51
|
Roohi TF, Faizan S, Parray ZA, Baig MDAI, Mehdi S, Kinattingal N, Krishna KL. Beyond Glucose: The Dual Assault of Oxidative and ER Stress in Diabetic Disorders. High Blood Press Cardiovasc Prev 2023; 30:513-531. [PMID: 38041772 DOI: 10.1007/s40292-023-00611-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
Diabetes mellitus, a prevalent global health concern, is characterized by hyperglycemia. However, recent research reveals a more intricate landscape where oxidative stress and endoplasmic reticulum (ER) stress orchestrate a dual assault, profoundly impacting diabetic disorders. This review elucidates the interplay between these two stress pathways and their collective consequences on diabetes. Oxidative stress emanates from mitochondria, where reactive oxygen species (ROS) production spirals out of control, leading to cellular damage. We explore ROS-mediated signaling pathways, which trigger β-cell dysfunction, insulin resistance, and endothelial dysfunction the quintessential features of diabetes. Simultaneously, ER stress unravels, unveiling how protein folding disturbances activate the unfolded protein response (UPR). We dissect the UPR's dual role, oscillating between cellular adaptation and apoptosis, significantly influencing pancreatic β-cells and peripheral insulin-sensitive tissues. Crucially, this review exposes the synergy between oxidative and ER stress pathways. ROS-induced UPR activation and ER stress-induced oxidative stress create a detrimental feedback loop, exacerbating diabetic complications. Moreover, we spotlight promising therapeutic strategies that target both stress pathways. Antioxidants, molecular chaperones, and novel pharmacological agents offer potential avenues for diabetes management. As the global diabetes burden escalates, comprehending the dual assault of oxidative and ER stress is paramount. This review not only unveils the intricate molecular mechanisms governing diabetic pathophysiology but also advocates a holistic therapeutic approach. By addressing both stress pathways concurrently, we may forge innovative solutions for diabetic disorders, ultimately alleviating the burden of this pervasive health issue.
Collapse
Affiliation(s)
- Tamsheel Fatima Roohi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India
| | - Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India
| | - Zahoor Ahmad Parray
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas Campus, New Delhi, 110016, India
| | - M D Awaise Iqbal Baig
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India
| | - Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India
| | - Nabeel Kinattingal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India
| | - K L Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India.
| |
Collapse
|
52
|
Ates I, Yılmaz AD, Buttari B, Arese M, Saso L, Suzen S. A Review of the Potential of Nuclear Factor [Erythroid-Derived 2]-like 2 Activation in Autoimmune Diseases. Brain Sci 2023; 13:1532. [PMID: 38002492 PMCID: PMC10669303 DOI: 10.3390/brainsci13111532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 11/26/2023] Open
Abstract
An autoimmune disease is the consequence of the immune system attacking healthy cells, tissues, and organs by mistake instead of protecting them. Inflammation and oxidative stress (OS) are well-recognized processes occurring in association with acute or chronic impairment of cell homeostasis. The transcription factor Nrf2 (nuclear factor [erythroid-derived 2]-like 2) is of major importance as the defense instrument against OS and alters anti-inflammatory activities related to different pathological states. Researchers have described Nrf2 as a significant regulator of innate immunity. Growing indications suggest that the Nrf2 signaling pathway is deregulated in numerous diseases, including autoimmune disorders. The advantageous outcome of the pharmacological activation of Nrf2 is an essential part of Nrf2-based chemoprevention and intervention in other chronic illnesses, such as neurodegeneration, cardiovascular disease, autoimmune diseases, and chronic kidney and liver disease. Nevertheless, a growing number of investigations have indicated that Nrf2 is already elevated in specific cancer and disease steps, suggesting that the pharmacological agents developed to mitigate the potentially destructive or transformative results associated with the protracted activation of Nrf2 should also be evaluated. The activators of Nrf2 have revealed an improvement in the progress of OS-associated diseases, resulting in immunoregulatory and anti-inflammatory activities; by contrast, the depletion of Nrf2 worsens disease progression. These data strengthen the growing attention to the biological properties of Nrf2 and its possible healing power on diseases. The evidence supporting a correlation between Nrf2 signaling and the most common autoimmune diseases is reviewed here. We focus on the aspects related to the possible effect of Nrf2 activation in ameliorating pathologic conditions based on the role of this regulator of antioxidant genes in the control of inflammation and OS, which are processes related to the progression of autoimmune diseases. Finally, the possibility of Nrf2 activation as a new drug development strategy to target pathogenesis is proposed.
Collapse
Affiliation(s)
- Ilker Ates
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey
| | - Ayşe Didem Yılmaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey; (A.D.Y.); (S.S.)
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Italian National Institute of Health, 00161 Rome, Italy;
| | - Marzia Arese
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzae Aldo Moro 5, 00185 Rome, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology ‘‘Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey; (A.D.Y.); (S.S.)
| |
Collapse
|
53
|
Carretero VJ, Ramos E, Segura-Chama P, Hernández A, Baraibar AM, Álvarez-Merz I, Muñoz FL, Egea J, Solís JM, Romero A, Hernández-Guijo JM. Non-Excitatory Amino Acids, Melatonin, and Free Radicals: Examining the Role in Stroke and Aging. Antioxidants (Basel) 2023; 12:1844. [PMID: 37891922 PMCID: PMC10603966 DOI: 10.3390/antiox12101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this review is to explore the relationship between melatonin, free radicals, and non-excitatory amino acids, and their role in stroke and aging. Melatonin has garnered significant attention in recent years due to its diverse physiological functions and potential therapeutic benefits by reducing oxidative stress, inflammation, and apoptosis. Melatonin has been found to mitigate ischemic brain damage caused by stroke. By scavenging free radicals and reducing oxidative damage, melatonin may help slow down the aging process and protect against age-related cognitive decline. Additionally, non-excitatory amino acids have been shown to possess neuroprotective properties, including antioxidant and anti-inflammatory in stroke and aging-related conditions. They can attenuate oxidative stress, modulate calcium homeostasis, and inhibit apoptosis, thereby safeguarding neurons against damage induced by stroke and aging processes. The intracellular accumulation of certain non-excitatory amino acids could promote harmful effects during hypoxia-ischemia episodes and thus, the blockade of the amino acid transporters involved in the process could be an alternative therapeutic strategy to reduce ischemic damage. On the other hand, the accumulation of free radicals, specifically mitochondrial reactive oxygen and nitrogen species, accelerates cellular senescence and contributes to age-related decline. Recent research suggests a complex interplay between melatonin, free radicals, and non-excitatory amino acids in stroke and aging. The neuroprotective actions of melatonin and non-excitatory amino acids converge on multiple pathways, including the regulation of calcium homeostasis, modulation of apoptosis, and reduction of inflammation. These mechanisms collectively contribute to the preservation of neuronal integrity and functions, making them promising targets for therapeutic interventions in stroke and age-related disorders.
Collapse
Affiliation(s)
- Victoria Jiménez Carretero
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Pedro Segura-Chama
- Investigador por México-CONAHCYT, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Huipulco, Tlalpan, Mexico City 14370, Mexico
| | - Adan Hernández
- Institute of Neurobiology, Universidad Nacional Autónoma of México, Juriquilla, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Andrés M Baraibar
- Department of Neurosciences, Universidad del País Vasco UPV/EHU, Achucarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Iris Álvarez-Merz
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Francisco López Muñoz
- Faculty of Health Sciences, University Camilo José Cela, C/Castillo de Alarcón 49, Villanueva de la Cañada, 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i + 12), Avda. Córdoba, s/n, 28041 Madrid, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - José M Solís
- Neurobiology-Research Service, Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| |
Collapse
|
54
|
Chichai AS, Popova TN, Kryl'skii ED, Oleinik SA, Razuvaev GA. Indole-3-carbinol mitigates oxidative stress and inhibits inflammation in rat cerebral ischemia/reperfusion model. Biochimie 2023; 213:1-11. [PMID: 37120006 DOI: 10.1016/j.biochi.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/01/2023]
Abstract
Ischemia is a significant pathogenetic factor of stroke with very limited treatment options. The objective of our research was to evaluate the protective properties of indole-3-carbinol (I3C) and its effect on redox status parameters, inflammation, and apoptosis intensity in cerebral ischemia/reperfusion injury (CIRI) in rats. I3C administration to CIRI rats decreased levels of oxidative stress markers and improved aerobic metabolism compared to the animals with CIRI. A decrease in myeloperoxidase activity, proinflammatory cytokines mRNA levels, and expression of redox-sensitive factor Nuclear Factor-κB was observed in rats with CIRI that received I3C. I3C-treated rats with pathology showed decreased caspase activity and apoptosis-inducing factor expression, compared to the animals in the CIRI group. Obtained data indicate that I3C has a neuroprotective and anti-ischemic effect in CIRI that may be related to its antioxidant properties and ability to reduce the inflammatory response and apoptosis.
Collapse
Affiliation(s)
- Aleksandra Sergeevna Chichai
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya Sq. 1, 394018, Voronezh, Russia.
| | - Tatyana Nikolaevna Popova
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya Sq. 1, 394018, Voronezh, Russia.
| | - Evgenii Dmitrievich Kryl'skii
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya Sq. 1, 394018, Voronezh, Russia.
| | - Sergei Aleksandrovich Oleinik
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya Sq. 1, 394018, Voronezh, Russia.
| | - Grigorii Andreevich Razuvaev
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya Sq. 1, 394018, Voronezh, Russia.
| |
Collapse
|
55
|
Jaćević V, Dumanović J, Grujić-Milanović J, Milovanović Z, Amidžić L, Vojinović N, Nežić L, Marković B, Dobričić V, Milosavljević P, Nepovimova E, Kuča K. Oxidative stress status assessment of rats' brains injury following subacute exposure to K-oximes. Chem Biol Interact 2023; 383:110658. [PMID: 37572873 DOI: 10.1016/j.cbi.2023.110658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Oxidative stress status and morphological injuries in the brain of Wistar rats induced by repeated application of selected acetylcholinesterase reactivators - asoxime, obidoxime, K027, K048, K074, and K075 were evaluated. Each oxime in a dose of 0.1 of LD50/kg im was given 2x/week for 4 weeks. Markers of lipid peroxidation (malondialdehyde, MDA), and protein oxidation (advanced oxidation protein products, AOPP), as well as the activity of antioxidant enzymes (catalase, CAT, superoxide dismutase, SOD, glutathione reductase, GR, and glutathione peroxidase, GPx), were estimated in the brain tissue homogenates on day 35 of the study. Brain alterations were carefully quantified by semiquantitative grading scales - brain damage score (BDS). Oxidative stress parameters, MDA and AOPP were significantly highest in the asoxime-, obidoxime- and K075-treated groups (p < 0.001). The activity of SOD and CAT was significantly elevated in the obidoxime-, K048-, and K075-treated groups (p < 0.001). Besides, GR was markedly decreased in the obidoxime- and K074-treated groups (p < 0.01), while treatment with K048, K074 and K075 induced extremely high elevation in GPx levels (p < 0.001). In the same groups of rats, brain alterations associated with polymorphonuclear cell infiltrate were significantly more severe than those observed in animals receiving only asoxime or K027 (p < 0.001). The presented results confirmed that treatment with different oximes significantly improved the oxidative status and attenuated signs of inflammation in rats' brains. Presented results, together with our previously published data can help to predict likely adverse systemic toxic effects, and target organ systems, which are crucial for establishing risk categories, as well as in dose selection of K-oximes as drug candidates.
Collapse
Affiliation(s)
- Vesna Jaćević
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, Crnotravska 17, 11000, Belgrade, Serbia; Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000, Belgrade, Serbia; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
| | - Jelena Dumanović
- Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000, Belgrade, Serbia; University of Belgrade - Faculty of Chemistry, Department of Analytical Chemistry Studenski trg 16, 11000, Belgrade, Serbia
| | - Jelica Grujić-Milanović
- University of Belgrade - Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Dr Subotića 4, 11 000, Belgrade, Serbia
| | - Zoran Milovanović
- Special Police Unit, Ministry of Interior, Trebevićka 12/A, 11 030, Belgrade, Serbia
| | - Ljiljana Amidžić
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000, Banja Luka, Bosnia and Herzegovina; Department of Human Genetics, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000, Banja Luka, Bosnia and Herzegovina
| | - Nataša Vojinović
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000, Banja Luka, Bosnia and Herzegovina
| | - Lana Nežić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000, Banja Luka, Bosnia and Herzegovina
| | - Bojan Marković
- University of Belgrade - Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Vojvode Stepe 450, 11000, Belgrade, Serbia
| | - Vladimir Dobričić
- University of Belgrade - Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Vojvode Stepe 450, 11000, Belgrade, Serbia
| | - Petar Milosavljević
- Veterinary Services Center, Military Health Department, Crnotravska 17, 11000, Belgrade, Serbia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| |
Collapse
|
56
|
Mani V, Rashed Almutairi S. Impact of levetiracetam on cognitive impairment, neuroinflammation, oxidative stress, and neuronal apoptosis caused by lipopolysaccharides in rats. Saudi Pharm J 2023; 31:101728. [PMID: 37583755 PMCID: PMC10424214 DOI: 10.1016/j.jsps.2023.101728] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/28/2023] [Indexed: 08/17/2023] Open
Abstract
Introduction Neuroinflammation is associated with the elevation of toxic proinflammatory mediators that promote neurodegeneration and subsequently affect cognition. Causes of inflammation in the neuronal cells are believed to initiate various neurodegenerative disorders, mainly Alzheimer's disease. Levetiracetam is a second-generation antiepileptic drug. There is evidence supporting the memory-enhancing effect of levetiracetam from numerous experimental and clinical studies. Therefore, this research focused on finding its protective effects against lipopolysaccharides prompted cognitive impairment and exploring possible mechanisms underlining their neuroprotection. Methodology Two doses (100 or 200 mg/kg) of levetiracetam were administrated orally for 30 days. Additionally, four doses (250 µg/kg) of lipopolysaccharide were injected peripherally to induce neurotoxicity. Behavioral tests were carried out using various maze models. At the end of the tests, brain tissues were collected for biochemical evaluations. Cholinergic, neuroinflammatory, apoptosis, and oxidative-related parameters were analyzed in the brain homogenate to explore the possible mechanisms of action of levetiracetam. Results In lipopolysaccharide-induced rats, levetiracetam indicated a reduction (p < 0.01) in transfer latency using the elevated plus-maze. An improvement (p < 0.01) in novel and familiar objects exploration time using novel object recognition test. A rise (p < 0.05) in novel arm entries and extended time spent in the novel arm using the Y-maze test. In extension, the levels of acetylcholine (p < 0.001), anti-inflammatory factors (transforming growth factor-β1; p < 0.01 and interleukin-10; p < 0.05), and an antioxidant (catalase; p < 0.01) were elevated in lipopolysaccharide-induced rats after the administration of levetiracetam. In contrast, inflammatory factors (cyclooxygenase-2; p < 0.05, nuclear factor kappa B; p < 0.05, tumor necrosis factor-α; p < 0.01, and interleukin-6 (p < 0.01), apoptosis inducers (BCL2-associated X protein; p < 0.05 and Caspase-3 (p < 0.001), and oxidative stress (malondialdehyde; p < 0.05) were considerably reduced with levetiracetam in lipopolysaccharide-induced rats. Conclusion The collective results suggested that levetiracetam may be able to treat neuroinflammatory-related memory loss by enhancing cholinergic activity while reducing neuroinflammation, cellular apoptosis, and oxidative stress.
Collapse
Affiliation(s)
- Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Salem Rashed Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
57
|
Varlamova EG, Uspalenko NI, Khmil NV, Shigaeva MI, Stepanov MR, Ananyan MA, Timchenko MA, Molchanov MV, Mironova GD, Turovsky EA. A Comparative Analysis of Neuroprotective Properties of Taxifolin and Its Water-Soluble Form in Ischemia of Cerebral Cortical Cells of the Mouse. Int J Mol Sci 2023; 24:11436. [PMID: 37511195 PMCID: PMC10380368 DOI: 10.3390/ijms241411436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Cerebral ischemia, and, as a result, insult, attacks up to 15 million people yearly in the world. In this connection, the development of effective preventive programs and methods of therapy has become one of the most urgent problems in modern angiology and pharmacology. The cytoprotective action of taxifolin (TAX) in ischemia is well known, but its limitations are also known due to its poor solubility and low capacity to pass through the hematoencephalic barrier. Molecular mechanisms underlying the protective effect of TAX in complex systems such as the brain remain poorly understood. It is known that the main cell types of the brain are neurons, astrocytes, and microglia, which regulate the activity of each other through neuroglial interactions. In this work, a comparative study of cytoprotective mechanisms of the effect of TAX and its new water-soluble form aqua taxifolin (aqTAX) was performed on cultured brain cells under ischemia-like conditions (oxygen-glucose deprivation (OGD)) followed by the reoxygenation of the culture medium. The concentration dependences of the protective effects of both taxifolin forms were determined using fluorescence microscopy, PCR analysis, and vitality tests. It was found that TAX began to effectively inhibit necrosis and the late stages of apoptosis in the concentration range of 30-100 µg/mL, with aqTAX in the range of 10-30 µg/mL. At the level of gene expression, aqTAX affected a larger number of genes than TAX; enhanced the basic and OGD/R-induced expression of genes encoding ROS-scavenging proteins with a higher efficiency, as well as anti-inflammatory and antiapoptotic proteins; and lowered the level of excitatory glutamate receptors. As a result, aqTAX significantly inhibited the OGD-induced increase in the Ca2+ levels in the cytosol ([Ca2+]i) in neurons and astrocytes under ischemic conditions. After a 40 min preincubation of cells with aqTAX under hypoxic conditions, these Ca2+ signals were completely inhibited, resulting in an almost complete suppression of necrotic death of cerebral cortical cells, which was not observed with the use of classical TAX.
Collapse
Affiliation(s)
- Elena G Varlamova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Nina I Uspalenko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Natalia V Khmil
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Maria I Shigaeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | | | | | - Maria A Timchenko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Maxim V Molchanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Galina D Mironova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Egor A Turovsky
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
58
|
Phoraksa O, Chimkerd C, Thiyajai P, Judprasong K, Tuntipopipat S, Tencomnao T, Charoenkiatkul S, Muangnoi C, Sukprasansap M. Neuroprotective Effects of Albizia lebbeck (L.) Benth. Leaf Extract against Glutamate-Induced Endoplasmic Reticulum Stress and Apoptosis in Human Microglial Cells. Pharmaceuticals (Basel) 2023; 16:989. [PMID: 37513900 PMCID: PMC10384906 DOI: 10.3390/ph16070989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Endoplasmic reticulum (ER) stress caused by excessive glutamate in the central nervous system leads to neurodegeneration. Albizia lebbeck (L.) Benth. has been reported to possess neuroprotective properties. We aimed to investigate the effect and mechanism of A. lebbeck leaf extracts on glutamate-induced neurotoxicity and apoptosis linked to ER stress using human microglial HMC3 cells. A. lebbeck leaves were extracted using hexane (AHE), mixed solvents, and ethanol. Each different extract was evaluated for cytotoxic effects on HMC3 cells, and then non-cytotoxic concentrations of the extracts were pretreated with the cells, followed by glutamate. Our results showed that AHE treatment exhibited the highest protective effect and was thus selected for finding the mechanistic approach. AHE inhibited the specific ER stress proteins (calpain1 and caspase-12). AHE also suppressed the apoptotic proteins (Bax, cytochrome c, cleaved caspase-9, and cleaved caspase-3); however, it also increased the antiapoptotic Bcl-2 protein. Remarkably, AHE increased cellular antioxidant activities (SOD, CAT, and GPx). To support the activation of antioxidant defense and inhibition of apoptosis in our HMC3 cell model, the bioactive phytochemicals within AHE were identified by HPLC analysis. We found that AHE had high levels of carotenoids (α-carotene, β-carotene, and lutein) and flavonoids (quercetin, luteolin, and kaempferol). Our novel findings indicate that AHE can inhibit glutamate-induced neurotoxicity via ER stress and apoptosis signaling pathways by activating cellular antioxidant enzymes in HMC3 cells, suggesting a potential mechanism for neuroprotection. As such, A. lebbeck leaf might potentially represent a promising source and novel alternative approach for preventing neurodegenerative diseases.
Collapse
Affiliation(s)
- Onuma Phoraksa
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok 10400, Thailand
| | - Chanika Chimkerd
- Center of Analysis for Product Quality (Natural Products Division), Faculty of Pharmacy, Mahidol University, Rajathevi, Bangkok 10400, Thailand
| | - Parunya Thiyajai
- Food Chemistry Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Kunchit Judprasong
- Food Chemistry Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Siriporn Tuntipopipat
- Cell and Animal Model Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somsri Charoenkiatkul
- Food Chemistry Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Chawanphat Muangnoi
- Cell and Animal Model Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Monruedee Sukprasansap
- Food Toxicology Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| |
Collapse
|
59
|
Sanatombi K. Antioxidant potential and factors influencing the content of antioxidant compounds of pepper: A review with current knowledge. Compr Rev Food Sci Food Saf 2023; 22:3011-3052. [PMID: 37184378 DOI: 10.1111/1541-4337.13170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/02/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023]
Abstract
The use of natural food items as antioxidants has gained increasing popularity and attention in recent times supported by scientific studies validating the antioxidant properties of natural food items. Peppers (Capsicum spp.) are also important sources of antioxidants and several studies published during the last few decades identified and quantified various groups of phytochemicals with antioxidant capacities as well as indicated the influence of several pre- and postharvest factors on the antioxidant capacity of pepper. Therefore, this review summarizes the research findings on the antioxidant activity of pepper published to date and discusses their potential health benefits as well as the factors influencing the antioxidant activity in pepper. The major antioxidant compounds in pepper include capsaicinoids, capsinoids, vitamins, carotenoids, phenols, and flavonoids, and these antioxidants potentially modulate oxidative stress related to aging and diseases by targeting reactive oxygen and nitrogen species, lipid peroxidation products, as well as genes for transcription factors that regulate antioxidant response elements genes. The review also provides a systematic understanding of the factors that maintain or improve the antioxidant capacity of peppers and the application of these strategies offers options to pepper growers and spices industries for maximizing the antioxidant activity of peppers and their health benefits to consumers. In addition, the efficacy of pepper antioxidants, safety aspects, and formulations of novel products with pepper antioxidants have also been covered with future perspectives on potential innovative uses of pepper antioxidants in the future.
Collapse
|
60
|
Filippov AG, Alexandrin VV, Ivanov AV, Paltsyn AA, Sviridkina NB, Virus ED, Bulgakova PO, Burmiy JP, Kubatiev AA. Neuroprotective Effect of Platinum Nanoparticles Is Not Associated with Their Accumulation in the Brain of Rats. J Funct Biomater 2023; 14:348. [PMID: 37504843 PMCID: PMC10381480 DOI: 10.3390/jfb14070348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Platinum nanoparticles (nPts) have neuroprotective/antioxidant properties, but the mechanisms of their action in cerebrovascular disease remain unclear. We investigated the brain bioavailability of nPts and their effects on brain damage, cerebral blood flow (CBF), and development of brain and systemic oxidative stress (OS) in a model of cerebral ischemia (hemorrhage + temporary bilateral common carotid artery occlusion, tBCAO) in rats. The nPts (0.04 g/L, 3 ± 1 nm diameter) were administered to rats (N = 19) intraperitoneally at the start of blood reperfusion. Measurement of CBF via laser Doppler flowmetry revealed that the nPts caused a rapid attenuation of postischemic hypoperfusion. The nPts attenuated the apoptosis of hippocampal neurons, the decrease in reduced aminothiols level in plasma, and the glutathione redox status in the brain, which were induced by tBCAO. The content of Pt in the brain was extremely low (≤1 ng/g). Thus, nPts, despite the extremely low brain bioavailability, can attenuate the development of brain OS, CBF dysregulation, and neuronal apoptosis. This may indicate that the neuroprotective effects of nPts are due to indirect mechanisms rather than direct activity in the brain tissue. Research on such mechanisms may offer a promising trend in the treatment of acute disorders of CBF.
Collapse
Affiliation(s)
| | | | | | - Alexander Alexandrovich Paltsyn
- Institute of General Pathology and Pathophysiology, Baltiyskaya St., 8, 125315 Moscow, Russia
- Russian Medical Academy for Continuing Professional Education, Barricadnaya St., 2/1 b. 1, 125993 Moscow, Russia
| | | | | | | | - Joanna Petrovna Burmiy
- Institute of Microelectronic Technology and Ultra-High-Purity Materials, Akademika Osip'yana Str., 6, 142432 Chernogolovka, Russia
| | - Aslan Amirkhanovich Kubatiev
- Institute of General Pathology and Pathophysiology, Baltiyskaya St., 8, 125315 Moscow, Russia
- Russian Medical Academy for Continuing Professional Education, Barricadnaya St., 2/1 b. 1, 125993 Moscow, Russia
| |
Collapse
|
61
|
Marqueze LFB, Costa AK, Pedroso GS, Vasconcellos FF, Pilger BI, Kindermann S, Andrade VM, Alves ACB, Nery T, Silva AA, Carvalhal SRS, Zazula MF, Naliwaiko K, Fernandes LC, Radak Z, Pinho RA. Regulation of Redox Profile and Genomic Instability by Physical Exercise Contributes to Neuroprotection in Mice with Experimental Glioblastoma. Antioxidants (Basel) 2023; 12:1343. [PMID: 37507883 PMCID: PMC10376052 DOI: 10.3390/antiox12071343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive, common brain cancer known to disrupt redox biology, affecting behavior and DNA integrity. Past research remains inconclusive. To further understand this, an investigation was conducted on physical training's effects on behavior, redox balance, and genomic stability in GBMA models. Forty-seven male C57BL/6J mice, 60 days old, were divided into GBM and sham groups (n = 15, n = 10, respectively), which were further subdivided into trained (Str, Gtr; n = 10, n = 12) and untrained (Sut, Gut; n = 10, n = 15) subsets. The trained mice performed moderate aerobic exercises on a treadmill five to six times a week for a month while untrained mice remained in their enclosures. Behavior was evaluated using open-field and rotarod tests. Post training, the mice were euthanized and brain, liver, bone marrow, and blood samples were analyzed for redox and genomic instability markers. The results indicated increased latency values in the trained GBM (Gtr) group, suggesting a beneficial impact of exercise. Elevated reactive oxygen species in the parietal tissue of untrained GBM mice (Gut) were reduced post training. Moreover, Gtr mice exhibited lower tail intensity, indicating less genomic instability. Thus, exercise could serve as a promising supplemental GBM treatment, modulating redox parameters and reducing genomic instability.
Collapse
Affiliation(s)
- Luis F B Marqueze
- Graduate Program in Health Sciences, School of Life Sciences and Medicine, Pontifical Catholic University of Paraná, Curitiba 80215-200, Brazil
| | - Amanda K Costa
- Graduate Program in Health Sciences, School of Life Sciences and Medicine, Pontifical Catholic University of Paraná, Curitiba 80215-200, Brazil
| | - Giulia S Pedroso
- Graduate Program in Health Sciences, School of Life Sciences and Medicine, Pontifical Catholic University of Paraná, Curitiba 80215-200, Brazil
| | - Franciane F Vasconcellos
- Graduate Program in Health Sciences, School of Life Sciences and Medicine, Pontifical Catholic University of Paraná, Curitiba 80215-200, Brazil
| | - Bruna I Pilger
- Graduate Program in Health Sciences, School of Life Sciences and Medicine, Pontifical Catholic University of Paraná, Curitiba 80215-200, Brazil
| | - Schellen Kindermann
- Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma 88806-000, Brazil
| | - Vanessa M Andrade
- Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma 88806-000, Brazil
| | - Ana C B Alves
- Department of Physical Therapy, Federal University of Santa Catarina, Araranguá 88905-120, Brazil
| | - Tatyana Nery
- Department of Physical Therapy, Federal University of Santa Catarina, Araranguá 88905-120, Brazil
| | - Aderbal A Silva
- Department of Physical Therapy, Federal University of Santa Catarina, Araranguá 88905-120, Brazil
| | | | - Matheus F Zazula
- Department of Physiology, Federal University of Parana, Curitiba 81531-970, Brazil
| | - Katya Naliwaiko
- Department of Physiology, Federal University of Parana, Curitiba 81531-970, Brazil
| | - Luiz C Fernandes
- Department of Physiology, Federal University of Parana, Curitiba 81531-970, Brazil
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Alkotas u. 44, H-1123 Budapest, Hungary
| | - Ricardo A Pinho
- Graduate Program in Health Sciences, School of Life Sciences and Medicine, Pontifical Catholic University of Paraná, Curitiba 80215-200, Brazil
| |
Collapse
|
62
|
Erikson KM, El-Khouri K, Petric R, Tang C, Chen J, Vasquez DEC, Fordahl SC, Jia Z. Carbon Nanodots Attenuate Lipid Peroxidation in the LDL Receptor Knockout Mouse Brain. Antioxidants (Basel) 2023; 12:1081. [PMID: 37237947 PMCID: PMC10215887 DOI: 10.3390/antiox12051081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Abnormal cholesterol metabolism can lead to oxidative stress in the brain. Low-density lipoprotein receptor (LDLr) knockout mice are models for studying altered cholesterol metabolism and oxidative stress onset in the brain. Carbon nanodots are a new class of carbon nanomaterials that possess antioxidant properties. The goal of our study was to evaluate the effectiveness of carbon nanodots in preventing brain lipid peroxidation. LDLr knockout mice and wild-type C57BL/6J mice were treated with saline or 2.5 mg/kg bw of carbon nanodots for a 16-week period. Brains were removed and dissected into the cortex, midbrain, and striatum. We measured lipid peroxidation in the mouse brain tissues using the Thiobarbituric Acid Reactive Substances Assay and iron and copper concentrations using Graphite Furnace Atomic Absorption Spectroscopy. We focused on iron and copper due to their association with oxidative stress. Iron concentrations were significantly elevated in the midbrain and striatum of the LDLr knockout mice compared to the C57BL/6J mice, whereas lipid peroxidation was greatest in the midbrain and cortex of the LDLr knockout mice. Treatment with carbon nanodots in the LDLr knockout mice attenuated both the rise in iron and lipid peroxidation, but they had no negative effect in the C57BL/6J mice, indicating the anti-oxidative stress properties of carbon nanodots. We also assessed locomotor and anxiety-like behaviors as functional indicators of lipid peroxidation and found that treatment with carbon nanodots prevented the anxiety-like behaviors displayed by the LDLr knockout mice. Overall, our results show that carbon nanodots are safe and may be an effective nanomaterial for combating the harmful effects caused by lipid peroxidation.
Collapse
Affiliation(s)
- Keith M. Erikson
- Department of Nutrition, University of North Carolina, Greensboro, NC 27401, USA
| | - Kristina El-Khouri
- Department of Nutrition, University of North Carolina, Greensboro, NC 27401, USA
| | - Radmila Petric
- Department of Biology, University of North Carolina, Greensboro, NC 27401, USA
- Institute for the Environment, University of North Carolina, Chapel-Hill, NC 27517, USA
| | - Chenhao Tang
- Department of Biology, University of North Carolina, Greensboro, NC 27401, USA
| | - Jinlan Chen
- Department of Biology, University of North Carolina, Greensboro, NC 27401, USA
| | | | - Steve C. Fordahl
- Department of Nutrition, University of North Carolina, Greensboro, NC 27401, USA
| | - Zhenquan Jia
- Department of Biology, University of North Carolina, Greensboro, NC 27401, USA
| |
Collapse
|
63
|
Choi SG, Shin J, Lee KY, Park H, Kim SI, Yi YY, Kim DW, Song HJ, Shin HJ. PINK1 siRNA-loaded poly(lactic-co-glycolic acid) nanoparticles provide neuroprotection in a mouse model of photothrombosis-induced ischemic stroke. Glia 2023; 71:1294-1310. [PMID: 36655313 DOI: 10.1002/glia.24339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023]
Abstract
PTEN-induced kinase 1 (PINK1) is a well-known critical marker in the pathway for mitophagy regulation as well as mitochondrial dysfunction. Evidence suggests that mitochondrial dynamics and mitophagy flux play an important role in the development of brain damage from stroke pathogenesis. In this study, we propose a treatment strategy using nanoparticles that can control PINK1. We used a murine photothrombotic ischemic stroke (PTS) model in which clogging of blood vessels is induced with Rose Bengal (RB) to cause brain damage. We targeted PINK1 with poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles loaded with PINK1 siRNA (PINK1 NPs). After characterizing siRNA loading in the nanoparticles, we assessed the efficacy of PINK1 NPs in mice with PTS using immunohistochemistry, 1% 2,3,5-triphenyltetrazolium chloride staining, measurement of motor dysfunction, and Western blot. PINK1 was highly expressed in microglia 24 h after PTS induction. PINK1 siRNA treatment increased phagocytic activity, migration, and expression of an anti-inflammatory state in microglia. In addition, the PLGA nanoparticles were selectively taken up by microglia and specifically regulated PINK1 expression in those cells. Treatment with PINK1 NPs prior to stroke induction reduced expression of mitophagy-inducing factors, infarct volume, and motor dysfunction in mice with photothrombotic ischemia. Experiments with PINK1-knockout mice and microglia depletion with PLX3397 confirmed a decrease in stroke-induced infarct volume and behavioral dysfunction. Application of nanoparticles for PINK1 inhibition attenuates RB-induced photothrombotic ischemic injury by inhibiting microglia responses, suggesting that a nanomedical approach targeting the PINK1 pathway may provide a therapeutic avenue for stroke treatment.
Collapse
Affiliation(s)
- Seung Gyu Choi
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of Anatomy and Cell Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Juhee Shin
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of Anatomy and Cell Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Ka Young Lee
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of Anatomy and Cell Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyewon Park
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of Anatomy and Cell Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Song I Kim
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of Anatomy and Cell Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Yoon Young Yi
- Department of Pediatrics, College of Medicine, Hallym University and Gangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of Anatomy and Cell Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Hee-Jung Song
- Department of Neurology, Chungnam National University Sejong Hospital and College of Medicine, Republic of Korea
| | - Hyo Jung Shin
- Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
64
|
Huang H, Oo TT, Apaijai N, Chattipakorn N, Chattipakorn SC. An Updated Review of Mitochondrial Transplantation as a Potential Therapeutic Strategy Against Cerebral Ischemia and Cerebral Ischemia/Reperfusion Injury. Mol Neurobiol 2023; 60:1865-1883. [PMID: 36595193 DOI: 10.1007/s12035-022-03200-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023]
Abstract
Regardless of the progress made in the pathogenesis of ischemic stroke, it remains a leading cause of adult disability and death. To date, the most effective treatment for ischemic stroke is the timely recanalization of the occluded artery. However, the short time window and reperfusion injury have greatly limited its application and efficacy. Mitochondrial dysfunction and ATP depletion have become regarded as being hallmarks of neuropathophysiology following ischemic stroke. Mitochondrial transplantation is a novel potential therapeutic intervention for ischemic stroke that has sparked widespread concern during the past few years. This review summarizes and discusses the effects of mitochondrial transplantation in in vitro and in vivo ischemic stroke models. In addition, pharmacological interventions promoting mitochondrial transplantation are reviewed and discussed. We also discuss the potential challenges to the clinical application of mitochondrial transplantation in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Huatuo Huang
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thura Tun Oo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand. .,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
65
|
Kamal FZ, Lefter R, Jaber H, Balmus IM, Ciobica A, Iordache AC. The Role of Potential Oxidative Biomarkers in the Prognosis of Acute Ischemic Stroke and the Exploration of Antioxidants as Possible Preventive and Treatment Options. Int J Mol Sci 2023; 24:ijms24076389. [PMID: 37047362 PMCID: PMC10094154 DOI: 10.3390/ijms24076389] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Ischemic strokes occur when the blood supply to a part of the brain is interrupted or reduced due to arterial blockage, and it often leads to damage to brain cells or death. According to a myriad of experimental studies, oxidative stress is an important pathophysiological mechanism of ischemic stroke. In this narrative review, we aimed to identify how the alterations of oxidative stress biomarkers could suggest a severity-reflecting diagnosis of ischemic stroke and how these interactions may provide new molecular targets for neuroprotective therapies. We performed an eligibility criteria-based search on three main scientific databases. We found that patients with acute ischemic stroke are characterized by increased oxidative stress markers levels, such as the total antioxidant capacity, F2-isoprostanes, hydroxynonenal, total and perchloric acid oxygen radical absorbance capacity (ORACTOT and ORACPCA), malondialdehyde (MDA), myeloperoxidase, and urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine. Thus, acute ischemic stroke is causing significant oxidative stress and associated molecular and cellular damage. The assessment of these molecular markers could be useful in diagnosing ischemic stroke, finding its causes, predicting its severity and outcomes, reducing its impact on the cellular structures of the brain, and guiding preventive treatment towards antioxidant-based therapy as novel therapeutic alternatives.
Collapse
|
66
|
Islam T, Rezanur Rahman M, Khan A, Ali Moni M. Integration of Mendelian randomisation and systems biology models to identify novel blood-based biomarkers for stroke. J Biomed Inform 2023; 141:104345. [PMID: 36958462 DOI: 10.1016/j.jbi.2023.104345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/04/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Stroke is the second largest cause of mortality in the world. Genome-wide association studies (GWAS) have identified some genetic variants associated with stroke risk, but their putative functional causal genes are unknown. Hence, we aimed to identify putative functional causal gene biomarkers of stroke risk. We used a summary-based Mendelian randomisation (SMR) approach to identify the pleiotropic associations of genetically regulated traits (i.e., gene expression and DNA methylation) with stroke risk. Using SMR approach, we integrated cis-expression quantitative loci (cis-eQTLs) and cis-methylation quantitative loci (cis-mQTLs) data with GWAS summary statistics of stroke. We also utilised heterogeneity in dependent instruments (HEIDI) test to distinguish pleiotropy from linkage from the observed associations identified through SMR analysis. Our integrative SMR analyses and HEIDI test revealed 45 candidate biomarker genes (FDR < 0.05; PHEIDI>0.01) that were pleiotropically or potentially causally associated with stroke risk. Of those candidate biomarker genes, 10 genes (HTRA1, PMF1, FBN2, C9orf84, COL4A1, BAG4, NEK6, SH2B3, SH3PXD2A, ACAD10) were differentially expressed in genome-wide blood transcriptomics data from stroke and healthy individuals (FDR<0.05). Functional enrichment analysis of the identified candidate biomarker genes revealed gene ontologies and pathways involved in stroke, including "cell aging", "metal ion binding" and "oxidative damage". Based on the evidence of genetically regulated expression of genes through SMR and directly measured expression of genes in blood, our integrative analysis suggests ten genes as blood biomarkers of stroke risk. Furthermore, our study provides a better understanding of the influence of DNA methylation on the expression of genes linked to stroke risk.
Collapse
Affiliation(s)
- Tania Islam
- School of Health and Rehabilitation Sciences, Faculty of Health, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Md Rezanur Rahman
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Asaduzzaman Khan
- School of Health and Rehabilitation Sciences, Faculty of Health, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mohammad Ali Moni
- School of Health and Rehabilitation Sciences, Faculty of Health, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
67
|
Younis NS, Mohamed ME. Anethole Pretreatment Modulates Cerebral Ischemia/Reperfusion: The Role of JNK, p38, MMP-2 and MMP-9 Pathways. Pharmaceuticals (Basel) 2023; 16:ph16030442. [PMID: 36986541 PMCID: PMC10057436 DOI: 10.3390/ph16030442] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Anethole (AN) is one of the major constituents of several plant oils, demonstrating plentiful pharmacological actions. Ischemic stroke is the main cause of morbidity and death worldwide, particularly since ischemic stroke therapeutic choices are inadequate and limited; thus, the development of new therapeutic options is indispensable. This study was planned to explore the preventive actions of AN in ameliorating cerebral ischemia/reperfusion-induced brain damage and BBB permeability leakage, as well as to explore anethole’s potential mechanisms of action. The proposed mechanisms included modulating JNK and p38 as well as MMP-2 and MMP-9 pathways. Sprague–Dawley male rats were randomly assigned into four groups: sham, middle cerebral artery occlusion (MCAO), AN125 + MCAO, and AN250 + MCAO. Animals in the third and fourth groups were pretreated with AN 125 or 250 mg/kg orally, respectively, for two weeks before performing middle cerebral artery occlusion (MCAO)-induced cerebral ischemic/reperfusion surgery. Animals that experienced cerebral ischemia/reperfusion exhibited amplified infarct volume, Evans blue intensity, brain water content, Fluoro-Jade B-positive cells, severe neurological deficits, and numerous histopathological alterations. MCAO animals exhibited elevated MMP-9 and MMP-2 gene expressions, enzyme activities, augmented JNK, and p38 phosphorylation. On the other hand, pretreatment with AN diminished the infarct volume, Evans blue dye intensity, brain water content, and Fluoro-Jade B-positive cells, improved the neurological score and enhanced histopathological examination. AN effectively lowered MMP-9 and MMP-2 gene expression and enzyme activities and diminished phosphorylated JNK, p38. AN decreased MDA content, amplified GSH/GSSG ratio, SOD, and CAT, decreased the serum and brain tissue homogenate inflammatory cytokines (TNF-α, IL-6, IL-1β), NF-κB, and deterred the apoptotic status. This study revealed the neuroprotective ability of AN against cerebral ischemia/reperfusion in rats. AN boosted blood–brain barrier integrity via modulating MMPs and diminished oxidative stress, inflammation, and apoptosis through the JNK/p38 pathway.
Collapse
Affiliation(s)
- Nancy S. Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Zagazig University Hospitals, Zagazig University, Zagazig 44519, Egypt
- Correspondence:
| | - Maged E. Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacognosy, College of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
68
|
Toljan K, Ashok A, Labhasetwar V, Hussain MS. Nanotechnology in Stroke: New Trails with Smaller Scales. Biomedicines 2023; 11:biomedicines11030780. [PMID: 36979759 PMCID: PMC10045028 DOI: 10.3390/biomedicines11030780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Stroke is a leading cause of death, long-term disability, and socioeconomic costs, highlighting the urgent need for effective treatment. During acute phase, intravenous administration of recombinant tissue plasminogen activator (tPA), a thrombolytic agent, and endovascular thrombectomy (EVT), a mechanical intervention to retrieve clots, are the only FDA-approved treatments to re-establish cerebral blood flow. Due to a short therapeutic time window and high potential risk of cerebral hemorrhage, a limited number of acute stroke patients benefit from tPA treatment. EVT can be performed within an extended time window, but such intervention is performed only in patients with occlusion in a larger, anatomically more proximal vasculature and is carried out at specialty centers. Regardless of the method, in case of successful recanalization, ischemia-reperfusion injury represents an additional challenge. Further, tPA disrupts the blood-brain barrier integrity and is neurotoxic, aggravating reperfusion injury. Nanoparticle-based approaches have the potential to circumvent some of the above issues and develop a thrombolytic agent that can be administered safely beyond the time window for tPA treatment. Different attributes of nanoparticles are also being explored to develop a multifunctional thrombolytic agent that, in addition to a thrombolytic agent, can contain therapeutics such as an anti-inflammatory, antioxidant, neuro/vasoprotective, or imaging agent, i.e., a theragnostic agent. The focus of this review is to highlight these advances as they relate to cerebrovascular conditions to improve clinical outcomes in stroke patients.
Collapse
Affiliation(s)
- Karlo Toljan
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anushruti Ashok
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Vinod Labhasetwar
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Correspondence: (V.L.); (M.S.H.)
| | - M. Shazam Hussain
- Cerebrovascular Center, Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Correspondence: (V.L.); (M.S.H.)
| |
Collapse
|
69
|
Polyunsaturated Lipids in the Light-Exposed and Prooxidant Retinal Environment. Antioxidants (Basel) 2023; 12:antiox12030617. [PMID: 36978865 PMCID: PMC10044808 DOI: 10.3390/antiox12030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The retina is an oxidative stress-prone tissue due to high content of polyunsaturated lipids, exposure to visible light stimuli in the 400–480 nm range, and high oxygen availability provided by choroidal capillaries to support oxidative metabolism. Indeed, lipids’ peroxidation and their conversion into reactive species promoting inflammation have been reported and connected to retinal degenerations. Here, we review recent evidence showing how retinal polyunsaturated lipids, in addition to oxidative stress and damage, may counteract the inflammatory response triggered by blue light-activated carotenoid derivatives, enabling long-term retina operation despite its prooxidant environment. These two aspects of retinal polyunsaturated lipids require tight control over their synthesis to avoid overcoming their protective actions by an increase in lipid peroxidation due to oxidative stress. We review emerging evidence on different transcriptional control mechanisms operating in retinal cells to modulate polyunsaturated lipid synthesis over the life span, from the immature to the ageing retina. Finally, we discuss the antioxidant role of food nutrients such as xanthophylls and carotenoids that have been shown to empower retinal cells’ antioxidant responses and counteract the adverse impact of prooxidant stimuli on sight.
Collapse
|
70
|
The Vitamin D Receptor as a Potential Target for the Treatment of Age-Related Neurodegenerative Diseases Such as Alzheimer's and Parkinson's Diseases: A Narrative Review. Cells 2023; 12:cells12040660. [PMID: 36831327 PMCID: PMC9954016 DOI: 10.3390/cells12040660] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The vitamin D receptor (VDR) belongs to the nuclear receptor superfamily of transcription factors. The VDR is expressed in diverse brain regions and has been implicated in the neuroprotective, antiaging, prosurvival, and anti-inflammatory action of vitamin D. Accordingly, a relationship between vitamin D insufficiency and susceptibility to neurodegenerative diseases has been suggested. However, due to the multitargeted mechanisms of vitamin D and its often overlapping genomic and nongenomic effects, the role of the VDR in brain pathologies remains obscure. In this narrative review, we present progress in deciphering the molecular mechanism of nuclear VDR-mediated vitamin D effects on prosurvival and anti-inflammatory signaling pathway activity within the central nervous system. In line with the concept of the neurovascular unit in pathomechanisms of neurodegenerative diseases, a discussion of the role of the VDR in regulating the immune and vascular brain systems is also included. Next, we discuss the results of preclinical and clinical studies evaluating the significance of vitamin D status and the efficacy of vitamin D supplementation in the treatment of Parkinson's and Alzheimer's diseases, emphasizing the possible role of the VDR in these phenomena. Finally, the associations of some VDR polymorphisms with higher risks and severity of these neurodegenerative disorders are briefly summarized.
Collapse
|
71
|
Long-Term Supplementation of Syzygium cumini (L.) Skeels Concentrate Alleviates Age-Related Cognitive Deficit and Oxidative Damage: A Comparative Study of Young vs. Old Mice. Nutrients 2023; 15:nu15030666. [PMID: 36771374 PMCID: PMC9921576 DOI: 10.3390/nu15030666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The Syzygium cumini (L.) Skeels is reported to have medicinal properties, but its benefits on age-related neurological changes have not been previously explored. In the current study, after phytochemical analysis of the pulp of Syzygium cumini (L.) Skeels fruit (Sy. cmi), young BALB/c mice have been supplemented with its 5, 15, and 30% dilution for 16 months, followed by behavioral experimentation and biochemical evaluation of isolated brains. The Sy. cmi has been found enriched with phenols/flavonoids while the occurrence of nine phytocompounds has been identified through GC-MS analysis. Further, Sy. cmi supplementation has caused significant (p < 0.05) protection from anxiety-like behavior in aged mice, and they have explored open, illuminated, and exposed areas of open field, light/dark, and an elevated plus maze, respectively. Furthermore, these animals have shown improved cognitive abilities as their percent (%) spontaneous alteration and novelty preference are significantly greater in T-maze and Y-maze and familiarity/novelty recognition tests. Further, Sy. cmi-supplemented mice remember the aversive stimuli zone and escape box location in passive avoidance and Barnes maze tests, and their brains have low levels of malondialdehyde and acetylcholinesterase with elevated antioxidant enzymes. The outcomes have provided scientific insight into the beneficial effects of Sy. cmi on age-associated amnesia that might be attributed to antioxidant and anticholinergic effects exerted by phytocompounds (caryophyllene, humulene, β-Farnesene, and phytol) owned by Syzygium cumini.
Collapse
|
72
|
Yu Q, Jian Z, Yang D, Zhu T. Perspective insights into hydrogels and nanomaterials for ischemic stroke. Front Cell Neurosci 2023; 16:1058753. [PMID: 36761147 PMCID: PMC9902513 DOI: 10.3389/fncel.2022.1058753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/30/2022] [Indexed: 01/26/2023] Open
Abstract
Ischemic stroke (IS) is a neurological disorder prevalent worldwide with a high disability and mortality rate. In the clinic setting, tissue plasminogen activator (tPA) and thrombectomy could restore blood flow of the occlusion region and improve the outcomes of IS patients; however, these therapies are restricted by a narrow time window. Although several preclinical trials have revealed the molecular and cellular mechanisms underlying infarct lesions, the translatability of most findings is unsatisfactory, which contributes to the emergence of new biomaterials, such as hydrogels and nanomaterials, for the treatment of IS. Biomaterials function as structural scaffolds or are combined with other compounds to release therapeutic drugs. Biomaterial-mediated drug delivery approaches could optimize the therapeutic effects based on their brain-targeting property, biocompatibility, and functionality. This review summarizes the advances in biomaterials in the last several years, aiming to discuss the therapeutic potential of new biomaterials from the bench to bedside. The promising prospects of new biomaterials indicate the possibility of an organic combination between materialogy and medicine, which is a novel field under exploration.
Collapse
Affiliation(s)
- Qingbo Yu
- Laboratory of Anesthesia & Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China,Department of Anesthesiology, North Sichuan Medical College, Nanchong, China
| | - Zhang Jian
- Sichuan Provincial Maternity and Child Health Care Hospital, Women’s and Children’s Hospital Affiliated of Chengdu Medical College, Chengdu, China
| | - Dan Yang
- Department of Anesthesiology, North Sichuan Medical College, Nanchong, China
| | - Tao Zhu
- Laboratory of Anesthesia & Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China,*Correspondence: Tao Zhu,
| |
Collapse
|
73
|
Aleksandrova S, Alexova R, Dragomanova S, Kalfin R, Nicoletti F, Fagone P, Petralia MC, Mangano K, Tancheva L. Preventive and Therapeutic Effects of Punica granatum L. Polyphenols in Neurological Conditions. Int J Mol Sci 2023; 24:ijms24031856. [PMID: 36768185 PMCID: PMC9916020 DOI: 10.3390/ijms24031856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Pomegranate (Punica granatum L.) is a polyphenol-rich food and medicinal plant containing flavonols, anthocyanins, and tannins. Ellagitannins (ETs) are the most abundant polyphenols in pomegranate. A growing body of research shows that polyphenol-rich pomegranate extracts and their metabolites target multiple types of brain cell and support their redox balance, proliferation and survival, as well as cell signaling. Independent studies have demonstrated that the significant neuroprotective effects of ETs are mediated by their antioxidant and anti-inflammatory effects, their chelating properties, by their ability to activate various signaling pathways, as well as the ability to influence mitochondrial damage, thus regulating autophagy, apoptosis and neurotransmitter signaling. The multitude of in vitro and in vivo studies summarized in the present review suggest that pomegranate polyphenols act on both neuronal and glial cells directly, and also affect blood-brain barrier function, restoring redox balance in the blood and brain and increasing blood flow to the brain.
Collapse
Affiliation(s)
- Simona Aleksandrova
- Department of Biological Activity of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ralitza Alexova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University—Sofia, 2 Zdrave St., 1431 Sofia, Bulgaria
| | - Stela Dragomanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University, 9002 Varna, Bulgaria
| | - Reni Kalfin
- Department of Biological Activity of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Department of Health Care, South-West University “Neofit Rilski”, Ivan Mihailov St. 66, 2700 Blagoevgrad, Bulgaria
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
- Correspondence:
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Maria Cristina Petralia
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Lyubka Tancheva
- Department of Biological Activity of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
74
|
Essadek S, Gondcaille C, Savary S, Samadi M, Vamecq J, Lizard G, Kebbaj RE, Latruffe N, Benani A, Nasser B, Cherkaoui-Malki M, Andreoletti P. Two Argan Oil Phytosterols, Schottenol and Spinasterol, Attenuate Oxidative Stress and Restore LPS-Dysregulated Peroxisomal Functions in Acox1-/- and Wild-Type BV-2 Microglial Cells. Antioxidants (Basel) 2023; 12:168. [PMID: 36671029 PMCID: PMC9854540 DOI: 10.3390/antiox12010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Oxidative stress and inflammation are the key players in neuroinflammation, in which microglia dysfunction plays a central role. Previous studies suggest that argan oil attenuates oxidative stress, inflammation, and peroxisome dysfunction in mouse brains. In this study, we explored the effects of two major argan oil (AO) phytosterols, Schottenol (Schot) and Spinasterol (Spina), on oxidative stress, inflammation, and peroxisomal dysfunction in two murine microglial BV-2 cell lines, wild-ype (Wt) and Acyl-CoA oxidase 1 (Acox1)-deficient cells challenged with LPS treatment. Herein, we used an MTT test to reveal no cytotoxicity for both phytosterols with concentrations up to 5 µM. In the LPS-activated microglial cells, cotreatment with each of these phytosterols caused a significant decrease in intracellular ROS production and the NO level released in the culture medium. Additionally, Schot and Spina were able to attenuate the LPS-dependent strong induction of Il-1β and Tnf-α mRNA levels, as well as the iNos gene and protein expression in both Wt and Acox1-/- microglial cells. On the other hand, LPS treatment impacted both the peroxisomal antioxidant capacity and the fatty acid oxidation pathway. However, both Schot and Spina treatments enhanced ACOX1 activity in the Wt BV-2 cells and normalized the catalase activity in both Wt and Acox1-/- microglial cells. These data suggest that Schot and Spina can protect cells from oxidative stress and inflammation and their harmful consequences for peroxisomal functions and the homeostasis of microglial cells. Collectively, our work provides a compelling argument for the protective mechanisms of two major argan oil phytosterols against LPS-induced brain neuroinflammation.
Collapse
Affiliation(s)
- Soukaina Essadek
- Laboratory of Biochimistry, Neuroscience, Natural Resources and Environment, Faculty of Science and Technology, University Hassan I, Settat 26000, Morocco
- Bio-PeroxIL Laboratory, EA7270, University Bourgogne Franche-Comté/Inserm, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Catherine Gondcaille
- Bio-PeroxIL Laboratory, EA7270, University Bourgogne Franche-Comté/Inserm, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Stéphane Savary
- Bio-PeroxIL Laboratory, EA7270, University Bourgogne Franche-Comté/Inserm, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Mohammad Samadi
- Laboratory of Chemistry and Physics Multi-Scale Approach to Complex Environments, Department of Chemistry, University Lorraine, 57070 Metz, France
| | - Joseph Vamecq
- Inserm and HMNO, CBP, CHRU Lille, and RADEME EA 7364, Faculté de Médecine, Université de Lille 2, 59045 Lille, France
| | - Gérard Lizard
- Bio-PeroxIL Laboratory, EA7270, University Bourgogne Franche-Comté/Inserm, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Riad El Kebbaj
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan 1st University, Settat 26000, Morocco
| | - Norbert Latruffe
- Bio-PeroxIL Laboratory, EA7270, University Bourgogne Franche-Comté/Inserm, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Alexandre Benani
- CSGA—Centre des Sciences du Goût et de l’Alimentation, CNRS—Centre National de la Recherche Scientifique, INRAE—Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement, Institut Agro Dijon, University Bourgogne Franche-Comté, 21000 Dijon, France
| | - Boubker Nasser
- Laboratory of Biochimistry, Neuroscience, Natural Resources and Environment, Faculty of Science and Technology, University Hassan I, Settat 26000, Morocco
| | - Mustapha Cherkaoui-Malki
- Bio-PeroxIL Laboratory, EA7270, University Bourgogne Franche-Comté/Inserm, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Pierre Andreoletti
- Bio-PeroxIL Laboratory, EA7270, University Bourgogne Franche-Comté/Inserm, 6 Boulevard Gabriel, 21000 Dijon, France
| |
Collapse
|
75
|
Fatty acid-binding proteins 3 and 5 are involved in the initiation of mitochondrial damage in ischemic neurons. Redox Biol 2022; 59:102547. [PMID: 36481733 PMCID: PMC9727700 DOI: 10.1016/j.redox.2022.102547] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
We have previously shown that a fatty acid-binding protein7 (FABP7) inhibitor ameliorates cerebral ischemia-reperfusion injury in mice, suggesting an association between FABPs and ischemic neuronal injury. However, the precise role of FABPs in ischemic neuronal injury remains unclear. In this study, we investigated the role of FABPs in ischemia-reperfusion neuronal injury. FABP3, FABP5, and FABP7 were upregulated in the ischemic penumbra regions in mice. However, only FABP3 and FABP5 were expressed in injured neurons. Furthermore, FABP3 and FABP5 accumulated in the mitochondria of ischemic neurons. Overexpressing either FABP3 or FABP5 aggravated the reduced mitochondrial membrane potential and induced cell death in human neuroblastoma SH-SY5Y cells during oxidative stress. This damage was mediated by the formation of BAX-containing pores in the mitochondrial membrane. Moreover, FABP5 mediates lipid peroxidation and generates toxic by-products (i.e., 4-HNE) in SH-SY5Y cells. HY11-08 (HY08), a novel FABP3 and 5 inhibitor that does not act on FABP7, significantly reduced cerebral infarct volume and blocked FABP3/5-induced mitochondrial damage, including lipid peroxidation and BAX-related apoptotic signaling. Thus, FABP3 and FABP5 are key players in triggering mitochondrial damage in ischemic neurons. In addition, the novel FABP inhibitor, HY08, may be a potential neuroprotective treatment for ischemic stroke.
Collapse
|
76
|
A. HP, Diwakar L, Ravindranath V. Protein Glutathionylation and Glutaredoxin: Role in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11122334. [PMID: 36552543 PMCID: PMC9774553 DOI: 10.3390/antiox11122334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Oxidative stress has been implicated in the pathogenesis and progression of many neurodegenerative disorders including Parkinson's disease and Alzheimer's disease. One of the major enzyme systems involved in the defense against reactive oxygen species are the tripeptide glutathione and oxidoreductase glutaredoxin. Glutathione and glutaredoxin system are very important in the brain because of the oxidative modification of protein thiols to protein glutathione mixed disulfides with the concomitant formation of oxidized glutathione during oxidative stress. Formation of Pr-SSG acts as a sink in the brain and is reduced back to protein thiols during recovery, thus restoring protein functions. This is unlike in the liver, which has a high turnover of glutathione, and formation of Pr-SSG is very minimal as liver is able to quickly quench the prooxidant species. Given the important role glutathione and glutaredoxin play in the brain, both in normal and pathologic states, it is necessary to study ways to augment the system to help maintain the protein thiol status. This review details the importance of glutathione and glutaredoxin systems in several neurodegenerative disorders and emphasizes the potential augmentation of this system as a target to effectively protect the brain during aging.
Collapse
Affiliation(s)
- Haseena P. A.
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Latha Diwakar
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
| | - Vijayalakshmi Ravindranath
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
- Correspondence: ; Tel.: +91-80-22933433; Fax: +91-80-23603323
| |
Collapse
|
77
|
Yang C, Jia X, Wang Y, Fan J, Zhao C, Yang Y, Shi X. Association between Dietary Total Antioxidant Capacity of Antioxidant Vitamins and the Risk of Stroke among US Adults. Antioxidants (Basel) 2022; 11:2252. [PMID: 36421437 PMCID: PMC9686933 DOI: 10.3390/antiox11112252] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 08/26/2023] Open
Abstract
The intake of antioxidant vitamins can scavenge free radicals and reduce oxidative stress, which may be beneficial for stroke. However, the relationship between total antioxidant capacity (TAC) of antioxidant vitamins and stroke is controversial. This study aims to investigate the association between dietary TAC and the risk of stroke in US adults. This study included participants over 20 years old from the 2001-2018 National Health and Nutrition Examination Survey (NHANES). Data from two 24 h dietary recalls were used to estimate the usual intake of antioxidant vitamins. TAC was calculated by the vitamin C equivalent antioxidant capacity reference values of individual antioxidant vitamins. Survey-weighted generalized linear models were performed to evaluate the relationship between TAC and the risk of stroke. A restricted cubic spline regression model was used to investigate the dose-response association. A total of 37,045 participants was involved, of whom 1391 suffered a stroke. Compared with the first tertile, the participants in the second tertile of TAC showed a lower risk of stroke (OR = 0.788, 95% CI: 0.662, 0.936) after adjusting for potential risk factors. The dose-response analysis showed a gradual increase in the risk of stroke as TAC decreases. Subgroups analyses indicated that this association was primarily in the population of those aged over 60 years old, who were female, consumed alcohol, were a former smoker and inactive. The sensitivity analysis presented consistent results. These results suggest that deficiency of dietary TAC was associated with an increased risk of stroke, particularly in populations with underlying oxidative stress injury.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xuezhong Shi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
78
|
Serra MC, Hafer-Macko CE, Robbins R, O'Connor JC, Ryan AS. Randomization to Treadmill Training Improves Physical and Metabolic Health in Association With Declines in Oxidative Stress in Stroke. Arch Phys Med Rehabil 2022; 103:2077-2084. [PMID: 35839921 PMCID: PMC9637747 DOI: 10.1016/j.apmr.2022.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the effect of aerobic exercise vs control (stretching/balance) on inflammatory and oxidative stress biomarkers in stroke survivors and whether these changes are associated with improvements in physical and metabolic health. DESIGN Randomized controlled trial. SETTING The general communities of Baltimore, Maryland, and Atlanta, Georgia. PARTICIPANTS Two hundred forty-six older (>50 years), chronic (>6 months) survivors of stroke (N=246) with hemiparetic gait were recruited, with 51 completing pre-intervention testing and 39 completing postintervention testing. Participants were required to have completed all conventional physical therapy and be capable of walking 3 minutes on a treadmill (N=246). INTERVENTION Participants completed 6 months of 2 times/wk stretching or balance (ST; n=19) or 3 times/wk aerobic treadmill rehabilitation (TM; n=20;). MAIN OUTCOME MEASURE(S) Peak oxygen uptake rate (V̇o2peak), 6-minute walking distance (6MWD), fasting plasma glucose, insulin, oxidative stress, and inflammatory biomarkers were assessed pre- and postintervention. Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) was calculated. RESULTS Physical function and metabolic health parameters tended to improve after TM but not ST (ST vs TM: V̇o2peak: -9% vs 24%, P<.01; 6MWD: 1% vs 15%, P=.05; insulin: -1% vs -31%, P=.05; HOMA-IR: -3% vs -29%, P=.06). Plasma concentrations of nitrotyrosine, protein carbonyls, and oxidized low-density lipoprotein (oxLDL) tended to decrease from pre-intervention concentrations in response to TM compared to ST (ST vs TM: nitrotyrosine: 2% vs -28%, P=.01; protein carbonyls: -4% vs -34%, P=.08; oxLDL: -3% vs -32%, P<.01). Changes in circulating concentrations of C-reactive protein, protein carbonyls, and oxLDL were negatively associated with changes in V̇o2peak and 6MWD (r's=-0.40 to -0.76) and positively associated with fasting plasma insulin and HOMA-IR (r's=0.52-0.81, Ps<.01). CONCLUSIONS Six months of TM tends to be associated with increased functional capacity and reduced oxidative stress in chronic stroke survivors. Our findings identify potentially modifiable systemic markers of inflammation and oxidative stress important to stroke rehabilitation and provide potential targets for novel therapeutics in future studies.
Collapse
Affiliation(s)
- Monica C Serra
- Division of Geriatrics, Gerontology & Palliative Medicine and the Sam & Ann Barshop Institute for Longevity & Aging Studies, Department of Medicine, UT Health San Antonio, San Antonio, TX; San Antonio Geriatric Research, Education, and Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio, TX.
| | - Charlene E Hafer-Macko
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD; Department of Pharmacology, UT Health San Antonio, San Antonio, TX
| | - Ronna Robbins
- San Antonio Geriatric Research, Education, and Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio, TX
| | - Jason C O'Connor
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX
| | - Alice S Ryan
- Baltimore GRECC, VA Maryland Health Care System, Baltimore, MD; Division of Geriatrics and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
79
|
Xu W, Hu Z, Yin D, Zeng YE, Zhang XX, Jin W, Ren CC. AATF Competitively Interacts with Nuclear AIF and Inhibits Parthanatos of Neurons in dMCAO/R and OGD/R Models. J Mol Neurosci 2022; 72:2218-2232. [PMID: 36058992 DOI: 10.1007/s12031-022-02064-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/26/2022] [Indexed: 12/13/2022]
Abstract
Ischemic stroke (IS) poses a heavy burden on the healthcare system, and revascularization is the most effective treatment. However, ischemia/reperfusion (I/R) injury, one main cause of revascularization complications, significantly hinders IS recovery. Unfortunately, none of the neuroprotectants tested to date has been successfully translated clinically for post-revascularization I/R injury therapy. In multiple pathophysiological processes, apoptosis antagonizing transcription factor (AATF) serves as a cell protector, but its role in neuronal I/R injury is unknown. Therefore, we firstly demonstrated the expression profiles of AATF in a distal middle cerebral artery occlusion/reperfusion (dMCAO/R) model and found that AATF expression was increased in cortical neuron after dMCAO/R. Over-expressing AATF reduced infarct volume, alleviated neuronal death, and promoted neurological functions. Next, we used an oxygen-glucose deprivation/reoxygenation (OGD/R) model to investigate the mechanism of AATF. Results indicated that AATF alleviated OGD/R-induced large-scale DNA fragmentation, which suggested that the protective effect of AATF may be attributed to parthanatos inhibition. After that, we examined the regulatory mechanism of AATF. We found that AATF did not affect poly (ADP-ribose) accumulation and apoptosis-inducing factor (AIF) nucleus translocation. AATF competitively interacted with nuclear AIF, which inhibited AIF from binding DNA. At last, we verified the effect and mechanism of AATF in dMCAO/R model. The present study, for the first time, demonstrates the expression, function, and mechanism of AATF in the context of neuronal I/R injury via dMCAO/R and OGD/R model, which provides new evidence in this area and may facilitate exploring new therapeutic targets.
Collapse
Affiliation(s)
- Wei Xu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Departments of Neurology, Shanghai East Hospital Affiliated to Tongji University, Shanghai, 200120, China
| | - Zhen Hu
- Clinical Neuroscience Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Dou Yin
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu-E Zeng
- Clinical Neuroscience Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiao-Xiao Zhang
- Department of Neurology, the Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Wei Jin
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Clinical Neuroscience Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chuan-Cheng Ren
- Departments of Neurology, Shanghai East Hospital Affiliated to Tongji University, Shanghai, 200120, China
| |
Collapse
|
80
|
Muacevic A, Adler JR, Goktekin MC, Giden R, Koyuncu İ. Meteorin-Like Protein Levels Decrease in Patients With Acute Ischaemic Stroke. Cureus 2022; 14:e32042. [PMID: 36600830 PMCID: PMC9803575 DOI: 10.7759/cureus.32042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Ongoing research aims to investigate blood-based biomarkers and use them in acute ischaemic stroke (AIS) diagnosis and management of patients with AIS. PURPOSE The purpose of the present study was to investigate the meteorin-like protein (Metrnl) levels secreted by adipose tissue in patients with AIS. METHODS The study groups included healthy controls (n=30) and patients diagnosed with AIS via magnetic resonance imaging (MRI) in the emergency department (n=35) during the one-year period. The basic laboratory values and Metrnl, total antioxidant capacity (TAC), total oxidant status (TOS), and oxidative stress index (OSI) levels of the patients were compared. The Metrnl levels were measured using enzyme-linked immunosorbent assays. RESULTS In the present study, the Metrnl (p=0.001) and TAC (p=0.009) levels decreased significantly, whereas the TOS (p<0.001) and OSI (p<0.001) levels increased significantly in the patients with AIS compared to the healthy controls. Furthermore, a cut-off value of ≤1.63% meteorin-like protein rendered the sensitivity and specificity rates of 91.43% and 71.43%, respectively, in the patients with AIS. In addition, there was a significant negative correlation between the decreased meteorin-like protein levels and the infarct diameter in patients with AIS. CONCLUSION In patients with AIS, the meteorin-like protein levels decreased inversely with the infarct diameter, and at the same time, there was an increase in TOS and OSI levels and a decrease in TAC levels.
Collapse
|
81
|
Zhou Y, Jiang H, Wei H, Liu L, Zhou C, Ji X. Venous stroke–a stroke subtype that should not be ignored. Front Neurol 2022; 13:1019671. [PMID: 36277910 PMCID: PMC9582250 DOI: 10.3389/fneur.2022.1019671] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Based on the etiology, stroke can be classified into ischemic or hemorrhagic subtypes, which ranks second among the leading causes of death. Stroke is caused not only by arterial thrombosis but also by cerebral venous thrombosis. Arterial stroke is currently the main subtype of stroke, and research on this type has gradually improved. Venous thrombosis, the particular type, accounts for 0.5–1% of all strokes. Due to the lack of a full understanding of venous thrombosis, as well as its diverse clinical manifestations and neuroimaging features, there are often delays in admission for it, and it is easy to misdiagnose. The purpose of this study was to review the pathophysiology mechanisms and clinical features of arterial and venous thrombosis and to provide guidance for further research on the pathophysiological mechanism, clinical diagnosis, and treatment of venous thrombosis. This review summarizes the pathophysiological mechanisms, etiology, epidemiology, symptomatology, diagnosis, and treatment heterogeneity of venous thrombosis and compares it with arterial stroke. The aim is to provide a reference for a comprehensive understanding of venous thrombosis and a scientific understanding of various pathophysiological mechanisms and clinical features related to venous thrombosis, which will contribute to understanding the pathogenesis of intravenous stroke and provide insight into diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- Yifan Zhou
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Huimin Jiang
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Huimin Wei
- School of Engineering Medicine, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Lu Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chen Zhou
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Chen Zhou
| | - Xunming Ji
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xunming Ji
| |
Collapse
|
82
|
Rotimi DE, Ben-Goru GM, Evbuomwan IO, Elebiyo TC, Alorabi M, Farasani A, Batiha GES, Adeyemi OS. Zingiber officinale and Vernonia amygdalina Infusions Improve Redox Status in Rat Brain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9470178. [PMID: 36199544 PMCID: PMC9529415 DOI: 10.1155/2022/9470178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022]
Abstract
The study investigated the effects of Zingiber officinale root and Vernonia amygdalina leaf on the brain redox status of Wistar rats. Twenty-four (24) rats weighing 160 ± 20 g were randomly assigned into four (4) groups, each with six (6) rats. Animals in Group 1 (control) were orally administered distilled water (1 mL), while the test groups were orally administered 5 mg/mL of either Z. officinale, V. amygdalina infusion, or a combination of both, respectively, for 7 days. The rats were sacrificed at the end of treatments and blood and tissue were harvested and prepared for biochemical assays. Results showed that administration of V. amygdalina and Z. officinale, as well as their coadministration, reduced the levels of malondialdehyde (MDA), nitric oxide (NO), acetylcholinesterase (AChE), and myeloperoxidase (MPO) in rat brain tissue compared with the control group. Conversely, coadministration of V. amygdalina and Z. officinale increased the levels of reduced glutathione (GSH) in rat brain tissue compared with the control group. However, the administration of the infusions singly, as well as the combination of both infusions, did not have any effect on the rat brain levels of glutathione peroxidase (GPx) and catalase (CAT) antioxidant enzymes compared to the control. Taken together, the findings indicate that the V. amygdalina and Z. officinale tea infusions have favorable antioxidant properties in the rat brain. The findings are confirmatory and contribute to deepening our understanding of the health-promoting effects of V. amygdalina and Z. officinale tea infusions.
Collapse
Affiliation(s)
- Damilare Emmanuel Rotimi
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria
| | - Goodnews Mavoghenegbero Ben-Goru
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria
| | - Ikponmwosa Owen Evbuomwan
- Department of Microbiology, Cellular Parasitology Unit, College of Pure and Applied Sciences, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria
| | - Tobiloba Christiana Elebiyo
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria
| | - Mohammed Alorabi
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdullah Farasani
- Department of Medical Laboratory Technology, Biomedical Research Unit, Medical Research Center, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Oluyomi Stephen Adeyemi
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-Onsen, Osaki, Miyagi 989-6711, Sendai, Japan
| |
Collapse
|
83
|
Hamid M, Mansoor S, Amber S, Zahid S. A quantitative meta-analysis of vitamin C in the pathophysiology of Alzheimer’s disease. Front Aging Neurosci 2022; 14:970263. [PMID: 36158537 PMCID: PMC9490219 DOI: 10.3389/fnagi.2022.970263] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose Alzheimer’s disease (AD) is a multifaceted neurodegenerative disorder with many complex pathways feeding into its pathogenesis and progression. Vitamin C, an essential dietary antioxidant, is vital for proper neurological development and maintenance. This meta-analysis and systematic review attempted to define the relationship between vitamin C plasma levels and AD while highlighting the importance and involvement of vitamin C in the pathogenesis of AD. Materials and methods PRISMA guidelines were used to obtain studies quantifying the plasma levels of vitamin C in AD and control subjects. The literature was searched in the online databases PubMed, Google Scholar, and Web of Science. A total of 12 studies were included (n = 1,100) and analyzed using Comprehensive Meta-Analysis 3.0. Results The results show that there is a significant decrease in the plasma vitamin C levels of AD patients as compared to healthy controls (pooled SMD with random-effect model: −1.164, with 95%CI: −1.720 to −0.608, Z = −4.102, p = 0.00) with significant heterogeneity (I2 = 93.218). The sensitivity analysis showed directionally similar results. Egger’s regression test (p = 0.11) and visual inspection of the funnel plot showed no publication bias. Conclusion Based on these studies, it can be deduced that the deficiency of vitamin C is involved in disease progression and supplementation is a plausible preventive and treatment strategy. However, clinical studies are warranted to elucidate its exact mechanistic role in AD pathophysiology and prevention.
Collapse
|
84
|
Ogunro OB, Salawu AO, Alotaibi SS, Albogami SM, Batiha GES, Waard MD. Quercetin-3-O-β-D-Glucopyranoside-Rich Fraction from Spondias mombin Leaves Halted Responses from Oxidative Stress, Neuroinflammation, Apoptosis, and Lipid Peroxidation in the Brain of Dichlorvos-Treated Wistar Rats. TOXICS 2022; 10:toxics10080477. [PMID: 36006156 PMCID: PMC9413772 DOI: 10.3390/toxics10080477] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 05/05/2023]
Abstract
Dichlorvos (2,3-dichlorovinyl dimethyl phosphate or DDVP), is a popular organophosphate (OP) with several domestic, industrial, and agricultural uses and applications in developing countries [...].
Collapse
Affiliation(s)
- Olalekan Bukunmi Ogunro
- Department of Biological Sciences, Faculty of Applied Sciences, KolaDaisi University, Ibadan 200213, Nigeria
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin 240222, Nigeria
- Correspondence: ; Tel.: +234-8069845995
| | - Akeem Oni Salawu
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin 240222, Nigeria
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Sarah M. Albogami
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira 22511, Egypt
| | - Michel De Waard
- L’Institut Du Thorax, CNRS, INSERM, Université de Nantes, F-44000 Nantes, France
- LabEx Ion Channels, Science and Therapeutics, F-06560 Valbonne, France
| |
Collapse
|
85
|
The Differences of Metabolites in Different Parts of the Brain Induced by Shuxuetong Injection against Cerebral Ischemia-Reperfusion and Its Corresponding Mechanism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9465095. [PMID: 35815276 PMCID: PMC9259222 DOI: 10.1155/2022/9465095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022]
Abstract
Ischemic stroke is often associated with a large disease burden. The existence of ischemia-reperfusion injury brings great challenges to the treatment of ischemic stroke. The purpose of this study was to explore the differences of metabolites in different parts of the brain induced by Shuxuetong injection against cerebral ischemia-reperfusion and to extend the corresponding mechanism. The rats were modeled by transient middle cerebral artery occlusion (t-MCAO) operation, and the success of modeling was determined by neurological function score and TTC staining. UPLC-Q/TOF-MS metabolomics technique and multivariate statistical analysis were used to analyze the changes and differences of metabolites in the cortex and hippocampus of cerebral ischemia-reperfusion rats. Compared with the model group, the neurological function score and cerebral infarction volume of the Shuxuetong treatment group were significantly different. There were differences and changes in the metabolic distribution of the cortex and hippocampus in each group, the distribution within the group was relatively concentrated. The separation trend between the groups was obvious, and the distribution of the Shuxuetong treatment group was similar to that of the sham operation group. We identified 13 metabolites that were differentially expressed in the cortex, including glutamine, dihydroorotic acid, and glyceric acid. We also found five differentially expressed metabolites in the hippocampus, including glutamic acid and fumaric acid. The common metabolic pathways of Shuxuetong on the cortex and hippocampus were D-glutamine and D-glutamate metabolism and nitrogen metabolism, which showed inhibition of cortical glutamine and promotion of hippocampal glutamic acid. Specific pathways of Shuxuetong enriched in the cortex included glyoxylate and dicarboxylate metabolism and pyrimidine metabolism, which showed inhibition of glyceric acid and dihydroorotic acid. Specific pathways of Shuxuetong enriched in the hippocampus include arginine biosynthesis and citrate cycle (TCA cycle), which promotes fumaric acid. Shuxuetong injection can restore and adjust the metabolic disorder of the cortex and hippocampus in cerebral ischemia-reperfusion rats. The expression of Shuxuetong in different parts of the brain is different and correlated.
Collapse
|
86
|
Potential Effects of Nrf2 in Exercise Intervention of Neurotoxicity Caused by Methamphetamine Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4445734. [PMID: 35480870 PMCID: PMC9038420 DOI: 10.1155/2022/4445734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/01/2022] [Indexed: 12/15/2022]
Abstract
Methamphetamine can cause oxidative stress-centered lipid peroxidation, endoplasmic reticulum stress, mitochondrial dysfunction, excitatory neurotoxicity, and neuroinflammation and ultimately lead to nerve cell apoptosis, abnormal glial cell activation, and dysfunction of blood-brain barrier. Protecting nerve cells from oxidative destroy is a hopeful strategy for treating METH use disorder. Nrf2 is a major transcriptional regulator that activates the antioxidant, anti-inflammatory, and cell-protective gene expression through endogenous pathways that maintains cell REDOX homeostasis and is conducive to the survival of neurons. The Nrf2-mediated endogenous antioxidant pathway can also prevent neurodegenerative effects and functional defects caused by METH oxidative stress. Moderate exercise activates this endogenous antioxidant system, which involves in many diseases, including neurodegenerative diseases. Based on evidence from existing literature, we argue that appropriate exercise can play an endogenous antioxidant regulatory role in the Nrf2 signaling pathway to reduce a number of issues caused by METH-induced oxidative stress. However, more experimental evidence is needed to support this idea. In addition, further exploration is necessary about the different effects of various parameters of exercise intervention (such as exercise mode, time, and intensity) on the Nrf2 signaling pathway intervention. Whether there are synergistic effects between exercise and plant-derived Nrf2 activators is worth further investigation.
Collapse
|
87
|
Zhu Y, Sun Y, Hu J, Pan Z. Insight Into the Mechanism of Exercise Preconditioning in Ischemic Stroke. Front Pharmacol 2022; 13:866360. [PMID: 35350755 PMCID: PMC8957886 DOI: 10.3389/fphar.2022.866360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 01/07/2023] Open
Abstract
Exercise preconditioning has attracted extensive attention to induce endogenous neuroprotection and has become the hotspot in neurotherapy. The training exercise is given multiple times before cerebral ischemia, effectively inducing ischemic tolerance and alleviating secondary brain damage post-stroke. Compared with other preconditioning methods, the main advantages of exercise include easy clinical operation and being readily accepted by patients. However, the specific mechanism behind exercise preconditioning to ameliorate brain injury is complex. It involves multi-pathway and multi-target regulation, including regulation of inflammatory response, oxidative stress, apoptosis inhibition, and neurogenesis promotion. The current review summarizes the recent studies on the mechanism of neuroprotection induced by exercise, providing the theoretical basis of applying exercise therapy to prevent and treat ischemic stroke. In addition, we highlight the various limitations and future challenges of translational medicine from fundamental study to clinical application.
Collapse
Affiliation(s)
- Yuanhan Zhu
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Yulin Sun
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Jichao Hu
- Department of Orthopedics, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Zhuoer Pan
- Department of Orthopedics, Zhejiang Rongjun Hospital, Jiaxing, China
| |
Collapse
|
88
|
Jurcau A, Ardelean AI. Oxidative Stress in Ischemia/Reperfusion Injuries following Acute Ischemic Stroke. Biomedicines 2022; 10:biomedicines10030574. [PMID: 35327376 PMCID: PMC8945353 DOI: 10.3390/biomedicines10030574] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Recanalization therapy is increasingly used in the treatment of acute ischemic stroke. However, in about one third of these patients, recanalization is followed by ischemia/reperfusion injuries, and clinically to worsening of the neurological status. Much research has focused on unraveling the involved mechanisms in order to prevent or efficiently treat these injuries. What we know so far is that oxidative stress and mitochondrial dysfunction are significantly involved in the pathogenesis of ischemia/reperfusion injury. However, despite promising results obtained in experimental research, clinical studies trying to interfere with the oxidative pathways have mostly failed. The current article discusses the main mechanisms leading to ischemia/reperfusion injuries, such as mitochondrial dysfunction, excitotoxicity, and oxidative stress, and reviews the clinical trials with antioxidant molecules highlighting recent developments and future strategies.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
- Department of Neurology, Clinical Municipal Hospital Oradea, Louis Pasteur Street nr 26, 410054 Oradea, Romania
- Correspondence: ; Tel.: +40-744-600-833
| | - Adriana Ioana Ardelean
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Universitatii Street nr 1, 410087 Oradea, Romania;
- Department of Cardiology, Clinical Emergency County Hospital Oradea, Gh. Doja Street nr 65, 410169 Oradea, Romania
| |
Collapse
|
89
|
Morland C, Nordengen K. N-Acetyl-Aspartyl-Glutamate in Brain Health and Disease. Int J Mol Sci 2022; 23:ijms23031268. [PMID: 35163193 PMCID: PMC8836185 DOI: 10.3390/ijms23031268] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
N-acetyl-aspartyl-glutamate (NAAG) is the most abundant dipeptide in the brain, where it acts as a neuromodulator of glutamatergic synapses by activating presynaptic metabotropic glutamate receptor 3 (mGluR3). Recent data suggest that NAAG is selectively localized to postsynaptic dendrites in glutamatergic synapses and that it works as a retrograde neurotransmitter. NAAG is released in response to glutamate and provides the postsynaptic neuron with a feedback mechanisms to inhibit excessive glutamate signaling. A key regulator of synaptically available NAAG is rapid degradation by the extracellular enzyme glutamate carboxypeptidase II (GCPII). Increasing endogenous NAAG—for instance by inhibiting GCPII—is a promising treatment option for many brain disorders where glutamatergic excitotoxicity plays a role. The main effect of NAAG occurs through increased mGluR3 activation and thereby reduced glutamate release. In the present review, we summarize the transmitter role of NAAG and discuss the involvement of NAAG in normal brain physiology. We further present the suggested roles of NAAG in various neurological and psychiatric diseases and discuss the therapeutic potential of strategies aiming to enhance NAAG levels.
Collapse
Affiliation(s)
- Cecilie Morland
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, 1068 Oslo, Norway
- Correspondence: (C.M.); (K.N.); Tel.: +47-22844937; (C.M.); +47-23073580 (K.N.)
| | - Kaja Nordengen
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
- Correspondence: (C.M.); (K.N.); Tel.: +47-22844937; (C.M.); +47-23073580 (K.N.)
| |
Collapse
|