonin during social interactions of male mice ( Mus musculus) from different social backgrounds: 4 weeks of grouped or individual housing. When paired with an unfamiliar male, both group-housed and individually housed males demonstrated elevations in serotonin; however, individually housed males exhibited socially triggered serotonergic responses with delayed time courses compared with the group-housed males. Furthermore, group-housed males displayed previously described correlations between the socially triggered serotonergic response and behaviors such as social investigation. In contrast, individually housed males did not show these serotonin-behavior relationships. These results suggest that social experience gained via social housing may shape the ability of the central serotonergic system to encode social context in sensory regions. NEW & NOTEWORTHY We demonstrate that past social experience influences the fidelity with which the serotonergic system represents social context in an auditory region. Social experience altered the time course of socially triggered serotonergic responses and changed how the serotonergic system reflects behavioral variations among social encounters of the same context. These findings are significant to the study of communication, suggesting that centralized neuromodulatory systems potentially convey integrated information regarding past experience and current context to primary sensory regions.
Collapse
Affiliation(s)
- Sarah M. Keesom
- Department of Biology, Indiana University, Bloomington, Indiana
| | | | | | - Laura M. Hurley
- Department of Biology, Indiana University, Bloomington, Indiana
| |
Collapse
|
96
|
Adolescence and Reward: Making Sense of Neural and Behavioral Changes Amid the Chaos. J Neurosci 2017; 37:10855-10866. [PMID: 29118215 DOI: 10.1523/jneurosci.1834-17.2017] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 11/21/2022] Open
Abstract
Adolescence is a time of significant neural and behavioral change with remarkable development in social, emotional, and cognitive skills. It is also a time of increased exploration and risk-taking (e.g., drug use). Many of these changes are thought to be the result of increased reward-value coupled with an underdeveloped inhibitory control, and thus a hypersensitivity to reward. Perturbations during adolescence can alter the developmental trajectory of the brain, resulting in long-term alterations in reward-associated behaviors. This review highlights recent developments in our understanding of how neural circuits, pubertal hormones, and environmental factors contribute to adolescent-typical reward-associated behaviors with a particular focus on sex differences, the medial prefrontal cortex, social reward, social isolation, and drug use. We then introduce a new approach that makes use of natural adaptations of seasonally breeding species to investigate the role of pubertal hormones in adolescent development. This research has only begun to parse out contributions of the many neural, endocrine, and environmental changes to the heightened reward sensitivity and increased vulnerability to mental health disorders that characterize this life stage.
Collapse
|
97
|
Ma J, Wang F, Yang J, Dong Y, Su G, Zhang K, Pan X, Ma P, Zhou T, Wu C. Xiaochaihutang attenuates depressive/anxiety-like behaviors of social isolation-reared mice by regulating monoaminergic system, neurogenesis and BDNF expression. JOURNAL OF ETHNOPHARMACOLOGY 2017; 208:94-104. [PMID: 28687505 DOI: 10.1016/j.jep.2017.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 07/01/2017] [Accepted: 07/03/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaochaihutang (XCHT), as a classical herbal formula for the treatment of "Shaoyang syndrome" has been demonstrated to exert an antidepressant effect in multiple animal models of depression as shown in our previous studies. However, the effects of XCHT on social isolation (SI)-reared mice have not been investigated. This study aims to explore the effects of XCHT on depressive/anxiety-like behaviors of SI-reared mice, and its implicated mechanisms, including alterations in the monoaminergic system, neurogenesis and neurotrophin expression. MATERIALS AND METHODS Male C57 BL/6J mice (aged 4 weeks after weaning) were reared isolatedly for 8 weeks and XCHT (0.8, 2.3, 7.0g/kg) were given by gavage once a day. Forced swimming test (FST), tail suspension test (TST), open field test (OFT), elevated-plus maze test (EPM) and intruder-induced aggression test were used to explore the effects of XCHT on depressive/anxiety-like behaviors of SI-reared mice after administration of XCHT for 6 weeks. HPLC-MS/MS was performed to quantify the levels of neurotransmitters in the hippocampus by in vivo microdialysis, while western immunoblotting was used to evaluate the action of XCHT on the synthesis, transport and degradation of monoamine neurotransmitters. Immunofluorescence was used to study the effects of XCHT on neurogenesis and neurotrophin expression, including Ki-67, DCX, BrdU and BDNF. RESULTS Our results showed that administration of XCHT (0.8, 2.3 and 7.0g/kg) for 6 weeks significantly attenuated the increase in immobility time in TST and FST, improved the anxiety-like behaviors in OFT and EPM, and improved the aggressive behaviors of SI-reared mice. XCHT significantly elevated monoamine neurotransmitters levels and inhibited 5-HT turnover (5-HIAA/5-HT) in hippocampal microdialysates of SI-reared mice. In addition, we found XCHT enhanced monoamine neurotransmitter synthesis enzymes (TPH2 and TH) expressions, inhibited serotonin transporter (SERT) expression and decreased monoamine neurotransmitter degradation enzyme (MAOA) expression in the hippocampus of SI-reared mice for the first time. Moreover, XCHT significantly augmented hippocampal neurogenesis and BDNF expression in hippocampus of SI-reared mice. CONCLUSIONS Our results showed for the first time that XCHT improved depressive/anxiety-like behaviors of SI-reared mice by regulating the monoaminergic system, neurogenesis and neurotrophin expression. The findings indicate that XCHT may have a therapeutic application for early-life stress model of depression and in turn provide further evidence supporting XCHT a novel potential antidepressant from a distinct perspective.
Collapse
Affiliation(s)
- Jie Ma
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Fang Wang
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Yingxu Dong
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Guangyue Su
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Kuo Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Xing Pan
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Ping Ma
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Tingshuo Zhou
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China.
| |
Collapse
|
98
|
Effect of post-weaning isolation on anxiety- and depressive-like behaviors of C57BL/6J mice. Exp Brain Res 2017; 235:2893-2899. [PMID: 28695280 DOI: 10.1007/s00221-017-5021-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 06/29/2017] [Indexed: 01/14/2023]
Abstract
Effects of post-weaning isolation on depressive- and anxiety-like behaviors in rodents have been well studied in the past. However, few studies included both sexes in a single experiment to study the sex difference in this animal model. The present study investigated the effect of post-weaning isolation on anxiety- and depressive-like behaviors in both male and female C57BL/6 J mice. Mice were individually or grouped housed from postnatal day 21 for 5 weeks until behavioral tests began. The results showed that social isolation resulted in increased anxiety in the open field. Isolated-reared female, but not male mice showed an increased transition between two compartments in the light-dark box and a decreased immobile time in the forced swim test. We conclude that post-weaning isolation has a sex-specific effect on emotional behaviors.
Collapse
|
99
|
Abstract
Comparative models suggest that effects of dietary tryptophan (Trp) on brain serotonin (5-hydroxytryptamine; 5-HT) neurochemistry and stress responsiveness are present throughout the vertebrate lineage. Moreover, hypothalamic 5-HT seems to play a central role in control of the neuroendocrine stress axis in all vertebrates. Still, recent fish studies suggest long-term effects of dietary Trp on stress responsiveness, which are independent of hypothalamic 5-HT. Here, we investigated if dietary Trp treatment may result in long-lasting effects on stress responsiveness, including changes in plasma cortisol levels and 5-HT neurochemistry in the telencephalon and hypothalamus of Atlantic salmon. Fish were fed diets containing one, two or three times the Trp content in normal feed for 1 week. Subsequently, fish were reintroduced to control feed and were exposed to acute crowding stress for 1 h, 8 and 21 d post Trp treatment. Generally, acute crowding resulted in lower plasma cortisol levels in fish treated with 3×Trp compared with 1×Trp- and 2×Trp-treated fish. The same general pattern was reflected in telencephalic 5-HTergic turnover, for which 3×Trp-treated fish showed decreased values compared with 2×Trp-treated fish. These long-term effects on post-stress plasma cortisol levels and concomitant 5-HT turnover in the telencephalon lends further support to the fact that the extrahypothalamic control of the neuroendocrine stress response is conserved within the vertebrate lineage. Moreover, they indicate that trophic/structural effects in the brain underlie the effects of dietary Trp treatment on stress reactivity.
Collapse
|
100
|
Chronic social instability increases anxiety-like behavior and ethanol preference in male Long Evans rats. Physiol Behav 2017; 173:179-187. [DOI: 10.1016/j.physbeh.2017.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 01/28/2023]
|