51
|
Kumariya R, Garsa AK, Rajput YS, Sood SK, Akhtar N, Patel S. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb Pathog 2019; 128:171-177. [PMID: 30610901 DOI: 10.1016/j.micpath.2019.01.002] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 01/06/2023]
Abstract
Huge demand of safe and natural preservatives has opened new area for intensive research on bacteriocins to unravel the novel range of antimicrobial compounds that could efficiently fight off the food-borne pathogens. Since food safety has become an increasingly important international concern, the application of bacteriocins from lactic acid bacteria that target food spoilage/pathogenic bacteria without major adverse effects has received great attention. Different modes of actions of these bacteriocins have been suggested and identified, like pore-forming, inhibition of cell-wall/nucleic acid/protein synthesis. However, development of resistance in the food spoilage and pathogenic bacteria against these bacteriocins is a rising concern. Emergence and spread of mutant strains resistant to bacteriocins is hampering food safety. It has spurred an interest to understand the bacteriocin resistance phenomenon displayed by the food pathogens, which will be helpful in mitigating the resistance problem. Therefore, present review is focused on the different resistance mechanisms adopted by food pathogens to overcome bacteriocin.
Collapse
Affiliation(s)
- Rashmi Kumariya
- Protein Expression and Purification Facility, Advanced Technology Platform Centre, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India.
| | - Anita Kumari Garsa
- Division of Dairy Microbiology, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Y S Rajput
- Division of Animal Biochemistry, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - S K Sood
- Division of Animal Biochemistry, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Nadeem Akhtar
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego, 92182, USA
| |
Collapse
|
52
|
Vasilchenko AS, Valyshev AV. Pore-forming bacteriocins: structural–functional relationships. Arch Microbiol 2018; 201:147-154. [DOI: 10.1007/s00203-018-1610-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/19/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022]
|
53
|
Bacterial Inactivation by Using Plastic Materials Activated with Combinations of Natural Antimicrobials. COATINGS 2018. [DOI: 10.3390/coatings8120460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Natural antimicrobials have gained interest as possible inhibitors of biofilm formation. The aim of the present study was to determine the efficacy of antimicrobials derived from essential oils (carvacrol, thymol) plus bacteriocin AS-48 immobilized on two plastic supports (low density polyethylene and polyethylene–polyamide films) on bacterial inactivation. The polyethylene–polyamide vacuum-packaging plastic film activated with a combination of thymol plus enterocin AS-48 was the most effective in reducing the concentrations of viable planktonic and sessile cells for Listeria innocua, Lactobacillus fructivorans, Bacillus coagulans, and Bacillus licheniformis. Results from the study highlight the potential of polyethylene–polyamide film activated with thymol plus enterocin AS-48 for reducing the viable cell concentrations of spoilage Gram-positive bacteria and Listeria in both planktonic and sessile states.
Collapse
|
54
|
Egan K, Field D, Ross RP, Cotter PD, Hill C. In silico Prediction and Exploration of Potential Bacteriocin Gene Clusters Within the Bacterial Genus Geobacillus. Front Microbiol 2018; 9:2116. [PMID: 30298056 PMCID: PMC6160750 DOI: 10.3389/fmicb.2018.02116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/20/2018] [Indexed: 11/30/2022] Open
Abstract
The thermophilic, endospore-forming genus of Geobacillus has historically been associated with spoilage of canned food. However, in recent years it has become the subject of much attention due its biotechnological potential in areas such as enzyme and biofuel applications. One aspect of this genus that has not been fully explored or realized is its use as a source of novel forms of the ribosomally synthesized antimicrobial peptides known as bacteriocins. To date only two bacteriocins have been fully characterized within this genus, i.e., Geobacillin I and II, with only a small number of others partially characterized. Here we bioinformatically investigate the potential of this genus as a source of novel bacteriocins through the use of the in silico screening software BAGEL3, which scans publically available genomes for potential bacteriocin gene clusters. In this study we examined the association of bacteriocin gene presence with niche and phylogenetic position within the genus. We also identified a number of candidates from multiple bacteriocin classes which may be promising antimicrobial candidates when investigated in vitro in future studies.
Collapse
Affiliation(s)
- Kevin Egan
- School of Microbiology, University College, Cork, Ireland
| | - Des Field
- School of Microbiology, University College, Cork, Ireland.,APC Microbiome Institute, Cork, Cork, Ireland
| | - R Paul Ross
- School of Microbiology, University College, Cork, Ireland.,APC Microbiome Institute, Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Institute, Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College, Cork, Ireland.,APC Microbiome Institute, Cork, Cork, Ireland
| |
Collapse
|
55
|
Kirkpatrick CL, Parsley NC, Bartges TE, Wing CE, Kommineni S, Kristich CJ, Salzman NH, Patrie SM, Hicks LM. Exploring bioactive peptides from bacterial secretomes using PepSAVI-MS: identification and characterization of Bac-21 from Enterococcus faecalis pPD1. Microb Biotechnol 2018; 11:943-951. [PMID: 30014612 PMCID: PMC6116741 DOI: 10.1111/1751-7915.13299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/30/2018] [Accepted: 06/21/2018] [Indexed: 11/28/2022] Open
Abstract
As current methods for antibiotic drug discovery are being outpaced by the rise of antimicrobial resistance, new methods and innovative technologies are necessary to replenish our dwindling arsenal of antimicrobial agents. To this end, we developed the PepSAVI-MS pipeline to expedite the search for natural product bioactive peptides. Herein we demonstrate expansion of PepSAVI-MS for the discovery of bacterial-sourced bioactive peptides through identification of the bacteriocin Bac-21 from Enterococcus faecalis pPD1. Minor pipeline modifications including implementation of bacteria-infused agar diffusion assays and optional digestion of peptide libraries highlight the versatility and wide adaptability of the PepSAVI-MS pipeline. Additionally, we have experimentally validated the primary protein sequence of the active, mature Bac-21 peptide for the first time and have confirmed its identity with respect to primary sequence and post-translational processing. Successful application of PepSAVI-MS to bacterial secretomes as demonstrated herein establishes proof-of-principle for use in novel microbial bioactive peptide discovery.
Collapse
Affiliation(s)
| | - Nicole C. Parsley
- Department of ChemistryThe University of North Carolina at Chapel HillChapel HillNCUSA
| | - Tessa E. Bartges
- Department of ChemistryThe University of North Carolina at Chapel HillChapel HillNCUSA
| | - Casey E. Wing
- Department of PathologySouthwestern Medical CenterThe University of TexasAustinTXUSA
| | - Sushma Kommineni
- Division of GastroenterologyDepartment of PediatricsMedical College of WisconsinMilwaukeeWIUSA
| | | | - Nita H. Salzman
- Division of GastroenterologyDepartment of PediatricsMedical College of WisconsinMilwaukeeWIUSA
| | | | - Leslie M. Hicks
- Department of ChemistryThe University of North Carolina at Chapel HillChapel HillNCUSA
| |
Collapse
|
56
|
Control of Propionibacterium acnes by natural antimicrobial substances: Role of the bacteriocin AS-48 and lysozyme. Sci Rep 2018; 8:11766. [PMID: 30082920 PMCID: PMC6079106 DOI: 10.1038/s41598-018-29580-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
We report the high susceptibility of several clinical isolates of Propionibacterium acnes from different sources (skin, bone, wound exudates, abscess or blood contamination) to the head-to-tail cyclized bacteriocin AS-48. This peptide is a feasible candidate for further pharmacological development against this bacterium, due to its physicochemical and biological characteristics, even when it is growing in a biofilm. Thus, the treatment of pre-formed biofilms with AS-48 resulted in a dose- and time-dependent disruption of the biofilm architecture beside the decrease of bacterial viability. Furthermore, we demonstrated the potential of lysozyme to bolster the inhibitory activity of AS-48 against P. acnes, rendering high reductions in the MIC values, even in matrix-growing cultures, according to the results obtained using a range of microscopy and bioassay techniques. The improvement of the activity of AS-48 through its co-formulation with lysozyme may be considered an alternative in the control of P. acnes, especially after proving the absence of cytotoxicity demonstrated by these natural compounds on relevant human skin cell lines. In summary, this study supports that compositions comprising the bacteriocin AS-48 plus lysozyme must be considered as promising candidates for topical applications with medical and pharmaceutical purposes against dermatological diseases such as acne vulgaris.
Collapse
|
57
|
Hanchi H, Mottawea W, Sebei K, Hammami R. The Genus Enterococcus: Between Probiotic Potential and Safety Concerns-An Update. Front Microbiol 2018; 9:1791. [PMID: 30123208 PMCID: PMC6085487 DOI: 10.3389/fmicb.2018.01791] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/17/2018] [Indexed: 02/05/2023] Open
Abstract
A considerable number of strains belonging to different species of Enterococcus are highly competitive due to their resistance to wide range of pH and temperature. Their competitiveness is also owed to their ability to produce bacteriocins recognized for their wide-range effectiveness on pathogenic and spoilage bacteria. Enterococcal bacteriocins have attracted great research interest as natural antimicrobial agents in the food industry, and as a potential drug candidate for replacing antibiotics in order to treat multiple drugs resistance pathogens. However, the prevalence of virulence factors and antibiotic-resistance genes and the ability to cause disease could compromise their application in food, human and animal health. From the current regulatory point of view, the genus Enterococcus is neither recommended for the QPS list nor have GRAS status. Although recent advances in molecular biology and the recommended methods for the safety evaluation of Enterococcus strains allowed the distinction between commensal and clinical clades, development of highly adapted methods and legislations are still required. In the present review, we evaluate some aspects of Enterococcus spp. related to their probiotic properties and safety concerns as well as the current and potential application in food systems and treatment of infections. The regulatory status of commensal Enterococcus candidates for food, feed, probiotic use, and recommended methods to assess and ensure their safety are also discussed.
Collapse
Affiliation(s)
- Hasna Hanchi
- Nutraceuticals and Functional Proteomics Potential of Biodiversity in Tunisia, Higher Institute of Applied Biological Sciences of Tunis (ISSBAT), University of Tunis El Manar, Tunis, Tunisia
| | - Walid Mottawea
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Khaled Sebei
- Nutraceuticals and Functional Proteomics Potential of Biodiversity in Tunisia, Higher Institute of Applied Biological Sciences of Tunis (ISSBAT), University of Tunis El Manar, Tunis, Tunisia
| | - Riadh Hammami
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
58
|
Garcia-Gutierrez E, Mayer MJ, Cotter PD, Narbad A. Gut microbiota as a source of novel antimicrobials. Gut Microbes 2018; 10:1-21. [PMID: 29584555 PMCID: PMC6363078 DOI: 10.1080/19490976.2018.1455790] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 02/08/2023] Open
Abstract
Bacteria, Archaea, Eukarya and viruses coexist in the human gut, and this coexistence is functionally balanced by symbiotic or antagonistic relationships. Antagonism is often characterized by the production of antimicrobials against other organisms occupying the same environmental niche. Indeed, close co-evolution in the gut has led to the development of specialized antimicrobials, which is attracting increased attention as these may serve as novel alternatives to antibiotics and thereby help to address the global problem of antimicrobial resistance. The gastrointestinal (GI) tract is especially suitable for finding novel antimicrobials due to the vast array of microbes that inhabit it, and a considerable number of antimicrobial producers of both wide and narrow spectrum have been described. In this review, we summarize some of the antimicrobial compounds that are produced by bacteria isolated from the gut environment, with a special focus on bacteriocins. We also evaluate the potential therapeutic application of these compounds to maintain homeostasis in the gut and the biocontrol of pathogenic bacteria.
Collapse
Affiliation(s)
- Enriqueta Garcia-Gutierrez
- Gut Health and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
- Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
| | - Melinda J. Mayer
- Gut Health and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - Paul D. Cotter
- Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
- APC Microbiome, Ireland
| | - Arjan Narbad
- Gut Health and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| |
Collapse
|
59
|
Fighting biofilms with lantibiotics and other groups of bacteriocins. NPJ Biofilms Microbiomes 2018; 4:9. [PMID: 29707229 PMCID: PMC5908865 DOI: 10.1038/s41522-018-0053-6] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/09/2018] [Accepted: 03/21/2018] [Indexed: 01/03/2023] Open
Abstract
Biofilms are sessile communities of bacteria typically embedded in an extracellular polymeric matrix. Bacterial cells embedded in biofilms are inherently recalcitrant to antimicrobials, compared to cells existing in a planktonic state, and are notoriously difficult to eradicate once formed. Avenues to tackle biofilms thus far have largely focussed on attempting to disrupt the initial stages of biofilm formation, including adhesion and maturation of the biofilm. Such an approach is advantageous as the concentrations required to inhibit formation of biofilms are generally much lower than removing a fully established biofilm. The crisis of antibiotic resistance in clinical settings worldwide has been further exacerbated by the ability of certain pathogenic bacteria to form biofilms. Perhaps the most notorious biofilm formers described from a clinical viewpoint have been methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Pseudomonas aeruginosa, Gardnerella vaginalis and Streptococcus mutans, the latter of which is found in oral biofilms. Due to the dearth of novel antibiotics in recent decades, compounded by the increasing rate of emergence of resistance amongst pathogens with a propensity for biofilm formation, solutions are urgently required to mitigate these crises. Bacteriocins are a class of antimicrobial peptides, which are ribosomally synthesised and often are more potent than their antibiotic counterparts. Here, we review a selection of studies conducted with bacteriocins with the ultimate objective of inhibiting biofilms. Overall, a deeper understanding of the precise means by which a biofilm forms on a substrate as well as insights into the mechanisms by which bacteriocins inhibit biofilms is warranted.
Collapse
|
60
|
Assessing in vitro digestibility of food biopreservative AS-48. Food Chem 2018; 246:249-257. [DOI: 10.1016/j.foodchem.2017.10.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/11/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022]
|
61
|
Martínez-García M, Bart JM, Campos-Salinas J, Valdivia E, Martínez-Bueno M, González-Rey E, Navarro M, Maqueda M, Cebrián R, Pérez-Victoria JM. Autophagic-related cell death of Trypanosoma brucei induced by bacteriocin AS-48. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:203-212. [PMID: 29649664 PMCID: PMC6039360 DOI: 10.1016/j.ijpddr.2018.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 11/24/2022]
Abstract
The parasitic protozoan Trypanosoma brucei is the causative agent of human African trypanosomiasis (sleeping sickness) and nagana. Current drug therapies have limited efficacy, high toxicity and/or are continually hampered by the appearance of resistance. Antimicrobial peptides have recently attracted attention as potential parasiticidal compounds. Here, we explore circular bacteriocin AS-48's ability to kill clinically relevant bloodstream forms of T. brucei gambiense, T. brucei rhodesiense and T. brucei brucei. AS-48 exhibited excellent anti-trypanosomal activity in vitro (EC50 = 1–3 nM) against the three T. brucei subspecies, but it was innocuous to human cells at 104-fold higher concentrations. In contrast to its antibacterial action, AS-48 does not kill the parasite through plasma membrane permeabilization but by targeting intracellular compartments. This was evidenced by the fact that vital dye internalization-prohibiting concentrations of AS-48 could kill the parasite at 37 °C but not at 4 °C. Furthermore, AS-48 interacted with the surface of the parasite, at least in part via VSG, its uptake was temperature-dependent and clathrin-depleted cells were less permissive to the action of AS-48. The bacteriocin also caused the appearance of myelin-like structures and double-membrane autophagic vacuoles. These changes in the parasite's ultrastructure were confirmed by fluorescence microscopy as AS-48 induced the production of EGFP-ATG8.2-labeled autophagosomes. Collectively, these results indicate AS-48 kills the parasite through a mechanism involving clathrin-mediated endocytosis of VSG-bound AS-48 and the induction of autophagic-like cell death. As AS-48 has greater in vitro activity than the drugs currently used to treat T. brucei infection and does not present any signs of toxicity in mammalian cells, it could be an attractive lead compound for the treatment of sleeping sickness and nagana. AS-48 kills Trypanosoma brucei efficiently and is innocuous in mammalian cells. It has greater in vitro activity than drugs currently in use. AS-48 must be internalized by the parasite in order to exert its trypanocidal effect. AS-48 uptake involves VSG binding and clathrin-mediated endocytosis. AS-48 induces an autophagic-related cell death.
Collapse
Affiliation(s)
- Marta Martínez-García
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Jean-Mathieu Bart
- Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Madrid, Spain; UMR INTERTRYP, Institut de Recherche pour le Développement, Montpellier, France
| | - Jenny Campos-Salinas
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Eva Valdivia
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Spain
| | | | - Elena González-Rey
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Mercedes Maqueda
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Spain
| | - Rubén Cebrián
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Spain.
| | - José M Pérez-Victoria
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC (IPBLN-CSIC), PTS Granada, Granada, Spain.
| |
Collapse
|
62
|
Ortega Blázquez I, Grande Burgos MJ, Pérez-Pulido R, Gálvez A, Lucas R. Treatment With High-Hydrostatic Pressure, Activated Film Packaging With Thymol Plus Enterocin AS-48, and Its Combination Modify the Bacterial Communities of Refrigerated Sea Bream ( Sparus aurata) Fillets. Front Microbiol 2018. [PMID: 29541064 PMCID: PMC5835528 DOI: 10.3389/fmicb.2018.00314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to determine the impact of activated plastic films with thymol and enterocin AS-48 and high-hydrostatic pressure (HP) treatment on the bacterial load and bacterial diversity of vacuum-packaged sea bream fillets under refrigerated storage for 10 days. The activated film and the HP treatment reduced aerobic mesophiles viable counts by 1.46 and 2.36 log cycles, respectively, while the combined treatment achieved a reduction of 4.13 log cycles. HP and combined treatments resulted in longer delays in bacterial growth. Proteobacteria were the dominant phyla in sea bream fillets. The relative abundance of Firmicutes increased by the end of storage both in controls and in samples treated by HP singly or in combination with the activated films. The predominant operational taxonomic units (OTUs) found at time 0 in control samples (Listeria, Acinetobacter, Pseudomonas, Enterobacteriaceae, Chryseobacterium) rapidly changed during storage (with an increase of Vibrio, Photobacterium, and Shewanella together with Cloacibacterium and Lactobacillales by the end of storage). The activated film and the HP treatment induced drastic changes in bacterial diversity right after treatments (with Comamonadaceae, Methylobacterium, Acidovorax, and Sphingomonas as main OTUs) and also induced further modifications during storage. Bacterial diversity in activated film samples was quite homogeneous during storage (with Vibrio, Photobacterium, and Shewanella as main OTUs) and approached control samples. HP treatments (singly or in combination with activated films) determined a high relative abundance of Acinetobacter (followed by Pseudomonas and Shewanella) during early storage as well as a higher relative abundance of lactic acid bacteria by the end of storage. The results indicate that the complex dynamics of bacterial populations in the refrigerated sea bream fillets are markedly influenced by treatment and antimicrobials applied.
Collapse
Affiliation(s)
- Irene Ortega Blázquez
- Microbiology Division, Department of Health Sciences, University of Jaen, Jaen, Spain
| | - María J Grande Burgos
- Microbiology Division, Department of Health Sciences, University of Jaen, Jaen, Spain
| | - Rubén Pérez-Pulido
- Microbiology Division, Department of Health Sciences, University of Jaen, Jaen, Spain
| | - Antonio Gálvez
- Microbiology Division, Department of Health Sciences, University of Jaen, Jaen, Spain
| | - Rosario Lucas
- Microbiology Division, Department of Health Sciences, University of Jaen, Jaen, Spain
| |
Collapse
|
63
|
Characterization of Functional, Safety, and Probiotic Properties of Enterococcus faecalis AG5 Isolated From Wistar Rat, Demonstrating Adherence to HCT 116 Cells and Gastrointestinal Survivability. Probiotics Antimicrob Proteins 2018; 10:435-445. [DOI: 10.1007/s12602-018-9387-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
64
|
Osawa M, Erickson HP. Turgor Pressure and Possible Constriction Mechanisms in Bacterial Division. Front Microbiol 2018; 9:111. [PMID: 29445369 PMCID: PMC5797765 DOI: 10.3389/fmicb.2018.00111] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/17/2018] [Indexed: 12/15/2022] Open
Abstract
Bacterial cytokinesis begins with the assembly of FtsZ into a Z ring at the center of the cell. The Z-ring constriction in Gram-negative bacteria may occur in an environment where the periplasm and the cytoplasm are isoosmotic, but in Gram-positive bacteria the constriction may have to overcome a substantial turgor pressure. We address three potential sources of invagination force. (1) FtsZ itself may generate force by curved protofilaments bending the attached membrane. This is sufficient to constrict liposomes in vitro. However, this force is on the order of a few pN, and would not be enough to overcome turgor. (2) Cell wall (CW) synthesis may generate force by pushing the plasma membrane from the outside. However, this would probably require some kind of Brownian ratchet to separate the CW and membrane sufficiently to allow a glycan strand to slip in. The elastic element is not obvious. (3) Excess membrane production has the potential to contribute significantly to the invagination force. If the excess membrane is produced under the CW, it would force the membrane to bleb inward. We propose here that a combination of FtsZ pulling from the inside, and excess membrane pushing membrane inward may generate a substantial constriction force at the division site. This combined force generation mechanism may be sufficient to overcome turgor pressure. This would abolish the need for a Brownian ratchet for CW growth, and would permit CW to operate by reinforcing the constrictions generated by FtsZ and excess membrane.
Collapse
Affiliation(s)
- Masaki Osawa
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| | - Harold P Erickson
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
65
|
Inactivation of Listeria in Foods Packed in Films Activated with Enterocin AS-48 plus Thymol Singly or in Combination with High-Hydrostatic Pressure Treatment. COATINGS 2017. [DOI: 10.3390/coatings7110204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of the present study was to determine the efficacy of films activated with enterocin AS-48 plus thymol singly, or in combination with high-hydrostatic pressure (HHP) on the inactivation of Listeria innocua in sea bream fillets and in fruit puree stored under refrigeration for 10 days. L. innocua proliferated in control fish fillets during storage. The activated film reduced viable Listeria counts in fillets by 1.76 log cycles and prevented growth of survivors until mid-storage. Application of HHP treatment to fillets packed in films without antimicrobials reduced Listeria counts by 1.83 log cycles, but did not prevent the growth of survivors during storage. The combined treatment reduced viable counts by 1.88 log cycles and delayed growth of survivors during the whole storage period. L. innocua survived in puree during storage. The activated film reduced Listeria counts by 1.80 and 2.0 log cycles at days 0 and 3. After that point, Listeria were below the detection limit. No viable Listeria were detected in the purees after application of HHP treatment singly, or in combination with the activated film. Results from the study indicate that the efficacy of activated films against Listeria is markedly influenced by the food type.
Collapse
|
66
|
Grande Burgos MJ, López Aguayo MDC, Pérez Pulido R, Galvez A, Lucas R. Analysis of the microbiota of refrigerated chopped parsley after treatments with a coating containing enterocin AS-48 or by high-hydrostatic pressure. Food Res Int 2017; 99:91-97. [DOI: 10.1016/j.foodres.2017.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 12/26/2022]
|
67
|
Balabanova L, Podvolotskaya A, Slepchenko L, Eliseikina M, Noskova Y, Nedashkovskaya O, Son O, Tekutyeva L, Rasskazov V. Nucleolytic enzymes from the marine bacterium Cobetia amphilecti KMM 296 with antibiofilm activity and biopreservative effect on meat products. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.02.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
68
|
Masschelein J, Jenner M, Challis GL. Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Nat Prod Rep 2017. [PMID: 28650032 DOI: 10.1039/c7np00010c] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to 2017The overwhelming majority of antibiotics in clinical use originate from Gram-positive Actinobacteria. In recent years, however, Gram-negative bacteria have become increasingly recognised as a rich yet underexplored source of novel antimicrobials, with the potential to combat the looming health threat posed by antibiotic resistance. In this article, we have compiled a comprehensive list of natural products with antimicrobial activity from Gram-negative bacteria, including information on their biosynthetic origin(s) and molecular target(s), where known. We also provide a detailed discussion of several unusual pathways for antibiotic biosynthesis in Gram-negative bacteria, serving to highlight the exceptional biocatalytic repertoire of this group of microorganisms.
Collapse
Affiliation(s)
- J Masschelein
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - M Jenner
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - G L Challis
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| |
Collapse
|
69
|
Vasilchenko AS, Rogozhin EA, Valyshev AV. Purification of a Novel Bacteriocin-Like Inhibitory Substance Produced byEnterococcus faeciumICIS 8 and Characterization of Its Mode of Action. Microb Drug Resist 2017; 23:447-456. [DOI: 10.1089/mdr.2016.0069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Alexey S. Vasilchenko
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russian Federation
- Orenburg State University, Orenburg, Russian Federation
| | - Eugene A. Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
- Gause Institute of New Antibiotics, Moscow, Russian Federation
| | - Alexander V. Valyshev
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russian Federation
| |
Collapse
|
70
|
Rohrbacher F, Zwicky A, Bode JW. Chemical synthesis of a homoserine-mutant of the antibacterial, head-to-tail cyclized protein AS-48 by α-ketoacid-hydroxylamine (KAHA) ligation. Chem Sci 2017; 8:4051-4055. [PMID: 28580120 PMCID: PMC5434751 DOI: 10.1039/c7sc00789b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022] Open
Abstract
An antibacterial cyclic AS-48 protein was chemically synthesized by α-ketoacid-hydroxylamine (KAHA) ligation. Initial challenges associated with the exceptionally hydrophobic segments arising from the amphiphilic nature of the protein were resolved by the development of bespoke reaction conditions for hydrophobic segments, using hexafluoroisopropanol (HFIP) as a co-solvent. The synthetic protein displays similar biological activity and properties to those of the native protein. To support the current understanding of its antibacterial mode of action, we demonstrate the ability of AS-48 to be incorporated into synthetic multilamellar vesicles (MLVs).
Collapse
Affiliation(s)
- Florian Rohrbacher
- Laboratorium für Organische Chemie , Department of Chemistry and Applied Biosciences , ETH Zürich , 8093 Zürich , Switzerland .
| | - André Zwicky
- Laboratorium für Organische Chemie , Department of Chemistry and Applied Biosciences , ETH Zürich , 8093 Zürich , Switzerland .
| | - Jeffrey W Bode
- Laboratorium für Organische Chemie , Department of Chemistry and Applied Biosciences , ETH Zürich , 8093 Zürich , Switzerland . .,Institute of Transformative bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8602 , Japan
| |
Collapse
|
71
|
Biofilms formed by microbiota recovered from fresh produce: Bacterial biodiversity, and inactivation by benzalkonium chloride and enterocin AS-48. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
72
|
Enterocin AS-48 as Evidence for the Use of Bacteriocins as New Leishmanicidal Agents. Antimicrob Agents Chemother 2017; 61:AAC.02288-16. [PMID: 28167557 DOI: 10.1128/aac.02288-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/02/2017] [Indexed: 11/20/2022] Open
Abstract
We report the feasibility of enterocin AS-48, a circular cationic peptide produced by Enterococcus faecalis, as a new leishmanicidal agent. AS-48 is lethal to Leishmania promastigotes as well as to axenic and intracellular amastigotes at low micromolar concentrations, with scarce cytotoxicity to macrophages. AS-48 induced a fast bioenergetic collapse of L. donovani promastigotes but only a partial permeation of their plasma membrane with limited entrance of vital dyes, even at concentrations beyond its full lethality. Fluoresceinated AS-48 was visualized inside parasites by confocal microscopy and seen to cause mitochondrial depolarization and reactive oxygen species production. Altogether, AS-48 appeared to have a mixed leishmanicidal mechanism that includes both plasma membrane permeabilization and additional intracellular targets, with mitochondrial dysfunctionality being of special relevance. This complex leishmanicidal mechanism of AS-48 persisted even for the killing of intracellular amastigotes, as evidenced by transmission electron microscopy. We demonstrated the potentiality of AS-48 as a new and safe leishmanicidal agent, expanding the growing repertoire of eukaryotic targets for bacteriocins, and our results provide a proof of mechanism for the search of new leishmanicidal bacteriocins, whose diversity constitutes an almost endless source for new structures at moderate production cost and whose safe use on food preservation is well established.
Collapse
|
73
|
Barbosa AAT, Mantovani HC, Jain S. Bacteriocins from lactic acid bacteria and their potential in the preservation of fruit products. Crit Rev Biotechnol 2017; 37:852-864. [PMID: 28049350 DOI: 10.1080/07388551.2016.1262323] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacteriocins produced by lactic acid bacteria (LAB) are well-recognized for their potential as natural food preservatives. These antimicrobial peptides usually do not change the sensorial properties of food products and can be used in combination with traditional preservation methods to ensure microbial stability. In recent years, fruit products are increasingly being associated with food-borne pathogens and spoilage microorganisms, and bacteriocins are important candidates to preserve these products. Bacteriocins have been extensively studied to preserve foods of animal origin. However, little information is available for their use in vegetable products, especially in minimally processed ready-to-eat fruits. Although, many bacteriocins possess useful characteristics that can be used to preserve fruit products, to date, only nisin, enterocin AS-48, bovicin HC5, enterocin 416K1, pediocin and bificin C6165 have been tested for their activity against spoilage and pathogenic microorganisms in these products. Among these, only nisin and pediocin are approved to be commercially used as food additives, and their use in fruit products is still limited to certain countries. Considering the increasing demand for fresh-tasting fruit products and concern for public safety, the study of other bacteriocins with biochemical characteristics that make them candidates for the preservation of these products are of great interest. Efforts for their approval as food additives are also important. In this review, we discuss why the study of bacteriocins as an alternative method to preserve fruit products is important; we detail the biotechnological approaches for the use of bacteriocins in fruit products; and describe some bacteriocins that have been tested and have potential to be tested for the preservation of fruit products.
Collapse
Affiliation(s)
| | | | - Sona Jain
- a Departamento de Morfologia , Universidade Federal de Sergipe , São Cristóvão , Sergipe , Brazil
| |
Collapse
|
74
|
Zhao X, Kuipers OP. Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genomics 2016; 17:882. [PMID: 27821051 PMCID: PMC5100339 DOI: 10.1186/s12864-016-3224-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gram-positive bacteria of the Bacillales are important producers of antimicrobial compounds that might be utilized for medical, food or agricultural applications. Thanks to the wide availability of whole genome sequence data and the development of specific genome mining tools, novel antimicrobial compounds, either ribosomally- or non-ribosomally produced, of various Bacillales species can be predicted and classified. Here, we provide a classification scheme of known and putative antimicrobial compounds in the specific context of Bacillales species. RESULTS We identify and describe known and putative bacteriocins, non-ribosomally synthesized peptides (NRPs), polyketides (PKs) and other antimicrobials from 328 whole-genome sequenced strains of 57 species of Bacillales by using web based genome-mining prediction tools. We provide a classification scheme for these bacteriocins, update the findings of NRPs and PKs and investigate their characteristics and suitability for biocontrol by describing per class their genetic organization and structure. Moreover, we highlight the potential of several known and novel antimicrobials from various species of Bacillales. CONCLUSIONS Our extended classification of antimicrobial compounds demonstrates that Bacillales provide a rich source of novel antimicrobials that can now readily be tapped experimentally, since many new gene clusters are identified.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands.,School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands.
| |
Collapse
|
75
|
Kommineni S, Kristich CJ, Salzman NH. Harnessing bacteriocin biology as targeted therapy in the GI tract. Gut Microbes 2016; 7:512-517. [PMID: 27624536 PMCID: PMC5153615 DOI: 10.1080/19490976.2016.1233089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/19/2016] [Accepted: 08/28/2016] [Indexed: 02/03/2023] Open
Abstract
Recently, our laboratory demonstrated that bacteriocins produced by commensal enterococci provide an advantage in niche maintenance in the highly competitive environment of the gastrointestinal (GI) tract. Bacterial production of bacteriocins is a conserved defense strategy to help establish an ecological niche. Bacteriocin-encoding genes in enterococci are often carried on mobile genetic elements, including conjugative plasmids, enabling the transfer of such traits to other community members in a shared niche. Use of a novel mouse model for enterococcal colonization of the GI tract allowed us to investigate enterococcal dynamics and the role of enterococcal bacteriocins in the mouse GI tract. We examined the role of bacteriocin-21, carried on the pPD1 plasmid, in enterococcal colonization of the gut. We discovered that Enterococcus faecalis (EF) harboring pPD1 effectively colonizes the GI tract by using Bac-21 to eliminate its competition. In our study, we also present evidence for active conjugation in the GI tract, a strategy EF uses to enhance the number of bacteriocin producers in a given niche and eliminate bacteriocin-susceptible populations. Using an engineered strain of EF that is capable of producing Bac-21 but impaired in its conjugation ability, we were able to reduce pre-existing colonization by vancomycin-resistant enterococci in the mouse gut. Thus, our results suggest a novel therapeutic strategy to de-colonize antibiotic-resistant enterococci from the GI tract of patients and thereby prevent the emergence of resistant enterococcal infections that are otherwise difficult, or impossible, to treat.
Collapse
Affiliation(s)
- Sushma Kommineni
- Department of Pediatrics, Children's
Research Institute, Medical College of Wisconsin, Milwaukee, WI,
United States
- Department of Microbiology and Molecular
Genetics, Medical College of Wisconsin, Milwaukee, WI, United
States
| | - Christopher J. Kristich
- Department of Microbiology and Molecular
Genetics, Medical College of Wisconsin, Milwaukee, WI, United
States
| | - Nita H. Salzman
- Department of Pediatrics, Children's
Research Institute, Medical College of Wisconsin, Milwaukee, WI,
United States
- Department of Microbiology and Molecular
Genetics, Medical College of Wisconsin, Milwaukee, WI, United
States
| |
Collapse
|
76
|
López-Cuellar MDR, Rodríguez-Hernández AI, Chavarría-Hernández N. LAB bacteriocin applications in the last decade. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1232605] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Ma. del Rocío López-Cuellar
- Agro-Food Biotechnology Research Group (CABA), Institute of Food and Agricultural Sciences (ICAp), Autonomous University of Hidalgo State (UAEH) , Tulancingo de Bravo, Hidalgo, Mexico
| | - Adriana-Inés Rodríguez-Hernández
- Agro-Food Biotechnology Research Group (CABA), Institute of Food and Agricultural Sciences (ICAp), Autonomous University of Hidalgo State (UAEH) , Tulancingo de Bravo, Hidalgo, Mexico
| | - Norberto Chavarría-Hernández
- Agro-Food Biotechnology Research Group (CABA), Institute of Food and Agricultural Sciences (ICAp), Autonomous University of Hidalgo State (UAEH) , Tulancingo de Bravo, Hidalgo, Mexico
| |
Collapse
|
77
|
Fagundes P, Farias F, Santos O, de Oliveira N, da Paz J, Ceotto-Vigoder H, Alviano D, Romanos M, Bastos M. The antimicrobial peptide aureocin A53 as an alternative agent for biopreservation of dairy products. J Appl Microbiol 2016; 121:435-44. [DOI: 10.1111/jam.13189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/09/2016] [Accepted: 05/24/2016] [Indexed: 01/19/2023]
Affiliation(s)
- P.C. Fagundes
- Departamento de Microbiologia Geral; Instituto de Microbiologia Paulo de Góes; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - F.M. Farias
- Departamento de Microbiologia Geral; Instituto de Microbiologia Paulo de Góes; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - O.C.S. Santos
- Departamento de Microbiologia Geral; Instituto de Microbiologia Paulo de Góes; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - N.E.M. de Oliveira
- Departamento de Microbiologia Geral; Instituto de Microbiologia Paulo de Góes; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - J.A.S. da Paz
- Departamento de Microbiologia Geral; Instituto de Microbiologia Paulo de Góes; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - H. Ceotto-Vigoder
- Departamento de Microbiologia Geral; Instituto de Microbiologia Paulo de Góes; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - D.S. Alviano
- Departamento de Microbiologia Geral; Instituto de Microbiologia Paulo de Góes; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - M.T.V. Romanos
- Departamento de Virologia; Instituto de Microbiologia Paulo de Góes; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - M.C.F. Bastos
- Departamento de Microbiologia Geral; Instituto de Microbiologia Paulo de Góes; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| |
Collapse
|
78
|
Effect of different activated coatings containing enterocin AS-48 against Listeria monocytogenes on apple cubes. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
79
|
Gupta A, Tiwari SK, Netrebov V, Chikindas ML. Biochemical Properties and Mechanism of Action of Enterocin LD3 Purified from Enterococcus hirae LD3. Probiotics Antimicrob Proteins 2016; 8:161-9. [DOI: 10.1007/s12602-016-9217-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
80
|
Egan K, Field D, Rea MC, Ross RP, Hill C, Cotter PD. Bacteriocins: Novel Solutions to Age Old Spore-Related Problems? Front Microbiol 2016; 7:461. [PMID: 27092121 PMCID: PMC4824776 DOI: 10.3389/fmicb.2016.00461] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/21/2016] [Indexed: 02/01/2023] Open
Abstract
Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, which have the ability to kill or inhibit other bacteria. Many bacteriocins are produced by food grade lactic acid bacteria (LAB). Indeed, the prototypic bacteriocin, nisin, is produced by Lactococcus lactis, and is licensed in over 50 countries. With consumers becoming more concerned about the levels of chemical preservatives present in food, bacteriocins offer an alternative, more natural approach, while ensuring both food safety and product shelf life. Bacteriocins also show additive/synergistic effects when used in combination with other treatments, such as heating, high pressure, organic compounds, and as part of food packaging. These features are particularly attractive from the perspective of controlling sporeforming bacteria. Bacterial spores are common contaminants of food products, and their outgrowth may cause food spoilage or food-borne illness. They are of particular concern to the food industry due to their thermal and chemical resistance in their dormant state. However, when spores germinate they lose the majority of their resistance traits, making them susceptible to a variety of food processing treatments. Bacteriocins represent one potential treatment as they may inhibit spores in the post-germination/outgrowth phase of the spore cycle. Spore eradication and control in food is critical, as they are able to spoil and in certain cases compromise the safety of food by producing dangerous toxins. Thus, understanding the mechanisms by which bacteriocins exert their sporostatic/sporicidal activity against bacterial spores will ultimately facilitate their optimal use in food. This review will focus on the use of bacteriocins alone, or in combination with other innovative processing methods to control spores in food, the current knowledge and gaps therein with regard to bacteriocin-spore interactions and discuss future research approaches to enable spores to be more effectively targeted by bacteriocins in food settings.
Collapse
Affiliation(s)
- Kevin Egan
- School of Microbiology, University College Cork Cork, Ireland
| | - Des Field
- School of Microbiology, University College Cork Cork, Ireland
| | - Mary C Rea
- Teagasc Food Research Centre, MooreparkFermoy, Ireland; APC Microbiome InstituteUniversity College Cork, Ireland
| | - R Paul Ross
- APC Microbiome InstituteUniversity College Cork, Ireland; College of Science, Engineering and Food Science, University College CorkCork, Ireland
| | - Colin Hill
- School of Microbiology, University College CorkCork, Ireland; APC Microbiome InstituteUniversity College Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, MooreparkFermoy, Ireland; APC Microbiome InstituteUniversity College Cork, Ireland
| |
Collapse
|
81
|
Sojka M, Valachova I, Bucekova M, Majtan J. Antibiofilm efficacy of honey and bee-derived defensin-1 on multispecies wound biofilm. J Med Microbiol 2016; 65:337-344. [DOI: 10.1099/jmm.0.000227] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Martin Sojka
- Department of Microbiology, Faculty of Medicine, Slovak Medical University, Limbova 13, 833 03 Bratislava, Slovakia
| | - Ivana Valachova
- Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Marcela Bucekova
- Institute of Zoology, Slovak Academy of Sciences, Dubravska cesta 9, 845 06 Bratislava, Slovakia
- Laboratory of Molecular Apidology and Apitherapy, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| | - Juraj Majtan
- Institute of Zoology, Slovak Academy of Sciences, Dubravska cesta 9, 845 06 Bratislava, Slovakia
- Department of Microbiology, Faculty of Medicine, Slovak Medical University, Limbova 13, 833 03 Bratislava, Slovakia
- Laboratory of Molecular Apidology and Apitherapy, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| |
Collapse
|
82
|
Toledo del Árbol J, Pérez Pulido R, Grande Burgos MJ, Gálvez A, Lucas López R. Inactivation of leuconostocs in cherimoya pulp by high hydrostatic pressure treatments applied singly or in combination with enterocin AS-48. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.09.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
83
|
Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature 2015; 526:719-22. [PMID: 26479034 PMCID: PMC4978352 DOI: 10.1038/nature15524] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/25/2015] [Indexed: 12/21/2022]
Abstract
Enterococcus faecalis (EF) is both a common commensal of the human gastrointestinal tract (GI) and a leading cause of hospital acquired infections1. Systemic infections with multi-drug resistant enterococci occur subsequent to GI colonization2. Preventing colonization by multi-drug resistant EF could therefore be a valuable approach to limiting infection. However, little is known about mechanisms EF uses to colonize and compete for stable gastrointestinal niches. Pheromone-responsive, conjugative plasmids encoding bacteriocins are common among enterococcal strains3, and could modulate niche competition among enterococci or between enterococci and the intestinal microbiota. We developed a model of mouse gut colonization with EF without disrupting the microbiota, to evaluate the role of the conjugative plasmid pPD1 expressing bacteriocin 214 on enterococcal colonization. Here we show that EF harboring pPD1 replaces indigenous enterococci and outcompetes EF lacking pPD1. Furthermore, in the intestine, pPD1 is transferred to other EF strains by conjugation, enhancing their survival. Moreover, colonization with an EF strain carrying a conjugation-defective pPD1 mutant resulted in clearance of vancomycin-resistant enterococci, without plasmid transfer. Therefore bacteriocin expression by commensal bacteria can influence niche-competition in the GI tract, and bacteriocins, delivered by commensals that occupy a precise intestinal bacterial niche, may be an effective therapeutic approach to specifically eliminate intestinal colonization by multi-drug resistant bacteria, without profound disruption of the indigenous microbiota.
Collapse
|
84
|
Burgos MJG, Aguayo MCL, Pulido RP, Gálvez A, López RL. Inactivation of Staphylococcus aureus in Oat and Soya Drinks by Enterocin AS-48 in Combination with Other Antimicrobials. J Food Sci 2015; 80:M2030-4. [PMID: 26256434 DOI: 10.1111/1750-3841.12983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/23/2015] [Indexed: 11/28/2022]
Abstract
The presence of toxicogenic Staphylococcus aureus in foods and the dissemination of methicillin-resistant S. aureus (MRSA) in the food chain are matters of concern. In the present study, the circular bacteriocin enterocin AS-48, applied singly or in combination with phenolic compounds (carvacrol, eugenol, geraniol, and citral) or with 2-nitro-1-propanol (2NPOH), was investigated in the control of a cocktail made from 1 methicillin-sensitive and 1 MRSA strains inoculated on commercial oat and soya drinks. Enterocin AS-48 exhibited low bactericidal activity against staphylococci in the drinks investigated when applied singly. The combinations of sub-inhibitory concentrations of enterocin AS-48 (25 μg/mL) and phenolic compounds or 2NPOH caused complete inactivation of staphylococci in the drinks within 24 h of incubation at 22 °C. When tested in oat and soya drinks stored for 7 d at 10 °C, enterocin AS-48 (25 μg/mL) in combination with 2NPOH (5.5 mM) reduced viable counts rapidly in the case of oat drink (4.2 log cycles after 12 h) or slowly in soya drink (3.8 log cycles after 3 d). The same combined treatment applied on drinks stored at 22 °C achieved a fast inactivation of staphylococci within 12 to 24 h in both drinks, and no viable staphylococci were detected for up to 7 d of storage. Results from the study highlight the potential of enterocin AS-48 in combination with 2NPOH for inactivation of staphylococci.
Collapse
Affiliation(s)
- María José Grande Burgos
- Dept. de Ciencias de la Salud, Facultad de Ciencias Experimentales, Univ. de Jaén, Jaén, 23071, Spain
| | - M Carmen López Aguayo
- Dept. de Ciencias de la Salud, Facultad de Ciencias Experimentales, Univ. de Jaén, Jaén, 23071, Spain
| | - Rubén Pérez Pulido
- Dept. de Ciencias de la Salud, Facultad de Ciencias Experimentales, Univ. de Jaén, Jaén, 23071, Spain
| | - Antonio Gálvez
- Dept. de Ciencias de la Salud, Facultad de Ciencias Experimentales, Univ. de Jaén, Jaén, 23071, Spain
| | - Rosario Lucas López
- Dept. de Ciencias de la Salud, Facultad de Ciencias Experimentales, Univ. de Jaén, Jaén, 23071, Spain
| |
Collapse
|
85
|
Cavera VL, Arthur TD, Kashtanov D, Chikindas ML. Bacteriocins and their position in the next wave of conventional antibiotics. Int J Antimicrob Agents 2015; 46:494-501. [PMID: 26341839 DOI: 10.1016/j.ijantimicag.2015.07.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/10/2015] [Accepted: 07/15/2015] [Indexed: 12/13/2022]
Abstract
Micro-organisms are capable of producing a range of defence mechanisms, including antibiotics, bacteriocins, lytic agents, protein exotoxins, etc. Such mechanisms have been identified in nearly 99% of studied bacteria. The multiplicity and diversity of bacteriocins and the resultant effects of their interactions with targeted bacteria on microbial ecology has been thoroughly studied and remains an area of investigation attracting many researchers. However, the incorporation of bacteriocins into drug delivery systems used in conjunction with, or as potential alternatives to, conventional antibiotics is only a recent, although rapidly expanding, field. The extensive array of bacteriocins positions them as one of the most promising options in the next wave of antibiotics. The goal of this review was to explore bacteriocins as novel antimicrobials, alone and in combination with established antibiotics, and thus position them as a potential tool for addressing the current antibiotic crisis.
Collapse
Affiliation(s)
- Veronica L Cavera
- Department of Biochemistry and Microbiology, Rutgers State University, 76 Lipman Drive, New Brunswick, NJ 08901, USA
| | - Timothy D Arthur
- Department of Biochemistry and Microbiology, Rutgers State University, 76 Lipman Drive, New Brunswick, NJ 08901, USA
| | - Dimitri Kashtanov
- School of Environmental and Biological Sciences, Rutgers State University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Michael L Chikindas
- School of Environmental and Biological Sciences, Rutgers State University, 65 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
86
|
Louiza L, Fatiha D, Halima ZK, Nour Eddine K. Bacteriocinogenic potential and genotypic characterization of three Enterococcus faecium isolates from Algerian raw milk and traditional butter. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajb2015.14518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
87
|
Dhama K, Karthik K, Tiwari R, Shabbir MZ, Barbuddhe S, Malik SVS, Singh RK. Listeriosis in animals, its public health significance (food-borne zoonosis) and advances in diagnosis and control: a comprehensive review. Vet Q 2015; 35:211-35. [PMID: 26073265 DOI: 10.1080/01652176.2015.1063023] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Listeriosis is an infectious and fatal disease of animals, birds, fish, crustaceans and humans. It is an important food-borne zoonosis caused by Listeria monocytogenes, an intracellular pathogen with unique potential to spread from cell to cell, thereby crossing blood-brain, intestinal and placental barriers. The organism possesses a pile of virulence factors that help to infect the host and evade from host immune machinery. Though disease occurrence is sporadic throughout the world, it can result in severe damage during an outbreak. Listeriosis is characterized by septicaemia, encephalitis, meningitis, meningoencephalitis, abortion, stillbirth, perinatal infections and gastroenteritis with the incubation period varying with the form of infection. L. monocytogenes has been isolated worldwide from humans, animals, poultry, environmental sources like soil, river, decaying plants, and food sources like milk, meat and their products, seafood and vegetables. Since appropriate vaccines are not available and infection is mainly transmitted through foods in humans and animals, hygienic practices can prevent its spread. The present review describes etiology, epidemiology, transmission, clinical signs, post-mortem lesions, pathogenesis, public health significance, and advances in diagnosis, vaccines and treatment of this disease. Special attention has been given to novel as well as prospective emerging therapies that include bacteriophage and cytokine therapy, avian egg yolk antibodies and herbal therapy. Various vaccines, including advances in recombinant and DNA vaccines and their modes of eliciting immune response, are also discussed. Due focus has also been given regarding appropriate prevention and control strategies to be adapted for better management of this zoonotic disease.
Collapse
Affiliation(s)
- Kuldeep Dhama
- a Division of Pathology , Indian Veterinary Research Institute (IVRI) , Izatnagar, Bareilly 243122 , UP , India
| | - Kumaragurubaran Karthik
- b Division of Bacteriology and Mycology , Indian Veterinary Research Institute (IVRI) , Izatnagar, Bareilly 243122 , UP , India
| | - Ruchi Tiwari
- c Department of Veterinary Microbiology and Immunology , College of Veterinary Sciences , Uttar Pradesh Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura 281001 , India
| | - Muhammad Zubair Shabbir
- d Quality Operations Laboratory , University of Veterinary and Animal Sciences , Lahore 54600, Pakistan
| | - Sukhadeo Barbuddhe
- e Indian Council of Agricultural Research Complex for Goa , Old Goa, Goa 403402, India
| | - Satya Veer Singh Malik
- f Division of Veterinary Public Health , Indian Veterinary Research Institute (IVRI) , Izatnagar, Bareilly 243122 , UP , India
| | - Raj Kumar Singh
- g Indian Veterinary Research Institute (IVRI) , Izatnagar, Bareilly 243122 , UP , India
| |
Collapse
|