51
|
Gupta MK, Vadde R. Delivery strategies of immunotherapies in the treatment of pancreatic cancer. IMMUNE LANDSCAPE OF PANCREATIC CANCER DEVELOPMENT AND DRUG RESISTANCE 2024:173-202. [DOI: 10.1016/b978-0-443-23523-8.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
52
|
S K P. Immunogenic antitumor potential of Prakasine nanoparticles in zebrafish by gene expression stimulation. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:41-56. [PMID: 36744833 DOI: 10.1080/21691401.2023.2173217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, non-toxic mercury nanoparticle was synthesized as per "Prakash theory of metal drugs" and nanoparticle's characters has been demonstrated by employing several nanotechnological tools including XPS, XRD, EDAX. The size of the Prakasine nanoparticles (PRK-NP) ranged from 90-100 nm, confirmed using TEM, SEM, DLS and along with zeta potential of -29.5 mV before storage and -8.5 mV after storage. The FTIR provided information regarding the nanoparticle capping and functional groups. The study was further elaborated for determining PRK-NPs toxicity, genotoxicity, in-vivo toxicity, immunological anti-tumour activity, immunogenicity potential, gene expression profiling and confirmed by MTT and apoptosis assays, cancer zebrafish model studies and WBC proliferation assay. PRK-NPs revealed no cytotoxicity where cell viability was observed 99% in L6 mouse fibroblasts and 99% in MCF-7 cell lines. Also, the cell viability was to be 89.47% at a very high concentration of 320 µg/ml in HEK 293 cells. The PRK-NPs significantly reduced the tumour in zebrafish at dose of 90 μg/g by up regulating IL-1α, IL-1β, IL-2-ITK, IL-6, IL-8, IL-12, TNF-α and IFN-γ, and down regulating IL-4, IL-5, IL-10 and TGF-β compared to untreated controls without any adverse effects and toxicity. Thus, the current study beholds anticipation PRK-NPs may play a vital role in therapeutic.
Collapse
Affiliation(s)
- Prakash S K
- Naval AIDS Research Centre, Namakkal, Tamil Nadu, India
| |
Collapse
|
53
|
Chen P, Paraiso WKD, Cabral H. Revitalizing Cytokine-Based Cancer Immunotherapy through Advanced Delivery Systems. Macromol Biosci 2023; 23:e2300275. [PMID: 37565723 DOI: 10.1002/mabi.202300275] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Cytokines can coordinate robust immune responses, holding great promise as therapeutics against infections, autoimmune diseases, and cancers. In cancer treatment, numerous pro-inflammatory cytokines have displayed promising efficacy in preclinical studies. However, their clinical application is hindered by poor pharmacokinetics, significant toxicity and unsatisfactory anticancer efficacy. Thus, while IFN-α and IL-2 are approved for specific cancer treatments, other cytokines still remain subject of intense investigation. To accelerate the application of cytokines as cancer immunotherapeutics, strategies need to be directed to improve their safety and anticancer performance. In this regard, delivery systems could be used to generate innovative therapies by targeting the cytokines or nucleic acids, such as DNA and mRNA, encoding the cytokines to tumor tissues. This review centers on these innovative delivery strategies for cytokines, summarizing key approaches, such as gene delivery and protein delivery, and critically examining their potential and challenges for clinical translation.
Collapse
Affiliation(s)
- Pengwen Chen
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | | | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
54
|
Liu Y, Zhao M, Qu H. Identification of cytokine-induced cell communications by pan-cancer meta-analysis. PeerJ 2023; 11:e16221. [PMID: 38054018 PMCID: PMC10695116 DOI: 10.7717/peerj.16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/11/2023] [Indexed: 12/07/2023] Open
Abstract
Cancer immune responses are complex cellular processes in which cytokine-receptor interactions play central roles in cancer development and response to therapy; dysregulated cytokine-receptor communication may lead to pathological processes, including cancer, autoimmune diseases, and cytokine storm; however, our knowledge regarding cytokine-mediated cell-cell communication (CCI) in different cancers remains limited. The present study presents a single-cell and pan-cancer-level transcriptomics integration of 41,900 cells across 25 cancer types. We developed a single-cell method to actively express 62 cytokine-receptor pairs to reveal stable cytokine-mediated cell communications involving 84 cytokines and receptors. The correlation between the sample-based CCI profile and the interactome analysis indicates multiple cytokine-receptor modules including TGFB1, IL16ST, IL15, and the PDGF family. Some isolated cytokine interactions, such as FN1-IL17RC, displayed diverse functions within over ten single-cell transcriptomics datasets. Further functional enrichment analysis revealed that the constructed cytokine-receptor interaction map is associated with the positive regulation of multiple immune response pathways. Using public TCGA pan-cancer mutational data, co-mutational analysis of the cytokines and receptors provided significant co-occurrence features, implying the existence of cooperative mechanisms. Analysis of 10,967 samples from 32 TCGA cancer types revealed that the 84 cytokine and receptor genes are significantly associated with clinical survival time. Interestingly, the tumor samples with mutations in any of the 84 cytokines and receptors have a substantially higher mutational burden, offering insights into antitumor immune regulation and response. Clinical cancer stage information revealed that tumor samples with mutations in any of the 84 cytokines and receptors stratify into earlier tumor stages, with unique cellular compositions and clinical outcomes. This study provides a comprehensive cytokine-receptor atlas of the cellular architecture in multiple cancers at the single-cell level.
Collapse
Affiliation(s)
- Yining Liu
- The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Min Zhao
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Australia
| | - Hong Qu
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
55
|
Hannouneh ZA, Hijazi A, Alsaleem AA, Hami S, Kheyrbek N, Tanous F, Khaddour K, Abbas A, Alshehabi Z. Novel immunotherapeutic options for BCG-unresponsive high-risk non-muscle-invasive bladder cancer. Cancer Med 2023; 12:21944-21968. [PMID: 38037752 PMCID: PMC10757155 DOI: 10.1002/cam4.6768] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND High-risk non-muscle-invasive bladder cancer (HR-NMIBC) presents a challenge to many physicians due to its ability to resist Bacillus Calmette-Guérin (BCG) intravesical therapy and the substantial rate of progression into muscle-invasive bladder cancer (MIBC). Patients who are BCG-unresponsive have worse prognosis and thus require further management including radical cystectomy (RC), which significantly impacts quality of life. Moreover, the ongoing worldwide shortage of BCG warrants the need for policies that prioritize drug use and utilize alternative treatment strategies. Hence, there is a significant unmet need for bladder preserving therapy in this subset of patients. METHODS To address this issue, we searched the relevant literature in PUBMED for articles published from 2019 through May of 2023 using appropriate keywords. All clinical trials of patients with HR-NMIBC treated with immune-related agents were retrieved from clinicaltrials.gov. FINDINGS AND FUTURE PERSPECTIVES Exploratory treatments for BCG-Unresponsive HR-NMIBC included immune checkpoint inhibitors (ICI), oncolytic viral therapy, cytokine agonists, and other immunomodulators targeting TLR, EpCaM, FGFR, MetAP2, and IDO1. Some combination therapies have been found to work synergistically and are preferred therapeutically over monotherapy. Three drugs-pembrolizumab, valrubicin, and most recently, nadofaragene firadenovec-vncg-have been FDA approved for the treatment of BCG-unresponsive NMIBC in patients who are ineligible for or decline RC. However, all explored treatment options tend to postpone RC rather than provide long-term disease control. Additional combination strategies need to be studied to enhance the effects of immunotherapy. Despite the challenges faced in finding effective therapies, many potential treatments are currently under investigation. Addressing the landscape of biomarkers, mechanisms of progression, BCG resistance, and trial design challenges in HR-NMIBC is essential for the discovery of new targets and the development of effective treatments.
Collapse
Affiliation(s)
- Zein Alabdin Hannouneh
- Faculty of MedicineAl Andalus University for Medical SciencesTartusSyrian Arab Republic
- Cancer Research CenterTishreen UniversityLattakiaSyrian Arab Republic
| | - Amjad Hijazi
- Faculty of MedicineAl Andalus University for Medical SciencesTartusSyrian Arab Republic
- Cancer Research CenterTishreen UniversityLattakiaSyrian Arab Republic
| | - Alaa Aldeen Alsaleem
- Faculty of MedicineAl Andalus University for Medical SciencesTartusSyrian Arab Republic
- Cancer Research CenterTishreen UniversityLattakiaSyrian Arab Republic
| | - Siwan Hami
- Faculty of MedicineAl Andalus University for Medical SciencesTartusSyrian Arab Republic
- Cancer Research CenterTishreen UniversityLattakiaSyrian Arab Republic
| | - Nina Kheyrbek
- Cancer Research CenterTishreen UniversityLattakiaSyrian Arab Republic
- Faculty of MedicineTishreen UniversityLattakiaSyrian Arab Republic
| | - Fadi Tanous
- Cancer Research CenterTishreen UniversityLattakiaSyrian Arab Republic
- Faculty of MedicineAl‐Baath UniversityHomsSyrian Arab Republic
| | - Karam Khaddour
- Department of Medical OncologyDana‐Farber Cancer Institute, Harvard Medical SchoolBostonMassachusettsUSA
| | - Abdulfattah Abbas
- Professor of Nephrology, Faculty of MedicineAl Andalus University for Medical SciencesTartusSyrian Arab Republic
| | - Zuheir Alshehabi
- Cancer Research CenterTishreen UniversityLattakiaSyrian Arab Republic
- Department of PathologyTishreen University HospitalLattakiaSyrian Arab Republic
| |
Collapse
|
56
|
Kumar V, Mahato RI. Natural killer cells for pancreatic cancer immunotherapy: Role of nanoparticles. Cancer Lett 2023; 579:216462. [PMID: 37924937 PMCID: PMC10842153 DOI: 10.1016/j.canlet.2023.216462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Advanced pancreatic cancer patients have a dismal prognosis despite advances in integrative therapy. The field of tumor immunology has witnessed significant advancements for cancer treatment. However, immunotherapy for pancreatic cancer is not very effective due to its highly complex tumor microenvironment (TME). Natural killer (NK) cells are lymphocytes that play an important role in the innate immune system. NK cells do not require antigen pre-sensitization, nor are they confined by the major histocompatibility complex (MHC). NK cells have the potential to eliminate cancer cells through CAR-dependent and CAR-independent pathways, demonstrating reduced levels of systemic toxicity in the process. The availability of several potential sources of NK cells is an additional benefit that contributes to meeting the therapeutic criteria. Adding nanotechnology to enhance the functions of effector NK cells is also an appealing strategy. This article primarily discusses various approaches recently been utilized to enhance the NK functions for the treatment of pancreatic cancer. In addition, new advances in boosting NK cell therapeutic efficacy by nanoparticle mediation are presented, with a focus on pancreatic cancer.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
57
|
Essogmo FE, Zhilenkova AV, Tchawe YSN, Owoicho AM, Rusanov AS, Boroda A, Pirogova YN, Sangadzhieva ZD, Sanikovich VD, Bagmet NN, Sekacheva MI. Cytokine Profile in Lung Cancer Patients: Anti-Tumor and Oncogenic Cytokines. Cancers (Basel) 2023; 15:5383. [PMID: 38001643 PMCID: PMC10670546 DOI: 10.3390/cancers15225383] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 11/26/2023] Open
Abstract
Lung cancer is currently the second leading cause of cancer death worldwide. In recent years, checkpoint inhibitor immunotherapy (ICI) has emerged as a new treatment. A better understanding of the tumor microenvironment (TMJ) or the immune system surrounding the tumor is needed. Cytokines are small proteins that carry messages between cells and are known to play an important role in the body's response to inflammation and infection. Cytokines are important for immunity in lung cancer. They promote tumor growth (oncogenic cytokines) or inhibit tumor growth (anti-tumour cytokines) by controlling signaling pathways for growth, proliferation, metastasis, and apoptosis. The immune system relies heavily on cytokines. They can also be produced in the laboratory for therapeutic use. Cytokine therapy helps the immune system to stop the growth or kill cancer cells. Interleukins and interferons are the two types of cytokines used to treat cancer. This article begins by addressing the role of the TMJ and its components in lung cancer. This review also highlights the functions of various cytokines such as interleukins (IL), transforming growth factor (TGF), and tumor necrosis factor (TNF).
Collapse
Affiliation(s)
- Freddy Elad Essogmo
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow 119991, Russia; (F.E.E.); (A.V.Z.); (Y.S.N.T.); (A.M.O.); (A.S.R.); (A.B.); (Y.N.P.); (Z.D.S.); (V.D.S.)
- Cameroon Oncology Center (COC), Douala P.O. Box 1864, Cameroon
| | - Angelina V. Zhilenkova
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow 119991, Russia; (F.E.E.); (A.V.Z.); (Y.S.N.T.); (A.M.O.); (A.S.R.); (A.B.); (Y.N.P.); (Z.D.S.); (V.D.S.)
| | - Yvan Sinclair Ngaha Tchawe
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow 119991, Russia; (F.E.E.); (A.V.Z.); (Y.S.N.T.); (A.M.O.); (A.S.R.); (A.B.); (Y.N.P.); (Z.D.S.); (V.D.S.)
| | - Abah Moses Owoicho
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow 119991, Russia; (F.E.E.); (A.V.Z.); (Y.S.N.T.); (A.M.O.); (A.S.R.); (A.B.); (Y.N.P.); (Z.D.S.); (V.D.S.)
| | - Alexander S. Rusanov
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow 119991, Russia; (F.E.E.); (A.V.Z.); (Y.S.N.T.); (A.M.O.); (A.S.R.); (A.B.); (Y.N.P.); (Z.D.S.); (V.D.S.)
| | - Alexander Boroda
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow 119991, Russia; (F.E.E.); (A.V.Z.); (Y.S.N.T.); (A.M.O.); (A.S.R.); (A.B.); (Y.N.P.); (Z.D.S.); (V.D.S.)
| | - Yuliya N. Pirogova
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow 119991, Russia; (F.E.E.); (A.V.Z.); (Y.S.N.T.); (A.M.O.); (A.S.R.); (A.B.); (Y.N.P.); (Z.D.S.); (V.D.S.)
| | - Zaiana D. Sangadzhieva
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow 119991, Russia; (F.E.E.); (A.V.Z.); (Y.S.N.T.); (A.M.O.); (A.S.R.); (A.B.); (Y.N.P.); (Z.D.S.); (V.D.S.)
| | - Varvara D. Sanikovich
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow 119991, Russia; (F.E.E.); (A.V.Z.); (Y.S.N.T.); (A.M.O.); (A.S.R.); (A.B.); (Y.N.P.); (Z.D.S.); (V.D.S.)
| | - Nikolay N. Bagmet
- Petrovsky National Research Centre of Surgery, Moscow 117418, Russia;
| | - Marina I. Sekacheva
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow 119991, Russia; (F.E.E.); (A.V.Z.); (Y.S.N.T.); (A.M.O.); (A.S.R.); (A.B.); (Y.N.P.); (Z.D.S.); (V.D.S.)
| |
Collapse
|
58
|
Dong Y, Zheng M, Wang X, Yu C, Qin T, Shen X. High expression of CDKN2A is associated with poor prognosis in colorectal cancer and may guide PD-1-mediated immunotherapy. BMC Cancer 2023; 23:1097. [PMID: 37950153 PMCID: PMC10638725 DOI: 10.1186/s12885-023-11603-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignancies worldwide. Immunotherapy targeting the programmed death protein 1(PD-1) and its ligand (PD-L1), is a promising treatment option for many cancers, but has exhibited poor therapeutic efficacy in CRC. This study aimed to identify and validate the prognostic value of immune-related genes and PD-1-associated genes for immunotherapy treatment of CRC. METHODS An extensive analysis of prognostic immune-related DEGs and PD-1-related genes has highlighted CDKN2A as a vital overlapping gene. To further explore its expression in CRC and its prognostic value, we conducted qRT-PCR, Western blot experiments, and consulted various databases. Subsequently, we conducted gene expression analysis, survival and prognostic analysis, enrichment analysis, immune infiltration assessment, and TIDE analysis to assess the significance of CDKN2A. RESULTS In CRC, CDKN2A was highly expressed compared to normal tissue. It was found that CDKN2A expression was related to clinicopathological features such as inflammation and tumor stage. Furthermore, a significant correlation was identified between CDKN2A and immune infiltration, specifically involving CD4 T cells, CD8 T cells, and macrophages. The analysis of the GSEA of CRC samples with high CDKN2A expression identified enrichment of genes involved in MYC target-v2 and metabolism pathways. Furthermore, UBE2I, CDK4, CDK6, TP53, and CCND1 were found to be significantly coexpressed with CDKN2A, suggesting a potential role that these gene play in CRC and immunotherapy. CONCLUSIONS Our study revealed that high CDKN2A expression in CRC is a potentially valuable prognostic biomarker, which may guide PD-1-mediated immunotherapy.
Collapse
Affiliation(s)
- Yuying Dong
- Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Mingming Zheng
- Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Xiaoxuan Wang
- Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Chenyue Yu
- Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Tiantian Qin
- Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Xuning Shen
- Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
| |
Collapse
|
59
|
Silva FS, Barros-Lima A, Souza-Barros M, Crespo-Neto JA, Santos VGR, Pereira DS, Alves-Hanna FS, Magalhães-Gama F, Faria JAQA, Costa AG. A dual-role for IL-10: From leukemogenesis to the tumor progression in acute lymphoblastic leukemia. Cytokine 2023; 171:156371. [PMID: 37725872 DOI: 10.1016/j.cyto.2023.156371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer in the world, and accounts for 25% of all childhood cancers among children under 15 years of age. Longitudinal studies have shown that children with ALL are born with a deregulated immune response that, together with postnatal environmental exposures, favor the onset of the disease. In this context, IL-10, a key cytokine in the regulation of the immune response, presents itself as a paradoxical mediator, initially influencing the development of ALL through the regulation of inflammatory processes and later on the progression of malignancy, with the increase of this molecule in the leukemia microenvironment. According to the literature, this cytokine plays a critical role in the natural history of the disease and plays an important role in two different though complex scenarios. Thus, in this review, we explore the dual role of IL-10 in ALL, and describe its biological characteristics, immunological mechanisms and genetics, as well as its impact on the leukemia microenvironment and its clinical implications.
Collapse
Affiliation(s)
- Flavio Souza Silva
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Amanda Barros-Lima
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Mateus Souza-Barros
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Juniel Assis Crespo-Neto
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | | | - Daniele Sá Pereira
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil; Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Fabíola Silva Alves-Hanna
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
| | - Jerusa Araújo Quintão Arantes Faria
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Allyson Guimarães Costa
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil; Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil; Escola de Enfermagem de Manaus, UFAM, Manaus, Brazil.
| |
Collapse
|
60
|
Raman V, Deshpande CP, Khanduja S, Howell LM, Van Dessel N, Forbes NS. Build-a-bug workshop: Using microbial-host interactions and synthetic biology tools to create cancer therapies. Cell Host Microbe 2023; 31:1574-1592. [PMID: 37827116 DOI: 10.1016/j.chom.2023.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Many systemically administered cancer therapies exhibit dose-limiting toxicities that reduce their effectiveness. To increase efficacy, bacterial delivery platforms have been developed that improve safety and prolong treatment. Bacteria are a unique class of therapy that selectively colonizes most solid tumors. As delivery vehicles, bacteria have been genetically modified to express a range of therapies that match multiple cancer indications. In this review, we describe a modular "build-a-bug" method that focuses on five design characteristics: bacterial strain (chassis), therapeutic compound, delivery method, immune-modulating features, and genetic control circuits. We emphasize how fundamental research into gut microbe pathogenesis has created safe bacterial therapies, some of which have entered clinical trials. The genomes of gut microbes are fertile grounds for discovery of components to improve delivery and modulate host immune responses. Future work coupling these delivery vehicles with insights from gut microbes could lead to the next generation of microbial cancer therapy.
Collapse
Affiliation(s)
- Vishnu Raman
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA; Ernest Pharmaceuticals, LLC, Hadley, MA, USA
| | - Chinmay P Deshpande
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Shradha Khanduja
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Lars M Howell
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | | | - Neil S Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, Amherst, MA, USA; Institute for Applied Life Science, University of Massachusetts, Amherst, Amherst, MA, USA.
| |
Collapse
|
61
|
Falcone N, Ermis M, Tamay DG, Mecwan M, Monirizad M, Mathes TG, Jucaud V, Choroomi A, de Barros NR, Zhu Y, Vrana NE, Kraatz HB, Kim HJ, Khademhosseini A. Peptide Hydrogels as Immunomaterials and Their Use in Cancer Immunotherapy Delivery. Adv Healthc Mater 2023; 12:e2301096. [PMID: 37256647 PMCID: PMC10615713 DOI: 10.1002/adhm.202301096] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Indexed: 06/01/2023]
Abstract
Peptide-based hydrogel biomaterials have emerged as an excellent strategy for immune system modulation. Peptide-based hydrogels are supramolecular materials that self-assemble into various nanostructures through various interactive forces (i.e., hydrogen bonding and hydrophobic interactions) and respond to microenvironmental stimuli (i.e., pH, temperature). While they have been reported in numerous biomedical applications, they have recently been deemed promising candidates to improve the efficacy of cancer immunotherapies and treatments. Immunotherapies seek to harness the body's immune system to preemptively protect against and treat various diseases, such as cancer. However, their low efficacy rates result in limited patient responses to treatment. Here, the immunomaterial's potential to improve these efficacy rates by either functioning as immune stimulators through direct immune system interactions and/or delivering a range of immune agents is highlighted. The chemical and physical properties of these peptide-based materials that lead to immuno modulation and how one may design a system to achieve desired immune responses in a controllable manner are discussed. Works in the literature that reports peptide hydrogels as adjuvant systems and for the delivery of immunotherapies are highlighted. Finally, the future trends and possible developments based on peptide hydrogels for cancer immunotherapy applications are discussed.
Collapse
Affiliation(s)
- Natashya Falcone
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Dilara Goksu Tamay
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, 06800, Turkey
- Department of Biotechnology, Middle East Technical University, Ankara, 06800, Turkey
| | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Mahsa Monirizad
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Tess Grett Mathes
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Auveen Choroomi
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Nihal Engin Vrana
- SPARTHA Medical, CRBS 1 Rue Eugene Boeckel, Strasbourg, 67000, France
| | - Heinz-Bernhard Kraatz
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| |
Collapse
|
62
|
Shah K, Geller DA, Tohme S, Antoni M, Kallem CJ, Vodovotz Y, Ramanathan R, Naveen R, Geroni M, Devine L, Amin A, Kiefer GJ, Zandberg DP, Reyes V, Steel JL. Predictors and Consequences of Cancer and Non-Cancer-Related Pain in Those Diagnosed with Primary and Metastatic Cancers. Curr Oncol 2023; 30:8826-8840. [PMID: 37887537 PMCID: PMC10605887 DOI: 10.3390/curroncol30100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
OBJECTIVES The aims of the study were to (1) describe types of pain in cancer patients, (2) examine the predictors and consequences of pain, (3) investigate the association between type of pain and survival, and (4) examine potential biological mediators of pain and survival. METHODS This was a secondary analysis of baseline data from patients diagnosed with cancer. Patients answered questionnaires that assessed sociodemographic characteristics, pain, depression, sleep, and fatigue. Blood was collected and cytokine assays were performed. Analysis of variance, Kaplan-Meier, and Cox regression survival analyses were used to test the aims. RESULTS Of the 779 patients diagnosed with cancer, the mean age was 63.5 years, 57.8% male, and 90.6% White. Of those who reported pain (total 70.3%), 46.5% stated their pain was cancer-related while 53.5% stated their pain was non-cancer-related. While both cancer and non-cancer-related pain was associated with depressive symptoms, fatigue, and sleep duration, those with cancer-related pain had significantly higher rates of depressive symptoms (F(1,516) = 21.217, p < 0.001) and fatigue (F(1,516) = 30.973, p < 0.001) but not poorer sleep (F(1,497) = 0.597, p = 0.440). After adjusting for sociodemographic, disease-related characteristics, depression, sleep duration, and morphine milligram equivalent, patient reports of cancer-related pain were significantly associated with poorer survival (HR = 0.646, 95% CI = 0.459-0.910, p = 0.012) compared to those with non-cancer-related pain, which was not associated with survival (HR = 1.022, 95% CI = 0.737-1.418, p = 0.896). Cytokines did not significantly mediate the link between pain and survival. CONCLUSION While nearly half of the pain reported was cancer-related, both types of pain resulted in greater symptom burden, but only cancer-related pain was associated with survival.
Collapse
Affiliation(s)
- Kriti Shah
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; (K.S.); (D.A.G.); (S.T.); (C.J.K.); (Y.V.); (R.R.); (R.N.); (M.G.); (L.D.); (A.A.)
| | - David A. Geller
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; (K.S.); (D.A.G.); (S.T.); (C.J.K.); (Y.V.); (R.R.); (R.N.); (M.G.); (L.D.); (A.A.)
| | - Samer Tohme
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; (K.S.); (D.A.G.); (S.T.); (C.J.K.); (Y.V.); (R.R.); (R.N.); (M.G.); (L.D.); (A.A.)
| | - Michael Antoni
- Department of Psychology, University of Miami, Coral Gables, FL 33124, USA;
| | - Cramer J. Kallem
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; (K.S.); (D.A.G.); (S.T.); (C.J.K.); (Y.V.); (R.R.); (R.N.); (M.G.); (L.D.); (A.A.)
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; (K.S.); (D.A.G.); (S.T.); (C.J.K.); (Y.V.); (R.R.); (R.N.); (M.G.); (L.D.); (A.A.)
| | - Rekha Ramanathan
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; (K.S.); (D.A.G.); (S.T.); (C.J.K.); (Y.V.); (R.R.); (R.N.); (M.G.); (L.D.); (A.A.)
| | - Raam Naveen
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; (K.S.); (D.A.G.); (S.T.); (C.J.K.); (Y.V.); (R.R.); (R.N.); (M.G.); (L.D.); (A.A.)
| | - MacKenzie Geroni
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; (K.S.); (D.A.G.); (S.T.); (C.J.K.); (Y.V.); (R.R.); (R.N.); (M.G.); (L.D.); (A.A.)
| | - LaNita Devine
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; (K.S.); (D.A.G.); (S.T.); (C.J.K.); (Y.V.); (R.R.); (R.N.); (M.G.); (L.D.); (A.A.)
| | - Aarshati Amin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; (K.S.); (D.A.G.); (S.T.); (C.J.K.); (Y.V.); (R.R.); (R.N.); (M.G.); (L.D.); (A.A.)
| | - Gauri J. Kiefer
- UPMC Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (G.J.K.); (D.P.Z.); (V.R.)
| | - Dan P. Zandberg
- UPMC Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (G.J.K.); (D.P.Z.); (V.R.)
| | - Vincent Reyes
- UPMC Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (G.J.K.); (D.P.Z.); (V.R.)
| | - Jennifer L. Steel
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; (K.S.); (D.A.G.); (S.T.); (C.J.K.); (Y.V.); (R.R.); (R.N.); (M.G.); (L.D.); (A.A.)
| |
Collapse
|
63
|
Rahman T, Das A, Abir MH, Nafiz IH, Mahmud AR, Sarker MR, Emran TB, Hassan MM. Cytokines and their role as immunotherapeutics and vaccine Adjuvants: The emerging concepts. Cytokine 2023; 169:156268. [PMID: 37320965 DOI: 10.1016/j.cyto.2023.156268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Cytokines are a protein family comprising interleukins, lymphokines, chemokines, monokines and interferons. They are significant constituents of the immune system, and they act in accordance with specific cytokine inhibiting compounds and receptors for the regulation of immune responses. Cytokine studies have resulted in the establishment of newer therapies which are being utilized for the treatment of several malignant diseases. The advancement of these therapies has occurred from two distinct strategies. The first strategy involves administrating the recombinant and purified cytokines, and the second strategy involves administrating the therapeutics which inhibits harmful effects of endogenous and overexpressed cytokines. Colony stimulating factors and interferons are two exemplary therapeutics of cytokines. An important effect of cytokine receptor antagonist is that they can serve as anti-inflammatory agents by altering the treatments of inflammation disorder, therefore inhibiting the effects of tumour necrosis factor. In this article, we have highlighted the research behind the establishment of cytokines as therapeutics and vaccine adjuvants, their role of immunotolerance, and their limitations.
Collapse
Affiliation(s)
- Tanjilur Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Ayan Das
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Mehedy Hasan Abir
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Iqbal Hossain Nafiz
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Rifat Sarker
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chattogram 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohammad Mahmudul Hassan
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Queensland 4343, Australia.
| |
Collapse
|
64
|
Sandbank E, Eckerling A, Margalit A, Sorski L, Ben-Eliyahu S. Immunotherapy during the Immediate Perioperative Period: A Promising Approach against Metastatic Disease. Curr Oncol 2023; 30:7450-7477. [PMID: 37623021 PMCID: PMC10453707 DOI: 10.3390/curroncol30080540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
Tumor excision is a necessary life-saving procedure in most solid cancers. However, surgery and the days before and following it, known as the immediate perioperative period (IPP), entail numerous prometastatic processes, including the suppression of antimetastatic immunity and direct stimulation of minimal residual disease (MRD). Thus, the IPP is pivotal in determining long-term cancer outcomes, presenting a short window of opportunity to circumvent perioperative risk factors by employing several therapeutic approaches, including immunotherapy. Nevertheless, immunotherapy is rarely examined or implemented during this short timeframe, due to both established and hypothetical contraindications to surgery. Herein, we analyze how various aspects of the IPP promote immunosuppression and progression of MRD, and how potential IPP application of immunotherapy may interact with these deleterious processes. We discuss the feasibility and safety of different immunotherapies during the IPP with a focus on the latest approaches of immune checkpoint inhibition. Last, we address the few past and ongoing clinical trials that exploit the IPP timeframe for anticancer immunotherapy. Accordingly, we suggest that several specific immunotherapies can be safely and successfully applied during the IPP, alone or with supporting interventions, which may improve patients' resistance to MRD and overall survival.
Collapse
Affiliation(s)
- Elad Sandbank
- Neuro-Immunology Research Unit, School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (E.S.); (A.E.); (L.S.)
| | - Anabel Eckerling
- Neuro-Immunology Research Unit, School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (E.S.); (A.E.); (L.S.)
| | - Adam Margalit
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Liat Sorski
- Neuro-Immunology Research Unit, School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (E.S.); (A.E.); (L.S.)
| | - Shamgar Ben-Eliyahu
- Neuro-Immunology Research Unit, School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (E.S.); (A.E.); (L.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel;
| |
Collapse
|
65
|
Dickerson LK, Carter JA, Kohli K, Pillarisetty VG. Emerging interleukin targets in the tumour microenvironment: implications for the treatment of gastrointestinal tumours. Gut 2023; 72:1592-1606. [PMID: 37258094 DOI: 10.1136/gutjnl-2023-329650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
The effectiveness of antitumour immunity is dependent on intricate cytokine networks. Interleukins (ILs) are important mediators of complex interactions within the tumour microenvironment, including regulation of tumour-infiltrating lymphocyte proliferation, differentiation, migration and activation. Our evolving and increasingly nuanced understanding of the cell type-specific and heterogeneous effects of IL signalling has presented unique opportunities to fine-tune elaborate IL networks and engineer new targeted immunotherapeutics. In this review, we provide a primer for clinicians on the challenges and potential of IL-based treatment. We specifically detail the roles of IL-2, IL-10, IL-12 and IL-15 in shaping the tumour-immune landscape of gastrointestinal malignancies, paying particular attention to promising preclinical findings, early-stage clinical research and innovative therapeutic approaches that may properly place ILs to the forefront of immunotherapy regimens.
Collapse
Affiliation(s)
| | - Jason A Carter
- Hepatopancreatobiliary Surgery, University of Washington, Seattle, Washington, USA
| | - Karan Kohli
- Hepatopancreatobiliary Surgery, University of Washington, Seattle, Washington, USA
- Flatiron Bio, Palo Alto, California, USA
| | - Venu G Pillarisetty
- Hepatopancreatobiliary Surgery, University of Washington, Seattle, Washington, USA
| |
Collapse
|
66
|
Park SH, Eun R, Heo J, Lim YT. Nanoengineered drug delivery in cancer immunotherapy for overcoming immunosuppressive tumor microenvironment. Drug Deliv Transl Res 2023; 13:2015-2031. [PMID: 36581707 DOI: 10.1007/s13346-022-01282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 12/31/2022]
Abstract
Almost like a living being in and of itself, tumors actively interact with and modify their environment to escape immune responses. Owing to the pre-formation of cancer-favorable microenvironment prior to anti-cancer treatment, the numerous attempts that followed propose limited efficacy in oncology. Immunogenicity by activation of immune cells within the tumor microenvironment or recruitment of immune cells from nearby lymph nodes is quickly offset as the immunosuppressive environment, rapidly converting immunogenic cells into immune suppressive cells, overriding the immune system. Tumor cells, as well as regulatory cells, namely M2 macrophages, Treg cells, and MDSCs, derived by the immunosuppressive environment, also cloak from potential anti-tumoral factors by directly or indirectly secreting cytokines, such as IL-10 and TGF-β, related to immune regulation. Enzymes and other metabolic or angiogenetic constituents - VEGF, IDO1, and iNOS - are also employed directed for anti-cancer immune cell malfunctioning. Therefore, the conversion of "cold" immunosuppressive environment into "hot" immune responsive environment is of paramount importance, bestowing the advances in the field of cancer immunotherapy the opportunity to wholly fulfill its intended purpose. This paper reviews the mechanisms by which tumors wield to exercise immune suppression and the nanoengineered delivery strategies being developed to overcome this suppression.
Collapse
Affiliation(s)
- Sei Hyun Park
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Ryounho Eun
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Janghun Heo
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-Do, 16419, Republic of Korea.
| |
Collapse
|
67
|
Nigam M, Mishra AP, Deb VK, Dimri DB, Tiwari V, Bungau SG, Bungau AF, Radu AF. Evaluation of the association of chronic inflammation and cancer: Insights and implications. Biomed Pharmacother 2023; 164:115015. [PMID: 37321055 DOI: 10.1016/j.biopha.2023.115015] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Among the most extensively researched processes in the development and treatment of cancer is inflammatory condition. Although acute inflammation is essential for the wound healing and reconstruction of tissues that have been damaged, chronic inflammation may contribute to the onset and growth of a number of diseases, including cancer. By disrupting the signaling processes of cells, which result in cancer induction, invasion, and development, a variety of inflammatory molecules are linked to the development of cancer. The microenvironment surrounding the tumor is greatly influenced by inflammatory cells and their subsequent secretions, which also contribute significantly to the tumor's growth, survivability, and potential migration. These inflammatory variables have been mentioned in several publications as prospective diagnostic tools for anticipating the onset of cancer. Targeting inflammation with various therapies can reduce the inflammatory response and potentially limit or block the proliferation of cancer cells. The scientific medical literature from the past three decades has been studied to determine how inflammatory chemicals and cell signaling pathways related to cancer invasion and metastasis are related. The current narrative review updates the relevant literature while highlighting the specifics of inflammatory signaling pathways in cancer and their possible therapeutic possibilities.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, 246174 Srinagar Garhwal, Uttarakhand, India
| | - Abhay Prakash Mishra
- Department of Pharmacology, Faculty of Health Science, University of Free State, 9300 Bloemfontein, South Africa.
| | - Vishal Kumar Deb
- Dietetics and Nutrition Technology Division, CSIR Institute of Himalayan Bioresource Technology, 176061 Palampur, Himanchal Pradesh, India
| | - Deen Bandhu Dimri
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, 246174 Srinagar Garhwal, Uttarakhand, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi 221005, Uttar Pradesh, India
| | - Simona Gabriela Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| | - Alexa Florina Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Andrei-Flavius Radu
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
68
|
Venkatas J, Singh M. Curcumin-reduced gold nanoparticles facilitate IL-12 delivery to a cervical cancer in vitro cell model. Nanomedicine (Lond) 2023; 18:945-960. [PMID: 37503889 DOI: 10.2217/nnm-2023-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Aim: To synthesize curcumin-reduced gold nanoparticles (AuNPs) for the efficient delivery to and expression of the IL-12 gene in cervical cancer (HeLa) cells in vitro. Methods: Curcumin-reduced AuNPs were synthesized, stabilized with poly-L-lysine and PEG, conjugated to IL-12 DNA and physicochemically characterized. Cytotoxicity and IL-12 expression were accessed in vitro. Results & discussion: Stable, spherical AuNPs effectively compacted and protected the IL-12 DNA and tolerated well in vitro. Real-time quantitative PCR and ELISA confirmed the successful delivery and expression of the IL-12 gene in HeLa cells. Conclusion: The favorable attributes of this AuNP-delivery system and the significant IL-12 expression obtained augur well for cytokine-based therapy or immunotherapy in cervical cancer.
Collapse
Affiliation(s)
- Jeaneen Venkatas
- Nano-Gene & Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, KwaZulu-Natal, 4000, South Africa
| | - Moganavelli Singh
- Nano-Gene & Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, KwaZulu-Natal, 4000, South Africa
| |
Collapse
|
69
|
Eivary SHA, Kheder RK, Najmaldin SK, Kheradmand N, Esmaeili SA, Hajavi J. Implications of IL-21 in solid tumor therapy. Med Oncol 2023; 40:191. [PMID: 37249661 DOI: 10.1007/s12032-023-02051-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023]
Abstract
Cancer, the most deadly disease, is known as a recent dilemma worldwide. Presently different treatments are used for curing cancers, especially solid cancers. Because of the immune-enhancing functions of cytokine, IL-21 as a cytokine may have new possibilities to manipulate the immune system in disease conditions, as it stimulates NK and CTL functions and drives IgG antibody production. Indeed, IL-21 has been revealed to elicit antitumor-immune responses in several tumor models. Combining IL-21 with other agents, which target tumor cells, immune-regulatory circuits, or other immune-enhancing molecules enhances this activity. The exciting breakthrough in the results obtained in pre-clinical situations has led to the early outset of present developing clinical trials in cancer patients. In the paper, we have reviewed the function of IL-21 in solid tumor immunotherapy.
Collapse
Affiliation(s)
- Seyed Hossein Abtahi Eivary
- Department of Medical Sciences of Laboratory, Infectious Diseases Research Center, School of Para-Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq
| | - Soran K Najmaldin
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Nahid Kheradmand
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Jafar Hajavi
- Department of Basic Sciences, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Science, Gonabad, Iran.
| |
Collapse
|
70
|
Liu S, Shi G, Pan Z, Cheng W, Xu L, Lin X, Lin Y, Zhang L, Ji G, Lv X, Wang D. Integrated Bioinformatics Analysis for the Identification of Key lncRNAs, mRNAs, and Potential Drugs in Clear Cell Renal Cell Carcinomas. Int J Gen Med 2023; 16:2063-2080. [PMID: 37275334 PMCID: PMC10238222 DOI: 10.2147/ijgm.s409711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023] Open
Abstract
Purpose The overall survival of clear cell renal cell carcinoma (ccRCC) is poor. Markers for early detection and progression could improve disease outcomes. This study aims to reveal the potential pathogenesis of ccRCC by integrative bioinformatics analysis and to further develop new therapeutic strategies. Patients and Methods RNA-seq data of 530 ccRCC cases in TCGA were downloaded, and a comprehensive analysis was carried out using bioinformatics tools. Another 14 tissue samples were included to verify the expression of selected lncRNAs by qRT-PCR. DGIdb database was used to screen out potential drugs, and molecular docking was used to explore the interaction and mechanism between candidate drugs and targets. Results A total of 58 differentially expressed lncRNAs (DElncRNAs) and 660 differentially expressed mRNAs (DEmRNAs) were identified in ccRCC. LINC02038, FAM242C, LINC01762, and PVT1 were identified as the optimal diagnostic lncRNAs, of which PVT1 was significantly correlated with the survival rate of ccRCC. GO analysis of cell components showed that DEmRNAs co-expressed with 4 DElncRNAs were mainly distributed in the extracellular area and the plasma membrane, involved in the transport of metal ions, the transport of proteins across membranes, and the binding of immunoglobulins. Immune infiltration analysis showed that MDSC was the most correlated immune cells with PVT1 and key mRNA SIGLEC8. Validation analysis showed that GABRD, SIGLEC8 and CDKN2A were significantly overexpressed, while ESRRB, ELF5 and UMOD were significantly down-regulated, which was consistent with the expression in our analysis. Furthermore, 84 potential drugs were screened by 6 key mRNAs, of which ABEMACICLIB and RIBOCICLIB were selected for molecular docking with CDKN2A, with stable binding affinity. Conclusion In summary, 4 key lncRNAs and key mRNAs of ccRCC were identified by integrative bioinformatics analysis. Potential drugs were screened for the treatment of ccRCC, providing a new perspective for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Urinary Surgery, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, Zhejiang Province, People’s Republic of China
| | - Guanyun Shi
- Department of Urinary Surgery, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, Zhejiang Province, People’s Republic of China
| | - Zhengbo Pan
- Department of Urinary Surgery, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, Zhejiang Province, People’s Republic of China
| | - Weisong Cheng
- Department of Urinary Surgery, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, Zhejiang Province, People’s Republic of China
| | - Linfei Xu
- Department of Urinary Surgery, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, Zhejiang Province, People’s Republic of China
| | - Xingzhang Lin
- Department of Urinary Surgery, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, Zhejiang Province, People’s Republic of China
| | - Yongfeng Lin
- Department of Urinary Surgery, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, Zhejiang Province, People’s Republic of China
| | - Liming Zhang
- Department of Urinary Surgery, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, Zhejiang Province, People’s Republic of China
| | - Guanghua Ji
- Department of Urinary Surgery, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, Zhejiang Province, People’s Republic of China
| | - Xin Lv
- Department of Urinary Surgery, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, Zhejiang Province, People’s Republic of China
| | - Dongguo Wang
- Department of Central Laboratory, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
71
|
Avila-Ponce de León U, Vázquez-Jiménez A, Padilla-Longoria P, Resendis-Antonio O. Uncoding the interdependency of tumor microenvironment and macrophage polarization: insights from a continuous network approach. Front Immunol 2023; 14:1150890. [PMID: 37283734 PMCID: PMC10240616 DOI: 10.3389/fimmu.2023.1150890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
The balance between pro- and anti-inflammatory immune system responses is crucial to preventing complex diseases like cancer. Macrophages are essential immune cells that contribute to this balance constrained by the local signaling profile of the tumor microenvironment. To understand how pro- and anti-inflammatory unbalance emerges in cancer, we developed a theoretical analysis of macrophage differentiation that is derived from activated monocytes circulating in the blood. Once recruited to the site of inflammation, monocytes can be polarized based on the specific interleukins and chemokines in the microenvironment. To quantify this process, we used a previous regulatory network reconstructed by our group and transformed Boolean Network attractors of macrophage polarization to an ODE scheme, it enables us to quantify the activation of their genes in a continuous fashion. The transformation was developed using the interaction rules with a fuzzy logic approach. By implementing this approach, we analyzed different aspects that cannot be visualized in the Boolean setting. For example, this approach allows us to explore the dynamic behavior at different concentrations of cytokines and transcription factors in the microenvironment. One important aspect to assess is the evaluation of the transitions between phenotypes, some of them characterized by an abrupt or a gradual transition depending on specific concentrations of exogenous cytokines in the tumor microenvironment. For instance, IL-10 can induce a hybrid state that transits between an M2c and an M2b macrophage. Interferon- γ can induce a hybrid between M1 and M1a macrophage. We further demonstrated the plasticity of macrophages based on a combination of cytokines and the existence of hybrid phenotypes or partial polarization. This mathematical model allows us to unravel the patterns of macrophage differentiation based on the competition of expression of transcriptional factors. Finally, we survey how macrophages may respond to a continuously changing immunological response in a tumor microenvironment.
Collapse
Affiliation(s)
- Ugo Avila-Ponce de León
- Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de Mexico, Mexico
| | - Aarón Vázquez-Jiménez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de Mexico, Mexico
| | - Pablo Padilla-Longoria
- Institute for Applied Mathematics (IIMAS), Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de Mexico, Mexico
- Coordinación de la Investigación Científica - Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, Mexico
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
| |
Collapse
|
72
|
Koroknai V, Szász I, Balázs M. Gene Expression Changes in Cytokine and Chemokine Receptors in Association with Melanoma Liver Metastasis. Int J Mol Sci 2023; 24:ijms24108901. [PMID: 37240247 DOI: 10.3390/ijms24108901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Cytokines and chemokines (chemotactic cytokines) are soluble extracellular proteins that bind to specific receptors and play an integral role in the cell-to-cell signaling network. In addition, they can promote the homing of cancer cells into different organs. We investigated the potential relationship between human hepatic sinusoidal endothelial cells (HHSECs) and several melanoma cell lines for the expression of chemokine and cytokine ligands and receptor expression during the invasion of melanoma cells. In order to identify differences in gene expression related to invasion, we selected invasive and non-invasive subpopulations of cells after co-culturing with HHSECs and identified the gene expression patterns of 88 chemokine/cytokine receptors in all cell lines. Cell lines with stable invasiveness and cell lines with increased invasiveness displayed distinct profiles of receptor genes. Cell lines with increased invasive capacity after culturing with conditioned medium showed a set of receptor genes (CXCR1, IL1RL1, IL1RN, IL3RA, IL8RA, IL11RA, IL15RA, IL17RC, and IL17RD) with significantly different expressions. It is very important to emphasize that we detected significantly higher IL11RA gene expression in primary melanoma tissues with liver metastasis as well, compared to those without metastasis. In addition, we assessed protein expression in endothelial cells before and after co-culturing them with melanoma cell lines by applying chemokine and cytokine proteome arrays. This analysis revealed 15 differentially expressed proteins (including CD31, VCAM-1, ANGPT2, CXCL8, and CCL20) in the hepatic endothelial cells after co-culture with melanoma cells. Our results clearly indicate the interaction between liver endothelial and melanoma cells. Furthermore, we assume that overexpression of the IL11RA gene may play a key role in organ-specific metastasis of primary melanoma cells to the liver.
Collapse
Affiliation(s)
- Viktória Koroknai
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Public Health Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - István Szász
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Public Health Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Margit Balázs
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Public Health Research Group, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
73
|
Dutt Y, Pandey RP, Dutt M, Gupta A, Vibhuti A, Vidic J, Raj VS, Chang CM, Priyadarshini A. Therapeutic applications of nanobiotechnology. J Nanobiotechnology 2023; 21:148. [PMID: 37149615 PMCID: PMC10163736 DOI: 10.1186/s12951-023-01909-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023] Open
Abstract
Nanobiotechnology, as a novel and more specialized branch of science, has provided a number of nanostructures such as nanoparticles, by utilizing the methods, techniques, and protocols of other branches of science. Due to the unique features and physiobiological characteristics, these nanostructures or nanocarriers have provided vast methods and therapeutic techniques, against microbial infections and cancers and for tissue regeneration, tissue engineering, and immunotherapies, and for gene therapies, through drug delivery systems. However, reduced carrying capacity, abrupt and non-targeted delivery, and solubility of therapeutic agents, can affect the therapeutic applications of these biotechnological products. In this article, we explored and discussed the prominent nanobiotechnological methods and products such as nanocarriers, highlighted the features and challenges associated with these products, and attempted to conclude if available nanostructures offer any scope of improvement or enhancement. We aimed to identify and emphasize the nanobiotechnological methods and products, with greater prospect and capacity for therapeutic improvements and enhancements. We found that novel nanocarriers and nanostructures, such as nanocomposites, micelles, hydrogels, microneedles, and artificial cells, can address the associated challenges and inherited drawbacks, with help of conjugations, sustained and stimuli-responsive release, ligand binding, and targeted delivery. We recommend that nanobiotechnology, despite having few challenges and drawbacks, offers immense opportunities that can be harnessed in delivering quality therapeutics with precision and prediction. We also recommend that, by exploring the branched domains more rigorously, bottlenecks and obstacles can also be addressed and resolved in return.
Collapse
Affiliation(s)
- Yogesh Dutt
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029 India
| | - Ramendra Pati Pandey
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029 India
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029 India
| | - Mamta Dutt
- Mamta Dental Clinic, Opposite Sector 29, Main Badkhal Road, Faridabad, Haryana 121002 India
| | - Archana Gupta
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029 India
| | - Arpana Vibhuti
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029 India
| | - Jasmina Vidic
- Université Paris-Saclay, Micalis Institute, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - V. Samuel Raj
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029 India
| | - Chung-Ming Chang
- Master & Ph.D Program in Biotechnology Industry, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 33302 Taiwan (ROC)
| | - Anjali Priyadarshini
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029 India
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029 India
| |
Collapse
|
74
|
Al-Ibraheem J, Zyara Y, Al-Quraine N, Abdulridha WM. Correlation between salivary immunoglobulin A and interleukin-1beta in smokers with dental caries. F1000Res 2023; 12:175. [PMID: 37224312 PMCID: PMC10173202 DOI: 10.12688/f1000research.129649.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 05/26/2023] Open
Abstract
Introduction. Dental caries is one of the most common infectious diseases of the oral cavity, and is an inflammatory disease caused by several factors. Interleukin-1β (IL-1β) is a major mediator of acute inflammation and essential for the development of specific immune responses. The objective of this study was to assess the levels of secretory IgA (s-IgA) and IL-1β in the saliva of smokers with dental caries, and to discover the correlation between these parameters and dental caries. Methods. Saliva samples were collected from 30 smokers, age range 21-70 years, with dental caries, in addition to 18 healthy non-smoker volunteers, age range 21-65 years. s-IgA and IL-1β levels in the saliva samples were estimated by enzyme-linked immunosorbent assay (ELISA). Results. The mean saliva IgA levels between smokers with dental caries group and healthy subjects were not significantly different (p=0.077), while the saliva levels of IL-1β were higher in the smokers in dental caries group, with a significant difference of p<0.05. No significant associations were found between s-IgA and IL-1β levels, and other parameters such as age, sex, body mass index (BMI) and C-reactive protein (CRP) (p>0.05). There were highly positive associations and significant differences between IL-1β and CRP levels in the two groups under the study (p=0.006). Conclusions. Our study revealed a significant increase in IL-1β levels in saliva of smokers with dental caries, and a positive association between IL-1β levels and caries disease. There is no significant relationship between elevated IL-1β levels and s-IgA in smokers with dental caries.
Collapse
Affiliation(s)
- Jaber Al-Ibraheem
- Department of Conservative, Faculty of Dentistry, University of Kufa, Najaf, Iraq
| | - Yassir Zyara
- Department of Conservative, Faculty of Dentistry, The Islamic University, Najaf, Iraq
| | - Nibrass Al-Quraine
- Department of Conservative, Faculty of Dentistry, University of Kufa, Najaf, Iraq
| | | |
Collapse
|
75
|
Maryam S, Krukiewicz K, Haq IU, Khan AA, Yahya G, Cavalu S. Interleukins (Cytokines) as Biomarkers in Colorectal Cancer: Progression, Detection, and Monitoring. J Clin Med 2023; 12:jcm12093127. [PMID: 37176567 PMCID: PMC10179696 DOI: 10.3390/jcm12093127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is the primary cause of death in economically developed countries and the second leading cause in developing countries. Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide. Risk factors for CRC include obesity, a diet low in fruits and vegetables, physical inactivity, and smoking. CRC has a poor prognosis, and there is a critical need for new diagnostic and prognostic biomarkers to reduce related deaths. Recently, studies have focused more on molecular testing to guide targeted treatments for CRC patients. The most crucial feature of activated immune cells is the production and release of growth factors and cytokines that modulate the inflammatory conditions in tumor tissues. The cytokine network is valuable for the prognosis and pathogenesis of colorectal cancer as they can aid in the cost-effective and non-invasive detection of cancer. A large number of interleukins (IL) released by the immune system at various stages of CRC can act as "biomarkers". They play diverse functions in colorectal cancer, and include IL-4, IL-6, IL-8, IL-11, IL-17A, IL-22, IL-23, IL-33, TNF, TGF-β, and vascular endothelial growth factor (VEGF), which are pro-tumorigenic genes. However, there are an inadequate number of studies in this area considering its correlation with cytokine profiles that are clinically useful in diagnosing cancer. A better understanding of cytokine levels to establish diagnostic pathways entails an understanding of cytokine interactions and the regulation of their various biochemical signaling pathways in healthy individuals. This review provides a comprehensive summary of some interleukins as immunological biomarkers of CRC.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Ihtisham Ul Haq
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Awal Ayaz Khan
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Al Sharqia, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
76
|
Wang D, Cheng C, Chen X, Wang J, Liu K, Jing N, Xu P, Xi X, Sun Y, Ji Z, Zhao H, He Y, Zhang K, Du X, Dong B, Fang Y, Zhang P, Qian X, Xue W, Gao WQ, Zhu HH. IL-1β Is an Androgen-Responsive Target in Macrophages for Immunotherapy of Prostate Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2206889. [PMID: 37092583 DOI: 10.1002/advs.202206889] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/03/2023] [Indexed: 05/03/2023]
Abstract
Great attention is paid to the role of androgen receptor (AR) as a central transcriptional factor in driving the growth of prostate cancer (PCa) epithelial cells. However, the understanding of the role of androgen in PCa-infiltrated immune cells and the impact of androgen deprivation therapy (ADT), the first-line treatment for advanced PCa, on the PCa immune microenvironment remains limited. On the other hand, immune checkpoint blockade has revolutionized the treatment of certain cancer types, but fails to achieve any benefit in advanced PCa, due to an immune suppressive environment. In this study, it is reported that AR signaling pathway is evidently activated in tumor-associated macrophages (TAMs) of PCa both in mice and humans. AR acts as a transcriptional repressor for IL1B in TAMs. ADT releases the restraint of AR on IL1B and therefore leads to an excessive expression and secretion of IL-1β in TAMs. IL-1β induces myeloid-derived suppressor cells (MDSCs) accumulation that inhibits the activation of cytotoxic T cells, leading to the immune suppressive microenvironment. Critically, anti-IL-1β antibody coupled with ADT and the immune checkpoint inhibitor anti-PD-1 antibody exerts a stronger anticancer effect on PCa following castration. Together, IL-1β is an important androgen-responsive immunotherapeutic target for advanced PCa.
Collapse
Affiliation(s)
- Deng Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Chaping Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jinming Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Kaiyuan Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Na Jing
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Penghui Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Xialian Xi
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Yujiao Sun
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Zhongzhong Ji
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Huifang Zhao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Yuman He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Kai Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Xinxing Du
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Baijun Dong
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Yuxiang Fang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Pengcheng Zhang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Xueming Qian
- Mabspace Biosciences (Suzhou) Co. Limited, Suzhou, 215123, P. R. China
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
77
|
Berger A, Colpitts SJ, Zych M, Paige CJ. Engineered murine IL-21-secreting leukemia cells induce granzyme B + T cells and CD4 +CD44 +CD62L - effector memory cells while suppressing regulatory T cells, leading to long-term survival. Cancer Immunol Immunother 2023:10.1007/s00262-023-03442-2. [PMID: 37061631 DOI: 10.1007/s00262-023-03442-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/28/2023] [Indexed: 04/17/2023]
Abstract
We have explored the use of an IL-21 cell-based anti-leukemia treatment in a mouse model of acute lymphoblastic leukemia. 70Z/3 leukemia cells, engineered to secrete IL-21 and injected into the peritoneum of syngeneic mice, induced a strong anti-leukemia response resulting in 100% survival. Mice that mounted an IL-21-induced anti-leukemia immune response were immune to the parent cell line (no IL-21) when rechallenged.Above a certain threshold, IL-21 secretion correlated with improved survival compared to mice injected with parent 70Z/3 cells. IL-21 was detected in serum with peak levels on day 7, correlating with the maximum expansion of IL-21-secreting 70Z/3 cells which subsequently were eliminated. Mice injected with IL-21-secreting leukemia cells had elevated numbers of granzyme B+ CD4+ and CD8+ T cells in the peritoneum, compared to mice injected with the parent cell line. Regulatory T cells, which increased greatly in 70Z/3-injected mice, failed to do so in mice injected with IL-21-secreting cells. Upon rechallenge, IL-21-primed mice went through a secondary immune response, primarily requiring CD4+ T cells, triggering a significant increase of CD4+CD44+CD62L- effector memory T cells. Adoptive transfer of T cells from IL21-primed/rechallenged hosts into naïve mice was successful, indicating that IL-21-primed antigen-experienced T cells convey immunity to naïve mice.Our study shows that delivery of IL-21 in a cell-based anti-leukemia protocol has the potential to induce a potent immune response leading to cancer elimination and long-term immunity-properties which make IL-21 an attractive candidate for cancer immunotherapy. Protecting against tumor antigens as well as improving cancer immunity is justified, as current strategies are limited.
Collapse
Affiliation(s)
- Alexandra Berger
- Princess Margaret Cancer Centre, University Health Network, Room 8-105, Toronto, ON, M5G 2M9, Canada.
| | - Sarah J Colpitts
- Princess Margaret Cancer Centre, University Health Network, Room 8-105, Toronto, ON, M5G 2M9, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Morgan Zych
- Princess Margaret Cancer Centre, University Health Network, Room 8-105, Toronto, ON, M5G 2M9, Canada
| | - Christopher J Paige
- Princess Margaret Cancer Centre, University Health Network, Room 8-105, Toronto, ON, M5G 2M9, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
78
|
Thoidingjam S, Sriramulu S, Freytag S, Brown SL, Kim JH, Chetty IJ, Siddiqui F, Movsas B, Nyati S. Oncolytic virus-based suicide gene therapy for cancer treatment: a perspective of the clinical trials conducted at Henry Ford Health. TRANSLATIONAL MEDICINE COMMUNICATIONS 2023; 8:11. [PMID: 37065938 PMCID: PMC10088621 DOI: 10.1186/s41231-023-00144-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Gene therapy manipulates or modifies a gene that provides a new cellular function to treat or correct a pathological condition, such as cancer. The approach of using gene manipulation to modify patient's cells to improve cancer therapy and potentially find a cure is gaining popularity. Currently, there are 12 gene therapy products approved by US-FDA, EMA and CFDA for cancer management, these include Rexin-G, Gendicine, Oncorine, Provange among other. The Radiation Biology Research group at Henry Ford Health has been actively developing gene therapy approaches for improving clinical outcome in cancer patients. The team was the first to test a replication-competent oncolytic virus armed with a therapeutic gene in humans, to combine this approach with radiation in humans, and to image replication-competent adenoviral gene expression/activity in humans. The adenoviral gene therapy products developed at Henry Ford Health have been evaluated in more than 6 preclinical studies and evaluated in 9 investigator initiated clinical trials treating more than100 patients. Two phase I clinical trials are currently following patients long term and a phase I trial for recurrent glioma was initiated in November 2022. This systematic review provides an overview of gene therapy approaches and products employed for treating cancer patients including the products developed at Henry Ford Health.
Collapse
Affiliation(s)
- Shivani Thoidingjam
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
| | - Sushmitha Sriramulu
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
| | - Svend Freytag
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
| | - Stephen L. Brown
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824 USA
| | - Jae Ho Kim
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
| | - Indrin J. Chetty
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
| | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824 USA
| | - Shyam Nyati
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
79
|
Entezam M, Sanaei MJ, Mirzaei Y, Mer AH, Abdollahpour-Alitappeh M, Azadegan-Dehkordi F, Bagheri N. Current progress and challenges of immunotherapy in gastric cancer: A focus on CAR-T cells therapeutic approach. Life Sci 2023; 318:121459. [PMID: 36720453 DOI: 10.1016/j.lfs.2023.121459] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Gastric cancer (GC) is a severe malignancy, accounting for the third most common cancer death worldwide. Despite the development of chemo-radiation therapy, there has not been sufficient survival advantage in patients with GC who were treated by these methods. GC immunogenicity is hampered by a highly immunosuppressive microenvironment; therefore, further understanding of the molecular biology of GC is the potential to achieve new therapeutic strategies in GC therapy, including specific immunotherapy. Current immunotherapies are mainly based on cytokines, immune checkpoints, monoclonal antibodies (mAb), bispecific antibodies (BisAbs), antibody-drug conjugates (ADCs), and chimeric antigen receptor (CAR). Immunotherapy has made significant progress in the treatment of GC, so that studies show that nivolumab as a programmed death 1 (PD1) inhibitor has proper safety and effectiveness as a third-line treatment for GC patients. Multiple monoclonal antibodies like ramucirumab and claudiximab were effective in treating GC patients, especially in combination with other treatments. Despite the challenges of CAR therapy in solid tumors, CAR therapy targets various GC cells targets; among them, intercellular adhesion molecule (ICAM)-1 CAR-T cell and CLDN18.2 CAR-T cell have shown promising results. Although responses to all these treatments are encouraging and in some cases, durable, these successes are not seen in all treated patients. The present review represents the development of various immunotherapies especially CAR-T cell therapy, its current use, clinical data in GC, and their limitations.
Collapse
Affiliation(s)
- Mahshad Entezam
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Javad Sanaei
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Yousef Mirzaei
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Ali Hussein Mer
- Department of Nursing, Mergasour Technical Institute, Erbil Polytechnic University, Erbil, Iraq
| | | | - Fatemeh Azadegan-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Nader Bagheri
- Department of Microbiology and Immunology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
80
|
Wu W, Xu M, Qiao B, Huang T, Guo H, Zhang N, Zhou L, Li M, Tan Y, Zhang M, Xie X, Shuai X, Zhang C. Nanodroplet-enhanced sonodynamic therapy potentiates immune checkpoint blockade for systemic suppression of triple-negative breast cancer. Acta Biomater 2023; 158:547-559. [PMID: 36539109 DOI: 10.1016/j.actbio.2022.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Immune checkpoint blockade (ICB) has shown great promise in treating various advanced malignancies including triple-negative breast cancer (TNBC). However, only limited number of patients could benefit from it due to the low immune response rate caused by insufficient matured dendritic cells (DCs) and inadequate tumor infiltration of cytotoxic T lymphocytes (CTLs). Here, we report a combination therapeutic strategy which integrates STING pathway activation, hypoxia relief and sonodynamic therapy (SDT) with anti-PD-L1 therapy to improve the therapeutic outcome. The synthesized nanodroplet consisted of a O2-filled Perfluorohexane (PFH) core and a lipid membrane carrying sonosensitizer IR-780 and STING agonist Vadimezan (DMXAAs). It released O2 inside the hypoxic tumor tissue, thereby enhancing SDT which relied on O2 to generate cytotoxic reactive oxygen species (ROS). The co-delivered STING agonist DMXAAs promoted the maturation and tumor antigen cross-presenting of DCs for priming of CTLs. Moreover, SDT induced immunogenic cell death (ICD) of tumor to release abundant tumor-associated antigens, which increased tumor immunogenicity to promote tumor infiltration of CTLs. Consequently, not only a robust adaptive immune response was elicited but also the immunologically "cold" TNBC was turned "hot" to enable a potent anti-PD-L1 therapy. The nanodroplet demonstrated strong efficacy to systemically suppress TNBC growth and mimic distant tumor in vivo. STATEMENT OF SIGNIFICANCE: Only a limited number of triple-negative breast cancer (TNBC) patients can benefit from immune checkpoint blockade therapy due to its low immune response rate caused by insufficient matured DCs and inadequate tumor infiltration of cytotoxic T lymphocytes (CTLs). Interestingly, compelling evidence has shown that sonodynamic therapy (SDT) not only directly kills cancer cells but also elicits immunogenic cell death (ICD), which promotes tumor infiltration of cytotoxic T lymphocytes to transform an immunosuppressive "cold" tumor into a "hot" one. However, the hypoxic tumor microenvironment severely restricts the therapeutic efficiency of SDT, wherein, oxygen is indispensable in the process of ROS generation. Here, we report an O2-filled nanodroplet-enhanced sonodynamic therapy that significantly potentiated immune checkpoint blockade for systemic suppression of TNBC.
Collapse
Affiliation(s)
- Wenxin Wu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ming Xu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bin Qiao
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tongyi Huang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huanling Guo
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nan Zhang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Luyao Zhou
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Manying Li
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang Tan
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Minru Zhang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Xie
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Chunyang Zhang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
81
|
Li Z, Cai H, Li Z, Ren L, Ma X, Zhu H, Gong Q, Zhang H, Gu Z, Luo K. A tumor cell membrane-coated self-amplified nanosystem as a nanovaccine to boost the therapeutic effect of anti-PD-L1 antibody. Bioact Mater 2023; 21:299-312. [PMID: 36157245 PMCID: PMC9478499 DOI: 10.1016/j.bioactmat.2022.08.028] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 12/11/2022] Open
Affiliation(s)
- Zhilin Li
- Laboratory of Stem Cell Biology, Department of Radiology, Huaxi MR Research Centner (HMRRC), Department of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Cai
- Laboratory of Stem Cell Biology, Department of Radiology, Huaxi MR Research Centner (HMRRC), Department of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiqian Li
- Laboratory of Stem Cell Biology, Department of Radiology, Huaxi MR Research Centner (HMRRC), Department of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Long Ren
- Laboratory of Stem Cell Biology, Department of Radiology, Huaxi MR Research Centner (HMRRC), Department of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuelei Ma
- Laboratory of Stem Cell Biology, Department of Radiology, Huaxi MR Research Centner (HMRRC), Department of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, Department of Radiology, Huaxi MR Research Centner (HMRRC), Department of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Laboratory of Stem Cell Biology, Department of Radiology, Huaxi MR Research Centner (HMRRC), Department of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, And Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Zhongwei Gu
- Laboratory of Stem Cell Biology, Department of Radiology, Huaxi MR Research Centner (HMRRC), Department of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Laboratory of Stem Cell Biology, Department of Radiology, Huaxi MR Research Centner (HMRRC), Department of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Corresponding author.
| |
Collapse
|
82
|
Hu X, Zhu H, He X, Chen J, Xiong L, Shen Y, Li J, Xu Y, Chen W, Liu X, Cao D, Xu X. The application of nanoparticles in immunotherapy for hepatocellular carcinoma. J Control Release 2023; 355:85-108. [PMID: 36708880 DOI: 10.1016/j.jconrel.2023.01.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/30/2023]
Abstract
Hepatocellular carcinoma (HCC) remains one of the leading causes of cancer-related deaths worldwide, however, current clinical diagnostic and treatment approaches remain relatively limited, creating an urgent need for the development of effective technologies. Immunotherapy has emerged as a powerful treatment strategy for advanced cancer. The number of clinically approved drugs for HCC immunotherapy has been increasing. However, it remains challenging to improve their transport and therapeutic efficiency, control their targeting and release, and mitigate their adverse effects. Nanotechnology has recently gained attention for improving the effectiveness of precision therapy for HCC. We summarize the key features of HCC associated with nanoparticle (NPs) targeting, release, and uptake, the roles and limitations of several major immunotherapies in HCC, the use of NPs in immunotherapy, the properties of NPs that influence their design and application, and current clinical trials of NPs in HCC, with the aim of informing the design of delivery platforms that have the potential to improve the safety and efficacy of HCC immunotherapy,and thus, ultimately improve the prognosis of HCC patients.
Collapse
Affiliation(s)
- Xinyao Hu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoqin He
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiayu Chen
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lin Xiong
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yang Shen
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiayi Li
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yangtao Xu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenliang Chen
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xin Liu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dedong Cao
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Ximing Xu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
83
|
Yamada M, Matsuoka K, Sato M, Sato K. Recent Advances in Localized Immunomodulation Technology: Application of NIR-PIT toward Clinical Control of the Local Immune System. Pharmaceutics 2023; 15:pharmaceutics15020561. [PMID: 36839882 PMCID: PMC9967863 DOI: 10.3390/pharmaceutics15020561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Current immunotherapies aim to modulate the balance among different immune cell populations, thereby controlling immune reactions. However, they often cause immune overactivation or over-suppression, which makes them difficult to control. Thus, it would be ideal to manipulate immune cells at a local site without disturbing homeostasis elsewhere in the body. Recent technological developments have enabled the selective targeting of cells and tissues in the body. Photo-targeted specific cell therapy has recently emerged among these. Near-infrared photoimmunotherapy (NIR-PIT) has surfaced as a new modality for cancer treatment, which combines antibodies and a photoabsorber, IR700DX. NIR-PIT is in testing as an international phase III clinical trial for locoregional recurrent head and neck squamous cell carcinoma (HNSCC) patients (LUZERA-301, NCT03769506), with a fast-track designation by the United States Food and Drug Administration (US-FDA). In Japan, NIR-PIT for patients with recurrent head and neck cancer was conditionally approved in 2020. Although NIR-PIT is commonly used for cancer therapy, it could also be exploited to locally eliminate certain immune cells with antibodies for a specific immune cell marker. This strategy can be utilized for anti-allergic therapy. Herein, we discuss the recent technological advances in local immunomodulation technology. We introduce immunomodulation technology with NIR-PIT and demonstrate an example of the knockdown of regulatory T cells (Tregs) to enhance local anti-tumor immune reactions.
Collapse
Affiliation(s)
- Mizuki Yamada
- Division of Host Defense Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | - Kohei Matsuoka
- Division of Host Defense Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | - Mitsuo Sato
- Division of Host Defense Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | - Kazuhide Sato
- B3 Unit Frontier, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), Nagoya University Institute for Advanced Research, Nagoya 466-8550, Japan
- FOREST-Souhatsu, CREST, JST, Tokyo 102-0076, Japan
- Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
- Correspondence: ; Tel.: +81-052-744-2167; Fax: +81-052-744-2176
| |
Collapse
|
84
|
Azimifar MA, Hashemi M, Babaei N, Salmasi Z, Doosti A. Interleukin gene delivery for cancer gene therapy: In vitro and in vivo studies. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:128-136. [PMID: 36742134 PMCID: PMC9869882 DOI: 10.22038/ijbms.2022.66890.14668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/12/2022] [Indexed: 02/07/2023]
Abstract
Cytokine-mediated cancer therapy has the potential to enhance immunotherapeutic approaches and cancer elimination plans through the endowing of the immune system by providing improved anticancer immunity. Despite the encouraging pioneer studies on interleukins (ILs), the influence of ILs-originated therapeutics is still restricted by a class of potent immunoregulatory cytokines, systemic dose-limiting toxicities, ILs pleiotropy, and administration issues. During previous years, the area of transferring genes encoding immunostimulatory ILs was fundamentally widened to overcome these challenges and expedite ILs-based tumor regression. Numerous viral and non-viral delivery systems are currently available to act as crucial elements of the gene therapy toolbox. Moreover, cell-based cancer therapies are recruiting MSCs in the role of versatile gene delivery platforms to design one of the promising therapeutic approaches. These formulated gene carrier systems can provide possible alternatives to diminish dose-limiting adverse effects, promote administration, and enhance the therapeutic activity of ILs-derived treatment modalities in cancer treatment. This review provides a discussion on the advances of ILs gene delivery systems while focusing on the developing platforms in preclinical cancer immunogene therapy studies.
Collapse
Affiliation(s)
- Mohammad Amin Azimifar
- Department of Cell Molecular Biology, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nahid Babaei
- Department of Cell Molecular Biology, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
85
|
Mehak, Thummer RP, Pandey LM. Surface modified iron-oxide based engineered nanomaterials for hyperthermia therapy of cancer cells. Biotechnol Genet Eng Rev 2023:1-47. [PMID: 36710396 DOI: 10.1080/02648725.2023.2169370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023]
Abstract
Magnetic hyperthermia is emerging as a promising alternative to the currently available cancer treatment modalities. Superparamagnetic iron-oxide nanoparticles (SPIONs) are extensively studied functional nanomaterials for biomedical applications, owing to their tunable physio-chemical properties and magnetic properties. Out of various ferrite classes, spinel and inverse-spinel ferrites are widely used but are affected by particle size distribution, particle shape, particle-particle interaction, geometry, and crystallinity. Notably, their heating ability makes them suitable candidates for heat-mediated cancer cell ablation or hyperthermia therapy. Exposing SPIONs to an externally applied magnetic field of appropriate frequency and intensity causes them to release heat to ablate cancer cells. Majorly, three heating mechanisms are exhibited by magnetic nanomaterials: Nèel relaxation, Brownian relaxation, and hysteresis losses. In SPIONs, Nèel and Brownian relaxations dominate, whereas hysteric losses are negligible. These nanomaterials possess high magnetization values capable of generating heat to ablate cancer cells. Furthermore, surface functionalization of these materials imparts the ability to selectively target cancer cells and deliver cargo to the affected area sparing the normal body cells. The surface of nanoparticles can be functionalized with various physical, chemical, and biological coatings. Moreover, hyperthermia can be applied in combination with other cancer treatment modalities in order to enhance the efficiency of treatment.
Collapse
Affiliation(s)
- Mehak
- Bio-interface & Environmental Engineering Lab Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Lalit M Pandey
- Bio-interface & Environmental Engineering Lab Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| |
Collapse
|
86
|
Sil S, Bertilla J, Rupachandra S. A comprehensive review on RNA interference-mediated targeting of interleukins and its potential therapeutic implications in colon cancer. 3 Biotech 2023; 13:18. [PMID: 36568500 PMCID: PMC9768089 DOI: 10.1007/s13205-022-03421-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Colon cancer is the world's fourth leading cause of death. It is cancer of the latter part of the large intestine, i.e. the colon. Chronic inflammation over a long period also leads to the development of cancer. Cancer in the colon region is arduous to diagnose and is detected at a later stage when it metastasizes to other parts of the body like the liver, lungs, peritoneum, etc. Colon cancer is a great example of solid tumours associated with chronic inflammation. Although conventional therapies are effective, they lose their effectiveness beyond a certain point. Relapse of the disease occurs frequently. RNA interference (RNAi) is emerging as a great tool to specifically attack the cancer cells of a target site like the colon. RNAi deals with epigenetic changes made in the defective cells which ultimately leads to their death without harming the healthy cells. In this review, two types of epigenetic modulators have been considered, namely siRNA and miRNA, and their effect on interleukins. Interleukins, a class of cytokines, are major inflammatory responses of the body that are released by immune cells like leukocytes and macrophages. Some of these interleukins are pro-inflammatory, thereby promoting inflammation which eventually causes cancer. RNAi can prevent colon cancer by inhibiting pro-inflammatory interleukins.
Collapse
Affiliation(s)
- Sagari Sil
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603 203 India
| | - Janet Bertilla
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603 203 India
| | - S. Rupachandra
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603 203 India
| |
Collapse
|
87
|
Pfister F, Alexiou C, Janko C. Cell Viability and Immunogenic Function of T Cells Loaded with Nanoparticles for Spatial Guidance in Magnetic Fields. Methods Mol Biol 2023; 2644:331-346. [PMID: 37142932 DOI: 10.1007/978-1-0716-3052-5_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Immune cell therapies, such as adoptive T cell therapies, are an innovative and powerful treatment option for previously non-treatable diseases. Although immune cell therapies are thought to be very specific, there is still the danger of developing severe to life-threatening side effects due to the unspecific distribution of the cells throughout the body (on-target/off-tumor effects). A possible solution for the reduction of these side effects and the improvement of tumor infiltration is the specific targeting of the effector cells (e.g., T cells) to the desired destination (e.g., tumor region). This can be achieved by the magnetization of cells with superparamagnetic iron oxide nanoparticles (SPIONs) for spatial guidance via external magnetic fields. A prerequisite for the use of SPION-loaded T cells in adoptive T cell therapies is that cell viability and functionality after nanoparticle loading are preserved. Here, we demonstrate a protocol to analyze cell viability and functionality such as activation, proliferation, cytokine release, and differentiation at a single cell level using flow cytometry.
Collapse
Affiliation(s)
- Felix Pfister
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
88
|
Jeon EY, Choi DS, Choi S, Won JY, Jo Y, Kim HB, Jung Y, Shin SC, Min H, Choi HW, Lee MS, Park Y, Chung JJ, Jin HS. Enhancing adoptive T-cell therapy with fucoidan-based IL-2 delivery microcapsules. Bioeng Transl Med 2023; 8:e10362. [PMID: 36684086 PMCID: PMC9842027 DOI: 10.1002/btm2.10362] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/20/2022] [Accepted: 06/12/2022] [Indexed: 01/25/2023] Open
Abstract
Adoptive cell therapy (ACT) with antigen-specific T cells is a promising treatment approach for solid cancers. Interleukin-2 (IL-2) has been utilized in boosting the efficacy of ACT. However, the clinical applications of IL-2 in combination with ACT is greatly limited by short exposure and high toxicities. Herein, a complex coacervate was designed to intratumorally deliver IL-2 in a sustained manner and protect against proteolysis. The complex coacervate consisted of fucoidan, a specific IL-2 binding glycosaminoglycan, and poly-l-lysine, a cationic counterpart (FPC2). IL-2-laden FPC2 exhibited a preferential bioactivity in ex vivo expansion of CD8+T cells over Treg cells. Additionally, FPC2 was embedded in pH modulating injectable gel (FPC2-IG) to endure the acidic tumor microenvironment. A single intratumoral administration of FPC2-IG-IL-2 increased expansion of tumor-infiltrating cytotoxic lymphocytes and reduced frequencies of myeloid populations. Notably, the activation and persistency of tumor-reactive T cells were observed only in the tumor site, not in the spleen, confirming a localized effect of FPC2-IG-IL-2. The immune-favorable tumor microenvironment induced by FPC2-IG-IL-2 enabled adoptively transferred TCR-engineered T cells to effectively eradicate tumors. FPC2-IG delivery system is a promising strategy for T-cell-based immunotherapies.
Collapse
Affiliation(s)
- Eun Young Jeon
- Center for Biomaterials Biomedical Research Institute, Korea Institute of Science and Technology (KIST) Seoul South Korea
| | - Da-Som Choi
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Seunghyun Choi
- Theragnosis Center Biomedical Research Institute, Korea Institute of Science and Technology (KIST) Seoul South Korea
- Department of Life Sciences Korea University Seoul South Korea
| | - Ju-Young Won
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Yunju Jo
- Theragnosis Center Biomedical Research Institute, Korea Institute of Science and Technology (KIST) Seoul South Korea
- Department of Life Sciences Korea University Seoul South Korea
| | - Hye-Bin Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Youngmee Jung
- Center for Biomaterials Biomedical Research Institute, Korea Institute of Science and Technology (KIST) Seoul South Korea
- School of Electrical and Electronic Engineering Yonsei University Seoul South Korea
- Yonsei-KIST Convergence Research Institute Seoul South Korea
| | - Sang Chul Shin
- Technology Support Center Korea Institute of Science and Technology (KIST) Seoul South Korea
| | - Hophil Min
- Doping Control Center Korea Institute of Science and Technology (KIST) Seoul South Korea
| | - Hae Woong Choi
- Department of Life Sciences Korea University Seoul South Korea
| | - Myeong Sup Lee
- Department of Biomedical Sciences University of Ulsan College of Medicine Seoul South Korea
| | - Yoon Park
- Theragnosis Center Biomedical Research Institute, Korea Institute of Science and Technology (KIST) Seoul South Korea
| | - Justin J Chung
- Transdisciplinary Department of Medicine and Advanced Technology Seoul National University Hospital Seoul South Korea
- Department of Medicine Seoul National University College of Medicine Seoul South Korea
| | - Hyung-Seung Jin
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| |
Collapse
|
89
|
Jafari S, Heydarian S, Lai R, Mehdizadeh Aghdam E, Molavi O. Silibinin induces immunogenic cell death in cancer cells and enhances the induced immunogenicity by chemotherapy. BIOIMPACTS : BI 2023; 13:51-61. [PMID: 36816998 PMCID: PMC9923812 DOI: 10.34172/bi.2022.23698] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 11/09/2022]
Abstract
Introduction: Silibinin is a natural flavonoid compound known to induce apoptosis in cancer cells. Despite silibinin's safety and efficacy as an anticancer drug, its effects on inducing immunogenic cell death (ICD) are largely unknown. Herein, we have evaluated the stimulating effects of silibinin on ICD in cancer cells treated with silibinin alone or in combination with chemotherapy. Methods: The anticancer effect of silibinin, alone or in combination with doxorubicin or oxaliplatin (OXP), was assessed using the MTT assay. Compusyn software was used to analyze the combination therapy data. Western blotting was conducted to examine the level of STAT3 activity. Flow cytometry was used to analyze calreticulin (CRT) and apoptosis. The heat shock protein (HSP70), high mobility group box protein1 (HMGB1), and IL-12 levels were assessed by ELISA. Results: Compared to the negative control groups, silibinin induced ICD in CT26 and B16F10 cells and significantly enhanced the induction of this type of cell death by doxorubicin, and these changes were allied with substantial increases in the level of damage-associated molecular patterns (DAMPs) including CRT, HSP70, and HMGB1. Furthermore, conditioned media from cancer cells exposed to silibinin and doxorubicin was found to stimulate IL-12 secretion in dendritic cells (DCs), suggesting the link of this treatment with the induction of Th1 response. Silibinin did not augment the ICD response induced by OXP. Conclusion: Our findings showed that silibinin can induce ICD and it potentiates the induction of this type of cell death induced by chemotherapy in cancer cells.
Collapse
Affiliation(s)
- Sevda Jafari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Heydarian
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raymond Lai
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Elnaz Mehdizadeh Aghdam
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran,Corresponding author: Ommoleila Molavi,
| |
Collapse
|
90
|
Gu T, Tian X, Wang Y, Yang W, Li W, Song M, Zhao R, Wang M, Gao Q, Li T, Zhang C, Kundu JK, Liu K, Dong Z, Lee MH. Repurposing pentamidine for cancer immunotherapy by targeting the PD1/PD-L1 immune checkpoint. Front Immunol 2023; 14:1145028. [PMID: 37205112 PMCID: PMC10185823 DOI: 10.3389/fimmu.2023.1145028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/10/2023] [Indexed: 05/21/2023] Open
Abstract
Immunotherapy has emerged as an effective therapeutic approach to several cancer types. The reinvigoration of tumor-infiltrating lymphocyte-mediated immune responses via the blockade of immune checkpoint markers, such as program cell death-1 (PD-1) or its cognate ligand PD-L1, has been the basis for developing clinically effective anticancer therapies. We identified pentamidine, an FDA-approved antimicrobial agent, as a small-molecule antagonist of PD-L1. Pentamidine enhanced T-cell-mediated cytotoxicity against various cancer cells in vitro by increasing the secretion of IFN-γ, TNF-α, perforin, and granzyme B in the culture medium. Pentamidine promoted T-cell activation by blocking the PD-1/PD-L1 interaction. In vivo administration of pentamidine attenuated the tumor growth and prolonged the survival of tumor-bearing mice in PD-L1 humanized murine tumor cell allograft models. Histological analysis of tumor tissues showed an increased number of tumor-infiltrating lymphocytes in tissues derived from pentamidine-treated mice. In summary, our study suggests that pentamidine holds the potential to be repurposed as a novel PD-L1 antagonist that may overcome the limitations of monoclonal antibody therapy and can emerge as a small molecule cancer immunotherapy.
Collapse
Affiliation(s)
- Tingxuan Gu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xueli Tian
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Yuanyuan Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Wenqian Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Wenwen Li
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Mengqiu Song
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Mengqiao Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Quanli Gao
- Department of Immunology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Tiepeng Li
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Chengjuan Zhang
- Department of Immunology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Joydeb Kumar Kundu
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, AB, Canada
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- *Correspondence: Zigang Dong, ; Mee-Hyun Lee,
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China
- College of Korean Medicine, Dongshin University, Naju, Republic of Korea
- *Correspondence: Zigang Dong, ; Mee-Hyun Lee,
| |
Collapse
|
91
|
He Z, Gao K, Dong L, Liu L, Qu X, Zou Z, Wu Y, Bu D, Guo JC, Zhao Y. Drug screening and biomarker gene investigation in cancer therapy through the human transcriptional regulatory network. Comput Struct Biotechnol J 2023; 21:1557-1572. [PMID: 36879883 PMCID: PMC9984461 DOI: 10.1016/j.csbj.2023.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/19/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
A complex and vast biological network regulates all biological functions in the human body in a sophisticated manner, and abnormalities in this network can lead to disease and even cancer. The construction of a high-quality human molecular interaction network is possible with the development of experimental techniques that facilitate the interpretation of the mechanisms of drug treatment for cancer. We collected 11 molecular interaction databases based on experimental sources and constructed a human protein-protein interaction (PPI) network and a human transcriptional regulatory network (HTRN). A random walk-based graph embedding method was used to calculate the diffusion profiles of drugs and cancers, and a pipeline was constructed by using five similarity comparison metrics combined with a rank aggregation algorithm, which can be implemented for drug screening and biomarker gene prediction. Taking NSCLC as an example, curcumin was identified as a potentially promising anticancer drug from 5450 natural small molecules, and combined with differentially expressed genes, survival analysis, and topological ranking, we obtained BIRC5 (survivin), which is both a biomarker for NSCLC and a key target for curcumin. Finally, the binding mode of curcumin and survivin was explored using molecular docking. This work has a guiding significance for antitumor drug screening and the identification of tumor markers.
Collapse
Affiliation(s)
- Zihao He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Kai Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lei Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Liu Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinchi Qu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhengkai Zou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Wu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Dechao Bu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Jin-Cheng Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yi Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.,Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
92
|
Pu Z, Zhao Q, Chen J, Xie Y, Mou L, Zha X. Single-cell RNA analysis to identify five cytokines signaling in immune-related genes for melanoma survival prognosis. Front Immunol 2023; 14:1148130. [PMID: 37026000 PMCID: PMC10070796 DOI: 10.3389/fimmu.2023.1148130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Melanoma is one of the deadliest skin cancers. Recently, developed single-cell sequencing has revealed fresh insights into melanoma. Cytokine signaling in the immune system is crucial for tumor development in melanoma. To evaluate melanoma patient diagnosis and treatment, the prediction value of cytokine signaling in immune-related genes (CSIRGs) is needed. In this study, the machine learning method of least absolute selection and shrinkage operator (LASSO) regression was used to establish a CSIRG prognostic signature of melanoma at the single-cell level. We discovered a 5-CSIRG signature that was substantially related to the overall survival of melanoma patients. We also constructed a nomogram that combined CSIRGs and clinical features. Overall survival of melanoma patients can be consistently predicted with good performance as well as accuracy by both the 5-CSIRG signature and nomograms. We compared the melanoma patients in the CSIRG high- and low-risk groups in terms of tumor mutation burden, infiltration of the immune system, and gene enrichment. High CSIRG-risk patients had a lower tumor mutational burden than low CSIRG-risk patients. The CSIRG high-risk patients had a higher infiltration of monocytes. Signaling pathways including oxidative phosphorylation, DNA replication, and aminoacyl tRNA biosynthesis were enriched in the high-risk group. For the first time, we constructed and validated a machine-learning model by single-cell RNA-sequencing datasets that have the potential to be a novel treatment target and might serve as a prognostic biomarker panel for melanoma. The 5-CSIRG signature may assist in predicting melanoma patient prognosis, biological characteristics, and appropriate therapy.
Collapse
Affiliation(s)
- Zuhui Pu
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Qing Zhao
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Dermatology, Shenzhen Luohu Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Jiaqun Chen
- Department of Dermatology, Shenzhen Luohu Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Yubin Xie
- Department of Dermatology, Shenzhen Luohu Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Lisha Mou
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- MetaLife Center, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
- *Correspondence: Lisha Mou, ; Xushan Zha,
| | - Xushan Zha
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- *Correspondence: Lisha Mou, ; Xushan Zha,
| |
Collapse
|
93
|
Palanki R, Swingle KL, Mitchell MJ. A (Controlled) Spill of IL2 for Localized Treatment of Mesothelioma. Clin Cancer Res 2022; 28:5010-5012. [PMID: 36190329 DOI: 10.1158/1078-0432.ccr-22-2626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023]
Abstract
A microencapsulated, cell-based IL2 cytokine factory was recently developed, and the safety and efficacy of this platform in a mouse model of mesothelioma were demonstrated. This platform has the potential to overcome current challenges in the delivery of therapeutic cytokines for cancer immunotherapy. See related article by Nash et al., p. 5121.
Collapse
Affiliation(s)
- Rohan Palanki
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kelsey L Swingle
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Institute for Regenerative Medicine, Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
94
|
Nanoarchitectured assembly and surface of two-dimensional (2D) transition metal dichalcogenides (TMDCs) for cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
95
|
Advances of Electroporation-Related Therapies and the Synergy with Immunotherapy in Cancer Treatment. Vaccines (Basel) 2022; 10:vaccines10111942. [PMID: 36423037 PMCID: PMC9692484 DOI: 10.3390/vaccines10111942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Electroporation is the process of instantaneously increasing the permeability of a cell membrane under a pulsed electric field. Depending on the parameters of the electric pulses and the target cell electrophysiological characteristics, electroporation can be either reversible or irreversible. Reversible electroporation facilitates the delivery of functional genetic materials or drugs to target cells, inducing cell death by apoptosis, mitotic catastrophe, or pseudoapoptosis; irreversible electroporation is an ablative technology which directly ablates a large amount of tissue without causing harmful thermal effects; electrotherapy using an electric field can induce cell apoptosis without any aggressive invasion. Reversible and irreversible electroporation can also activate systemic antitumor immune response and enhance the efficacy of immunotherapy. In this review, we discuss recent progress related to electroporation, and summarize its latest applications. Further, we discuss the synergistic effects of electroporation-related therapies and immunotherapy. We also propose perspectives for further investigating electroporation and immunotherapy in cancer treatment.
Collapse
|
96
|
Metformin as a Potential Antitumor Agent. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022. [DOI: 10.2478/sjecr-2022-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Abstract
Some recent findings suggest that metformin, an oral antidiabetic drug, may have antitumor properties. Studies have shown that metformin can alter cell metabolism, both tumor and immune cells, which can greatly influence disease outcome. In this review, we discuss the potential mechanisms in which metformin can directly induce apoptosis of tumor cells as well as mechanisms in which metformin can elicit or enhance antitumor immune response.
Collapse
|
97
|
Relationship of Serum IL-12 to Inflammation, Hematoma Volume, and Prognosis in Patients With Intracerebral Hemorrhage. Emerg Med Int 2022; 2022:8688413. [DOI: 10.1155/2022/8688413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/30/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Objective. Inflammatory cascades and hematomas after intracerebral hemorrhage (ICH) cause brain tissue and neuronal damage. Interleukin-12 (IL-12) promotes brain inflammation, and regulates coagulation mediated by red blood cells and platelets. This study was designed to investigate the relationship of serum IL-12 to inflammation, hematoma volume, and prognosis in ICH patients. Methods. We recruited patients with ICH within 12 hours of symptom onset (n = 209) and measured their serum IL-12 levels. Patients with an increased National Institute of Health stroke scale (NIHSS) score ≥4 were defined as early neurological deterioration, and modified rankin scale (mRS) score >2 at 3 months after intracerebral hemorrhage was defined as poor prognosis. Results. Levels of serum IL-12 was positively correlated with the admission of NIHSS scores (r = 0.535,
), hematoma volume (r = 0.608,
), serum CRP levels (r = 0.561,
), and serum TNF-α levels (r = 0.533,
) in 209 cases ICH patients. Levels of IL-12 in ICH patients with early neurological deterioration (median: 82.9 versus 65.8,
) or with poor prognosis (median: 79.0 versus 65.3,
) were all significantly higher than those in other ICH patients. In addition, serum IL-12 levels could be used to differentiate ICH patients at risk for early neurological deterioration with an AUC of 0.788 (95% CI: 0.717–0.858) or ICH patients at risk for suffering from an unfavorable outcome with an AUC of 0.787 (95% CI: 0.722–0.851). Conclusion. Elevated admission serum IL-12 levels are closely related to the inflammation, hematoma volume, and prognosis in ICH patients. Substantializing serum IL-12 levels is a prognostic biomarker for ICH.
Collapse
|
98
|
Wang Z, Xie S, Wu L, Chen F, Qiu L, Tan W. Aptamer-Functionalized Nanodevices for Dynamic Manipulation of Membrane Receptor Signaling in Living Cells. NANO LETTERS 2022; 22:7853-7859. [PMID: 36126113 DOI: 10.1021/acs.nanolett.2c02522] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The capacity to regulate the signaling amplitude of membrane receptors in a user-defined manner would open various opportunities for precise biological study and therapy. While partial agonists enabled downtuning of cellular responses, they required esoteric optimization of the ligand-receptor interface, limiting their practical applications. Herein, we developed an aptamer-functionalized, tweezer-like nanodevice to dynamically modulate the cellular behavior through control over the distance between receptors in the dimer with no need to involve complicated structural analysis. By combining a reversible conformation switch with aptamer-based molecular recognition, this nanodevice showed excellent performance on dynamic regulation of CD28 receptor-mediated T cell immunity. With the modular design, this nanodevice could be extended to dynamically modulate the activity of other membrane receptors (e.g., c-Met), expecting to offer a new paradigm for precise study and manipulation of specific molecular events in complex biological systems.
Collapse
Affiliation(s)
- Zhimin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Sitao Xie
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Limei Wu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Fengming Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
99
|
A homodimeric IL-15 superagonist F4RLI with easy preparation, improved half-life, and potent antitumor activities. Appl Microbiol Biotechnol 2022; 106:7039-7050. [PMID: 36184689 DOI: 10.1007/s00253-022-12209-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/28/2022] [Accepted: 09/23/2022] [Indexed: 11/02/2022]
Abstract
Interleukin-15 (IL-15) is a promising candidate for cancer immunotherapy due to its potent immune-activating effects. There are several IL-15 molecules currently in clinical trials but facing shortages of poor half-life, circulation instability, or complicated production and quality control processes. The aim of this study is to design a novel IL-15 superagonist to set out the above difficulties, and we constructed F4RLI consisting of the GS-linker spaced IgG4 Fc fragment, soluble IL-15 Rα (sIL-15Rα), and IL-15(N72D). Using a single plasmid transient transfection in HEK293E cells, the matured F4RLI was secreted in the form of homodimer and got purified by an easy step of protein A affinity chromatography. The F4RLI product can significantly stimulate the proliferation of human CD3+CD8+ T cells and NK cells in vitro. Meanwhile, F4RLI greatly extended the half-life and prolonged the exposure of IL-15 in mice nearly by 28- and 200-fold, respectively, in comparison with that of the IL-15 monomer. In vivo, F4RLI vastly expanded mouse splenic CD8+ T lymphocytes, illustrating its potential in tumor immunotherapy. Further studies showed that the combination of F4RLI with the immune checkpoint blocker atezolizumab played a synergistic effect in treating MC38 mouse tumor by increasing the percentage of CD8+ T cells in tumor tissue. Moreover, the combination therapy of F4RLI with the angiogenesis inhibitor bevacizumab resulted in significant tumor growth suppression in a xenograft human HT-29 mouse model. Overall, our results demonstrate a homodimeric IL-15 superagonist F4RLI with advances in manufacturing processes and biopharmaceutical applications for cancer immunotherapy. KEY POINTS: • The homodimeric structure of F4RLI facilitates its easy production processes and quality control. • The fusion with Fc and sIL-15Rα extends the plasma half-life of IL-15 by about 28-fold. • F4RLI can play synergistic antitumor activity with the PD-1/PD-L1 checkpoint inhibitor or angiogenesis inhibitor.
Collapse
|
100
|
Mou L, Jia C, Wu Z, Xin B, Liang Zhen CA, Wang B, Ni Y, Pu Z. Clinical and Prognostic Value of PPIA, SQSTM1, and CCL20 in Hepatocellular Carcinoma Patients by Single-Cell Transcriptome Analysis. Cells 2022; 11:3078. [PMID: 36231045 PMCID: PMC9563471 DOI: 10.3390/cells11193078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most malignant and poor-prognosis subtype of primary liver cancer. The scRNA-seq approach provides unique insight into tumor cell behavior at the single-cell level. Cytokine signaling in the immune system plays an important role in tumorigenesis and has both pro-tumorigenic and anti-tumorigenic functions. A biomarker of cytokine signaling in immune-related genes (CSIRG) is urgently required to assess HCC patient diagnosis and treatment. By analyzing the expression profiles of HCC single cells, TCGA, and ICGC data, we discovered that three important CSIRG (PPIA, SQSTM1, and CCL20) were linked to the overall survival of HCC patients. Cancer status and three hub CSIRG were taken into account while creating a risk nomogram. The nomogram had a high level of predictability and accuracy. Based on the CSIRG risk score, a distinct pattern of somatic tumor mutational burden (TMB) was detected between the two groups. The enrichment of the pyrimidine metabolism pathway, purine metabolism pathway, and lysosome pathway in HCC was linked to the CSIRG high-risk scores. Overall, scRNA-seq and bulk RNA-seq were used to create a strong CSIRG signature for HCC diagnosis.
Collapse
Affiliation(s)
- Lisha Mou
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Chenyang Jia
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Zijing Wu
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Boyang Xin
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Carmen Alicia Liang Zhen
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Bailiang Wang
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Yong Ni
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Zuhui Pu
- Imaging Department, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| |
Collapse
|