51
|
Dou Y, Wei Y, Zhang Z, Li C, Song C, Liu Y, Qi K, Li X, Li X, Qiao R, Wang K, Yang F, Han X. Transcriptome-wide analysis of RNA m 6A methylation regulation of muscle development in Queshan Black pigs. BMC Genomics 2023; 24:239. [PMID: 37142996 PMCID: PMC10161540 DOI: 10.1186/s12864-023-09346-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) refers to the methylation modification of N6 position of RNA adenine, a dynamic reversible RNA epigenetic modification that plays an important regulatory role in a variety of life processes. In this study, we used MeRIP-Seq and RNA-Seq of the longissimus dorsi (LD) muscle of adult (QA) and newborn (QN) Queshan Black pigs to screen key genes with m6A modification involved in muscle growth by bioinformatics analysis. RESULTS A total of 23,445 and 25,465 m6A peaks were found in the whole genomes of QA and QN, respectively. Among them, 613 methylation peaks were significantly different (DMPs) and 579 genes were defined as differentially methylated genes (DMGs). Compared with the QN group, there were 1,874 significantly differentially expressed genes (DEGs) in QA group, including 620 up-regulated and 1,254 down-regulated genes. In order to investigate the relationship between m6A and mRNA expression in the muscle of Queshan Black pigs at different periods, a combined analysis of MeRIP-Seq and RNA-Seq showed that 88 genes were significantly different at both levels. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes results showed that DEGs and DMGs were mainly involved in skeletal muscle tissue development, FoxO signaling pathway, MAPK signaling pathway, insulin signaling pathway, PI3K-Akt signaling pathway, and Wnt signaling pathway. Four DEGs (IGF1R, CCND2, MYOD1 and FOS) and four DMGs (CCND2, PHKB, BIN1 and FUT2), which are closely related to skeletal muscle development, were selected as candidate genes for verification, and the results were consistent with the sequencing results, which indicated the reliability of the sequencing results. CONCLUSIONS These results lay the foundation for understanding the specific regulatory mechanisms of growth in Queshan Black pigs, and provide theoretical references for further research on the role of m6A in muscle development and breed optimization selection.
Collapse
Affiliation(s)
- Yaqing Dou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yilin Wei
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhe Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chenlei Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chenglei Song
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yingke Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Kunlong Qi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xinjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
52
|
Zhong Q, Zheng K, Li W, An K, Liu Y, Xiao X, Hai S, Dong B, Li S, An Z, Dai L. Post-translational regulation of muscle growth, muscle aging and sarcopenia. J Cachexia Sarcopenia Muscle 2023. [PMID: 37127279 DOI: 10.1002/jcsm.13241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/07/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023] Open
Abstract
Skeletal muscle makes up 30-40% of the total body mass. It is of great significance in maintaining digestion, inhaling and exhaling, sustaining body posture, exercising, protecting joints and many other aspects. Moreover, muscle is also an important metabolic organ that helps to maintain the balance of sugar and fat. Defective skeletal muscle function not only limits the daily activities of the elderly but also increases the risk of disability, hospitalization and death, placing a huge burden on society and the healthcare system. Sarcopenia is a progressive decline in muscle mass, muscle strength and muscle function with age caused by environmental and genetic factors, such as the abnormal regulation of protein post-translational modifications (PTMs). To date, many studies have shown that numerous PTMs, such as phosphorylation, acetylation, ubiquitination, SUMOylation, glycosylation, glycation, methylation, S-nitrosylation, carbonylation and S-glutathionylation, are involved in the regulation of muscle health and diseases. This article systematically summarizes the post-translational regulation of muscle growth and muscle atrophy and helps to understand the pathophysiology of muscle aging and develop effective strategies for diagnosing, preventing and treating sarcopenia.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kun Zheng
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wanmeng Li
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kang An
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Liu
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xina Xiao
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Hai
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Biao Dong
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangqing Li
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenmei An
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
53
|
A cross-talk between sestrins, chronic inflammation and cellular senescence governs the development of age-associated sarcopenia and obesity. Ageing Res Rev 2023; 86:101852. [PMID: 36642190 DOI: 10.1016/j.arr.2023.101852] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The rapid increase in both the lifespan and proportion of older adults is accompanied by the unprecedented rise in age-associated chronic diseases, including sarcopenia and obesity. Aging is also manifested by increased susceptibility to multiple endogenous and exogenous stresses enabling such chronic conditions to develop. Among the main physiological regulators of cellular adaption to various stress stimuli, such as DNA damage, hypoxia, and oxidative stress, are sestrins (Sesns), a family of three evolutionarily conserved proteins, Sesn1, 2, and 3. Age-associated sarcopenia and obesity are characterized by two key processes: (i) accumulation of senescent cells in the skeletal muscle and adipose tissue and (ii) creation of a systemic, chronic, low-grade inflammation (SCLGI). Presumably, failed SCLGI resolution governs the development of these chronic conditions. Noteworthy, Sesns activate senolytics, which are agents that selectively eliminate senescent cells, as well as specialized pro-resolving mediators, which are factors that physiologically provide inflammation resolution. Sesns reveal clear beneficial effects in pre-clinical models of sarcopenia and obesity. Based on these observations, we propose a novel treatment strategy for age-associated sarcopenia and obesity, complementary to the conventional therapeutic modalities: Sesn activation, SCLGI resolution, and senescent cell elimination.
Collapse
|
54
|
Li H, Wang P, Zhang C, Zuo Y, Zhou Y, Han R. Defective BVES-mediated feedback control of cAMP in muscular dystrophy. Nat Commun 2023; 14:1785. [PMID: 36997581 PMCID: PMC10063672 DOI: 10.1038/s41467-023-37496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/20/2023] [Indexed: 04/01/2023] Open
Abstract
Biological processes incorporate feedback mechanisms to enable positive and/or negative regulation. cAMP is an important second messenger involved in many aspects of muscle biology. However, the feedback mechanisms for the cAMP signaling control in skeletal muscle are largely unknown. Here we show that blood vessel epicardial substance (BVES) is a negative regulator of adenylyl cyclase 9 (ADCY9)-mediated cAMP signaling involved in maintaining muscle mass and function. BVES deletion in mice reduces muscle mass and impairs muscle performance, whereas virally delivered BVES expressed in Bves-deficient skeletal muscle reverses these defects. BVES interacts with and negatively regulates ADCY9's activity. Disruption of BVES-mediated control of cAMP signaling leads to an increased protein kinase A (PKA) signaling cascade, thereby promoting FoxO-mediated ubiquitin proteasome degradation and autophagy initiation. Our study reveals that BVES functions as a negative feedback regulator of ADCY9-cAMP signaling in skeletal muscle, playing an important role in maintaining muscle homeostasis.
Collapse
Affiliation(s)
- Haiwen Li
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Peipei Wang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Chen Zhang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Yuanbojiao Zuo
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Yuan Zhou
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Renzhi Han
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
55
|
AMPK Phosphorylation Impacts Apoptosis in Differentiating Myoblasts Isolated from Atrophied Rat Soleus Muscle. Cells 2023; 12:cells12060920. [PMID: 36980261 PMCID: PMC10047078 DOI: 10.3390/cells12060920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/25/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
Regrowth of atrophied myofibers depends on muscle satellite cells (SCs) that exist outside the plasma membrane. Muscle atrophy appears to result in reduced number of SCs due to apoptosis. Given reduced AMP-activated protein kinase (AMPK) activity during differentiation of primary myoblasts derived from atrophic muscle, we hypothesized that there may be a potential link between AMPK and susceptibility of differentiating myoblasts to apoptosis. The aim of this study was to estimate the effect of AMPK activation (via AICAR treatment) on apoptosis in differentiating myoblasts derived from atrophied rat soleus muscle. Thirty rats were randomly assigned to the following two groups: control (C, n = 10) and 7-day hindlimb suspension (HS, n = 20). Myoblasts derived from the soleus muscles of HS rats were divided into two parts: AICAR-treated cells and non-treated cells. Apoptotic processes were evaluated by using TUNEL assay, RT-PCR and WB. In differentiating myoblasts derived from the atrophied soleus, there was a significant decrease (p < 0.05) in AMPK and ACC phosphorylation in parallel with increased number of apoptotic nuclei and a significant upregulation of pro-apoptotic markers (caspase-3, -9, BAX, p53) compared to the cells derived from control muscles. AICAR treatment of atrophic muscle-derived myoblasts during differentiation prevented reductions in AMPK and ACC phosphorylation as well as maintained the number of apoptotic nuclei and the expression of pro-apoptotic markers at the control levels. Thus, the maintenance of AMPK activity can suppress enhanced apoptosis in differentiating myoblasts derived from atrophied rat soleus muscle.
Collapse
|
56
|
Ahn Y, Lee HS, Lee SH, Joa KL, Lim CY, Ahn YJ, Suh HJ, Park SS, Hong KB. Effects of gypenoside L-containing Gynostemma pentaphyllum extract on fatigue and physical performance: A double-blind, placebo-controlled, randomized trial. Phytother Res 2023. [PMID: 36877124 DOI: 10.1002/ptr.7801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 02/01/2023] [Accepted: 02/22/2023] [Indexed: 03/07/2023]
Abstract
This study was conducted to investigate the effect of Gynostemma pentaphyllum extract containing gypenoside L (GPE) on improving the cognitive aspects of fatigue and performance of the motor system. One hundred healthy Korean adults aged 19-60 years were randomized to the treatment (GPE for 12 weeks) and control groups, and efficacy and safety-related parameters were compared between the two groups. Maximal oxygen consumption (VO2 max) and O2 pulse were significantly higher in the treatment group than in the control group (p = 0.007 and p = 0.047, respectively). After 12 weeks, the treatment group showed significant changes such as decreases in the levels of free fatty acids (p = 0.042). In addition, there were significant differences in the rating of perceived exertion (RPE) (p < 0.05) and value of temporal fatigue between the treatment and control groups on the multidimensional fatigue scale (p < 0.05). Moreover, the level of endothelial nitric oxide synthase (eNOS) in the blood was significantly higher in the treatment group than in the control group (p = 0.047). In summary, oral administration of GPE has a positive effect on resistance to exercise-induced physical and mental fatigue.
Collapse
Affiliation(s)
- Yejin Ahn
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, South Korea
| | - Hee-Seok Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Seok-Hee Lee
- Department of Food Science and Biotechnology, Dongguk University, Goyang, South Korea
| | - Kyung-Lim Joa
- Department of Physical & Rehabilitation Medicine, College of Medicine, Inha University School of Medicine, Incheon, South Korea
| | | | - Yu Jin Ahn
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, South Korea.,BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, South Korea
| | - Sung-Soo Park
- Department of Food Science and Nutrition, Jeju National University, Jeju, South Korea
| | - Ki-Bae Hong
- Department of Food Science and Nutrition, Jeju National University, Jeju, South Korea
| |
Collapse
|
57
|
Mitochondrial Oxidative Stress and Mitophagy Activation Contribute to TNF-Dependent Impairment of Myogenesis. Antioxidants (Basel) 2023; 12:antiox12030602. [PMID: 36978858 PMCID: PMC10044935 DOI: 10.3390/antiox12030602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Many muscular pathologies are associated with oxidative stress and elevated levels of the tumor necrosis factor (TNF) that cause muscle protein catabolism and impair myogenesis. Myogenesis defects caused by TNF are mediated in part by reactive oxygen species (ROS), including those produced by mitochondria (mitoROS), but the mechanism of their pathological action is not fully understood. We hypothesized that mitoROS act by triggering and enhancing mitophagy, an important tool for remodelling the mitochondrial reticulum during myogenesis. We used three recently developed probes—MitoTracker Orange CM-H2TMRos, mito-QC, and MitoCLox—to study myogenesis in human myoblasts. Induction of myogenesis resulted in a significant increase in mitoROS generation and phospholipid peroxidation in the inner mitochondrial membrane, as well as mitophagy enhancement. Treatment of myoblasts with TNF 24 h before induction of myogenesis resulted in a significant decrease in the myoblast fusion index and myosin heavy chain (MYH2) synthesis. TNF increased the levels of mitoROS, phospholipid peroxidation in the inner mitochondrial membrane and mitophagy at an early stage of differentiation. Trolox and SkQ1 antioxidants partially restored TNF-impaired myogenesis. The general autophagy inducers rapamycin and AICAR, which also stimulate mitophagy, completely blocked myogenesis. The autophagy suppression by the ULK1 inhibitor SBI-0206965 partially restored myogenesis impaired by TNF. Thus, suppression of myogenesis by TNF is associated with a mitoROS-dependent increase in general autophagy and mitophagy.
Collapse
|
58
|
Sun CC, Yang D, Chen ZL, Xiao JL, Xiao Q, Li CL, Zhou ZQ, Peng XY, Tang CF, Zheng L. Exercise intervention mitigates zebrafish age-related sarcopenia via alleviating mitochondrial dysfunction. FEBS J 2023; 290:1519-1530. [PMID: 36164851 DOI: 10.1111/febs.16637] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/10/2022] [Accepted: 09/26/2022] [Indexed: 11/27/2022]
Abstract
Sarcopenia is a common disorder that leads to a progressive decrease in skeletal muscle function in elderly people. Exercise effectively prevents or delays the onset and progression of sarcopenia. However, the molecular mechanisms underlying how exercise intervention improves skeletal muscle atrophy remain unclear. In this study, we found that 21-month-old zebrafish had a decreased swimming ability, reduced muscle fibre cross-sectional area, unbalanced protein synthesis, and degradation, increased oxidative stress, and mitochondrial dysfunction, which suggests zebrafish are a valuable model for sarcopenia. Eight weeks of exercise intervention attenuated these pathological changes in sarcopenia zebrafish. Moreover, the effects of exercise on mitochondrial dysfunction were associated with the activation of the AMPK/SIRT1/PGC-1α axis and 15-PGDH downregulation. Our results reveal potential therapeutic targets and indicators to treat age-related sarcopenia using exercise intervention.
Collapse
Affiliation(s)
- Chen-Chen Sun
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Dong Yang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Zhang-Lin Chen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Jiang-Ling Xiao
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Qin Xiao
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
- Institute of Physical Education, Hunan First Normal University, Changsha, China
| | - Cheng-Li Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Zuo-Qiong Zhou
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Xi-Yang Peng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Chang Fa Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| |
Collapse
|
59
|
Monserdà-Vilaró A, Balsalobre-Fernández C, Hoffman JR, Alix-Fages C, Jiménez SL. Effects of Concurrent Resistance and Endurance Training Using Continuous or Intermittent Protocols on Muscle Hypertrophy: Systematic Review With Meta-Analysis. J Strength Cond Res 2023; 37:688-709. [PMID: 36508686 DOI: 10.1519/jsc.0000000000004304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Monserdà-Vilaró, A, Balsalobre-Fernández, C, Hoffman, JR, Alix-Fages, C, and Jiménez, SL. Effects of concurrent resistance and endurance training using continuous or intermittent protocols on muscle hypertrophy: Systematic review with meta-analysis. J Strength Cond Res 37(3): 688-709, 2023-The purpose of this systematic review with meta-analysis was to explore the effects of concurrent resistance and endurance training (CT) incorporating continuous or intermittent endurance training (ET) on whole-muscle and type I and II muscle fiber hypertrophy compared with resistance training (RT) alone. Randomized and nonrandomized studies reporting changes in cross-sectional area at muscle fiber and whole-muscle levels after RT compared with CT were included. Searches for such studies were performed in Web of Science, PubMed, Scopus, SPORTDiscus, and CINAHL electronic databases. The data reported in the included studies were pooled in a random-effects meta-analysis of standardized mean differences (SMDs). Twenty-five studies were included. At the whole-muscle level, there were no significant differences for any comparison (SMD < 0.03). By contrast, RT induced greater type I and type II muscle fiber hypertrophy than CT when high-intensity interval training (HIIT) was incorporated alone (SMD > 0.33) or combined with continuous ET (SMD > 0.27), but not compared with CT incorporating only continuous ET (SMD < 0.16). The subgroup analyses of this systematic review and meta-analysis showed that RT induces greater muscle fiber hypertrophy than CT when HIIT is included. However, no CT affected whole-muscle hypertrophy compared with RT.
Collapse
Affiliation(s)
| | | | - Jay R Hoffman
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel ; and
| | - Carlos Alix-Fages
- Applied Biomechanics and Sport Technology Research Group, Autonomous University of Madrid, Madrid, Spain
| | - Sergio L Jiménez
- Centre for Sport Studies, Universidad Rey Juan Carlos, Fuenlabrada, Madrid, Spain
| |
Collapse
|
60
|
Chatzinikita E, Maridaki M, Palikaras K, Koutsilieris M, Philippou A. The Role of Mitophagy in Skeletal Muscle Damage and Regeneration. Cells 2023; 12:716. [PMID: 36899852 PMCID: PMC10000750 DOI: 10.3390/cells12050716] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Mitochondria are cellular organelles that play an essential role in generating the chemical energy needed for the biochemical reactions in cells. Mitochondrial biogenesis, i.e., de novo mitochondria formation, results in enhanced cellular respiration, metabolic processes, and ATP generation, while autophagic clearance of mitochondria (mitophagy) is required to remove damaged or useless mitochondria. The balance between the opposing processes of mitochondrial biogenesis and mitophagy is highly regulated and crucial for the maintenance of the number and function of mitochondria as well as for the cellular homeostasis and adaptations to metabolic demands and extracellular stimuli. In skeletal muscle, mitochondria are essential for maintaining energy homeostasis, and the mitochondrial network exhibits complex behaviors and undergoes dynamic remodeling in response to various conditions and pathologies characterized by changes in muscle cell structure and metabolism, such as exercise, muscle damage, and myopathies. In particular, the involvement of mitochondrial remodeling in mediating skeletal muscle regeneration following damage has received increased attention, as modifications in mitophagy-related signals arise from exercise, while variations in mitochondrial restructuring pathways can lead to partial regeneration and impaired muscle function. Muscle regeneration (through myogenesis) following exercise-induced damage is characterized by a highly regulated, rapid turnover of poor-functioning mitochondria, permitting the synthesis of better-functioning mitochondria to occur. Nevertheless, essential aspects of mitochondrial remodeling during muscle regeneration remain poorly understood and warrant further characterization. In this review, we focus on the critical role of mitophagy for proper muscle cell regeneration following damage, highlighting the molecular mechanisms of the mitophagy-associated mitochondrial dynamics and network reformation.
Collapse
Affiliation(s)
- Eirini Chatzinikita
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Maria Maridaki
- Faculty of Physical Education and Sport Science, National and Kapodistrian University of Athens, 172 37 Athens, Greece
| | - Konstantinos Palikaras
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Anastassios Philippou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| |
Collapse
|
61
|
Metformin regulates myoblast differentiation through an AMPK-dependent mechanism. PLoS One 2023; 18:e0281718. [PMID: 36763621 PMCID: PMC9916624 DOI: 10.1371/journal.pone.0281718] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
This study aims to investigate how metformin (Met) affects muscle tissue by evaluating the drug effects on proliferating, differentiating, and differentiated C2C12 cells. Moreover, we also investigated the role of 5'-adenosine monophosphate-activated protein kinase (AMPK) in the mechanism of action of Met. C2C12 myoblasts were cultured in growth medium with or without Met (250μM, 1mM and 10mM) for different times. Cell proliferation was evaluated by MTT assay, while cell toxicity was assessed by Trypan Blue exclusion test and Lactate Dehydrogenase release. Fluorescence Activated Cell Sorting analysis was performed to study cell cycle. Differentiating myoblasts were incubated in differentiation medium (DM) with or without 10mM Met. For experiments on myotubes, C2C12 were induced to differentiate in DM, and then treated with Met at scalar concentrations and for different times. Western blotting was performed to evaluate the expression of proteins involved in myoblast differentiation, muscle function and metabolism. In differentiating C2C12, Met inhibited cell differentiation, arrested cell cycle progression in G2/M phase and reduced the expression of cyclin-dependent kinase inhibitor 1. These effects were accompanied by activation of AMPK and modulation of the myogenic regulatory factors. Comparable results were obtained in myotubes. The use of Compound C, a specific inhibitor of AMPK, counteracted the above-mentioned Met effects. We reported that Met inhibits C2C12 differentiation probably by blocking cell-cycle progression and preventing cells permanent exit from cell-cycle. Moreover, our study provides solid evidence that most of the effects of Met on myoblasts and myotubes are mediated by AMPK.
Collapse
|
62
|
Dombrecht D, Van Daele U, Van Asbroeck B, Schieffelers D, Guns PJ, Gebruers N, Meirte J, van Breda E. Molecular mechanisms of post-burn muscle wasting and the therapeutic potential of physical exercise. J Cachexia Sarcopenia Muscle 2023; 14:758-770. [PMID: 36760077 PMCID: PMC10067483 DOI: 10.1002/jcsm.13188] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
After a severe burn injury, a systemic stress response activates metabolic and inflammatory derangements that, among other, leads to muscle mass loss (muscle wasting). These negative effects on skeletal muscle continue for several months or years and are aggravated by short-term and long-term disuse. The dynamic balance between muscle protein synthesis and muscle protein breakdown (proteolysis) is regulated by complex signalling pathways that leads to an overall negative protein balance in skeletal muscle after a burn injury. Research concerning these molecular mechanisms is still scarce and inconclusive, understanding of which, if any, molecular mechanisms contribute to muscle wasting is of fundamental importance in designing of therapeutic interventions for burn patients as well. This review not only summarizes our present knowledge of the molecular mechanisms that underpin muscle protein balance but also summarizes the effects of exercise on muscle wasting post-burn as promising strategy to counteract the detrimental effects on skeletal muscle. Future research focusing on the pathways causing post-burn muscle wasting and the different effects of exercise on them is needed to confirm this hypothesis and to lay the foundation of therapeutic strategies.
Collapse
Affiliation(s)
- Dorien Dombrecht
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium
| | - Ulrike Van Daele
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium.,Oscare, Organisation for Burns, Scar After-Care and Research, Antwerp, Belgium
| | - Birgit Van Asbroeck
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium
| | - David Schieffelers
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Nick Gebruers
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium.,Multidisciplinary Edema Clinic, Antwerp University Hospital, Edegem, Belgium
| | - Jill Meirte
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium.,Oscare, Organisation for Burns, Scar After-Care and Research, Antwerp, Belgium
| | - Eric van Breda
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
63
|
Liu X, Zhao L, Gao Y, Chen Y, Tian Q, Son JS, Chae SA, de Avila JM, Zhu MJ, Du M. AMP-activated protein kinase inhibition in fibro-adipogenic progenitors impairs muscle regeneration and increases fibrosis. J Cachexia Sarcopenia Muscle 2023; 14:479-492. [PMID: 36513394 PMCID: PMC9891933 DOI: 10.1002/jcsm.13150] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/06/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Following muscle injury, fibro-adipogenic progenitors (FAPs) are rapidly activated and undergo apoptosis at the resolution stage, which is required for proper muscle regeneration. When excessive FAPs remain, it contributes to fibrotic and fatty infiltration, impairing muscle recovery. Mechanisms controlling FAP apoptosis remain poorly defined. We hypothesized that AMP-activated protein kinase (AMPK) in FAPs mediates their apoptosis during the muscle regeneration. METHODS To test, AMPKα1fl/fl PDGFRαCre mice were used to knock out AMPKα1 in FAPs. Following AMPKα1 knockout, the mice were injected with phosphate-buffered saline or glycerol to induce muscle injury. Tibialis anterior muscle and FAPs were collected at 3, 7 and 14 days post-injury (dpi) for further analysis. RESULTS We found that AMPKα1 deletion in FAPs enhanced p65 translocation to the nuclei by 110% (n = 3; P < 0.01). AMPKα1 knockout group had a higher gene expression of MMP-9 (matrix metalloproteinase-9) by 470% (n = 3; P < 0.05) and protein level by 39% (n = 3; P < 0.05). Loss of AMPKα1 up-regulated the active TGF-β1 (transforming growth factor-β1) levels by 21% (n = 3; P < 0.05). TGF-β promoted apoptotic resistance, because AMPKα1-deficient group had 36% lower cleaved Caspase 3 (cCAS3) content (n = 3; P < 0.05). Fibrotic differentiation of FAPs was promoted, with increased collagen protein level by 54% (n = 3; P < 0.05). Moreover, obesity decreased phosphorylation of AMPK by 54% (n = 3; P < 0.05), which decreased cCAS3 in FAPs by 44% (n = 3; P < 0.05) and elevated collagen accumulation (52%; n = 3; P < 0.05) during muscle regeneration. CONCLUSIONS These data suggest that AMPK is a key mediator of FAPs apoptosis, and its inhibition due to obesity results in fibrosis of regenerated muscle.
Collapse
Affiliation(s)
- Xiangdong Liu
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Liang Zhao
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA.,College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Yao Gao
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Yanting Chen
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA.,College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Qiyu Tian
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Jun Seok Son
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Song Ah Chae
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Jeanene Marie de Avila
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Min Du
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
64
|
Su LY, Huang WC, Kan NW, Tung TH, Huynh LBP, Huang SY. Effects of Resveratrol on Muscle Inflammation, Energy Utilisation, and Exercise Performance in an Eccentric Contraction Exercise Mouse Model. Nutrients 2023; 15:249. [PMID: 36615906 PMCID: PMC9824440 DOI: 10.3390/nu15010249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Eccentric contraction can easily cause muscle damage and an inflammatory response, which reduces the efficiency of muscle contraction. Resveratrol causes anti-inflammatory effects in muscles, accelerates muscle repair, and promotes exercise performance after contusion recovery. However, whether resveratrol provides the same benefits for sports injuries caused by eccentric contraction is unknown. Thus, we explored the effects of resveratrol on inflammation and energy metabolism. In this study, mice were divided into four groups: a control group, an exercise group (EX), an exercise with low-dose resveratrol group (EX + RES25), and an exercise with high-dose resveratrol group (EX + RES150). The results of an exhaustion test showed that the time before exhaustion of the EX + RES150 group was greater than that of the EX group. Tumour necrosis factor-α (Tnfα) mRNA expression was lower in the EX + RES150 group than in the EX group. The energy utilisation of the EX + RES150 group was greater than that of the EX + RES25 group in different muscles. High-dose resveratrol intervention decreased Tnfα mRNA expression and enhanced the mRNA expressions of sirtuin 1, glucose transporter 4, AMP-activated protein kinase α1, and AMP-activated protein kinase α2 in muscles. These results revealed that high-dose resveratrol supplementation can reduce inflammation and oxidation and improve energy utilisation during short-duration high-intensity exercise.
Collapse
Affiliation(s)
- Liang-Yu Su
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan
| | - Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 112303, Taiwan
| | - Nai-Wen Kan
- Office of Physical Education Affairs, Taipei Medical University Hospital, Taipei 110301, Taiwan
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan
| | - Te-Hsuan Tung
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan
| | - Linh Ba Phuong Huynh
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan
- Department of Public Health, Nutrition and Food Safety, Lien Chieu Hospital, Danang 551000, Vietnam
| | - Shih-Yi Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
65
|
Yakabe M, Hosoi T, Sasakawa H, Akishita M, Ogawa S. Kampo formula hochu-ekki-to (Bu-Zhong-Yi-Qi-Tang, TJ-41) ameliorates muscle atrophy by modulating atrogenes and AMPK in vivo and in vitro. BMC Complement Med Ther 2022; 22:341. [PMID: 36578084 PMCID: PMC9795672 DOI: 10.1186/s12906-022-03812-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 11/28/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Muscle disuse results in loss of skeletal muscle mass and function. Hochu-ekki-to (TJ-41; Bu-Zhong-Yi-Qi-Tang in Chinese) is an herbal medicinal formulation used to treat patients with frailty, fatigue and appetite loss. It has been suggested that two atrogenes, atrogin-1 and muscle Ring finger 1 (MuRF1), are ubiquitin ligases involved in disuse-induced muscle atrophy and that 5' adenosine monophosphate-activated protein kinase (AMPK) is involved in skeletal muscle metabolism. Effects of TJ-41 on disuse-induced muscle atrophy are unclear. METHODS We subjected differentiated C2C12 myotubes to serum starvation, then examined the effects of TJ-41 on atrogenes expression, AMPK activity and the morphology of the myotubes. Male C57BL/6J mice were subjected to tail-suspension to induce hindlimb atrophy. We administered TJ-41 by gavage to the control group and the tail-suspended group, then examined the effects of TJ-41 on atrogene expression, AMPK activity, and the muscle weight. RESULTS Serum starvation induced the expression of atrogin-1 and MuRF1 in C2C12 myotubes, and TJ-41 significantly downregulated the expression of atrogin-1. Tail-suspension of the mice induced the expression of atrogin-1 and MuRF1 in skeletal muscle as well as its muscle atrophy, whereas TJ-41 treatment significantly downregulated the expression of atrogin-1 and ameliorated the loss of the muscle weight. In addition, TJ-41 also activated AMPK and inactivated Akt and mTOR in skeletal muscle in vivo. CONCLUSION TJ-41 inhibited atrogenes in an Akt-independent manner as well as activating AMPK in skeletal muscles in vivo, further implying the therapeutic potential of TJ-41 against disuse-induced muscle atrophy and other atrogenes-dependent atrophic conditions.
Collapse
Affiliation(s)
- Mitsutaka Yakabe
- grid.26999.3d0000 0001 2151 536XDepartment of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7- 3-1, Hongo, Bunkyo-ku, 113-8655 Tokyo, Japan
| | - Tatsuya Hosoi
- grid.26999.3d0000 0001 2151 536XDepartment of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7- 3-1, Hongo, Bunkyo-ku, 113-8655 Tokyo, Japan
| | - Hiroko Sasakawa
- grid.26999.3d0000 0001 2151 536XDepartment of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7- 3-1, Hongo, Bunkyo-ku, 113-8655 Tokyo, Japan
| | - Masahiro Akishita
- grid.26999.3d0000 0001 2151 536XDepartment of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7- 3-1, Hongo, Bunkyo-ku, 113-8655 Tokyo, Japan
| | - Sumito Ogawa
- grid.26999.3d0000 0001 2151 536XDepartment of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7- 3-1, Hongo, Bunkyo-ku, 113-8655 Tokyo, Japan
| |
Collapse
|
66
|
Alcohol, Resistance Exercise, and mTOR Pathway Signaling: An Evidence-Based Narrative Review. Biomolecules 2022; 13:biom13010002. [PMID: 36671386 PMCID: PMC9855961 DOI: 10.3390/biom13010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle mass is determined by the balance between muscle protein synthesis (MPS) and degradation. Several intracellular signaling pathways control this balance, including mammalian/mechanistic target of rapamycin (mTOR) complex 1 (C1). Activation of this pathway in skeletal muscle is controlled, in part, by nutrition (e.g., amino acids and alcohol) and exercise (e.g., resistance exercise (RE)). Acute and chronic alcohol use can result in myopathy, and evidence points to altered mTORC1 signaling as a contributing factor. Moreover, individuals who regularly perform RE or vigorous aerobic exercise are more likely to use alcohol frequently and in larger quantities. Therefore, alcohol may antagonize beneficial exercise-induced increases in mTORC1 pathway signaling. The purpose of this review is to synthesize up-to-date evidence regarding mTORC1 pathway signaling and the independent and combined effects of acute alcohol and RE on activation of the mTORC1 pathway. Overall, acute alcohol impairs and RE activates mTORC1 pathway signaling; however, effects vary by model, sex, feeding, training status, quantity, etc., such that anabolic stimuli may partially rescue the alcohol-mediated pathway inhibition. Likewise, the impact of alcohol on RE-induced mTORC1 pathway signaling appears dependent on several factors including nutrition and sex, although many questions remain unanswered. Accordingly, we identify gaps in the literature that remain to be elucidated to fully understand the independent and combined impacts of alcohol and RE on mTORC1 pathway signaling.
Collapse
|
67
|
Zha W, Sun Y, Gong W, Li L, Kim W, Li H. Ginseng and ginsenosides: Therapeutic potential for sarcopenia. Biomed Pharmacother 2022; 156:113876. [DOI: 10.1016/j.biopha.2022.113876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/02/2022] Open
|
68
|
Lyu P, Jiang H. RNA-Sequencing Reveals Upregulation and a Beneficial Role of Autophagy in Myoblast Differentiation and Fusion. Cells 2022; 11:cells11223549. [PMID: 36428978 PMCID: PMC9688917 DOI: 10.3390/cells11223549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Myoblast differentiation is a complex process whereby the mononuclear muscle precursor cells myoblasts express skeletal-muscle-specific genes and fuse with each other to form multinucleated myotubes. The objective of this study was to identify potentially novel mechanisms that mediate myoblast differentiation. We first compared transcriptomes in C2C12 myoblasts before and 6 days after induction of myogenic differentiation by RNA-seq. This analysis identified 11,046 differentially expressed genes, of which 5615 and 5431 genes were upregulated and downregulated, respectively, from before differentiation to differentiation. Functional enrichment analyses revealed that the upregulated genes were associated with skeletal muscle contraction, autophagy, and sarcomeres while the downregulated genes were associated with ribonucleoprotein complex biogenesis, mRNA processing, ribosomes, and other biological processes or cellular components. Western blot analyses showed an increased conversion of LC3-I to LC3-II protein during myoblast differentiation, further demonstrating the upregulation of autophagy during myoblast differentiation. Blocking the autophagic flux in C2C12 cells with chloroquine inhibited the expression of skeletal-muscle-specific genes and the formation of myotubes, confirming a positive role for autophagy in myoblast differentiation and fusion.
Collapse
|
69
|
Neuregulin-1/ErbB4 upregulates acetylcholine receptors via Akt/mTOR/p70S6K: a study in a rat model of obstetric brachial plexus palsy and in vitro. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1648-1657. [PMID: 36331297 PMCID: PMC9828288 DOI: 10.3724/abbs.2022158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In obstetric brachial plexus palsy (OBPP), the operative time window for nerve reconstruction of the intrinsic muscles of the hand (IMH) is much shorter than that of biceps. The reason is that the atrophy of IMH becomes irreversible more quickly than that of biceps. A previous study confirmed that the motor endplates of denervated intrinsic muscles of the forepaw (IMF) were destabilized, while those of denervated biceps remained intact. However, the specific molecular mechanism of regulating the self-repair of motor endplates is still unknown. In this study, we use a rat model of OBPP with right C5-C6 rupture plus C7-C8-T1 avulsion and left side as a control. Bilateral IMF and biceps are harvested at 5 weeks postinjury to assess relative protein and mRNA expression. We also use L6 skeletal myoblasts to verify the effects of signaling pathways regulating acetylcholine receptor (AChR) protein synthesis in vitro. The results show that in the OBPP rat model, the protein and mRNA expression levels of NRG-1/ErbB4 and phosphorylation of Akt/mTOR/p70S6K are lower in denervated IMF than in denervated biceps. In L6 myoblasts stimulated with NRG-1, overexpression and knockdown of ErbB4 lead to upregulation and downregulation of AChR subunit protein synthesis and Akt/mTOR/p70S6K phosphorylation, respectively. Inhibition of mTOR abolishes protein synthesis of AChR subunits elevated by NRG-1/ErbB4. Our findings suggest that in the OBPP rat model, lower expression of AChR subunits in the motor endplates of denervated IMF is associated with downregulation of NRG-1/ErbB4 and phosphorylation of Akt/mTOR/p70S6K. NRG-1/ErbB4 can promote protein synthesis of the AChR subunits in L6 myoblasts via phosphorylation of Akt/mTOR/p70S6K.
Collapse
|
70
|
Yan Y, Li M, Lin J, Ji Y, Wang K, Yan D, Shen Y, Wang W, Huang Z, Jiang H, Sun H, Qi L. Adenosine monophosphate activated protein kinase contributes to skeletal muscle health through the control of mitochondrial function. Front Pharmacol 2022; 13:947387. [PMID: 36339617 PMCID: PMC9632297 DOI: 10.3389/fphar.2022.947387] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/06/2022] [Indexed: 11/26/2022] Open
Abstract
Skeletal muscle is one of the largest organs in the body and the largest protein repository. Mitochondria are the main energy-producing organelles in cells and play an important role in skeletal muscle health and function. They participate in several biological processes related to skeletal muscle metabolism, growth, and regeneration. Adenosine monophosphate-activated protein kinase (AMPK) is a metabolic sensor and regulator of systemic energy balance. AMPK is involved in the control of energy metabolism by regulating many downstream targets. In this review, we propose that AMPK directly controls several facets of mitochondrial function, which in turn controls skeletal muscle metabolism and health. This review is divided into four parts. First, we summarize the properties of AMPK signal transduction and its upstream activators. Second, we discuss the role of mitochondria in myogenesis, muscle atrophy, regeneration post-injury of skeletal muscle cells. Third, we elaborate the effects of AMPK on mitochondrial biogenesis, fusion, fission and mitochondrial autophagy, and discuss how AMPK regulates the metabolism of skeletal muscle by regulating mitochondrial function. Finally, we discuss the effects of AMPK activators on muscle disease status. This review thus represents a foundation for understanding this biological process of mitochondrial dynamics regulated by AMPK in the metabolism of skeletal muscle. A better understanding of the role of AMPK on mitochondrial dynamic is essential to improve mitochondrial function, and hence promote skeletal muscle health and function.
Collapse
Affiliation(s)
- Yan Yan
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Ming Li
- Department of Laboratory Medicine, Binhai County People’s Hospital Affiliated to Kangda College of Nanjing Medical University, Yancheng, China
| | - Jie Lin
- Department of Infectious Disease, Affiliated Hospital of Nantong University, Nantong, China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Dajun Yan
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Wei Wang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Zhongwei Huang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Haiyan Jiang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Haiyan Jiang, ; Hualin Sun, ; Lei Qi,
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- *Correspondence: Haiyan Jiang, ; Hualin Sun, ; Lei Qi,
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Haiyan Jiang, ; Hualin Sun, ; Lei Qi,
| |
Collapse
|
71
|
Huang Y, Gong Y, Liu Y, Lu J. Global trends and hot topics in electrical stimulation of skeletal muscle research over the past decade: A bibliometric analysis. Front Neurol 2022; 13:991099. [PMID: 36277916 PMCID: PMC9581161 DOI: 10.3389/fneur.2022.991099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
Background Over the past decade, numerous advances have been made in the research on electrical stimulation of skeletal muscle. However, the developing status and future direction of this field remain unclear. This study aims to visualize the evolution and summarize global research hot topics and trends based on quantitative and qualitative evidence from bibliometrics. Methods Literature search was based on the Web of Science Core Collection (WoSCC) database from 2011 to 2021. CiteSpace and VOSviewer, typical bibliometric tools, were used to perform analysis and visualization. Results A total of 3,059 documents were identified. The number of literature is on the rise in general. Worldwide, researchers come primarily from North America and Europe, represented by the USA, France, Switzerland, and Canada. The Udice French Research Universities is the most published affiliation. Millet GY and Maffiuletti NA are the most prolific and the most co-cited authors, respectively. Plos One is the most popular journal, and the Journal of Applied Physiology is the top co-cited journal. The main keywords are muscle fatigue, neuromuscular electrical stimulation, spinal cord injury, tissue engineering, and atrophy. Moreover, this study systematically described the hotspots in this field. Conclusion As the first bibliometric analysis of electrical stimulation of skeletal muscle research over the past decade, this study can help scholars recognize hot topics and trends and provide a reference for further exploration in this field.
Collapse
|
72
|
Malila Y, Thanatsang KV, Sanpinit P, Arayamethakorn S, Soglia F, Zappaterra M, Bordini M, Sirri F, Rungrassamee W, Davoli R, Petracci M. Differential expression patterns of genes associated with metabolisms, muscle growth and repair in Pectoralis major muscles of fast- and medium-growing chickens. PLoS One 2022; 17:e0275160. [PMID: 36190974 PMCID: PMC9529130 DOI: 10.1371/journal.pone.0275160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to investigate the expression of genes related to muscle growth, hypoxia and oxidative stress responses, a multi-substrate serine/threonine-protein kinase (AMPK) and AMPK-related kinases, carbohydrate metabolism, satellite cells activities and fibro- adipogenic progenitors (FAPs) in fast-growing (FG) (n = 30) and medium-growing (MG) chickens (n = 30). Pectoralis major muscles were collected at 7d, 14d, 21d, 28d, 35d and 42d of age. According to their macroscopic features, the samples from FG up to 21d of age were classified as unaffected, while all samples collected at an older age exhibited macroscopic features ascribable to white striping and/or wooden breast abnormalities. In contrast, MG samples did not show any feature associated to muscle disorders. The absolute transcript abundance of 33 target genes was examined by droplet digital polymerase chain reaction. The results showed differential gene expression profiles between FG and MG chickens at different ages. While most genes remained unchanged in MG chickens, the expression patterns of several genes in FG were significantly affected by age. Genes encoding alpha 1, alpha 2, beta 2 and gamma 3 isoforms of AMPK, as well as AMPK-related kinases, were identified as differentially expressed between the two strains. The results support the hypothesis of oxidative stress-induced muscle damage with metabolic alterations in FG chickens. An increased expression of ANXA2, DES, LITAF, MMP14, MYF5 and TGFB1 was observed in FG strain. The results suggest the occurrence of dysregulation of FAP proliferation and differentiation occurring during muscle repair. FAPs could play an important role in defining the proliferation of connective tissue (fibrosis) and deposition of intermuscular adipose tissue which represents distinctive traits of muscle abnormalities. Overall, these findings demonstrate that dysregulated molecular processes associated with myopathic lesions in chickens are strongly influenced by growth rate, and, to some extent, by age.
Collapse
Affiliation(s)
- Yuwares Malila
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
- * E-mail:
| | | | - Pornnicha Sanpinit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | - Sopacha Arayamethakorn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | - Francesca Soglia
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, Cesena (FC), Italy
| | - Martina Zappaterra
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, Bologna (BO), Italy
| | - Martina Bordini
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, Bologna (BO), Italy
| | - Federico Sirri
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, Cesena (FC), Italy
| | - Wanilada Rungrassamee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | - Roberta Davoli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, Bologna (BO), Italy
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, Cesena (FC), Italy
| |
Collapse
|
73
|
Jaitovich A. Impaired regenerative capacity contributes to skeletal muscle dysfunction in chronic obstructive pulmonary disease. Am J Physiol Cell Physiol 2022; 323:C974-C989. [PMID: 35993519 PMCID: PMC9484993 DOI: 10.1152/ajpcell.00292.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 01/18/2023]
Abstract
Locomotor skeletal muscle dysfunction is a relevant comorbidity of chronic obstructive pulmonary disease (COPD) and is strongly associated with worse clinical outcomes including higher mortality. Over the last decades, a large body of literature helped characterize the process, defining the disruptive muscle phenotype caused by COPD that involves reduction in muscle mass, force-generation capacity, fatigue-tolerance, and regenerative potential following injury. A major limitation in the field has been the scarcity of well-calibrated animal models to conduct mechanistic research based on loss- and gain-of-function studies. This article provides an overall description of the process, the tools available to mechanistically investigate it, and the potential role of mitochondrially driven metabolic signals on the regulation muscle regeneration after injury in COPD. Finally, a description of future avenues to further expand on the area is proposed based on very recent evidence involving mitochondrial metabolic cues affecting myogenesis.
Collapse
Affiliation(s)
- Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| |
Collapse
|
74
|
Molecular Characterization of LKB1 of Triploid Crucian Carp and Its Regulation on Muscle Growth and Quality. Animals (Basel) 2022; 12:ani12182474. [PMID: 36139343 PMCID: PMC9494999 DOI: 10.3390/ani12182474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Liver Kinase B1 (LKB1) is a serine/threonine kinase that can regulate energy metabolism and skeletal muscle growth. In the present study, LKB1 cDNA of triploid crucian carp (Carassius auratus) was cloned. The cDNA contains a complete open reading frame (ORF), with a length of 1326 bp, encoding 442 amino acids. Phylogenetic tree analysis showed that the LKB1 amino acid sequence of the triploid crucian carp had a high sequence similarity and identity with carp (Cyprinus carpio). Tissue expression analysis revealed that LKB1 was widely expressed in various tissues. LKB1 expressions in the brain were highest, followed by kidney and muscle. In the short-term LKB1 activator and inhibitor injection experiment, when LKB1 was activated for 72 h, expressions of myogenic differentiation (MyoD), muscle regulatory factor (MRF4), myogenic factor (MyoG) and myostatin 1 (MSTN1) were markedly elevated and the content of inosine monophosphate (IMP) in muscle was significantly increased. When LKB1 was inhibited for 72 h, expressions of MyoD, MyoG, MRF4 and MSTN1 were markedly decreased. The long-term injection experiment of the LKB1 activator revealed that, when LKB1 was activated for 15 days, its muscle fibers were significantly larger and tighter than the control group. In texture profile analysis, it showed smaller hardness and adhesion, greater elasticity and chewiness. Contrastingly, when LKB1 was inhibited for 9 days, its muscle fibers were significantly smaller, while the gap between muscle fibers was significantly larger. Texture profile analysis showed that adhesion was significantly higher than the control group. A feeding trial on triploid crucian carp showed that with dietary lysine-glutamate dipeptide concentration increasing, the expression of the LKB1 gene gradually increased and was highest when dipeptide concentration was 1.6%. These findings may provide new insights into the effects of LKB1 on fish skeletal muscle growth and muscle quality, and will provide a potential application value in improvement of aquaculture feed formula.
Collapse
|
75
|
Sirtuin 6 inhibition protects against glucocorticoid-induced skeletal muscle atrophy by regulating IGF/PI3K/AKT signaling. Nat Commun 2022; 13:5415. [PMID: 36109503 PMCID: PMC9478160 DOI: 10.1038/s41467-022-32905-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/24/2022] [Indexed: 01/05/2023] Open
Abstract
Chronic activation of stress hormones such as glucocorticoids leads to skeletal muscle wasting in mammals. However, the molecular events that mediate glucocorticoid-induced muscle wasting are not well understood. Here, we show that SIRT6, a chromatin-associated deacetylase indirectly regulates glucocorticoid-induced muscle wasting by modulating IGF/PI3K/AKT signaling. Our results show that SIRT6 levels are increased during glucocorticoid-induced reduction of myotube size and during skeletal muscle atrophy in mice. Notably, overexpression of SIRT6 spontaneously decreases the size of primary myotubes in a cell-autonomous manner. On the other hand, SIRT6 depletion increases the diameter of myotubes and protects them against glucocorticoid-induced reduction in myotube size, which is associated with enhanced protein synthesis and repression of atrogenes. In line with this, we find that muscle-specific SIRT6 deficient mice are resistant to glucocorticoid-induced muscle wasting. Mechanistically, we find that SIRT6 deficiency hyperactivates IGF/PI3K/AKT signaling through c-Jun transcription factor-mediated increase in IGF2 expression. The increased activation, in turn, leads to nuclear exclusion and transcriptional repression of the FoxO transcription factor, a key activator of muscle atrophy. Further, we find that pharmacological inhibition of SIRT6 protects against glucocorticoid-induced muscle wasting in mice by regulating IGF/PI3K/AKT signaling implicating the role of SIRT6 in glucocorticoid-induced muscle atrophy.
Collapse
|
76
|
Lee JA, Lee SH, Shin MR, Park HJ, Roh SS. Gardeniae Fructus Extract Alleviates Dexamethasone-Induced Muscle Atrophy in Mice. J Med Food 2022; 25:882-891. [PMID: 36084316 DOI: 10.1089/jmf.2022.k.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Muscle atrophy (MA) is a case in which protein degeneration occurs excessively due to an imbalance between protein synthesis and breakdown, and is characterized by decreased muscle mass and weakened muscle strength. Despite mounting concern about MA, the number of patients with MA is increasing every year. The aim of the present study was to assess the impact of Gardeniae Fructus (GF) hot water extract on dexamethasone (DEX)-induced MA in mice. C57BL/6N mice were grouped (n = 8) as follows: Normal mice (Normal), MA mice were treated with distilled water (Control), MA mice were treated with GF 100 mg/kg (GF100), MA mice were treated with GF 200 mg/kg (GF200). For 10 days, DEX (25 mg/kg body weight, i.p.) injection was used to induce MA, and GF was administered. GF treatment restored the muscle weight decreased due to MA, and in particular, the weights of EDL+TA and Sol were significantly increased in the GF200 group. Also, it was confirmed that the swimming time was improved in the GF200 group. In addition, the expression of NADPH oxidase related to oxidative stress was significantly reduced, and protective (insulin-like growth factor I/phosphoinositide 3-kinase/protein kinase B pathway) and catabolic (AMP-activated kinase [AMPK]/sirtuin 1 [SIRT1]/proliferator-activated receptor-gamma coactivator-1α (PGC-1α)-forkhead box O (FOXO) pathway) pathways were significantly modulated. These results demonstrate that GF regulates muscle protein synthesis and catabolic pathways, and in particular, it is judged to improve MA by regulating the proteolytic AMPK/SIRT1/PGC-1α-FOXO pathway.
Collapse
Affiliation(s)
- Jin A Lee
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu, Korea
| | - Se Hui Lee
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu, Korea
| | - Mi-Rae Shin
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu, Korea
| | - Hae-Jin Park
- DHU Bio Convergence Testing Center, Gyeongsan, Korea
| | - Seong-Soo Roh
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu, Korea
| |
Collapse
|
77
|
Salucci S, Bartoletti-Stella A, Bavelloni A, Aramini B, Blalock WL, Fabbri F, Vannini I, Sambri V, Stella F, Faenza I. Extra Virgin Olive Oil (EVOO), a Mediterranean Diet Component, in the Management of Muscle Mass and Function Preservation. Nutrients 2022; 14:nu14173567. [PMID: 36079827 PMCID: PMC9459997 DOI: 10.3390/nu14173567] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 12/25/2022] Open
Abstract
Aging results in a progressive decline in skeletal muscle mass, strength and function, a condition known as sarcopenia. This pathological condition is due to multifactorial processes including physical inactivity, inflammation, oxidative stress, hormonal changes, and nutritional intake. Physical therapy remains the standard approach to treat sarcopenia, although some interventions based on dietary supplementation are in clinical development. In this context, thanks to its known anti-inflammatory and antioxidative properties, there is great interest in using extra virgin olive oil (EVOO) supplementation to promote muscle mass and health in sarcopenic patients. To date, the molecular mechanisms responsible for the pathological changes associated with sarcopenia remain undefined; however, a complete understanding of the signaling pathways that regulate skeletal muscle protein synthesis and their behavior during sarcopenia appears vital for defining how EVOO might attenuate muscle wasting during aging. This review highlights the main molecular players that control skeletal muscle mass, with particular regard to sarcopenia, and discusses, based on the more recent findings, the potential of EVOO in delaying/preventing loss of muscle mass and function, with the aim of stimulating further research to assess dietary supplementation with EVOO as an approach to prevent or delay sarcopenia in aging individuals.
Collapse
Affiliation(s)
- Sara Salucci
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
- Correspondence:
| | - Anna Bartoletti-Stella
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine-DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, 47121 Forlì, Italy
| | - William L. Blalock
- “Luigi Luca Cavalli-Sforza” Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Ivan Vannini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Vittorio Sambri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
- Unit of Microbiology, Greater Romagna Hub Laboratory, 47522 Pievesestina, Italy
| | - Franco Stella
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine-DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, 47121 Forlì, Italy
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
78
|
Feng H, Qi Y, Wang X, Chen F, Li X. Treadmill Exercise Decreases Inflammation Via Modulating IL-6 Expression in the Rat Model of Middle Cerebral Artery Occlusion. Neurocrit Care 2022; 38:279-287. [PMID: 35982267 DOI: 10.1007/s12028-022-01575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Long-term bed rest in neurointensive care (NIC) patients leads to skeletal muscle atrophy and cognitive dysfunction, which seriously affects the physical fitness and final prognosis of critically ill patients. Exercise therapy plays an increasingly important role in the treatment and rehabilitation of patients with sarcopenia. However, the therapeutic effect and mechanism of exercise therapy for patients with neurological impairment remain unclear. METHODS Serum samples of NIC patients before and after exercise therapy and normal people were collected to detect interleukin-6 (IL-6) and interleukin-1β levels by enzyme-linked immunosorbent assay (ELISA). Middle cerebral artery occlusion (MCAO) was used for the construction of a rat model. The Morris water maze test, exploration test, and open-field test were used to assess neurological function in rats. Western blot and quantitative real-time polymerase chain reaction were performed to evaluate the activation of IL-6/adenosine-monophosphate-activated protein kinase (AMPK) signaling. RESULTS Exercise therapy attenuated IL-6 expression in NIC patients. Exercise therapy alleviated cognitive dysfunctions and decreased IL-6 expression in MCAO rats. Exercise therapy alleviated gastrocnemius muscle injury in rats after MCAO by modulating IL-6/AMPK signaling. CONCLUSIONS Treadmill exercise decreases inflammation in MCAO rats via modulating IL-6/AMPK signaling.
Collapse
Affiliation(s)
- Hui Feng
- Department of Rehabilitation, The Affiliated Jiangning Hospital of Nanjing Medical University, No. 169 Hushan Road, Dongshan Street, Jiangning District, Nanjing, 210000, Jiangsu, China.
| | - Yinliang Qi
- Department of Hyperbaric Oxygen, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China
| | - Xinlong Wang
- Department of Rehabilitation, The Affiliated Jiangning Hospital of Nanjing Medical University, No. 169 Hushan Road, Dongshan Street, Jiangning District, Nanjing, 210000, Jiangsu, China
| | - Fangyu Chen
- Department of Rehabilitation, The Affiliated Jiangning Hospital of Nanjing Medical University, No. 169 Hushan Road, Dongshan Street, Jiangning District, Nanjing, 210000, Jiangsu, China
| | - Xueping Li
- Department of Rehabilitation, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, 210000, Jiangsu, China
| |
Collapse
|
79
|
Ho JH, Baskaran R, Wang MF, Mohammedsaleh ZM, Yang HS, Balasubramanian B, Lin WT. Dipeptide IF and Exercise Training Attenuate Hypertension in SHR Rats by Inhibiting Fibrosis and Hypertrophy and Activating AMPKα1, SIRT1, and PGC1α. Int J Mol Sci 2022; 23:ijms23158167. [PMID: 35897743 PMCID: PMC9330102 DOI: 10.3390/ijms23158167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023] Open
Abstract
Bioactive peptides are physiologically active peptides produced from proteins by gastrointestinal digestion, fermentation, or hydrolysis by proteolytic enzymes. Bioactive peptides are resorbed in their whole form and have a preventive effect against various disease conditions, including hypertension, dyslipidemia, inflammation, and oxidative stress. In recent years, there has been a growing body of evidence showing that physiologically active peptides may have a function in sports nutrition. The present study aimed to evaluate the synergistic effect of dipeptide (IF) from alcalase potato protein hydrolysates and exercise training in hypertensive (SHR) rats. Animals were divided into five groups. Bioactive peptide IF and swimming exercise training normalized the blood pressure and decreased the heart weight. Cardiac, hepatic, and renal functional markers also normalized in SHR rats. The combined administration of IF peptide and exercise offer better protection in SHR rats by downregulating proteins associated with myocardial fibrosis, hypertrophy, and inflammation. Remarkably, peptide treatment alongside exercise activates the PI3K/AKT cell survival pathway in the myocardial tissue of SHR animals. Further, the mitochondrial biogenesis pathway (AMPKα1, SIRT1, and PGC1α) was synergistically activated by the combinatorial treatment of IF and exercise. Exercise training along with IF administration could be a possible approach to alleviating hypertension.
Collapse
Affiliation(s)
- Jou-Hsuan Ho
- Department of Food Science, Tunghai University, Taichung 407224, Taiwan; (J.-H.H.); (H.-S.Y.)
| | - Rathinasamy Baskaran
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413305, Taiwan;
| | - Ming-Fu Wang
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan;
| | - Zuhair M. Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Hong-Siang Yang
- Department of Food Science, Tunghai University, Taichung 407224, Taiwan; (J.-H.H.); (H.-S.Y.)
| | | | - Wan-Teng Lin
- Department of Hospitality Management, College of Agriculture, Tunghai University, Taichung 407224, Taiwan
- Correspondence: ; Tel.: +886-4-2359-0121 (ext. 37709)
| |
Collapse
|
80
|
Identification of Body Size Determination Related Candidate Genes in Domestic Pig Using Genome-Wide Selection Signal Analysis. Animals (Basel) 2022; 12:ani12141839. [PMID: 35883386 PMCID: PMC9312078 DOI: 10.3390/ani12141839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 01/03/2023] Open
Abstract
This study aimed to identify the genes related to the body size of pigs by conducting genome-wide selection analysis (GWSA). We performed a GWSA scan on 50 pigs belonging to four small-bodied pig populations (Diannan small-eared pig, Bama Xiang pig, Wuzhishan pig, and Jeju black pig from South Korea) and 124 large-bodied pigs. We used the genetic parameters of the pairwise fixation index (FST) and π ratio (case/control) to screen candidate genome regions and genes related to body size. The results revealed 47,339,509 high-quality SNPs obtained from 174 individuals, while 280 interacting candidate regions were obtained from the top 1% signal windows of both parameters, along with 187 genes (e.g., ADCK4, AMDHD2, ASPN, ASS1, and ATP6V0C). The results of the candidate gene (CG) annotation showed that a series of CGs (e.g., MSTN, LTBP4, PDPK1, PKMYT1, ASS1, and STAT6) was enriched into the gene ontology terms. Moreover, molecular pathways, such as the PI3K-Akt, HIF-1, and AMPK signaling pathways, were verified to be related to body development. Overall, we identified a series of key genes that may be closely related to the body size of pigs, further elucidating the heredity basis of body shape determination in pigs and providing a theoretical reference for molecular breeding.
Collapse
|
81
|
Jia S, Wu Q, Wang S, Kan J, Zhang Z, Zhang X, Zhang X, Li J, Xu W, Du J, Wei W. Pea Peptide Supplementation in Conjunction With Resistance Exercise Promotes Gains in Muscle Mass and Strength. Front Nutr 2022; 9:878229. [PMID: 35873424 PMCID: PMC9302772 DOI: 10.3389/fnut.2022.878229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
It is generally considered that protein supplementation and resistance exercise significantly increase muscle mass and muscle growth. As the hydrolysis products of proteins, peptides may play the crucial role on muscle growth. In this study, male rats were orally administrated 0.4 g/kg body weight of pea peptide combined with 8 weeks of moderate intensity resistance exercise training. After treatment, the body gains, upper limb grip, muscle thickness, and wet weight of biceps brachii were tested, and the cross-sectional area of biceps brachii muscle fiber and the types of muscle fibers were determined by HE staining, immunofluorescence staining, and lactate dehydrogenase activity, respectively. Western blot analysis was used to investigate the level of growth-signaling pathway-related proteins. The results showed that pea peptide supplementation combined with resistance exercise training significantly increased body weight, upper limb grip, muscle thickness, wet weight of biceps brachii, and cross-sectional area of muscle fiber. Meanwhile, pea peptide supplementation obviously elevated the ratio of fast-twitch fiber (type II) and the expression of muscle growth-signaling pathway-related proteins. In addition, the PP2 oligopeptide in pea peptide with the amino acid sequence of LDLPVL induced a more significant promotion on C2C12 cell growth than other oligopeptides.
Collapse
Affiliation(s)
- Shaohui Jia
- Hubei Collaborative Innovation Center for Sports Intervention and Health Promotion, Wuhan Sports University, Wuhan, China
| | - Qiming Wu
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, China
| | - Shue Wang
- School of Public Health, Shandong University, Jinan, China
| | - Juntao Kan
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, China
| | - Zhao Zhang
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Heze, China
| | - Xiping Zhang
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Heze, China
| | - Xuejun Zhang
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Heze, China
| | - Jie Li
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Heze, China
| | - Wenhan Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jun Du
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, China
| | - Wei Wei
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Heze, China
| |
Collapse
|
82
|
Yi D, Yoshikawa M, Sugimoto T, Tomoo K, Okada Y, Hashimoto T. Effects of Maca on Muscle Hypertrophy in C2C12 Skeletal Muscle Cells. Int J Mol Sci 2022; 23:ijms23126825. [PMID: 35743270 PMCID: PMC9224786 DOI: 10.3390/ijms23126825] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/23/2022] Open
Abstract
With aging, sarcopenia and the associated locomotor disorders, have become serious problems. The roots of maca contain active ingredients (triterpenes) that have a preventive effect on sarcopenia. However, the effect of maca on muscle hypertrophy has not yet been investigated. The aim of this study was to examine the effects and mechanism of maca on muscle hypertrophy by adding different concentrations of yellow maca (0.1 mg/mL and 0.2 mg/mL) to C2C12 skeletal muscle cell culture. Two days after differentiation, maca was added for two days of incubation. The muscle diameter, area, differentiation index, and multinucleation, were assessed by immunostaining, and the expression levels of the proteins related to muscle protein synthesis/degradation were examined by Western blotting. Compared with the control group, the muscle diameter and area of the myotubes in the maca groups were significantly increased, and the cell differentiation index and multinucleation were significantly higher in the maca groups. Phosphorylation of Akt and mTOR was elevated in the maca groups. Maca also promoted the phosphorylation of AMPK. These results suggest that maca may promote muscle hypertrophy, differentiation, and maturation, potentially via the muscle hypertrophic signaling pathways such as Akt and mTOR, while exploring other pathways are needed.
Collapse
|
83
|
Ravel-Chapuis A, Duchesne E, Jasmin BJ. Pharmacological and exercise-induced activation of AMPK as emerging therapies for myotonic dystrophy type 1 patients. J Physiol 2022; 600:3249-3264. [PMID: 35695045 DOI: 10.1113/jp282725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/07/2022] [Indexed: 11/08/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic disorder with variable clinical features. Currently, there is no cure or effective treatment for DM1. The disease is caused by an expansion of CUG repeats in the 3' UTR of DMPK mRNAs. Mutant DMPK mRNAs accumulate in nuclei as RNA foci and trigger an imbalance in the level and localization of RNA-binding proteins causing the characteristic missplicing events that account for the varied DM1 symptoms, a disease mechanism referred to as RNA toxicity. In recent years, multiple signalling pathways have been identified as being aberrantly regulated in skeletal muscle in response to the CUG expansion, including AMPK, a sensor of energy status, as well as a master regulator of cellular energy homeostasis. Converging lines of evidence highlight the benefits of activating AMPK signalling pharmacologically on RNA toxicity, as well as on muscle histology and function, in preclinical DM1 models. Importantly, a clinical trial with metformin, an activator of AMPK, resulted in functional benefits in DM1 patients. In addition, exercise, a known AMPK activator, has shown promising effects on RNA toxicity and muscle function in DM1 mice. Finally, clinical trials involving moderate-intensity exercise also induced functional benefits for DM1 patients. Taken together, these studies clearly demonstrate the molecular, histological and functional benefits of AMPK activation and exercise-based interventions on the DM1 phenotype. Despite these advances, several key questions remain; in particular, the extent of the true implication of AMPK in the observed beneficial improvements, as well as how, mechanistically, activation of AMPK signalling improves the DM1 pathophysiology.
Collapse
Affiliation(s)
- Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Elise Duchesne
- Département des sciences de la santé, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada.,Groupe de Recherche Interdisciplinaire sur les Maladies Neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Hôpital de Jonquière, QC, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
84
|
Shimizu J, Kawano F. Exercise-induced H3K27me3 facilitates the adaptation of skeletal muscle to exercise in mice. J Physiol 2022; 600:3331-3353. [PMID: 35666835 DOI: 10.1113/jp282917] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/30/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Exercise mediates H3K27me3 at transcriptionally upregulated loci in skeletal muscle, although the role of H3K27me3 in the adaptation of skeletal muscle to exercise training is unclear. Chromatin immunoprecipitation followed by sequencing analysis demonstrated that H3K27me3, as well as H3K4me3 modifications, is the hallmark of sites showing higher responses to acute exercise. GSK343, a selective inhibitor of the enhancer of zeste homologue 2 (EZH2), enhanced the gene responses to a single bout of exercise and accelerated the adaptive changes during exercise training in association with myonuclear H3K27me3 accumulation. Administration of valemetostat, an EZH1/2 dual inhibitor, repressed myonuclear H3K27me3 accumulation during training and caused the failure in adaptive changes. Exercise-induced H3K27me3 may play a key role in inducing exercise-related effects in the skeletal muscle. ABSTRACT Histone H3 trimethylation at lysine 27 (H3K27me3) is known to act as a transcriptionally repressive histone modification via heterochromatin formation. However, in skeletal muscle, it was also reported that H3K27me3 was enriched at the sites transcriptionally activated by exercise, although the role of H3K27me3 in the adaptation to exercise is unknown. In this study, we first determined the genome-wide enrichment of RNA polymerase II and histone H3 trimethylation at lysine 4 (H3K4me3) and H3K27me3 using chromatin immunoprecipitation followed by sequencing analysis in mouse tibialis anterior muscle. The loci that were transcriptionally upregulated by a single bout of running exercise were marked by both H3K27me3 and H3K4me3, which also correlated with the distribution of RNA polymerase II. The genes that were not responsive to exercise exhibited high H3K4me3 occupancy, similar to the upregulated genes but with fewer H3K27me3. Next, we tested the effects of H3K27 methyltransferase, an enhancer of zeste homologue (EZH) 2-specific inhibitor GSK343. GSK343 administration unexpectedly enhanced the H3K27me3 occupancy at the target loci, leading to the upregulation of gene responses to acute exercise. GSK343 administration also facilitated the phenotypic transformation from IIb to IIa fibres and the upregulation of AMPK phosphorylation and HSP70, PDK4, PGC-1α, and MuRF1 levels. Furthermore, in contrast to the accelerated adaptation to exercise by GSK343, EZH1/2 dual inhibitor valemetostat administration caused the failure in the changes of the aforementioned parameters after exercise training. These results indicate that exercise-induced H3K27me3 plays a key role in inducing exercise-related effects in the skeletal muscle. Abstract figure legend The loci upregulated in response to exercise are characterized by a bivalent modification with histone H3 trimethylation at lysine 27 (H3K27me3) and lysine 4 (H3K4me3) in mouse skeletal muscle. Acute exercise further stimulates both H3K27me3 and H3K4me3 at these loci associated with the upregulation of gene transcription. Lysine methyltransferase EZH2-specific inhibitor GSK343 administration increased H3K27me3 and H3K4me3 occupancies at the target loci after a single bout of exercise. Chronic treatment of GSK343 during exercise training more upregulated H3K27me3 in muscle fibres. In addition, it increased the number of muscle fibres expressing type IIa myosin heavy chain (MyHC) and enhanced the adaptive changes in the related protein levels. In contrast, administration of valemetostat, an EZH1/2 dual inhibitor, decreased H3K27me3 and H3K4me3 occupancies after acute exercise and caused the failure in the exercise-induced effects after training. It was also suggested that EZH1 acted as a modifier of exercise-induced H3K27me3 in skeletal muscle. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Junya Shimizu
- Graduate School of Health Sciences, Matsumoto University, 2095-1 Niimura, Matsumoto City, Nagano, 390-1295, Japan
| | - Fuminori Kawano
- Graduate School of Health Sciences, Matsumoto University, 2095-1 Niimura, Matsumoto City, Nagano, 390-1295, Japan
| |
Collapse
|
85
|
Wagner S, Manickam R, Brotto M, Tipparaju SM. NAD + centric mechanisms and molecular determinants of skeletal muscle disease and aging. Mol Cell Biochem 2022; 477:1829-1848. [PMID: 35334034 PMCID: PMC10065019 DOI: 10.1007/s11010-022-04408-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/03/2022] [Indexed: 12/20/2022]
Abstract
The nicotinamide adenine dinucleotide (NAD+) is an essential redox cofactor, involved in various physiological and molecular processes, including energy metabolism, epigenetics, aging, and metabolic diseases. NAD+ repletion ameliorates muscular dystrophy and improves the mitochondrial and muscle stem cell function and thereby increase lifespan in mice. Accordingly, NAD+ is considered as an anti-oxidant and anti-aging molecule. NAD+ plays a central role in energy metabolism and the energy produced is used for movements, thermoregulation, and defense against foreign bodies. The dietary precursors of NAD+ synthesis is targeted to improve NAD+ biosynthesis; however, studies have revealed conflicting results regarding skeletal muscle-specific effects. Recent advances in the activation of nicotinamide phosphoribosyltransferase in the NAD+ salvage pathway and supplementation of NAD+ precursors have led to beneficial effects in skeletal muscle pathophysiology and function during aging and associated metabolic diseases. NAD+ is also involved in the epigenetic regulation and post-translational modifications of proteins that are involved in various cellular processes to maintain tissue homeostasis. This review provides detailed insights into the roles of NAD+ along with molecular mechanisms during aging and disease conditions, such as the impacts of age-related NAD+ deficiencies on NAD+-dependent enzymes, including poly (ADP-ribose) polymerase (PARPs), CD38, and sirtuins within skeletal muscle, and the most recent studies on the potential of nutritional supplementation and distinct modes of exercise to replenish the NAD+ pool.
Collapse
Affiliation(s)
- Sabrina Wagner
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 030, Tampa, FL, 33612, USA
| | - Ravikumar Manickam
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 030, Tampa, FL, 33612, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas-Arlington (UTA), Arlington, TX, USA
| | - Srinivas M Tipparaju
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 030, Tampa, FL, 33612, USA.
| |
Collapse
|
86
|
Shingu Y, Hieda T, Sugimoto S, Asai H, Yamakawa T, Wakasa S. Changes in AMPKα and Ubiquitin Ligases in Myocyte Reverse Remodeling after Surgical Ventricular Reconstruction in rats with ischemic cardiomyopathy. Mol Biol Rep 2022; 49:4885-4892. [DOI: 10.1007/s11033-022-07347-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
|
87
|
Ma X, La Y, Bao P, Chu M, Guo X, Wu X, Pei J, Ding X, Liang C, Yan P. Regulatory Role of N6-Methyladenosine in Longissimus Dorsi Development in Yak. Front Vet Sci 2022; 9:757115. [PMID: 35498742 PMCID: PMC9043854 DOI: 10.3389/fvets.2022.757115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
N6-methyladenine (m6A) RNA undergoes epigenetic modification, which is the most extensive intermediate chemical modification in mRNA. Although this modification occurs in all living organisms, it is the most widely studied among mammals. However, to date, no study has investigated the m6A transcriptome-wide map of yak and its potential biological functions in muscle development. In this study, the differences of m6A methylation and gene expression in yak muscle development belonging to three age groups, namely 3 years (group A), 6 months (group M), and 90-day-old fetuses (group E), were determined by using methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and RNA sequencing (RNA-Seq). In these three groups, a total of 6,278 (A), 9,298 (E), and 9,584 (M) m6A peaks were identified, with average densities between 1.02 and 2.01. m6A peaks were mostly enriched in the stop codon, 3′ untranslated region (UTR) region, and inner long exon region with consensus motifs of UGACA. In all the three stages, the m6A peak enrichment level was significantly negatively correlated with mRNA abundance (Pearson's correlation coefficient r = −0.22 to −0.32, p < 10−16). The functional enrichment of genes consistently modified by m6A methylation, particularly those genes that regulate cell differentiation as well as muscle growth and development, was observed at all three stages. Moreover, m6A abundance was negatively associated with gene expression levels, indicating that m6A might play a vital role in modulating gene expression during yak muscle development. This comprehensive map thus provides a solid foundation for determining the potential functional role of m6A RNA modification in yak muscle growth.
Collapse
Affiliation(s)
- Xiaoming Ma
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yongfu La
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengjia Bao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Chu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoyun Wu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jie Pei
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuezhi Ding
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chunnian Liang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Chunnian Liang
| | - Ping Yan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Ping Yan
| |
Collapse
|
88
|
Hwang J, Kang S, Jung H. Effects of American wild ginseng and Korean cultivated wild ginseng pharmacopuncture extracts on the regulation of C2C12 myoblasts differentiation through AMPK and PI3K/Akt/mTOR signaling pathway. Mol Med Rep 2022; 25:192. [PMID: 35419614 PMCID: PMC9051998 DOI: 10.3892/mmr.2022.12708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/16/2022] [Indexed: 11/06/2022] Open
Abstract
Targeting impaired myogenesis and mitochondrial biogenesis offers a potential alternative strategy for balancing energy to fight muscle disorders such as sarcopenia. In traditional Korean medicine, it is believed that the herb wild ginseng can help restore energy to the elderly. The present study investigated whether American wild ginseng pharmacopuncture (AWGP) and Korean cultivated wild ginseng pharmacopuncture (KCWGP) regulate energy metabolism in skeletal muscle cells. C2C12 mouse myoblasts were differentiated into myotubes using horse serum for 5 days. An MTT colorimetric assay verified cell viability. AWGP, KCWGP (0.5, 1, or 2 mg/ml), or metformin (2.5 mM) for reference were used to treat the C2C12 myotubes. The expressions of differentiation and mitochondrial biogenetic factors were measured by western blotting in C2C12 myotubes. Treatment of C2C12 cells stimulated with AWGP and KCWGP at a concentration of 10 mg/ml did not affect cell viability. AWGP and KCWGP treatments resulted in significant increases in the myogenesis proteins, myosin heavy chain, myostatin, myoblast determination protein 1 and myogenin, as well as increases to the biogenic regulatory factors, peroxisome proliferator-activated receptor-γ coactivator-1-α, nuclear respiratory factor 1, mitochondrial transcription factor A and Sirtuin 1, in the myotubes through AMPK and PI3K/AKT/mTOR signaling pathway activation. These results suggest that AWGP and KCWGP may be beneficial to muscle function by improving muscle differentiation and energy metabolism.
Collapse
Affiliation(s)
- Ji Hwang
- Department of Acupuncture and Moxibustion Medicine, College of Korean Medicine, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Seok Kang
- Korean Medicine R&D Center, Gyeongju, North Gyeongsang 38066, Republic of Korea
| | - Hyo Jung
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, North Gyeongsang 38066, Republic of Korea
| |
Collapse
|
89
|
Cai B, Ma M, Zhang J, Wang Z, Kong S, Zhou Z, Lian L, Zhang J, Li J, Wang Y, Li H, Zhang X, Nie Q. LncEDCH1 improves mitochondrial function to reduce muscle atrophy by interacting with SERCA2. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:319-334. [PMID: 35024244 PMCID: PMC8717430 DOI: 10.1016/j.omtn.2021.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/07/2021] [Indexed: 12/25/2022]
Abstract
Skeletal muscle is a regulator of the body's energy expenditure and metabolism. Abnormal regulation of skeletal muscle-specific genes leads to various muscle diseases. Long non-coding RNAs (lncRNAs) have been demonstrated to play important roles in muscle growth and muscle atrophy. To explore the potential function of muscle-associated lncRNA, we analyzed our previous RNA-sequencing data and selected the lncRNA (LncEDCH1) as the research object. In this study, we report that LncEDCH1 is specifically enriched in skeletal muscle, and its transcriptional activity is positively regulated by transcription factor SP1. LncEDCH1 regulates myoblast proliferation and differentiation in vitro. In vivo, LncEDCH1 reduces intramuscular fat deposition, activates slow-twitch muscle phenotype, and inhibits muscle atrophy. Mechanistically, LncEDCH1 binds to sarcoplasmic/ER calcium ATPase 2 (SERCA2) protein to enhance SERCA2 protein stability and increase SERCA2 activity. Meanwhile, LncEDCH1 improves mitochondrial efficiency possibly through a SERCA2-mediated activation of the AMPK pathway. Our findings provide a strategy for using LncEDCH1 as an effective regulator for the treatment of muscle atrophy and energy metabolism.
Collapse
Affiliation(s)
- Bolin Cai
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Manting Ma
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Jing Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Zhijun Wang
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Shaofen Kong
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Zhen Zhou
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Ling Lian
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiannan Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Juan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yajun Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Hongmei Li
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Xiquan Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Qinghua Nie
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| |
Collapse
|
90
|
Fovet T, Guilhot C, Delobel P, Chopard A, Py G, Brioche T. Ergothioneine Improves Aerobic Performance Without Any Negative Effect on Early Muscle Recovery Signaling in Response to Acute Exercise. Front Physiol 2022; 13:834597. [PMID: 35222093 PMCID: PMC8864143 DOI: 10.3389/fphys.2022.834597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/19/2022] [Indexed: 11/14/2022] Open
Abstract
Physical activity is now recognized as an essential element of healthy lifestyles. However, intensive and repeated exercise practice produces a high level of stress that must be managed, particularly oxidative damage and inflammation. Many studies investigated the effect of antioxidants, but reported only few positive effects, or even muscle recovery impairment. Secondary antioxidants are frequently highlighted as a way to optimize these interactions. Ergothioneine is a potential nutritional supplement and a secondary antioxidant that activates the cellular NRF2 pathway, leading to antioxidant response gene activation. Here, we hypothesized that ergothioneine could improve performance during aerobic exercise up to exhaustion and reduce exercise-related stress without impairing early muscle recovery signaling. To test this hypothesis, 5-month-old C56B6J female mice were divided in two groups matched for maximal aerobic speed (MAS): control group (Ctrl; n = 9) and group supplemented with 70 mg ergothioneine/kg/day (ET; n = 9). After 1 week of supplementation (or not), mice performed a maximum time-to-exhaustion test by running on a treadmill at 70% of their MAS, and gastrocnemius and soleus muscles were collected 2 h after exercise. Time to exhaustion was longer in the ET than Ctrl group (+41.22%, p < 0.01). Two hours after exercise, the ET group showed higher activation of protein synthesis and satellite cells, despite their longer effort. Conversely, expression in muscles of metabolic stress and inflammation markers was decreased, as well as oxidative damage markers in the ET group. Moreover, ergothioneine did not seem to impair mitochondrial recovery. These results suggest an important effect of ergothioneine on time-to-exhaustion performance and improved muscle recovery after exercise.
Collapse
Affiliation(s)
- Théo Fovet
- DMEM, INRAE, Montpellier University, Montpellier, France
| | | | - Pierre Delobel
- DMEM, INRAE, Montpellier University, Montpellier, France
| | - Angèle Chopard
- DMEM, INRAE, Montpellier University, Montpellier, France
| | - Guillaume Py
- DMEM, INRAE, Montpellier University, Montpellier, France
| | - Thomas Brioche
- DMEM, INRAE, Montpellier University, Montpellier, France
| |
Collapse
|
91
|
Kang MJ, Moon JW, Lee JO, Kim JH, Jung EJ, Kim SJ, Oh JY, Wu SW, Lee PR, Park SH, Kim HS. Metformin induces muscle atrophy by transcriptional regulation of myostatin via HDAC6 and FoxO3a. J Cachexia Sarcopenia Muscle 2022; 13:605-620. [PMID: 34725961 PMCID: PMC8818615 DOI: 10.1002/jcsm.12833] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Skeletal muscle atrophy is a severe condition that involves loss of muscle mass and quality. Drug intake can also cause muscle atrophy. Biguanide metformin is the first-line and most widely prescribed anti-diabetic drug for patients with type 2 diabetes. The molecular mechanism of metformin in muscle is unclear. METHODS Myostatin expression was investigated at the protein and transcript levels after metformin administration. To investigate the pathways associated with myostatin signalling, we used real-time polymerase chain reaction, immunoblotting, luciferase assay, chromatin immunoprecipitation assay, co-immunoprecipitation, immunofluorescence, primary culture, and confocal microscopy. Serum analysis, physical performance, and immunohistochemistry were performed using our in vivo model. RESULTS Metformin induced the expression of myostatin, a key molecule that regulates muscle volume and triggers the phosphorylation of AMPK. AMPK alpha2 knockdown in the background of metformin treatment reduced the myostatin expression of C2C12 myotubes (-49.86 ± 12.03%, P < 0.01) and resulted in increased myotube diameter compared with metformin (+46.62 ± 0.88%, P < 0.001). Metformin induced the interaction between AMPK and FoxO3a, a key transcription factor of myostatin. Metformin also altered the histone deacetylase activity in muscle cells (>3.12-fold ± 0.13, P < 0.001). The interaction between HDAC6 and FoxO3a induced after metformin treatment. Confocal microscopy revealed that metformin increased the nuclear localization of FoxO3a (>3.3-fold, P < 0.001). Chromatin immunoprecipitation revealed that metformin induced the binding of FoxO3a to the myostatin promoter. The transcript-level expression of myostatin was higher in the gastrocnemius (GC) muscles of metformin-treated wild-type (WT) (+68.9 ± 10.01%, P < 0.001) and db/db mice (+55.84 ± 6.62%, P < 0.001) than that in the GC of controls (n = 4 per group). Average fibre cross-sectional area data also showed that the metformin-treated C57BL/6J (WT) (-31.74 ± 0.75%, P < 0.001) and C57BLKS/J-db/db (-18.11 ± 0.94%, P < 0.001) mice had decreased fibre size of GC compared to the controls. The serum myoglobin level was significantly decreased in metformin-treated WT mice (-66.6 ± 9.03%, P < 0.01). CONCLUSIONS Our results demonstrate that metformin treatment impairs muscle function through the regulation of myostatin in skeletal muscle cells via AMPK-FoxO3a-HDAC6 axis. The muscle-wasting effect of metformin is more evident in WT than in db/db mice, indicating that more complicated mechanisms may be involved in metformin-mediated muscular dysfunction.
Collapse
Affiliation(s)
- Min Ju Kang
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ji Wook Moon
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jung Ok Lee
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ji Hae Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eun Jeong Jung
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Su Jin Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Joo Yeon Oh
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sang Woo Wu
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Pu Reum Lee
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sun Hwa Park
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyeon Soo Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
92
|
Rahmi R, Machrina Y, Yamamoto Z. The Effect of Various Training on the Expression of the 5’amp-Activated Protein Kinase Α2 and Glucose Transporter - 4 in Type-2 Diabetes Mellitus Rat. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.7913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Exercise is the main pillar in Type 2 Diabetes Mellitus (T2DM) management. The mechanism of glucose uptake mediated by exercise is different from insulin, and this mechanism is not disturbed in T2DM. One of the mechanisms is through the activation of 5’AMP-activated protein kinase (AMPK). AMPK also regulates the glucose transporter 4 (GLUT4) expression. Effect various types of exercise to AMPK α2 and GLUT-4 of the skeletal muscle still limited.
AIM: This study aims to determine the effect of various physical training on the expression of Ampk α2 and Glut 4 in skeletal muscle of T2DM rats.
METHODS: This study used stored skeletal muscles of 25 T2DM Wistar rats. Previously, the rats were divided into groups of K1 (control, not given exercise), K2 (moderate continuous training), K3 (severe continuous training), K4 (slow interval training), and K5 (fast interval training). Running on a treadmill frequency 3 times a week for 8 weeks. The relative expression of Ampk α2 and Glut 4 were assessed using Real Time-PCR and were compared among the groups using the Livak formula.
RESULTS: Moderate intensity continuous training increased Ampk α2 and Glut 4 expression by 1.45 and 2.39 times, respectively. Severe intensity continuous training increased the expression of Ampk α2 and Glut 4 by 1.55 and 2.56 times, respectively. Slow interval training increased the expression of Ampk α2 and Glut 4 by 4.41 and 3.76 times, respectively. The expression of Ampk α2 and Glut4 in fast interval training was 4.56 and 4.79 times more than control.
CONCLUSION: Continuous and interval training increase Ampk α2 and Glut 4 expression. The fast interval training showed the highest expression of Ampk α2 and Glut 4.
Collapse
|
93
|
Liu J, Zhao H, Yang L, Wang X, Yang L, Xing Y, Lv X, Ma H, Song G. The role of CD36-Fabp4-PPARγ in skeletal muscle involves insulin resistance in intrauterine growth retardation mice with catch-up growth. BMC Endocr Disord 2022; 22:10. [PMID: 34983495 PMCID: PMC8725347 DOI: 10.1186/s12902-021-00921-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Studies have shown that the high incidence of type 2 diabetes in China is associated with low birth weight and excessive nutrition in adulthood, which occurred during the famine years of the 1950s and 1960s, though the specific molecular mechanisms are unclear. In this study, we proposed a severe maternal caloric restriction during late pregnancy, followed by a post weaning high-fat diet in mice. After weaning, normal and high-fat diets were provided to mice to simulate the dietary pattern of modern society. METHODS The pregnant mice were divided into two groups: normal birth weight (NBW) group and low birth weight (LBW) group. After 3 weeks for weaning, the male offspring mice in the NBW and LBW groups were then randomly divided into four subgroups: NC, NH, LC and LC groups. The offspring mice in the NC, NH, LC and LC groups were respectively fed with normal diet, normal diet, high-fat diet and high-fat diet for 18 weeks. After 18 weeks of dietary intervention, detailed analyses of mRNA and protein expression patterns, signaling pathway activities, and promoter methylation states were conducted for all relevant genes. RESULTS After dietary intervention for 18 weeks, the expressions of CD36, Fabp4, PPARγ, FAS, and ACC1 in the skeletal muscle tissue of the LH group were significantly increased compared with the LC and NH groups (P < 0.05). The level of p-AMPK/AMPK in the skeletal muscle tissue of the LH group was significantly decreased compared with the LC and NH groups (P < 0.05). CPT1 and PGC-1α protein expressions were up-regulated in the LH group (P < 0.05) compared to the LC group. Additionally, the DNA methylation levels of the PGC-1α and GLUT4 gene promoters in the skeletal muscle of the LH groups were higher than those of the LC and NH groups (P < 0.05). However, PPARγ DNA methylation level in the LH group was lower than those of the LC and NH groups (P < 0.05). CONCLUSIONS LBW combined with high-fat diets may increase insulin resistance and diabetes through regulating the CD36-related Fabp4-PPARγ and AMPK/ACC signaling pathways.
Collapse
Affiliation(s)
- Jing Liu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Hang Zhao
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Linlin Yang
- Hebei Key Laboratory of Metabolic Diseases, Shijiazhuang, 050051, Hebei, China
- Clinical Medicine Research Center, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Xing Wang
- Hebei Key Laboratory of Metabolic Diseases, Shijiazhuang, 050051, Hebei, China
- Clinical Medicine Research Center, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Linquan Yang
- Hebei Key Laboratory of Metabolic Diseases, Shijiazhuang, 050051, Hebei, China
- Clinical Medicine Research Center, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Yuling Xing
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Xiuqin Lv
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Huijuan Ma
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China.
- Hebei Key Laboratory of Metabolic Diseases, Shijiazhuang, 050051, Hebei, China.
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China.
- Hebei Key Laboratory of Metabolic Diseases, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
94
|
Sharlo K, Tyganov SA, Tomilovskaya E, Popov DV, Saveko AA, Shenkman BS. Effects of Various Muscle Disuse States and Countermeasures on Muscle Molecular Signaling. Int J Mol Sci 2021; 23:ijms23010468. [PMID: 35008893 PMCID: PMC8745071 DOI: 10.3390/ijms23010468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle is capable of changing its structural parameters, metabolic rate and functional characteristics within a wide range when adapting to various loading regimens and states of the organism. Prolonged muscle inactivation leads to serious negative consequences that affect the quality of life and work capacity of people. This review examines various conditions that lead to decreased levels of muscle loading and activity and describes the key molecular mechanisms of muscle responses to these conditions. It also details the theoretical foundations of various methods preventing adverse muscle changes caused by decreased motor activity and describes these methods. A number of recent studies presented in this review make it possible to determine the molecular basis of the countermeasure methods used in rehabilitation and space medicine for many years, as well as to identify promising new approaches to rehabilitation and to form a holistic understanding of the mechanisms of gravity force control over the muscular system.
Collapse
|
95
|
Huang C, Ge F, Ma X, Dai R, Dingkao R, Zhaxi Z, Burenchao G, Bao P, Wu X, Guo X, Chu M, Yan P, Liang C. Comprehensive Analysis of mRNA, lncRNA, circRNA, and miRNA Expression Profiles and Their ceRNA Networks in the Longissimus Dorsi Muscle of Cattle-Yak and Yak. Front Genet 2021; 12:772557. [PMID: 34966412 PMCID: PMC8710697 DOI: 10.3389/fgene.2021.772557] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
Cattle-yak, as the hybrid offspring of cattle (Bos taurus) and yak (Bos grunniens), demonstrates obvious heterosis in production performance. Male hybrid sterility has been focused on for a long time; however, the mRNAs and non-coding RNAs related to muscle development as well as their regulatory networks remain unclear. The phenotypic data showed that the production performance (i.e., body weight, withers height, body length, and chest girth) of cattle-yak was significantly better than that of the yak, and the economic benefits of the cattle-yak were higher under the same feeding conditions. Then, we detected the expression profiles of the longissimus dorsi muscle of cattle-yak and yak to systematically reveal the molecular basis using the high-throughput sequencing technology. Here, 7,126 mRNAs, 791 lncRNAs, and 1,057 circRNAs were identified to be differentially expressed between cattle-yaks and yaks in the longissimus dorsi muscle. These mRNAs, lncRNA targeted genes, and circRNA host genes were significantly enriched in myoblast differentiation and some signaling pathways related to muscle development (such as HIF-1 signaling pathway and PI3K-Akt signaling pathway). We constructed a competing endogenous RNA (ceRNA) network and found that some non-coding RNAs differentially expressed may be involved in the regulation of muscle traits. Taken together, this study may be used as a reference tool to provide the molecular basis for studying muscle development.
Collapse
Affiliation(s)
- Chun Huang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fei Ge
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Rongfeng Dai
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Renqing Dingkao
- Livestock Institute of Gannan Tibetan Autonomous Prefecture, Hezuo, China
| | - Zhuoma Zhaxi
- Haixi Agricultural and Animal Husbandry Technology Extension Service Center, Qinghai, China
| | - Getu Burenchao
- Haixi Agricultural and Animal Husbandry Technology Extension Service Center, Qinghai, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
96
|
Abstract
The energy sensor AMP kinase (AMPK) and the master scaffolding protein, AXIN, are two major regulators of biological processes in metazoans. AXIN-dependent regulation of AMPK activation plays a crucial role in maintaining metabolic homeostasis during glucose-deprived and energy-stressed conditions. The two proteins are also required for muscle function. While studies have refined our knowledge of various cellular events that promote the formation of AXIN-AMPK complexes and the involvement of effector proteins, more work is needed to understand precisely how the pathway is regulated in response to various forms of stress. In this review, we discuss recent data on AXIN and AMPK interaction and its role in physiological changes leading to improved muscle health and an extension of lifespan. We argue that AXIN-AMPK signaling plays an essential role in maintaining muscle function and manipulating the pathway in a tissue-specific manner could delay muscle aging. Therefore, research on understanding the factors that regulate AXIN-AMPK signaling holds the potential for developing novel therapeutics to slow down or revert the age-associated decline in muscle function, thereby extending the healthspan of animals.
Collapse
Affiliation(s)
- Avijit Mallick
- Department of Biology, McMaster University, Hamilton, Ontario, L8S4K1, Canada
| | - Bhagwati P. Gupta
- Department of Biology, McMaster University, Hamilton, Ontario, L8S4K1, Canada
| |
Collapse
|
97
|
The effect of AMP kinase activation on differentiation and maturation of osteoblast cultured on titanium plate. J Dent Sci 2021; 17:1225-1231. [PMID: 35784162 PMCID: PMC9236888 DOI: 10.1016/j.jds.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/02/2021] [Indexed: 12/01/2022] Open
Abstract
Background/purpose 5′ Adenosine monophosphate-activated protein kinase (AMPK) is known as an enzyme that maintains intracellular homeostasis and has various biological activity. The purpose of this study is evaluation effect of AMPK activation on implant prognosis. Materials & methods MC3T3-E1 osteoblast-like cells were cultured on titanium using a 24-well plate. The experimental group was divided into the following 3 groups: (1) the normal culture group (control group), (2) the osteogenic induction group, and (3) the osteogenic induction + AMPK activation group. The cell counts were measured; real-time PCR was used to assess the expression of ALP and Osterix as osteogenic related genes at Day 0,7,14 and 21 after experiments. Additionally, ALP activity and calcification were assessed. Results The results of the real-time PCR assessments revealed that the expression of ALP, which is a marker for the initial stages of calcification, was significantly increased by AMPK activation compared to the normal culture or osteogenic induction. A significant increase was also observed in the expression of Osterix, which is a marker for the later stages of calcification. Because significant increases were observed in ALP activity and calcification potential, this suggested that AMPK activation could elicit an increase in osteoblast calcification potential. Conclusion AMPK activation promotes implant peripheral osteoblast differentiation and maturation and enhances calcification. Our results suggest that AMPK activation may help to maintain implant stability.
Collapse
|
98
|
Minari ALA, Thomatieli-Santos RV. From skeletal muscle damage and regeneration to the hypertrophy induced by exercise: What is the role of different macrophages subsets? Am J Physiol Regul Integr Comp Physiol 2021; 322:R41-R54. [PMID: 34786967 DOI: 10.1152/ajpregu.00038.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Macrophages are one of the top players when considering immune cells involved with tissue homeostasis. Recently, increasing evidence has demonstrated that these macrophages could also present two major subsets during tissue healing; proliferative macrophages (M1-like), which are responsible for increasing myogenic cell proliferation, and restorative macrophages (M2-like), which are accountable for the end of the mature muscle myogenesis. The participation and characterization of these macrophage subsets is critical during myogenesis, not only to understand the inflammatory role of macrophages during muscle recovery but also to create supportive strategies that can improve mass muscle maintenance. Indeed, most of our knowledge about macrophage subsets comes from skeletal muscle damage protocols, and we still do not know how these subsets can contribute to skeletal muscle adaptation. This narrative review aims to collect and discuss studies demonstrating the involvement of different macrophage subsets during the skeletal muscle damage/regeneration process, showcasing an essential role of these macrophage subsets during muscle adaptation induced by acute and chronic exercise programs.
Collapse
Affiliation(s)
- André Luis Araujo Minari
- Universidade estadual Paulista, Campus Presidente Prudente, Brazil.,Universidade Federal de São Paulo, Psicobiologia, Brazil
| | - Ronaldo V Thomatieli-Santos
- Universidade Federal de São Paulo, Campus Baixada Santista, Brazil.,Universidade Federal de São Paulo, Psicobiologia, Brazil
| |
Collapse
|
99
|
Fukada SI, Ito N. Regulation of muscle hypertrophy: Involvement of the Akt-independent pathway and satellite cells in muscle hypertrophy. Exp Cell Res 2021; 409:112907. [PMID: 34793776 DOI: 10.1016/j.yexcr.2021.112907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/04/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022]
Abstract
Skeletal muscles are composed of multinuclear cells called myofibers and have unique abilities, one of which is plasticity. In response to the mechanical load induced by physical activity, skeletal muscle exerts several local adaptations, including an increase in myofiber size and myonuclear number, known as muscle hypertrophy. Protein synthesis and muscle satellite cells (MuSCs) are mainly responsible for these adaptations. However, the upstream signaling pathways that promote protein synthesis remain controversial. Further, the necessity of MuSCs in muscle hypertrophy is also a highly debated issue. In this review, we summarized the insulin-like growth factor 1 (IGF-1)/Akt-independent activation of mammalian target of rapamycin (mTOR) signaling in muscle hypertrophy and the involvement of mTOR signaling in age-related loss of skeletal muscle function and mass and in sarcopenia. The roles and behaviors of MuSCs, characteristics of new myonuclei in muscle hypertrophy, and their relevance to sarcopenia have also been updated in this review.
Collapse
Affiliation(s)
- So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| | - Naoki Ito
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation (IBRI), Foundation for Biomedical Research and Innovation at Kobe (FBRI), Kobe, Japan
| |
Collapse
|
100
|
Song Y, Zhao F, Ma W, Li G. Hotspots and trends in liver kinase B1 research: A bibliometric analysis. PLoS One 2021; 16:e0259240. [PMID: 34735498 PMCID: PMC8568265 DOI: 10.1371/journal.pone.0259240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 10/15/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction In the past 22 years, a large number of publications have reported that liver kinase B1 (LKB1) can regulate a variety of cellular processes and play an important role in many diseases. However, there is no systematic bibliometric analysis on the publications of LKB1 to reveal the research hotspots and future direction. Methods Publications were retrieved from the Web of Science Core Collection (WoSCC), Scopus, and PubMed databases. CiteSpace and VOSviewer were used to analysis the top countries, institutions, authors, source journals, discipline categories, references, and keywords. Results In the past 22 years, the number of LKB1 publications has increased gradually by year. The country, institution, author, journals that have published the most articles and cited the most frequently were the United States, Harvard University, Prof. Benoit Viollet, Journal of Biochemistry and Plos One. The focused research hotspot was the molecular functions of LKB1. The emerging hotspots and future trends are the clinical studies about LKB1 and co-mutated genes as biomarkers in tumors, especially in lung adenocarcinoma. Conclusions Our research could provide knowledge base, frontiers, emerging hotspots and future trends associated with LKB1 for researchers in this field, and contribute to finding potential cooperation possibilities.
Collapse
Affiliation(s)
- Yaowen Song
- Department of Radiotherapy Oncology, The First Affiliated Hospital of China Medical University, Shenyan, China
| | - Fangkun Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Wei Ma
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guang Li
- Department of Radiotherapy Oncology, The First Affiliated Hospital of China Medical University, Shenyan, China
- * E-mail:
| |
Collapse
|