51
|
Mobasheri L, Ahadi M, Beheshti Namdar A, Alavi MS, Bemidinezhad A, Moshirian Farahi SM, Esmaeilizadeh M, Nikpasand N, Einafshar E, Ghorbani A. Pathophysiology of diabetic hepatopathy and molecular mechanisms underlying the hepatoprotective effects of phytochemicals. Biomed Pharmacother 2023; 167:115502. [PMID: 37734266 DOI: 10.1016/j.biopha.2023.115502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Patients with diabetes are at risk for liver disorders including glycogen hepatopathy, non-alcoholic fatty liver disease, cirrhosis, and hepatic fibrosis. The pathophysiological mechanisms behind diabetic hepatopathy are complex, some of them include fatty acid accumulation, increased reactive oxygen species, increased advanced glycation end-products, hyperactivity of polyol pathways, increased apoptosis and necrosis, and promotion of fibrosis. A growing number of studies have shown that herbal extracts and their active phytochemicals have antihyperglycemic properties and beneficial effects on diabetic complications. The current review, for the first time, focused on herbal agents that showed beneficial effects on diabetic hepatopathy. For example, animal studies have shown that Moringa oleifera and Morus alba improve liver function in both type-1 and type-2 diabetes. Also, evidence from clinical trials suggests that Boswellia serrata, Juglans regia, Melissa officinalis, Portulaca oleracea, Silybum marianum, Talapotaka Churna, and Urtica dioica reduce serum liver enzymes in diabetic patients. The main active ingredient of these plants to protect the liver seems to be phenolic compounds such as niazirin, chlorogenic acid, resveratrol, etc. Mechanisms responsible for the hepatoprotective activity of herbal agents include improving glucose metabolism, restoring adipokines levels, antioxidant defense, and anti-inflammatory activity. Several signaling pathways are involved in hepatoprotective effects of herbal agents in diabetes, such as phosphoinositide 3-kinase, adenosine monophosphate-activated protein kinase, mitogen-activated protein kinase, and c-Jun NH2-terminal kinase.
Collapse
Affiliation(s)
- Leila Mobasheri
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mitra Ahadi
- Department of Gastroenterology and Hepatology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Beheshti Namdar
- Department of Gastroenterology and Hepatology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Bemidinezhad
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahdi Esmaeilizadeh
- Innovative Medical Research Center, Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Niloofar Nikpasand
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Einafshar
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Ghorbani
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
52
|
Myint M, Oppedisano F, De Giorgi V, Kim BM, Marincola FM, Alter HJ, Nesci S. Inflammatory signaling in NASH driven by hepatocyte mitochondrial dysfunctions. J Transl Med 2023; 21:757. [PMID: 37884933 PMCID: PMC10605416 DOI: 10.1186/s12967-023-04627-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Liver steatosis, inflammation, and variable degrees of fibrosis are the pathological manifestations of nonalcoholic steatohepatitis (NASH), an aggressive presentation of the most prevalent chronic liver disease in the Western world known as nonalcoholic fatty liver (NAFL). Mitochondrial hepatocyte dysfunction is a primary event that triggers inflammation, affecting Kupffer and hepatic stellate cell behaviour. Here, we consider the role of impaired mitochondrial function caused by lipotoxicity during oxidative stress in hepatocytes. Dysfunction in oxidative phosphorylation and mitochondrial ROS production cause the release of damage-associated molecular patterns from dying hepatocytes, leading to activation of innate immunity and trans-differentiation of hepatic stellate cells, thereby driving fibrosis in NASH.
Collapse
Affiliation(s)
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Valeria De Giorgi
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, USA
| | | | | | - Harvey J Alter
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, USA
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy.
| |
Collapse
|
53
|
Wiriyakulsit N, Keawsomnuk P, Thongin S, Ketsawatsomkron P, Muta K. A model of hepatic steatosis with declined viability and function in a liver-organ-on-a-chip. Sci Rep 2023; 13:17019. [PMID: 37813918 PMCID: PMC10562420 DOI: 10.1038/s41598-023-44198-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) begins with benign steatosis caused by ectopic storage of triacylglycerols in the liver. Persistent steatosis, in combination with other genetic and environmental factors, leads to nonalcoholic steatohepatitis (NASH) characterized by functional impairment, inflammation, and fibrosis. However, it remains unclear how persistent steatosis directly contributes to the progression of NAFLD, which may represent a therapeutic target. The organ-on-a-chip (OOC) has emerged as a new culture platform to recapitulate human pathological conditions under which drug candidates can be screened. Here, we developed a simple OOC steatosis model using the Mimetas OrganoPlate with a human liver cell line, HepG2. Treating the HepG2 OOCs with fatty acid overload induced steatosis within 24 h. Moreover, persistent steatosis for 6 days impaired OOC viability and hepatic function, as measured by a WST-8 assay and albumin production, respectively. Lastly, the HepG2 OOCs were exposed to drugs being tested in clinical trials for NAFLD/NASH during the 6-day period. Pioglitazone improved the OOC viability while elafibranor reduced the steatosis in association with reduced viability and albumin production. In conclusion, we show that the HepG2 steatosis OOC model is a useful tool on which the efficacy and toxicity of various therapeutic candidates can be tested.
Collapse
Affiliation(s)
- Natsupa Wiriyakulsit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Bang Pla, Bang Phli, Samut Prakan, 10540, Thailand
| | - Ploychanok Keawsomnuk
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Bang Pla, Bang Phli, Samut Prakan, 10540, Thailand
| | - Saowarose Thongin
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Bang Pla, Bang Phli, Samut Prakan, 10540, Thailand
| | - Pimonrat Ketsawatsomkron
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Bang Pla, Bang Phli, Samut Prakan, 10540, Thailand
| | - Kenjiro Muta
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Bang Pla, Bang Phli, Samut Prakan, 10540, Thailand.
| |
Collapse
|
54
|
Chaudhary MR, Chaudhary S, Sharma Y, Singh TA, Mishra AK, Sharma S, Mehdi MM. Aging, oxidative stress and degenerative diseases: mechanisms, complications and emerging therapeutic strategies. Biogerontology 2023; 24:609-662. [PMID: 37516673 DOI: 10.1007/s10522-023-10050-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023]
Abstract
Aging accompanied by several age-related complications, is a multifaceted inevitable biological progression involving various genetic, environmental, and lifestyle factors. The major factor in this process is oxidative stress, caused by an abundance of reactive oxygen species (ROS) generated in the mitochondria and endoplasmic reticulum (ER). ROS and RNS pose a threat by disrupting signaling mechanisms and causing oxidative damage to cellular components. This oxidative stress affects both the ER and mitochondria, causing proteopathies (abnormal protein aggregation), initiation of unfolded protein response, mitochondrial dysfunction, abnormal cellular senescence, ultimately leading to inflammaging (chronic inflammation associated with aging) and, in rare cases, metastasis. RONS during oxidative stress dysregulate multiple metabolic pathways like NF-κB, MAPK, Nrf-2/Keap-1/ARE and PI3K/Akt which may lead to inappropriate cell death through apoptosis and necrosis. Inflammaging contributes to the development of inflammatory and degenerative diseases such as neurodegenerative diseases, diabetes, cardiovascular disease, chronic kidney disease, and retinopathy. The body's antioxidant systems, sirtuins, autophagy, apoptosis, and biogenesis play a role in maintaining homeostasis, but they have limitations and cannot achieve an ideal state of balance. Certain interventions, such as calorie restriction, intermittent fasting, dietary habits, and regular exercise, have shown beneficial effects in counteracting the aging process. In addition, interventions like senotherapy (targeting senescent cells) and sirtuin-activating compounds (STACs) enhance autophagy and apoptosis for efficient removal of damaged oxidative products and organelles. Further, STACs enhance biogenesis for the regeneration of required organelles to maintain homeostasis. This review article explores the various aspects of oxidative damage, the associated complications, and potential strategies to mitigate these effects.
Collapse
Affiliation(s)
- Mani Raj Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Yogita Sharma
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Thokchom Arjun Singh
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Shweta Sharma
- Chitkara School of Health Sciences, Chitkara University, Chandigarh, Punjab, 140401, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
55
|
Soppert J, Brandt EF, Heussen NM, Barzakova E, Blank LM, Kuepfer L, Hornef MW, Trebicka J, Jankowski J, Berres ML, Noels H. Blood Endotoxin Levels as Biomarker of Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol 2023; 21:2746-2758. [PMID: 36470528 DOI: 10.1016/j.cgh.2022.11.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND & AIMS Growing evidence supports a role of gut-derived metabolites in nonalcoholic fatty liver disease (NAFLD), but the relation of endotoxin levels with gut permeability and NAFLD stage remains unclear. This systematic review with meta-analysis aims to provide further insights. METHODS PubMed, Embase, and Cochrane Library were searched for studies published until January 2022 assessing blood endotoxins in patients with NAFLD. Meta-analyses and univariate/multivariate meta-regression, as well as correlation analyses, were performed for endotoxin values and potential relationships to disease stage, age, sex, parameters of systemic inflammation, and metabolic syndrome, as well as liver function and histology. RESULTS Forty-three studies were included, of which 34 were used for meta-analyses. Blood endotoxin levels were higher in patients with simple steatosis vs liver-healthy controls (standardized mean difference, 0.86; 95% confidence interval, 0.62-1.11) as well as in patients with nonalcoholic steatohepatitis vs patients with nonalcoholic fatty liver/non-nonalcoholic steatohepatitis (standardized mean difference, 0.81; 95% confidence interval, 0.27-1.35; P = .0078). Consistently, higher endotoxin levels were observed in patients with more advanced histopathological gradings of liver steatosis and fibrosis. An increase of blood endotoxin levels was partially attributed to a body mass index rise in patients with NAFLD compared with controls. Nevertheless, significant increases of blood endotoxin levels in NAFLD retained after compensation for differences in body mass index, metabolic condition, or liver enzymes. Increases in blood endotoxin levels were associated with increases in C-reactive protein concentrations, and in most cases, paralleled a rise in markers for intestinal permeability. CONCLUSION Our results support blood endotoxin levels as relevant diagnostic biomarker for NAFLD, both for disease detection as well as staging during disease progression, and might serve as surrogate marker of enhanced intestinal permeability in NAFLD. Registration number in Prospero: CRD42022311166.
Collapse
Affiliation(s)
- Josefin Soppert
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Anesthesiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Elisa Fabiana Brandt
- Department of Internal Medicine III, University Hospital of Aachen, Aachen, Germany
| | - Nicole Maria Heussen
- Department of Medical Statistics, RWTH Aachen University, Aachen, Germany; Center of Biostatistics and Epidemiology, Medical School, Sigmund Freud University, Vienna, Austria
| | - Emona Barzakova
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Lars Mathias Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Lars Kuepfer
- Institute for Systems Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Jonel Trebicka
- Department of Internal Medicine B, University of Münster, Münster, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Marie-Luise Berres
- Department of Internal Medicine III, University Hospital of Aachen, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Site Aachen, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
56
|
Lee HB, Choi JH, Kim D, Lee KW, Ha SK, Lee SH, Park HY. Dietary N ε-(carboxymethyl)lysine is a trigger of non-alcoholic fatty liver disease under high-fat consumption. Food Chem Toxicol 2023; 180:114010. [PMID: 37652125 DOI: 10.1016/j.fct.2023.114010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
The irreversible glycation of proteins produces advanced glycation end products (AGEs) which are triggered to bind the receptor for AGE (RAGE), thereby activating mitogen-activated protein kinase/nuclear factor-κB signaling pathway and stimulating proinflammatory cytokines, ultimately leading to chronic disorders. In this study, we focus the promoting effect of Nε-carboxymethyl-lysine (CML), one of the most dietary AGEs, on non-alcoholic fatty liver disease (NAFLD) and evaluated NAFLD-related biomarkers. Oxidative stress and hepatic steatosis were assessed in oleic acid (OA)-induced HepG2 cells. Using OA-induced HepG2 cells, we show that CML results in oxidative stress and steatosis and drives major changes in hepatic lipid metabolism. Administration of CML exacerbated NAFLD-related symptoms by increasing body and liver weight gain, serum alanine aminotransferase and lipid levels, and insulin resistance in mild high-fat diet-induced mice. Moreover, hepatic histological analysis data, such as staining, western blotting, and RNA-seq, indicate that CML aggravates NAFLD in association with activation of the de novo lipogenesis pathway, consistent with the in vitro assays. Our findings could contribute to model studies related to the prevention and treatment of NAFLD progression due to excessive consumption of dietary AGEs.
Collapse
Affiliation(s)
- Hye-Bin Lee
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Ju Hyeong Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Donghwan Kim
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sang Keun Ha
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Sang-Hoon Lee
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Ho-Young Park
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
57
|
Saeki C, Saito M, Tsubota A. Plasma pentosidine as a useful biomarker of sarcopenia, low gait speed, and mortality in patients with cirrhosis. Front Med (Lausanne) 2023; 10:1212899. [PMID: 37780552 PMCID: PMC10541311 DOI: 10.3389/fmed.2023.1212899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Purpose The accumulation of advanced glycation end products (AGEs) is associated with various diseases and age-related impairments, including loss of muscle mass and function. We investigated the association between plasma pentosidine, which is one of the AGEs, and sarcopenia, low gait speed, and mortality in patients with cirrhosis. Methods This retrospective study divided 128 patients with cirrhosis into three groups by 25th and 75th quartiles of baseline plasma pentosidine levels: low (L)-, intermediate (I)-, and high (H)-pentosidine (Pen) groups. Sarcopenia was diagnosed following the Japan Society of Hepatology criteria. Low gait speed was defined as <0.8 m/s. The cumulative survival rates were compared between the three groups. Cox proportional hazards regression analysis was performed to identify independent factors associated with mortality. Results Of the 128 patients, 40 (31.3%) and 34 (26.6%) had sarcopenia and low gait speed, respectively. The prevalence of sarcopenia and low gait speed significantly increased stepwise with increasing plasma pentosidine levels, with the highest in the H-Pen group (59.4% [19/32] and 56.3% [18/32], respectively) and lowest in the L-Pen group (18.8% [6/32] and 6.3% [2/32], respectively). Multivariate analysis identified plasma pentosidine levels as a significant and independent factor associated with sarcopenia (odds ratio [OR], 1.07; p = 0.036) and low gait speed (OR, 1.06; p = 0.036), with the cutoff levels of 0.0792 μg/mL (sensitivity/specificity, 0.600/0.773) and 0.0745 μg/mL (sensitivity/specificity, 0.735/0.691), respectively. The cumulative survival rates were significantly lower in the H-Pen group than in the L-Pen (hazard ratio [HR], 11.7; p = 0.001) and I-Pen (HR, 4.03; p < 0.001) groups. Plasma pentosidine levels were identified as a significant and independent prognostic factor (HR, 1.07; p < 0.001). Conclusion Plasma pentosidine levels are associated with sarcopenia, low gait speed, and mortality and may serve as a useful surrogate biomarker for these clinical events in patients with cirrhosis.
Collapse
Affiliation(s)
- Chisato Saeki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
- Division of Gastroenterology, Department of Internal Medicine, Fuji City General Hospital, Fuji, Shizuoka, Japan
- Liver Disease Control Science, Graduate School of Organic Pathology and Therapeutics, The Jikei University School of Medicine, Tokyo, Japan
| | - Mitsuru Saito
- Department of Orthopedic Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Akihito Tsubota
- Liver Disease Control Science, Graduate School of Organic Pathology and Therapeutics, The Jikei University School of Medicine, Tokyo, Japan
- Project Research Units, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
58
|
Huang W, Shen B, Li X, Zhang T, Zhou X. Benefits of Combining Sonchus brachyotus DC. Extracts and Synbiotics in Alleviating Non-Alcoholic Fatty Liver Disease. Foods 2023; 12:3393. [PMID: 37761102 PMCID: PMC10530047 DOI: 10.3390/foods12183393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease, commonly abbreviated to NAFLD, is a pervasive ailment within the digestive system, exhibiting a rising prevalence, and impacting individuals at increasingly younger ages. Those afflicted by NAFLD face a heightened vulnerability to the onset of profound liver fibrosis, cardiovascular complications, and malignancies. Currently, NAFLD poses a significant threat to human health, and there is no approved therapeutic treatment for it. Recent studies have shown that synbiotics, which regulate intestinal microecology, can positively impact glucolipid metabolism, and improve NAFLD-related indicators. Sonchus brachyotus DC., a Chinese herb, exhibits hepatoprotective and potent antioxidant properties, suggesting its potential therapeutic use in NAFLD. Our preclinical animal model investigation suggests that the synergy between Sonchus brachyotus DC. extracts and synbiotics is significantly more effective in preventing and treating NAFLD, compared to the isolated use of either component. As a result, this combination holds the potential to introduce a fresh and encouraging therapeutic approach to addressing NAFLD.
Collapse
Affiliation(s)
- Wenwu Huang
- College of Life Sciences & Health, Wuhan University of Science & Technology, Wuhan 430065, China; (W.H.); (B.S.); (T.Z.)
| | - Boyuan Shen
- College of Life Sciences & Health, Wuhan University of Science & Technology, Wuhan 430065, China; (W.H.); (B.S.); (T.Z.)
| | - Xiumei Li
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research of CAAS, Beijing 100000, China;
| | - Tongcun Zhang
- College of Life Sciences & Health, Wuhan University of Science & Technology, Wuhan 430065, China; (W.H.); (B.S.); (T.Z.)
| | - Xiang Zhou
- College of Life Sciences & Health, Wuhan University of Science & Technology, Wuhan 430065, China; (W.H.); (B.S.); (T.Z.)
| |
Collapse
|
59
|
Zou H, Ma X, Zhang F, Xie Y. Comparison of the diagnostic performance of twelve noninvasive scores of metabolic dysfunction-associated fatty liver disease. Lipids Health Dis 2023; 22:145. [PMID: 37674196 PMCID: PMC10481547 DOI: 10.1186/s12944-023-01902-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND The absence of distinct symptoms in the majority of individuals with metabolic dysfunction-associated fatty liver disease (MAFLD) poses challenges in identifying those at high risk, so we need simple, efficient and cost-effective noninvasive scores to aid healthcare professionals in patient identification. While most noninvasive scores were developed for the diagnosis of nonalcoholic fatty liver disease (NAFLD), consequently, the objective of this study was to systematically assess the diagnostic ability of 12 noninvasive scores (METS-IR/TyG/TyG-WC/TyG-BMI/TyG-WtHR/VAI/HSI/FLI/ZJU/FSI/K-NAFLD) for MAFLD. METHODS The study recruited eligible participants from two sources: the National Health and Nutrition Examination Survey (NHANES) 2017-2020.3 cycle and the database of the West China Hospital Health Management Center. The performance of the model was assessed using various metrics, including area under the receiver operating characteristic curve (AUC), net reclassification index (NRI), integrated discrimination improvement (IDI), decision curve analysis (DCA), and subgroup analysis. RESULTS A total of 7398 participants from the NHANES cohort and 4880 patients from the Western China cohort were included. TyG-WC had the best predictive power for MAFLD risk in the NHANES cohort (AUC 0.863, 95% CI 0.855-0.871), while TyG-BMI had the best predictive ability in the Western China cohort (AUC 0.903, 95% CI 0.895-0.911), outperforming other models, and in terms of IDI, NRI, DCA, and subgroup analysis combined, TyG-WC remained superior in the NAHANES cohort and TyG-BMI in the Western China cohort. CONCLUSIONS TyG-BMI demonstrated satisfactory diagnostic efficacy in identifying individuals at a heightened risk of MAFLD in Western China. Conversely, TyG-WC exhibited the best diagnostic performance for MAFLD risk recognition in the United States population. These findings suggest the necessity of selecting the most suitable predictive models based on regional and ethnic variations.
Collapse
Affiliation(s)
- Haoxuan Zou
- Department of Gastroenterology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Xiaopu Ma
- Department of Gastroenterology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Fan Zhang
- Health Management Center, West China Hospital, General Practice Medical Center, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Yan Xie
- Department of Gastroenterology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
60
|
Harrison SA, Ratziu V, Magnanensi J, Hajji Y, Deledicque S, Majd Z, Rosenquist C, Hum DW, Staels B, Anstee QM, Sanyal AJ. NIS2+™, an optimisation of the blood-based biomarker NIS4® technology for the detection of at-risk NASH: A prospective derivation and validation study. J Hepatol 2023; 79:758-767. [PMID: 37224923 DOI: 10.1016/j.jhep.2023.04.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/17/2023] [Accepted: 04/06/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND & AIMS NIS4® is a blood-based non-invasive test designed to effectively rule in/rule out at-risk non-alcoholic steatohepatitis (NASH), defined as non-alcoholic fatty liver disease activity score ≥4 and significant fibrosis (stage ≥2), among patients with metabolic risk factors. Robustness of non-invasive test scores across characteristics of interest including age, type 2 diabetes mellitus, and sex, and optimised analytical aspects are critical for large-scale implementation in clinical practice. We developed and validated NIS2+™, an optimisation of NIS4®, specifically designed to improve score robustness. METHODS A well-balanced training cohort (n = 198) included patients from the GOLDEN-505 trial. The validation (n = 684) and test (n = 2,035) cohorts included patients from the RESOLVE-IT trial. Well-matched subgroups were created to avoid potential confounding effects during modelling and analysis of score robustness. Models were trained using logistic regressions for at-risk NASH detection and compared using Bayesian information criteria. Performance of NIS2+™ was compared with that of NIS4®, Fibrosis-4, and alanine aminotransferase using area under the receiver operating characteristic curve, and robustness was analysed through score distribution. RESULTS Using the training cohort to compare all combinations of NIS4® biomarkers, NIS2 (miR-34a-5p, YKL-40) was identified as the best combination of parameters. To correct for the sex effect on miR-34a-5p (validation cohort), sex and sex ∗ miR-34a-5p parameters were added, creating NIS2+™. In the test cohort, NIS2+™ exhibited a statistically higher area under the receiver operating characteristic curve (0.813) vs. NIS4® (0.792; p = 0.0002), Fibrosis-4 (0.653; p <0.0001), and alanine aminotransferase (0.699; p <0.0001). NIS2+™ scores were not affected by age, sex, BMI, or type 2 diabetes mellitus status, providing robust clinical performances irrespective of patient characteristics. CONCLUSION NIS2+™ constitutes a robust optimisation of NIS4® technology for the detection of at-risk NASH. IMPACT AND IMPLICATIONS The development of non-invasive tests for accurate, large-scale detection of patients with at-risk non-alcoholic steatohepatitis (NASH; defined as NASH with non-alcoholic fatty liver disease activity score ≥4 and fibrosis stage ≥2) - who are at higher risk for disease progression and for developing liver-related life-threatening outcomes - is critical for identifying this patient population in the clinical setting and improving the screening process of NASH clinical trials. We report the development and validation of NIS2+™, a diagnostic test designed as an optimisation of NIS4® technology, a blood-based panel currently used to detect at-risk NASH in patients with metabolic risk factors. NIS2+™ showed improved performance for the detection of at-risk NASH compared with NIS4® and other non-invasive liver tests that was not impacted by patients' characteristics of interest, such as age, sex, type 2 diabetes mellitus, BMI, dyslipidaemia, and hypertension. This makes NIS2+™ a robust and reliable tool for the diagnosis of at-risk NASH among patients with metabolic risk factors, and an effective candidate for large-scale implementation in clinical practice and clinical trials.
Collapse
Affiliation(s)
- Stephen A Harrison
- Summit Clinical Research, San Antonio, TX, USA; Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Vlad Ratziu
- Sorbonne Université, Institute for Cardiometabolism and Nutrition, Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | - Bart Staels
- Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Quentin M Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Newcastle NIHR Biomedical Research Centre, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle Upon Tyne, UK
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
61
|
Shu Y, Huang Y, Dong W, Fan X, Sun Y, Chen G, Zeng X, Ye H. The polysaccharides from Auricularia auricula alleviate non-alcoholic fatty liver disease via modulating gut microbiota and bile acids metabolism. Int J Biol Macromol 2023; 246:125662. [PMID: 37399869 DOI: 10.1016/j.ijbiomac.2023.125662] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
The polysaccharides from Auricularia auricula (AAPs), containing a large number of O-acetyl groups that are related to the physiological and biological properties, seem to be potential prebiotics like other edible fungus polysaccharides. In the present study, therefore, the alleviating effects of AAPs and deacetylated AAPs (DAAPs, prepared from AAPs by alkaline treatment) on nonalcoholic fatty liver disease (NAFLD) induced by high-fat and high-cholesterol diet combined with carbon tetrachloride were investigated. The results revealed that both AAPs and DAAPs could effectively relieve liver injury, inflammation and fibrosis, and maintain intestinal barrier function. Both AAPs and DAAPs could modulate the disorder of gut microbiota and altered the composition of gut microbiota with enrichment of Odoribacter, Lactobacillus, Dorea and Bifidobacterium. Further, the alteration of gut microbiota, especially enhancement of Lactobacillus and Bifidobacterium, was contributed to the changes of bile acids (BAs) profile with increased deoxycholic acid (DCA). Farnesoid X receptor could be activated by DCA and other unconjugated BAs, which participated the BAs metabolism and alleviated the cholestasis, then protected against hepatitis in NAFLD mice. Interestingly, it was found that the deacetylation of AAPs negatively affected the anti-inflammation, thereby reducing the health benefits of A. auricula-derived polysaccharides.
Collapse
Affiliation(s)
- Yifan Shu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yujie Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xia Fan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Hong Ye
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
62
|
Hegazi OE, Alalalmeh SO, Alnuaimi GRH, Shahwan M, Jairoun AA, Alorfi NM, Majrashi SA, Alkhanani MF, Alkhattabi A, Alourfi MM, Alsolami FA, Alsharif S, Alshahrani H. NAFLD and nutraceuticals: a review of completed phase III and IV clinical trials. Front Med (Lausanne) 2023; 10:1227046. [PMID: 37601777 PMCID: PMC10433184 DOI: 10.3389/fmed.2023.1227046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023] Open
Abstract
Background Nonalcoholic Fatty Liver Disease (NAFLD) has become a significant public health concern, affecting approximately one-fourth of the population. Despite its prevalence, no FDA-approved drug treatments specifically target NAFLD. Aim To provide a review of clinical trials investigating the use of herbal remedies and dietary supplements in NAFLD management, utilizing the ClinicalTrials.gov database. Methods This review evaluates the current evidence by examining completed phase III and IV clinical trials registered on ClinicalTrials.gov. An exhaustive search was performed on April 17, 2023, using the terms "Nonalcoholic Fatty Liver Disease" and "NAFLD." Two independent reviewers appraised eligible trials based on pre-defined inclusion and exclusion criteria. Results An initial search yielded 1,226 clinical trials, with 12 meeting the inclusion criteria after filtration. The majority of trials focused on Omega-3 fatty acids (20.0%) and vitamin D (26.7%), followed by caffeine, chlorogenic acid, ginger, phosphatidylcholine, Trigonella Foenum-graecum seed extract, vitamin C, and vitamin E (each 6.7%). Most studies were Phase 3 (75.0%) and used a parallel assignment model (91.7%). Quadruple masking was the most prevalent technique (58.3%), and Iran was the leading country in terms of trial locations (25.0%). These interventions constitute two herbal interventions and nine supplement interventions. Conclusion This reveals a diverse range of nutraceuticals, with Omega-3 fatty acids and vitamin D being predominant in the management of NAFLD. The global distribution of trials highlights the widespread interest in these therapeutics. However, more rigorous, large-scale trials are needed to establish safety, efficacy, and optimal dosages.
Collapse
Affiliation(s)
- Omar E. Hegazi
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Samer O. Alalalmeh
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Ghala Rashid Humaid Alnuaimi
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Moyad Shahwan
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Ammar Abdulrahman Jairoun
- Health and Safety Department, Dubai Municipality, Dubai, United Arab Emirates
- School of Pharmaceutical Sciences, University Sains Malaysia (USM), Pulau Pinang, Malaysia
| | - Nasser M. Alorfi
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shaker A. Majrashi
- Department of Laparoscopic Surgery, King Fahad Hospital, Ministry of Health, Jeddah, Saudi Arabia
| | - Mustfa Faisal Alkhanani
- Biology Department, College of Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | | | - Mansour M. Alourfi
- Department of Gastroenterology, East Jeddah Hospital, Jeddah, Saudi Arabia
- Internal Medicine Department, King Faisal Medical City for Southern Region, Abha, Saudi Arabia
| | - Faris A. Alsolami
- Khulais General Hospital, Makkah cluster, Ministry of Health, Makkah, Saudi Arabia
| | - Saeed Alsharif
- Gastroenterology Department, Armed force hospital of Southern region, Khamis Mushait, Saudi Arabia
| | - Hatim Alshahrani
- Internal medicine Department, Khamis Mushait General hospital, Khamis Mushait, Saudi Arabia
| |
Collapse
|
63
|
Gong Y, Liu Z, Zhang Y, Zhang J, Zheng Y, Wu Z. AGER1 deficiency-triggered ferroptosis drives fibrosis progression in nonalcoholic steatohepatitis with type 2 diabetes mellitus. Cell Death Discov 2023; 9:178. [PMID: 37280194 DOI: 10.1038/s41420-023-01477-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
Hyperglycemia is an independent risk factor for the rapid progression of nonalcoholic steatohepatitis (NASH) to liver fibrosis with an incompletely defined mechanism. Ferroptosis is a novel form of programmed cell death that has been identified as a pathogenic mechanism in various diseases. However, the role of ferroptosis in the development of liver fibrosis in NASH with type 2 diabetes mellitus (T2DM) is unclear. Here, we observed the histopathological features of the progression of NASH to liver fibrosis as well as hepatocyte epithelial-mesenchymal transition (EMT) in a mouse model of NASH with T2DM and high-glucose-cultured steatotic human normal liver (LO2) cells. The distinctive features of ferroptosis, including iron overload, decreased antioxidant capacity, the accumulation of reactive oxygen species, and elevated lipid peroxidation products, were confirmed in vivo and in vitro. Liver fibrosis and hepatocyte EMT were markedly alleviated after treatment with the ferroptosis inhibitor ferrostatin-1. Furthermore, a decrease in the gene and protein levels of AGE receptor 1 (AGER1) was detected in the transition from NASH to liver fibrosis. Overexpression of AGER1 dramatically reversed hepatocyte EMT in high-glucose-cultured steatotic LO2 cells, whereas the knockdown of AGER1 had the opposite effect. The mechanisms underlying the phenotype appear to be associated with the inhibitory effects of AGER1 on ferroptosis, which is dependent on the regulation of sirtuin 4. Finally, in vivo adeno-associated virus-mediated AGER1 overexpression effectively relieved liver fibrosis in a murine model. Collectively, these findings suggest that ferroptosis participates in the pathogenesis of liver fibrosis in NASH with T2DM by promoting hepatocyte EMT. AGER1 could reverse hepatocyte EMT to ameliorate liver fibrosis by inhibiting ferroptosis. The results also suggest that AGER1 may be a potential therapeutic target for the treatment of liver fibrosis in patients with NASH with T2DM. Chronic hyperglycemia is associated with increased advanced glycation end products, resulting in the downregulation of AGER1. AGER1 deficiency downregulates Sirt4, which disturbs key regulators of ferroptosis (TFR-1, FTH, GPX4, and SLC7A11). These lead to increased iron uptake, decreasing the antioxidative capacity and enhanced lipid ROS production, ultimately leading to ferroptosis, which further promotes hepatocyte epithelial-mesenchymal transition and fibrosis progression in NASH with T2DM.
Collapse
Affiliation(s)
- Yihui Gong
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Zijun Liu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yuanyuan Zhang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Jun Zhang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yin Zheng
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China.
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China.
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
64
|
Schneider LJ, Santiago I, Johnson B, Stanley AH, Penaredondo B, Lund AK. Histological features of non-alcoholic fatty liver disease revealed in response to mixed vehicle emission exposure and consumption of a high-fat diet in wildtype C57Bl/6 male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115094. [PMID: 37285676 DOI: 10.1016/j.ecoenv.2023.115094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/10/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently plaguing the population at pandemic proportions and is expected to become more prevalent over the next decade. Recent epidemiological studies have demonstrated a correlation between the manifestation of NAFLD and ambient air pollution levels, which is exacerbated by other risk factors, such as diabetes, dyslipidemia, obesity, and hypertension. Exposure to airborne particulate matter has also been associated with inflammation, hepatic lipid accumulation, oxidative stress, fibrosis, and hepatocyte injury. While prolonged consumption of a high-fat (HF) diet is associated with NAFLD, little is known regarding the effects of inhaled traffic-generated air pollution, a ubiquitous environmental pollutant, on the pathogenesis of NAFLD. Therefore, we investigated the hypothesis that exposure to a mixture of gasoline and diesel engine emissions (MVE), coupled with the concurrent consumption of a HF diet, promotes the development of a NAFLD phenotype within the liver. Three-month-old male C57Bl/6 mice were placed on either a low-fat or HF diet and exposed via whole-body inhalation to either filtered (FA) air or MVE (30 µg PM/m3 gasoline engine emissions + 70 µg PM/m3 diesel engine emissions) 6 hr/day for 30 days. Histology revealed mild microvesicular steatosis and hepatocyte hypertrophy in response to MVE exposure alone, compared to FA controls, yielding a classification of "borderline NASH" under the criteria of the modified NAFLD active score (NAS) system. As anticipated, animals on a HF diet exhibited moderate steatosis; however, we also observed inflammatory infiltrates, hepatocyte hypertrophy, and increased lipid accumulation, with the combined effect of HF diet and MVE exposure. Our results indicate that inhalation exposure to traffic-generated air pollution initiates hepatocyte injury and further exacerbates lipid accumulation and hepatocyte injury induced by the consumption of a HF diet, thereby contributing to the progression of NAFLD-related pathologies.
Collapse
Affiliation(s)
- Leah J Schneider
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Isabella Santiago
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Bailee Johnson
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Analana Hays Stanley
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Bea Penaredondo
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Amie K Lund
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA.
| |
Collapse
|
65
|
Amontree M, Deasy S, Turner RS, Conant K. Matrix disequilibrium in Alzheimer's disease and conditions that increase Alzheimer's disease risk. Front Neurosci 2023; 17:1188065. [PMID: 37304012 PMCID: PMC10250680 DOI: 10.3389/fnins.2023.1188065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/20/2023] [Indexed: 06/13/2023] Open
Abstract
Alzheimer's Disease (AD) and related dementias are a leading cause of death globally and are predicted to increase in prevalence. Despite this expected increase in the prevalence of AD, we have yet to elucidate the causality of the neurodegeneration observed in AD and we lack effective therapeutics to combat the progressive neuronal loss. Throughout the past 30 years, several non-mutually exclusive hypotheses have arisen to explain the causative pathologies in AD: amyloid cascade, hyper-phosphorylated tau accumulation, cholinergic loss, chronic neuroinflammation, oxidative stress, and mitochondrial and cerebrovascular dysfunction. Published studies in this field have also focused on changes in neuronal extracellular matrix (ECM), which is critical to synaptic formation, function, and stability. Two of the greatest non-modifiable risk factors for development of AD (aside from autosomal dominant familial AD gene mutations) are aging and APOE status, and two of the greatest modifiable risk factors for AD and related dementias are untreated major depressive disorder (MDD) and obesity. Indeed, the risk of developing AD doubles for every 5 years after ≥ 65, and the APOE4 allele increases AD risk with the greatest risk in homozygous APOE4 carriers. In this review, we will describe mechanisms by which excess ECM accumulation may contribute to AD pathology and discuss pathological ECM alterations that occur in AD as well as conditions that increase the AD risk. We will discuss the relationship of AD risk factors to chronic central nervous system and peripheral inflammation and detail ECM changes that may follow. In addition, we will discuss recent data our lab has obtained on ECM components and effectors in APOE4/4 and APOE3/3 expressing murine brain lysates, as well as human cerebrospinal fluid (CSF) samples from APOE3 and APOE4 expressing AD individuals. We will describe the principal molecules that function in ECM turnover as well as abnormalities in these molecular systems that have been observed in AD. Finally, we will communicate therapeutic interventions that have the potential to modulate ECM deposition and turnover in vivo.
Collapse
Affiliation(s)
- Matthew Amontree
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Samantha Deasy
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - R. Scott Turner
- Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
| | - Katherine Conant
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
66
|
Jahromi MK, Tehrani AN, Teymoori F, Daftari G, Ahmadirad H, Saber N, Salehi-Sahlabadi A, Farhadnejad H, Mirmiran P. Dietary advanced glycation end products are associated with an increased risk of non-alcoholic fatty liver disease in Iranian adults. BMC Endocr Disord 2023; 23:111. [PMID: 37202817 DOI: 10.1186/s12902-023-01365-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/09/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Dietary advanced glycation end products(AGEs) may contribute to increased inflammation and oxidative stress as risk factors for chronic diseases such as liver disease. In the current study, we aimed to examine the possible association of dietary AGEs with the odds of non-alcoholic fatty liver disease (NAFLD) in Iranian adults. METHODS A total of 675 participants (225 newly diagnosed NAFLD cases and 450 controls), aged 20-60 years, were recruited for this case-control study. Nutritional data were measured using a validated food frequency questionnaire, and dietary AGEs were determined for all participants. An ultrasound scan of the liver performed the detection of NAFLD in participants of the case group without alcohol consumption and other causes of hepatic disorders. We used logistic regression models, adjusted for potential confounders, to estimate the odds ratios(ORs) and 95% confidence interval(CI) of NAFLD across tertiles of dietary AGEs. RESULTS Mean ± SD age and body mass index of the participants were 38.13 ± 8.85 years and 26.85 ± 4.31 kg/m2, respectively. The median(IQR) of dietary AGEs in participants was 3262(2472-4301). In the sex and age-adjusted model, the odds of NAFLD were increased across tertiles of dietary AGEs intake(OR:16.48;95%CI:9.57-28.40, Ptrend<0.001). Also, in the final model, after controlling for confounding effects of BMI, smoking, physical activity, marital status, socio-economic status, and energy intake, the odds of NAFLD were increased across tertiles of dietary AGEs intake(OR:12.16; 95%CI:6.06-24.39, Ptrend<0.001). CONCLUSION Our results showed that greater adherence to dietary pattern with high dietary AGEs intake was significantly related to increased odds of NAFLD.
Collapse
Affiliation(s)
- Mitra Kazemi Jahromi
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Asal Neshatbini Tehrani
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farshad Teymoori
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Ghazal Daftari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Ahmadirad
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Saber
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ammar Salehi-Sahlabadi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Farhadnejad
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
67
|
Tay PWL, Ng CH, Lin SY, Chin YH, Xiao J, Lim WH, Lim SY, Fu CE, Chan KE, Quek J, Tan DJH, Chew N, Syn N, Keitoku T, Tamaki N, Siddiqui MS, Noureddin M, Muthiah M, Huang DQ, Loomba R. Placebo Adverse Events in Non-alcoholic Steatohepatitis Clinical Trials: A Pooled Analysis of 2,944 Participants. Am J Gastroenterol 2023; 118:645-653. [PMID: 36191268 PMCID: PMC10792533 DOI: 10.14309/ajg.0000000000002042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/17/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION In the absence of an effective treatment for non-alcoholic steatohepatitis (NASH), a randomized, placebo-controlled trial (RCT) remains the current gold standard study design in NASH. As NASH is a largely asymptomatic disease, the side effects of potential therapies require careful evaluation, therefore a pooled rate of the adverse events (AEs) in placebo-treated patients serves as a useful comparator for safety. Therefore, we performed a systematic review and meta-analysis to estimate the rate of AEs among participants in the placebo arm of NASH RCTs. METHODS Medline, Embase and Cochrane Central Register of Controlled Trials were searched to include clinical trials in phase 2-4 NASH RCTs with placebo treatment arms. A pooled proportions of AEs were analyzed using a generalized linear mixed model with Clopper-Pearson intervals. RESULTS A total of 41 RCTs (2,944 participants on placebo) were included in this meta-analysis. A total of 68% (confidence interval [CI] 55%-77%) of participants on placebo experienced an AE, 7.8% (5.7%-10%) experienced serious AEs and 3.1% (CI: 1.9%-5.1%) experienced AEs leading to discontinuation. A significantly higher proportion of participants experienced serious AEs in phase 3 studies compared to in phase 2 studies ( P < 0.01) and in pharmaceutical funded studies as compared to studies which were federal-funded studies ( P < 0.01). An analysis of clinical trials evaluating bile acid modulating agents determined that 10% (CI: 5.5%-18%) of participants receiving placebo developed pruritus. DISCUSSION The present study summarizes the AEs with NASH placebo. Among participants in the placebo arm in NASH, two-third experienced an AE, and nearly 10% experienced a serious AE.
Collapse
Affiliation(s)
- Phoebe Wen Lin Tay
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Snow Yunni Lin
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yip Han Chin
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jieling Xiao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wen Hui Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sze Yinn Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Clarissa Elysia Fu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kai En Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jingxuan Quek
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Darren Jun Hao Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nicholas Chew
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore
| | - Nicholas Syn
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Taisei Keitoku
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Nobuharu Tamaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Mohammad Shadab Siddiqui
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mazen Noureddin
- Cedars-Sinai Fatty Liver Program, Division of Digestive and Liver Diseases, Department of Medicine, Comprehensive Transplant Center, Cedars-Sinai Medical Centre, Los Angeles, California, USA
| | - Mark Muthiah
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore
| | - Daniel Q. Huang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, California, USA
| |
Collapse
|
68
|
Yang JH, Byeon EH, Kang D, Hong SG, Yang J, Kim DR, Yun SP, Park SW, Kim HJ, Huh JW, Kim SY, Kim YW, Lee DK. Fermented Soybean Paste Attenuates Biogenic Amine-Induced Liver Damage in Obese Mice. Cells 2023; 12:cells12050822. [PMID: 36899958 PMCID: PMC10000487 DOI: 10.3390/cells12050822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Biogenic amines are cellular components produced by the decarboxylation of amino acids; however, excessive biogenic amine production causes adverse health problems. The relationship between hepatic damage and biogenic amine levels in nonalcoholic fatty liver disease (NAFLD) remains unclear. In this study, mice were fed a high-fat diet (HFD) for 10 weeks to induce obesity, presenting early-stage of NAFLD. We administered histamine (20 mg/kg) + tyramine (100 mg/kg) via oral gavage for 6 days to mice with HFD-induced early-stage NAFLD. The results showed that combined histamine and tyramine administration increased cleaved PARP-1 and IL-1β in the liver, as well as MAO-A, total MAO, CRP, and AST/ALT levels. In contrast, the survival rate decreased in HFD-induced NAFLD mice. Treatment with manufactured or traditional fermented soybean paste decreased biogenically elevated hepatic cleaved PARP-1 and IL-1β expression and blood plasma MAO-A, CRP, and AST/ALT levels in HFD-induced NAFLD mice. Additionally, the biogenic amine-induced reduction in survival rate was alleviated by fermented soybean paste in HFD-induced NAFLD mice. These results show that biogenic amine-induced liver damage can be exacerbated by obesity and may adversely affect life conservation. However, fermented soybean paste can reduce biogenic amine-induced liver damage in NAFLD mice. These results suggest a beneficial effect of fermented soybean paste on biogenic amine-induced liver damage and provide a new research perspective on the relationship between biogenic amines and obesity.
Collapse
Affiliation(s)
- Ju-Hwan Yang
- Department of Physiology and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
| | - Eun-Hye Byeon
- Department of Physiology and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
| | - Dawon Kang
- Department of Physiology and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
| | - Seong-Geun Hong
- Department of Physiology and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
| | - Jinsung Yang
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
| | - Deok-Ryong Kim
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
| | - Seung-Pil Yun
- Department of Pharmacology and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
| | - Sang-Won Park
- Department of Pharmacology and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
| | - Hyun-Joon Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - So-Yong Kim
- Fermented and Processed Food Science Division, National Institute of Agricultural Sciences, Wanju-Gun 55365, Republic of Korea
| | - Young-Wan Kim
- Department of Food Science and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Dong-Kun Lee
- Department of Physiology and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju 52727, Republic of Korea
- Correspondence:
| |
Collapse
|
69
|
Son H, Koo BK, Joo SK, Lee DH, Jang H, Park JH, Chang MS, Kim W. PNPLA3 genotypes modify the adverse effect of the total energy intake on high-risk nonalcoholic steatohepatitis development. Am J Clin Nutr 2023; 117:910-917. [PMID: 36878430 DOI: 10.1016/j.ajcnut.2023.02.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/07/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND The relationship between diet and risk genotypes in nonalcoholic steatohepatitis (NASH) development and fibrosis progression in patients with nonalcoholic fatty liver disease (NAFLD) remains unclear. OBJECTIVE We aimed to investigate the effects of diet on NASH development and fibrosis progression in patients with NAFLD stratified by the PNPLA3 genotype. METHODS We performed a prospective study in a cohort of patients with biopsy-confirmed NAFLD. Histologic deterioration was obtained using serial transient elastography at every 1 or 2 y. The primary outcome was fibrosis progression, and the secondary outcome was development of high-risk NASH, defined as FibroScan-aspartate aminotransferase score ≥0.67 during the follow-up of patients with nonalcoholic fatty liver at the baseline. Dietary intake was evaluated using a semiquantitative food frequency questionnaire. RESULTS The primary outcome was observed in 42 (29.0%) of the 145 patients during a median follow-up of 49 mo; neither the total energy intake nor each macronutrient intake significantly affected the primary outcome occurrence. Conversely, the total energy intake (HR per 1-SD: 3.03; 95% CI: 1.31, 7.01) and the PNPLA3 rs738409 genotype [HR per 1 risk allele (G): 2.06; 95% CI: 1.11, 3.83)] were independent risk factors for high-risk NASH. The significant interaction between the total energy intake and PNPLA3 genotype was noted in developing high-risk NASH (P = 0.044). As the number of PNPLA3 risk alleles decreased, the effect of the total energy intake on high-risk NASH increased; the HR per 1-SD increment in total energy intake was 1.52 (95% CI: 0.42, 5.42), 3.54 (95% CI: 1.23, 10.18), and 8.27 (95% CI: 1.20, 57.23) for the GG, CG, and CC genotypes, respectively. CONCLUSIONS The total energy intake adversely affected the development of high-risk NASH in patients with biopsy-confirmed NAFLD. The effect was more prominent in patients without the PNPLA3 risk allele, highlighting the importance of personalized dietary interventions in NAFLD treatment.
Collapse
Affiliation(s)
- Heejun Son
- Division of Endocrinology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Bo Kyung Koo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea; Division of Endocrinology, Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
| | - Sae Kyung Joo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
| | - Dong Hyeon Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
| | - Heejoon Jang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
| | - Jeong Hwan Park
- Department of Pathology, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
| | - Mee Soo Chang
- Department of Pathology, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
| | - Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea.
| |
Collapse
|
70
|
Sharifi S, Bagherniya M, Khoram Z, Ebrahimi Varzaneh A, Atkin SL, Jamialahmadi T, Sahebkar A, Askari G. Efficacy of curcumin plus piperine co-supplementation in moderate-to-high hepatic steatosis: A double-blind, randomized, placebo-controlled clinical trial. Phytother Res 2023. [PMID: 36799355 DOI: 10.1002/ptr.7764] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 02/18/2023]
Abstract
Non-alcoholic Fatty Liver Disease (NAFLD) is a global health problem that can progress to steatohepatitis and cirrhosis. The aim of this study was to determine the effect of curcumin + piperine on cardiometabolic risk factors, as well as hepatic steatosis and fibrosis in NAFLD patients with moderate-to-high hepatic steatosis. Patients diagnosed with moderate-to-high NAFLD by liver sonography were randomized to either curcumin + piperine (500 mg/day curcumin plus 5 mg/day piperine) for 12 weeks (n = 30) or placebo groups (n = 30). Liver fibroscan, anthropometric measurements, dietary intake, physical activity, blood pressure, lipid profile, high-sensitivity C-reactive protein, fasting blood glucose (FBG), and liver enzymes were assessed at baseline and after 12 weeks of follow-up. Intention-to-treat analysis was undertaken. Curcumin + piperine decreased waist circumference (p = 0.026), systolic blood pressure (p = 0.001), total cholesterol (p = 0.004), low-density lipoprotein-cholesterol (p = 0.006), FBG (p = 0.002), alanine transaminase (p = 0.007) and aspartate transaminase (p = 0.012) compared with placebo. However, fibroscan measurement did not differ between curcumin + piperine and placebo groups (p > 0.05). Fibroscan measurement as a marker of NAFLD improvement did not differ after 12 weeks of curcumin + piperine; however, curcumin + piperine may be considered as an adjunct therapy to improve anthropometric measures, blood pressure, lipid profile, blood glucose, and liver function in NAFLD patients.
Collapse
Affiliation(s)
- Shima Sharifi
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ziba Khoram
- Gastroenterology and Hepatology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Stephen L Atkin
- School of Postgraduate Studies and Research, RCSI Medical University of Bahrain, Busaiteen, Bahrain
| | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
71
|
Constantino-Jonapa LA, Espinoza-Palacios Y, Escalona-Montaño AR, Hernández-Ruiz P, Amezcua-Guerra LM, Amedei A, Aguirre-García MM. Contribution of Trimethylamine N-Oxide (TMAO) to Chronic Inflammatory and Degenerative Diseases. Biomedicines 2023; 11:biomedicines11020431. [PMID: 36830968 PMCID: PMC9952918 DOI: 10.3390/biomedicines11020431] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Trimethylamine N-oxide (TMAO) is a metabolite produced by the gut microbiota and has been mainly associated with an increased incidence of cardiovascular diseases (CVDs) in humans. There are factors that affect one's TMAO level, such as diet, drugs, age, and hormones, among others. Gut dysbiosis in the host has been studied recently as a new approach to understanding chronic inflammatory and degenerative diseases, including cardiovascular diseases, metabolic diseases, and Alzheimer's disease. These disease types as well as COVID-19 are known to modulate host immunity. Diabetic and obese patients have been observed to have an increase in their level of TMAO, which has a direct correlation with CVDs. This metabolite is attributed to enhancing the inflammatory pathways through cholesterol and bile acid dysregulation, promoting foam cell formation. Additionally, TMAO activates the transcription factor NF-κB, which, in turn, triggers cytokine production. The result can be an exaggerated inflammatory response capable of inducing endoplasmic reticulum stress, which is responsible for various diseases. Due to the deleterious effects that this metabolite causes in its host, it is important to search for new therapeutic agents that allow a reduction in the TMAO levels of patients and that, thus, allow patients to be able to avoid a severe cardiovascular event. The present review discussed the synthesis of TMAO and its contribution to the pathogenesis of various inflammatory diseases.
Collapse
Affiliation(s)
- Luis A. Constantino-Jonapa
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Yoshua Espinoza-Palacios
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Alma R. Escalona-Montaño
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Paulina Hernández-Ruiz
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Luis M. Amezcua-Guerra
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| | - María M. Aguirre-García
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
- Correspondence: ; Tel.: +52-55-5573-2911 (ext. 27316)
| |
Collapse
|
72
|
Chen Q, Lou Y. G protein-coupled receptor 39 alleviates mitochondrial dysfunction and hepatocyte lipid accumulation via SIRT1/Nrf2 signaling. J Bioenerg Biomembr 2023; 55:33-42. [PMID: 36525212 DOI: 10.1007/s10863-022-09953-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Data in the GEO database (GSE63067) showed that G protein-coupled receptor 39 (GPR39) was down-regulated in tissues from patients with non-alcoholic fatty liver disease (NAFLD). It was intended to explore the mechanism of GPR39 in NAFLD. METHODS HepG2 cells were treated with a mixture of oleic acid and palmitic acid (OA/PA) to mimic NAFLD cell models. The level of GPR39 and the functions of GPR39 on cellular oxidative stress, lipid accumulation, the SIRT1/Nrf2 signaling and mitochondrial dysfunction were assessed. To verify the mediation of the SIRT1 signaling pathway in GPR39 regulation, cells were subjected to SIRT1 inhibitor EX-527 treatment. Afterwards, the abovementioned aspects of cells were all determined. RESULTS GPR39 presented a downward trend in response to OA/PA. GPR39 overexpression could suppress oxidative stress, lipid accumulation and activate the SIRT1/Nrf2 signaling. GPR39 overexpression likewise alleviated mitochondrial dysfunction, whereas EX-527 treatment disturbed the effects of GPR39 overexpression on these aspects. CONCLUSION The present study found that GPR39 reduced oxidative stress and maintained mitochondrial homeostasis in a cellular model of NAFLD, a process mediated by SIRT1/Nrf2 signaling.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Gastroenterology, Sanmen County People's Hospital, 15 Taihe Road, Hairun Street, 317100, Taizhou, Zhejiang, China.
| | - Yifeng Lou
- Department of Infection, Sanmen County People's Hospital, 317100, Taizhou, Zhejiang, China
| |
Collapse
|
73
|
Terpenoids: Natural Compounds for Non-Alcoholic Fatty Liver Disease (NAFLD) Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010272. [PMID: 36615471 PMCID: PMC9822439 DOI: 10.3390/molecules28010272] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
Natural products have been the most productive source for the development of drugs. Terpenoids are a class of natural active products with a wide range of pharmacological activities and therapeutic effects, which can be used to treat a variety of diseases. Non-alcoholic fatty liver disease (NAFLD), a common metabolic disorder worldwide, results in a health burden and economic problems. A literature search was conducted to obtain information relevant to the treatment of NAFLD with terpenoids using electronic databases, namely PubMed, Web of Science, Science Direct, and Springer, for the period 2011-2021. In total, we found 43 terpenoids used in the treatment of NAFLD. Over a dozen terpenoid compounds of natural origin were classified into five categories according to their structure: monoterpenoids, sesquiterpenoids, diterpenoids, triterpenoids, and tetraterpenoids. We found that terpenoids play a therapeutic role in NAFLD, mainly by regulating lipid metabolism disorder, insulin resistance, oxidative stress, and inflammation. The AMPK, PPARs, Nrf-2, and SIRT 1 pathways are the main targets for terpenoid treatment. Terpenoids are promising drugs and will potentially create more opportunities for the treatment of NAFLD. However, current studies are restricted to animal and cell experiments, with a lack of clinical research and systematic structure-activity relationship (SAR) studies. In the future, we should further enrich the research on the mechanism of terpenoids, and carry out SAR studies and clinical research, which will increase the likelihood of breakthrough insights in the field.
Collapse
|
74
|
Onyango AN. Excessive gluconeogenesis causes the hepatic insulin resistance paradox and its sequelae. Heliyon 2022; 8:e12294. [PMID: 36582692 PMCID: PMC9792795 DOI: 10.1016/j.heliyon.2022.e12294] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Background Hepatic insulin signaling suppresses gluconeogenesis but promotes de novo lipid synthesis. Paradoxically, hepatic insulin resistance (HIR) enhances both gluconeogenesis and de novo lipid synthesis. Elucidation of the etiology of this paradox, which participates in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), cardiovascular disease, the metabolic syndrome and hepatocellular carcinoma, has not been fully achieved. Scope of review This article briefly outlines the previously proposed hypotheses on the etiology of the HIR paradox. It then discusses literature consistent with an alternative hypothesis that excessive gluconeogenesis, the direct effect of HIR, is responsible for the aberrant lipogenesis. The mechanisms involved therein are explained, involving de novo synthesis of fructose and uric acid, promotion of glutamine anaplerosis, and induction of glucagon resistance. Thus, gluconeogenesis via lipogenesis promotes hepatic steatosis, a component of NAFLD, and dyslipidemia. Gluconeogenesis-centred mechanisms for the progression of NAFLD from simple steatosis to non-alcoholic steatohepatitis (NASH) and fibrosis are suggested. That NAFLD often precedes and predicts type 2 diabetes is explained by the ability of lipogenesis to cushion against blood glucose dysregulation in the earlier stages of NAFLD. Major conclusions HIR-induced excessive gluconeogenesis is a major cause of the HIR paradox and its sequelae. Such involvement of gluconeogenesis in lipid synthesis rationalizes the fact that several types of antidiabetic drugs ameliorate NAFLD. Thus, dietary, lifestyle and pharmacological targeting of HIR and hepatic gluconeogenesis may be a most viable approach for the prevention and management of the HIR-associated network of diseases.
Collapse
|
75
|
Litwinowicz K, Waszczuk E, Kuzan A, Bronowicka-Szydełko A, Gostomska-Pampuch K, Naporowski P, Gamian A. Alcoholic Liver Disease Is Associated with Elevated Plasma Levels of Novel Advanced Glycation End-Products: A Preliminary Study. Nutrients 2022; 14:nu14245266. [PMID: 36558425 PMCID: PMC9783524 DOI: 10.3390/nu14245266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Elucidating the biochemical mechanisms associated with the progression of alcoholic liver disease (ALD) to more advanced stages such as alcoholic hepatitis (AH) remains an important clinical and scientific challenge. Several hypotheses point to the involvement of advanced glycation end-products (AGEs) in alcohol-associated liver injuries. Recently, we determined the structure of a synthetic, melibiose-derived AGE (MAGE), which was an analog of the novel AGE subgroup AGE10. The primary objective of our study was to determine whether AGE10 was associated with alcoholic hepatitis. The secondary objective was to provide a diagnostic accuracy of AGE10 in AH. To achieve this objective, we examined the plasma levels of AGE10 in 65 healthy individuals and 65 patients with AH. The AGE10 level was measured using a competitive ELISA. Our study confirmed that patients with AH had significantly higher plasma concentrations of AGE10 compared with healthy controls (184.5 ± 71.1 μg/mL and 123.5 ± 44.9 μg/mL, respectively; p < 0.001). In addition, AGE10 showed an acceptable performance as a diagnostic marker of AH, with an AUC of 0.78. In conclusion, AH was associated with elevated levels of novel advanced glycation end-product AGE10.
Collapse
Affiliation(s)
- Kamil Litwinowicz
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Correspondence:
| | - Ewa Waszczuk
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, 50-566 Wroclaw, Poland
| | - Aleksandra Kuzan
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | | | - Kinga Gostomska-Pampuch
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Piotr Naporowski
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| |
Collapse
|
76
|
Yepmo M, Potier JB, Pinget M, Grabarz A, Bouzakri K, Dumond Bourie A. Discussing the role of circular RNA in the pathogenesis of non-alcoholic fatty liver disease and its complications. Front Endocrinol (Lausanne) 2022; 13:1035159. [PMID: 36407314 PMCID: PMC9667057 DOI: 10.3389/fendo.2022.1035159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023] Open
Abstract
Circular RNAs (circRNAs) are class of non-coding RNA, which are characterized by a covalently closed loop structure. Functionally they can act on cellular physiology, notably by sponging microRNAs (miR), regulating gene expression or interacting with binding protein. To date, circRNAs might represent an interesting, underexploited avenue for new target discovery for therapeutic applications, especially in the liver. The first characteristic of non-alcoholic fatty liver disease (NAFLD) is hepatic cholesterol accumulation, followed by its advanced form of the affection, nonalcoholic steatohepatitis (NASH), due to the occurrence of lobular inflammation, irreversible fibrosis, and in some cases hepatocellular carcinoma (HCC). Therefore, studies have investigated the importance of the dysregulation of circRNAs in the onset of metabolic disorders. In this review, we summarize the potential role of circRNAs in the development of metabolic diseases associated with the liver such as NAFLD or NASH, and their potential to become therapeutic strategies for these pathologies.
Collapse
Affiliation(s)
- Melissa Yepmo
- Centre européen d’étude du Diabète, Unité Mixte de Recherche de l’Université de Strasbourg « Diabète et Thérapeutique », Strasbourg, France
| | - Jean-Baptiste Potier
- Centre européen d’étude du Diabète, Unité Mixte de Recherche de l’Université de Strasbourg « Diabète et Thérapeutique », Strasbourg, France
- ILONOV, Strasbourg, France
| | - Michel Pinget
- Centre européen d’étude du Diabète, Unité Mixte de Recherche de l’Université de Strasbourg « Diabète et Thérapeutique », Strasbourg, France
| | | | - Karim Bouzakri
- Centre européen d’étude du Diabète, Unité Mixte de Recherche de l’Université de Strasbourg « Diabète et Thérapeutique », Strasbourg, France
- ILONOV, Strasbourg, France
| | - Aurore Dumond Bourie
- Centre européen d’étude du Diabète, Unité Mixte de Recherche de l’Université de Strasbourg « Diabète et Thérapeutique », Strasbourg, France
| |
Collapse
|
77
|
Moulahoum H, Ghorbanizamani F, Khiari Z, Toumi M, Benazzoug Y, Timur S, Zihnioglu F. Combination of LC-Q-TOF-MS/MS, network pharmacology, and nanoemulsion approaches identifies active compounds of two Artemisia species responsible for tackling early diabetes-related metabolic complications in the liver. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1058-1067. [PMID: 35795911 DOI: 10.1002/pca.3159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION The chronicity of advanced glycation end-products (AGEs) imparts various damages resulting in metabolic dysfunction and diseases involving inflammation and oxidative stress. The use of plant extracts is of high interest in complementary medicine. Yet, extracts are multicomponent mixtures, and difficult to pinpoint their exact mechanism. OBJECTIVES We hypothesise that network pharmacology and bioinformatics can help experimental findings depict the exact active components and mechanism of action by which they induce their effects. Additionally, the toxicity and variability can be lowered and standardised with proper encapsulation methods. METHODOLOGY Here, we propose the formulation of phytoniosomes encapsulating two Artemisia species (Artemisia dracunculus and Artemisia absinthium) to mitigate AGEs and their induced cell redox dysregulation in the liver. Extracts from different solvents were identified via liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS/MS). Phytoniosomes were explored for their anti-glycating effect and modulation of AGE-induced damages in THLE-2 liver cells. Network pharmacology tools were used to identify possible targets and signalling pathways implicated. RESULTS Data demonstrated that A. absinthium phytoniosomes had a significant anti-AGE effect comparable to reference molecules and higher than A. dracunculus. They were able to restore cell dysfunction through the restoration of tumour necrosis alpha (TNF-α), interleukin 6 (IL-6), nitric oxide, and total antioxidant capacity. Phytoniosomes were able to protect cells from apoptosis by decreasing caspase 3 activity. Network pharmacology and bioinformatic analysis confirmed the induction of the effect via Akt-PI3K-MAPK and AGE-RAGE signalling pathways through quercetin and luteolin actions. CONCLUSION The current report highlights the potential of Artemisia phytoniosomes as strong contenders in AGE-related disease therapy.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Sciences, Ege University, Izmir, Turkey
| | | | - Zineb Khiari
- Laboratory of Ethnobotany and Natural Substances, Department of Natural Sciences, Higher Normal School Kouba, Algiers, Algeria
- Laboratory of Cellular and Molecular Biology (BCM), Biochemistry & Extracellular Matrix Remodelling, Faculty of Biological Sciences (FSB), USTHB, Algiers, Algeria
| | - Mohamed Toumi
- Laboratory of REVIECO, Faculty of Sciences, University of Algiers 1, Algiers, Algeria
| | - Yasmina Benazzoug
- Laboratory of Cellular and Molecular Biology (BCM), Biochemistry & Extracellular Matrix Remodelling, Faculty of Biological Sciences (FSB), USTHB, Algiers, Algeria
| | - Suna Timur
- Biochemistry Department, Faculty of Sciences, Ege University, Izmir, Turkey
- Central Research Test and Analysis Laboratory Application and Research Centre, Ege University, Izmir, Turkey
| | - Figen Zihnioglu
- Biochemistry Department, Faculty of Sciences, Ege University, Izmir, Turkey
| |
Collapse
|
78
|
Muacevic A, Adler JR. Accuracy of Ultrasonography vs. Elastography in Patients With Non-alcoholic Fatty Liver Disease: A Systematic Review. Cureus 2022; 14:e29967. [PMID: 36381908 PMCID: PMC9637432 DOI: 10.7759/cureus.29967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/05/2022] [Indexed: 01/25/2023] Open
Abstract
Ultrasonography and elastography are the most widely used imaging modalities for diagnosing non-alcoholic fatty liver disease. This study aimed to assess and compare the diagnostic accuracy in patients with non-alcoholic fatty liver disease/non-alcoholic steatohepatitis. This systematic review was based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A systematic search was done for the past seven years using Pubmed, Pubmed Central, Cochrane, and Google Scholar databases on Jun 29, 2022. Studies were included based on the following predefined criteria: observational studies, randomized controlled trial (RCT), comparative studies, studies using liver biopsy or MRI proton density fat fraction (MRI PDFF) as a reference standard, ultrasonography, and elastography with measures of their diagnostic accuracy like sensitivity (SN), specificity (SP), area under the receiver operating characteristic (AUROC) curve, and English language. The data were extracted on a predefined template. The final twelve eligible studies were assessed using the quality assessment of diagnostic accuracy tool (QUADS-2). Most studies focused on elastography techniques, and the remaining focused on quantitative ultrasonography methods like the controlled attenuation parameter (CAP) and attenuation coefficient (AC). Only one study was available for the evaluation of qualitative ultrasonography. MRI was generally found superior to other diagnostic tests for determining liver stiffness through magnetic resonance elastography (MRE) and steatosis through MRI PDFF. Data assessing the comparative diagnostic accuracy of the two tests were inconclusive.
Collapse
|
79
|
Cyclodipeptides: From Their Green Synthesis to Anti-Age Activity. Biomedicines 2022; 10:biomedicines10102342. [PMID: 36289604 PMCID: PMC9598056 DOI: 10.3390/biomedicines10102342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 12/24/2022] Open
Abstract
Cyclodipeptides (CDPs) or diketopiperazines (DKPs) are often found in nature and in foodstuff and beverages and have attracted great interest for their bioactivities, biocompatibility, and biodegradability. In the laboratory, they can be prepared by green procedures, such as microwave-assisted cyclization of linear dipeptides in water, as performed in this study. In particular, five CDPs were prepared and characterized by a variety of methods, including NMR and ESI-MS spectroscopies and single-crystal X-ray diffraction (XRD), and their cytocompatibility and anti-aging activity was tested in vitro, as well as their ability to penetrate the different layers of the skin. Although their mechanism of action remains to be elucidated, this proof-of-concept study lays the basis for their future use in anti-age cosmetic applications.
Collapse
|
80
|
Shojaei-Zarghani S, Fattahi MR, Kazemi A, Safarpour AR. Effects of garlic and its major bioactive components on non-alcoholic fatty liver disease: A systematic review and meta-analysis of animal studies. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
81
|
Ismaiel A, Ciobanu OS, Ismaiel M, Leucuta DC, Popa SL, David L, Ensar D, Al Srouji N, Dumitrascu DL. Atherogenic Index of Plasma in Non-Alcoholic Fatty Liver Disease: Systematic Review and Meta-Analysis. Biomedicines 2022; 10:2101. [PMID: 36140201 PMCID: PMC9495578 DOI: 10.3390/biomedicines10092101] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Approximately a billion people worldwide are affected by NAFLD, which places a high clinical burden and financial cost on society. Liver biopsy is the gold standard for diagnosing NAFLD, but its invasivity limits the early diagnosis of NAFLD. Hence, it is important to look for alternate techniques in detecting and diagnosing NAFLD. NAFLD is associated with atherosclerosis. The purpose of this study was to assess the effectiveness of the atherogenic index of plasma (AIP) as a non-invasive modality for predicting NAFLD. (2) Methods: A search using electronic databases PubMed, EMBASE, and Scopus was carried out to find observational studies, looking at research that had been published up until the date of 11 May 2022. The included studies' quality, risk of bias, and internal validity were evaluated using the QUADAS-2 quality assessment tool. The key summary outcomes were the mean difference (MD) and area under the curve (AUC). (3) Results: A total of eight studies (81,178 participants) were included in our review, while 17% of the included participants had NAFLD. A sex distribution of 57.8% men and 42.2% women was observed. The AIP between NAFLD and the controls was not significant (MD 0.212 [95% CI 0.231-0.655]). A significant MD in AIP between the males and females with NAFLD was observed (MD 0.246 [95% CI 0.098-0.395]). The AIP predicted NAFLD with an AUC of 0.764 as well as in males (AUC 0.761) and females (AUC 0.733). (4) Conclusions: There was a substantial MD in the AIP between both sexes, but there was no significant difference in the AIP values between patients with NAFLD and the controls. The AIP is a reliable biomarker for the diagnosis of NAFLD since its ability to predict the development of NAFLD was comparable to that of the other biomarkers.
Collapse
Affiliation(s)
- Abdulrahman Ismaiel
- 2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Oana Sabina Ciobanu
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Mohamed Ismaiel
- Department of Surgery, St Michael’s Hospital, A96 D628 Dublin, Ireland
| | - Daniel-Corneliu Leucuta
- Department of Medical Informatics and Biostatistics, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Stefan-Lucian Popa
- 2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Liliana David
- 2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Dilara Ensar
- Department of Medicine, Tallaght University Hospital, D24 NR0A Dublin, Ireland
| | - Nahlah Al Srouji
- 2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Dan L. Dumitrascu
- 2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| |
Collapse
|
82
|
Samsuzzaman M, Lee JH, Moon H, Lee J, Lee H, Lim Y, Park MG, Kim H, Kim SY. Identification of a potent NAFLD drug candidate for controlling T2DM-mediated inflammation and secondary damage in vitro and in vivo. Front Pharmacol 2022; 13:943879. [PMID: 36059993 PMCID: PMC9437277 DOI: 10.3389/fphar.2022.943879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Accumulation of glucose/sugar results in the formation of reactive di-carbonyl compounds such as MGO and GO that interact with several amino acids and proteins to form toxic advanced glycation end products (AGEs). Induction of AGEs breakdown can control symptoms and severity in T2DM and other related complications like NAFLD where AGEs are the key players. Therefore, an AGE cross-link breaker has been suggested for preventing the onset/progression of NAFLD. In this study, we reported novel synthetic naphthalene-2-acyl thiazolium derivatives (KHAGs). Among synthesized KHAG derivatives, we observed that a novel KHAG-04, a 1,4-dimethoxynaphthalen-2-acyl thiazolium salt which is an analog of alagebrium, dramatically cleaves MGO/GO-AGE cross-links, and it also inhibited inflammation by lowering the level of nitric oxide production and IL-1β and TNF-α secretion in LPS and/or MGO-AGE–activated macrophage. Moreover, it also reduced FFA and MGO-AGE–induced lipogenesis in Hep-G2 cells. In mice, KHAG-04 significantly reduced the level of glyoxal in the liver, which was induced by DMC. Furthermore, KHAG-04 treatment significantly reduced blood glucose levels, lipid accumulation, and inflammation in the NAFLD/T2DM animal model. Novel KHAG-04–mediated induction of AGEs breakdown could be the possible reason for its anti-inflammatory, antihyperglycemic, and anti-lipidemic effects in cells and NAFLD in the T2DM animal model, respectively. Further research might explore the pharmacological efficacy and usefulness and consider the ability of this compound in the treatment strategy against various models of NAFLD in T2DM where MGO/GO-AGEs play a key role in the pathogenesis.
Collapse
Affiliation(s)
- Md Samsuzzaman
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Jae Hyuk Lee
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Hyejin Moon
- Department of Applied Chemistry and Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Seoul, Gyeonggi, South Korea
| | - Jisue Lee
- Department of Applied Chemistry and Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Seoul, Gyeonggi, South Korea
| | - Heaji Lee
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| | | | - Hakwon Kim
- Department of Applied Chemistry and Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Seoul, Gyeonggi, South Korea
- *Correspondence: Hakwon Kim, ; Sun Yeou Kim,
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Incheon, South Korea
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, South Korea
- *Correspondence: Hakwon Kim, ; Sun Yeou Kim,
| |
Collapse
|
83
|
Moulahoum H, Ghorbanizamani F, Khiari Z, Toumi M, Benazzoug Y, Tok K, Timur S, Zihnioglu F. Artemisia alleviates AGE-induced liver complications via MAPK and RAGE signaling pathways modulation: a combinatorial study. Mol Cell Biochem 2022; 477:2345-2357. [PMID: 35543857 DOI: 10.1007/s11010-022-04437-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/08/2022] [Indexed: 11/27/2022]
Abstract
Artemisia herba-alba (AHA) is a traditionally used plant to treat various diseases, including diabetes and metabolic dysfunctions. Plant extracts are generally explored empirically without a deeper assessment of their mechanism of action. Here, we describe a combinatorial study of biochemical, molecular, and bioinformatic (metabolite-protein pharmacology network) analyses to elucidate the mechanism of action of AHA and shed light on its multilevel effects in the treatment of diabetes-related advanced glycation end-products (AGE)-induced liver damages. The extract's polyphenols and flavonoids content were measured and then identified via LC-Q-TOF-MS/MS. Active compounds were used to generate a metabolite-target interaction network via Swiss Target Prediction and other databases. The extract was tested for its antiglycation and aggregation properties. Next, THLE-2 liver cells were challenged with AGEs, and the mechanistic markers were measured [TNF-α, IL-6, nitric oxide, total antioxidant capacity, lipid peroxidation (LPO), and caspase 3]. Metabolite and network screening showed the involvement of AHA in diabetes, glycation, liver diseases, aging, and apoptosis. Experimental confirmation showed that AHA inhibited protein modification and AGE formation. Additionally, AHA reduced inflammatory mediators (IL-6, TNFα), oxidative stress markers (NO, LPO), and apoptosis (Caspase 3). On the other hand, cellular total antioxidant capacity was restored to normal levels. The combinatorial study showed that AHA regulates AGE-induced liver damages through MAPK-AKT and AGE-RAGE signaling pathways. This report highlights the combination of experimental and network pharmacology for the exact elucidation of AHA mechanism of action as a multitarget option in the therapy of diabetes and AGEs-related diseases.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Sciences, Ege University, Bornova, 35100, Izmir, Turkey.
| | - Faezeh Ghorbanizamani
- Biochemistry Department, Faculty of Sciences, Ege University, Bornova, 35100, Izmir, Turkey
| | - Zineb Khiari
- Laboratory of Ethnobotany and Natural Substances, Department of Natural Sciences, Higher Normal School Kouba, Vieux-Kouba, BP No. 92, 16308, Algiers, Algeria
- Laboratory of Cellular and Molecular Biology (BCM), Biochemistry & extracellular matrix remodelling, Faculty of Biological Sciences (FSB), USTHB, El Alia. Bab Ezzouar, BP 31, 16111, Algiers, Algeria
| | - Mohamed Toumi
- Laboratory of REVIECO, Faculty of Sciences, University of Algiers 1, Benyoucef Benkhedda, Algiers, Algeria
| | - Yasmina Benazzoug
- Laboratory of Cellular and Molecular Biology (BCM), Biochemistry & extracellular matrix remodelling, Faculty of Biological Sciences (FSB), USTHB, El Alia. Bab Ezzouar, BP 31, 16111, Algiers, Algeria
| | - Kerem Tok
- Biochemistry Department, Faculty of Sciences, Ege University, Bornova, 35100, Izmir, Turkey
| | - Suna Timur
- Biochemistry Department, Faculty of Sciences, Ege University, Bornova, 35100, Izmir, Turkey
- Central Research Test and Analysis Laboratory Application and Research Center, Ege University, Bornova, 35100, Izmir, Turkey
| | - Figen Zihnioglu
- Biochemistry Department, Faculty of Sciences, Ege University, Bornova, 35100, Izmir, Turkey
| |
Collapse
|
84
|
Rajapaksha IG, Gunarathne LS, Asadi K, Laybutt R, Andrikopoulous S, Alexander IE, Watt MJ, Angus PW, Herath CB. Angiotensin Converting Enzyme-2 Therapy Improves Liver Fibrosis and Glycemic Control in Diabetic Mice With Fatty Liver. Hepatol Commun 2022; 6:1056-1072. [PMID: 34951153 PMCID: PMC9035567 DOI: 10.1002/hep4.1884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 12/26/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease and is frequently associated with type 2 diabetes. However, there is no specific medical therapy to treat this condition. Angiotensin-converting enzyme 2 (ACE2) of the protective renin angiotensin system generates the antifibrotic peptide angiotensin-(1-7) from profibrotic angiotensin II peptide. In this study, we investigated the therapeutic potential of ACE2 in diabetic NAFLD mice fed a high-fat (20%), high-cholesterol (2%) diet for 40 weeks. Mice were given a single intraperitoneal injection of ACE2 using an adeno-associated viral vector at 30 weeks of high-fat, high-cholesterol diet (15 weeks after induction of diabetes) and sacrificed 10 weeks later. ACE2 significantly reduced liver injury and fibrosis in diabetic NAFLD mice compared with the control vector injected mice. This was accompanied by reductions in proinflammatory cytokine expressions, hepatic stellate cell activation, and collagen 1 expression. Moreover, ACE2 therapy significantly increased islet numbers, leading to an increased insulin protein content in β-cells and plasma insulin levels with subsequent reduction in plasma glucose levels compared with controls. Conclusion: We conclude that ACE2 gene therapy reduces liver fibrosis and hyperglycemia in diabetic NAFLD mice and has potential as a therapy for patients with NAFLD with diabetes.
Collapse
Affiliation(s)
- Indu G Rajapaksha
- Department of MedicineThe University of MelbourneAustin HealthHeidelbergVICAustralia
| | - Lakmie S Gunarathne
- Department of MedicineThe University of MelbourneAustin HealthHeidelbergVICAustralia
| | | | - Ross Laybutt
- Garvan Institute of Medical ResearchSydneyNSWAustralia.,St. Vincent's Clinical SchoolUniversity of New South WalesSydneyNSWAustralia
| | - Sof Andrikopoulous
- Department of MedicineThe University of MelbourneAustin HealthHeidelbergVICAustralia
| | - Ian E Alexander
- School of MedicineUniversity of SydneyChildren's Medical Research InstituteSydneyNSWAustralia
| | - Mathew J Watt
- Department Anatomy and PhysiologyThe University of MelbourneMelbourneVICAustralia
| | - Peter W Angus
- Department of MedicineThe University of MelbourneAustin HealthHeidelbergVICAustralia.,Department GastroenterologyAustin HealthHeidelbergVICAustralia
| | - Chandana B Herath
- Department of MedicineThe University of MelbourneAustin HealthHeidelbergVICAustralia.,South Western Sydney Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyNSWAustralia.,Ingham Institute for Applied Medical ResearchLiverpoolNSWAustralia
| |
Collapse
|
85
|
Higher hepatic advanced glycation end products and liver damage markers are associated with non-alcoholic steatohepatitis. Nutr Res 2022; 104:71-81. [PMID: 35635899 DOI: 10.1016/j.nutres.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/01/2022] [Accepted: 04/15/2022] [Indexed: 11/23/2022]
|
86
|
A promising antifibrotic drug, pyridoxamine attenuates thioacetamide-induced liver fibrosis by combating oxidative stress, advanced glycation end products, and balancing matrix metalloproteinases. Eur J Pharmacol 2022; 923:174910. [PMID: 35339478 DOI: 10.1016/j.ejphar.2022.174910] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022]
Abstract
Liver fibrosis is a common chronic hepatic disease. This study was done to examine the effect of pyridoxamine against thioacetamide-induced hepatic fibrosis. Animals were divided into four groups (1) control group; (2) Thioacetamide group (200 mg/kg, i.p.) twice a week for eight weeks; (3) Pyridoxamine-treated group treated with pyridoxamine (100 mg/kg/day, i.p.) for eight weeks; (4) Thioacetamide and pyridoxamine group, in which pyridoxamine was given (100 mg/kg/day, i.p.) during thioacetamide injections. Thioacetamide treatment resulted in hepatic dysfunction manifested by increased serum levels of bilirubin, gamma-glutamyl transferase (GGT), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Oxidative stress was noted by increased hepatic lipid peroxidation and decreased glutathione (GSH). Increased concentrations of total nitrite/nitrate, advanced glycation end products (AGEs), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), matrix metalloproteinases (MMP-2&9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were noticed in hepatic tissues. Immunostaining sections also revealed overexpression of MMP-2, MMP-9 and collagen IV. Liver fibrosis was confirmed by severe histopathological changes. Pyridoxamine improved the assessed parameters. Moreover, histopathological and immunohistological studies supported the ability of pyridoxamine to reduce liver fibrosis. The findings of the present study provide evidence that pyridoxamine is a novel target for the treatment of liver fibrosis.
Collapse
|
87
|
Ji J, Feng M, Huang Y, Niu X. Liraglutide inhibits receptor for advanced glycation end products (RAGE)/reduced form of nicotinamide-adenine dinucleotide phosphate (NAPDH) signaling to ameliorate non-alcoholic fatty liver disease (NAFLD) in vivo and vitro. Bioengineered 2022; 13:5091-5102. [PMID: 35164657 PMCID: PMC8974036 DOI: 10.1080/21655979.2022.2036902] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The study was designed to investigate the effects of liraglutide and reveal its action mechanism associated with RAGE/NAPDH in NAFLD. The liver tissue was collected for HE, Masson, and ROS staining. Apoptosis levels were detected through TUNEL staining and ROS levels were evaluated through ROS staining. The expression levels of c-Jun N-terminal kinase (JNK) and transforming growth factor-β (TGF-β) were detected through Western blot. JNK and the expression of Collagenα1, Collagenα2 and connective tissue growth factor (CTGF) were detected through RT-qPCR and Western blot and the expression in mouse liver stellate cells (JS-1) cells were evaluated through immunofluorescence staining. We detected the effects of liraglutide on NAFLD in high-fat diet (HFD)-fed mice. Liraglutide treatment improved bridging fibrosis and liver function, as well as lessening ROS levels and the protein levels of RAGE, NOX1, NOX2 and NOX4. In PA and H2O2-induced AML12 cells, liraglutide treatment was able to decrease cell apoptosis, ROS levels and the levels of inflammatory factors including tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, while it effects were reversed by the induction of RAGE overexpression or NOX2 overexpression. In JS-1 cells treated with medium culturing AML12 cells, liraglutide markedly suppressed cell proliferation and activation, while RAGE overexpression or NOX2 overexpression blunted these effects of liraglutide. Taken together, liraglutide exerts a protective role in improving liver injury caused by HFD, which could be related to decreased apoptosis and oxidative stress of liver cells, as well as decreased proliferation and activation of hepatic stellate cells through RAGE/NOX2.
Collapse
Affiliation(s)
- Jingquan Ji
- Department of Pathophysiology, Changzhi Medical College, Changzhi, Shanxi, China
| | - Ming Feng
- Department of Neurosurgery, Changzhi People's Hospital, Changzhi, Shanxi, China
| | - Yan Huang
- Department of Biochemistry, Changzhi Medical College, Changzhi, Shanxi, China
| | - Xiaohong Niu
- Department of Endocrinology, The Heji Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
88
|
Segura-Azuara NDLÁ, Varela-Chinchilla CD, Trinidad-Calderón PA. MAFLD/NAFLD Biopsy-Free Scoring Systems for Hepatic Steatosis, NASH, and Fibrosis Diagnosis. Front Med (Lausanne) 2022; 8:774079. [PMID: 35096868 PMCID: PMC8792949 DOI: 10.3389/fmed.2021.774079] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly known as nonalcoholic fatty liver disease, is the most prevalent liver disorder worldwide. Historically, its diagnosis required biopsy, even though the procedure has a variable degree of error. Therefore, new non-invasive strategies are needed. Consequently, this article presents a thorough review of biopsy-free scoring systems proposed for the diagnosis of MAFLD. Similarly, it compares the severity of the disease, ranging from hepatic steatosis (HS) and nonalcoholic steatohepatitis (NASH) to fibrosis, by contrasting the corresponding serum markers, clinical associations, and performance metrics of these biopsy-free scoring systems. In this regard, defining MAFLD in conjunction with non-invasive tests can accurately identify patients with fatty liver at risk of fibrosis and its complications. Nonetheless, several biopsy-free scoring systems have been assessed only in certain cohorts; thus, further validation studies in different populations are required, with adjustment for variables, such as body mass index (BMI), clinical settings, concomitant diseases, and ethnic backgrounds. Hence, comprehensive studies on the effects of age, morbid obesity, and prevalence of MAFLD and advanced fibrosis in the target population are required. Nevertheless, the current clinical practice is urged to incorporate biopsy-free scoring systems that demonstrate adequate performance metrics for the accurate detection of patients with MAFLD and underlying conditions or those with contraindications of biopsy.
Collapse
|
89
|
Georgescu CE. Polycystic ovary syndrome and nonalcoholic fatty liver disease. POLYCYSTIC OVARY SYNDROME 2022:187-216. [DOI: 10.1016/b978-0-12-823045-9.00007-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
90
|
Devi P, Khan A, Chattopadhyay P, Garg A, Pandey R. Gut Microbiota and the Liver: Interaction Shaping Interactome. COMPREHENSIVE GUT MICROBIOTA 2022:400-411. [DOI: 10.1016/b978-0-12-819265-8.00080-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
91
|
Zhang R, Guan Q, Zhang M, Ding Y, Tang Z, Wang H, Zhang W, Chen Y, Jiang R, Cui Y, Wang J. Association Between Triglyceride-Glucose Index and Risk of Metabolic Dysfunction-Associated Fatty Liver Disease: A Cohort Study. Diabetes Metab Syndr Obes 2022; 15:3167-3179. [PMID: 36268197 PMCID: PMC9578360 DOI: 10.2147/dmso.s383907] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Insulin resistance (IR) is a major factor involved in the pathogenesis of metabolic dysfunction-associated fatty liver disease (MAFLD). Triglyceride-glucose (TyG) index, an easily detected surrogate marker of IR, has not been explored sufficiently on its relationship with incident MAFLD risk. This study sought to investigate the association of baseline TyG index with the risk of MAFLD in a Chinese cohort. METHODS This health check-up cohort was constructed with eligible 2056 Chinese from a community. The TyG index was calculated as ln (fasting triglyceride [mg/dL]×fasting glucose [mg/dL]/2). Cox proportion hazard models were used to evaluate the longitudinal association between baseline TyG index and the risk of MAFLD. RESULTS During an average follow-up of 2.5 ± 0.5 years, about 12.8% of the subjects developed MAFLD, and the incidence of MAFLD trended to increase with the quartile TyG index (P trend < 0.05). After adjusting for all confounders, TyG index was independently correlated with the risk of incident MAFLD (HR = 1.784, 95% CI = 1.383-2.302, P < 0.001), and the risk of MAFLD in the highest quartile of TyG index was two times higher than that in the lowest quartile (95% CI = 1.377-2.992, P = 0.001). The restricted cubic spline analysis showed that the relationship between TyG index and the risk of MAFLD was linear in males (P for total < 0.001; P for non-linearity = 0.746), but nonlinear in females (P for non-linearity = 0.040). CONCLUSION A high baseline TyG index was independently associated with a high risk of incident MAFLD, and we might develop the strategy of MAFLD prevention based on the TyG index.
Collapse
Affiliation(s)
- Ru Zhang
- School of Nursing, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Qing Guan
- School of Nursing, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Mengting Zhang
- School of Nursing, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yajie Ding
- School of Nursing, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zongzhe Tang
- School of Nursing, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Hongliang Wang
- Department of General Practice, Community Health Service Center, Nanjing, People’s Republic of China
| | - Wei Zhang
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, People’s Republic of China
| | - Yue Chen
- School of Nursing, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Rong Jiang
- School of Nursing, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yan Cui
- School of Nursing, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jie Wang
- School of Nursing, Nanjing Medical University, Nanjing, People’s Republic of China
- Correspondence: Jie Wang; Yan Cui, School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, People’s Republic of China, Tel +86-25-86869557, Email ;
| |
Collapse
|
92
|
Pharmacodynamic Evaluation of the Gexia Zhuyu Decoction in the Treatment of NAFLD and the Molecular Mechanism Underlying the TRPM4 Pathway Regulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3364579. [PMID: 34887931 PMCID: PMC8651363 DOI: 10.1155/2021/3364579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological syndrome of abnormal lipid deposition in the liver mediated by nonalcohol intake. The Gexia Zhuyu decoction, a classic traditional Chinese medicine compound, is widely used in the clinical treatment of NAFLD. However, its specific efficacy and underlying mechanisms have not been elucidated yet. This study aimed to quantitatively evaluate the efficacy of the Gexia Zhuyu decoction using pharmacodynamics and to explore its molecular mechanisms in conjunction with proteomics. High-fat diets and methionine choline-deficient diets were used to induce various NAFLD progression stages in mouse models. The effects of oral Gexia Zhuyu decoction administration on NAFLD were evaluated by measuring the serum and liver indicators of the treated mice before and after drug intervention and by comparing the changes in liver tissue. Liver TRPM4 mRNA and protein levels were measured using reverse transcription-polymerase chain reaction and Western blotting, respectively. Experimental data showed that serum ALT, AST, and liver triglyceride (TG) levels in each disease stage group of drug intervention mice decreased, and high-density lipoprotein (HDL) and superoxide dismutase (SOD) levels increased. Liver TG levels decreased after drug intervention in the liver fibrosis mice, but serum TG levels increased. Furthermore, cellular fatty changes, inflammatory changes, and fibrous tissue proliferation were all relieved. The TRPM4 protein and mRNA levels in the liver tissue were decreased, and the microRNA (miRNA)-24 expression was increased. The Gexia Zhuyu decoction has a clear therapeutic effect at each stage of NAFLD. It likely acts by altering miRNA-24 expression and regulating the target TRPM4 protein pathway to achieve NAFLD treatment.
Collapse
|
93
|
Tahara N, Tahara A, Maeda-Ogata S, Yoshimura H, Bekki M, Sugiyama Y, Honda A, Igata S, Nishino Y, Matsui T, Fukami A, Enomoto M, Adachi H, Fukumoto Y, Yamagishi SI. Increased Urinary Levels of Pentosidine Measured by a Newly Developed Enzyme-Linked Immunosorbent Assay Are Independently Correlated with Fracture After Fall. Rejuvenation Res 2021; 24:449-455. [PMID: 34846174 DOI: 10.1089/rej.2021.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although we have found that increased serum levels of glyceraldehyde-derived advanced glycation end products (AGEs) are associated with numerous aging-related disorders, it remains unclear which structurally distinct AGEs could be a reliable biomarker of the healthy life-threatening disorders. Since pentosidine is produced by glyceraldehyde, we measured here urinary pentosidine levels with a newly developed enzyme-linked immunosorbent assay (ELISA) kit, which requires no pretreatment with acid hydrolysis and heat, and examined their correlations with geriatric syndrome, such as musculoskeletal disease, frailty, and cognitive impairment, in a general population. Multiple regression analysis revealed that female, age, history of fracture after fall, and taking medication for diabetes were independent correlates of log urine pentosidine-to-creatinine ratio (R2 = 0.190). When gender-adjusted log urine pentosidine-to-creatinine ratio stratified by smile frequency grade was compared using analysis of covariance, urine pentosidine-to-creatinine ratio was significantly decreased according to the increase in smile frequency. Our present findings suggest that measurement of urine pentosidine-to-creatinine ratio by a newly developed ELISA kit may be useful for identifying high-risk patients for fall-related fractures.
Collapse
Affiliation(s)
- Nobuhiro Tahara
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Atsuko Tahara
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Shoko Maeda-Ogata
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hanae Yoshimura
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Munehisa Bekki
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yoichi Sugiyama
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Akihiro Honda
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Sachiyo Igata
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yuri Nishino
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Ako Fukami
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Mika Enomoto
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hisashi Adachi
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Sho-Ichi Yamagishi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
94
|
Fructose Consumption and Hepatocellular Carcinoma Promotion. LIVERS 2021. [DOI: 10.3390/livers1040020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for 85% of primary liver cancer, the third most common cause of cancer-related deaths worldwide. Its incidence has been increasing in both men and women. In Western countries, high-calorie diets, mainly rich in carbohydrates such as fructose, represent a significant concern due to their repercussions on the population’s health. A high-fructose diet is related to the development of Metabolic-Associated Fatty Liver Disease (MAFLD), formerly named Non-Alcoholic Fatty Liver Disease (NAFLD), and the progression of HCC as it potentiates the lipogenic pathway and the accumulation of lipids. However, fructose metabolism seems to be different between the stages of the disease, carrying out a metabolic reprogramming to favor the proliferation, inflammation, and metastatic properties of cancer cells in HCC. This review focuses on a better understanding of fructose metabolism in both scenarios: MAFLD and HCC.
Collapse
|
95
|
Yuan X, Nie C, Liu H, Ma Q, Peng B, Zhang M, Chen Z, Li J. Comparison of metabolic fate, target organs, and microbiota interactions of free and bound dietary advanced glycation end products. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34698575 DOI: 10.1080/10408398.2021.1991265] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Increased intake of Western diets and ultra-processed foods is accompanied by increased intake of advanced glycation end products (AGEs). AGEs can be generated exogenously in the thermal processing of food and endogenously in the human body, which associated with various chronic diseases. In food, AGEs can be divided into free and bound forms, which differ in their bioavailability, digestion, absorption, gut microbial interactions and untargeted metabolites. We summarized the measurements and contents of free and bound AGE in foods. Moreover, the ingestion, digestion, absorption, excretion, gut microbiota interactions, and metabolites and metabolic pathways between free and bound AGEs based on animal and human studies were compared. Bound AGEs were predominant in most of the selected foods, while beer and soy sauce were rich in free AGEs. Only 10%-30% of AGEs were absorbed into the systemic circulation when orally administered. The excretion of ingested free and bound AGEs was approximately 90% and 60%, respectively. Dietary free CML has a detrimental effect on gut microbiota composition, while bound AGEs have both detrimental and beneficial impacts. Free and bound dietary AGEs changed amino acid metabolism, energy metabolism and carbohydrate metabolism. And besides, bound dietary AGEs altered vitamin metabolism, and glycerolipid metabolism.
Collapse
Affiliation(s)
- Xiaojin Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chenxi Nie
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Huicui Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qingyu Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Bo Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhifei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Juxiu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
96
|
Kong W, Lyu C, Liao H, Du Y. Collagen crosslinking: effect on structure, mechanics and fibrosis progression. Biomed Mater 2021; 16. [PMID: 34587604 DOI: 10.1088/1748-605x/ac2b79] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023]
Abstract
Biophysical properties of extracellular matrix (ECM), such as matrix stiffness, viscoelasticity and matrix fibrous structure, are emerging as important factors that regulate progression of fibrosis and other chronic diseases. The biophysical properties of the ECM can be rapidly and profoundly regulated by crosslinking reactions in enzymatic or non-enzymatic manners, which further alter the cellular responses and drive disease progression. In-depth understandings of crosslinking reactions will be helpful to reveal the underlying mechanisms of fibrosis progression and put forward new therapeutic targets, whereas related reviews are still devoid. Here, we focus on the main crosslinking mechanisms that commonly exist in a plethora of chronic diseases (e.g. fibrosis, cancer, osteoarthritis) and summarize current understandings including the biochemical reaction, the effect on ECM properties, the influence on cellular behaviors, and related studies in disease model establishment. Potential pharmaceutical interventions targeting the crosslinking process and relevant clinical studies are also introduced. Limitations of pharmaceutical development may be due to the lack of systemic investigations related to the influence on crosslinking mechanism from micro to macro level, which are discussed in the last section. We also propose the unclarified questions regarding crosslinking mechanisms and potential challenges in crosslinking-targeted therapeutics development.
Collapse
Affiliation(s)
- Wenyu Kong
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Cheng Lyu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Hongen Liao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
97
|
Venter C, Pickett K, Starling A, Maslin K, Smith PK, Palumbo MP, O'Mahony L, Ben Abdallah M, Dabelea D. Advanced glycation end product intake during pregnancy and offspring allergy outcomes: A Prospective cohort study. Clin Exp Allergy 2021; 51:1459-1470. [PMID: 34610188 DOI: 10.1111/cea.14027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 05/24/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Associations have been shown between concurrent assessment of dietary intake of advanced glycation end products (AGEs) and childhood allergic outcomes. We examined the association between maternal AGEs intake and development of offspring asthma, wheeze, atopic dermatitis, allergic rhinitis and food allergies, and sought to determine whether the intake of AGEs was associated with cord sera cytokines/chemokines. METHODS Pregnant women ≥16 years were recruited in the Healthy Start study, a prospective pre-birth cohort from Colorado (N = 1410). The analysis included 962 dyads with adequate diet (≥2 recalls) and allergy outcome details. AGEs intake was estimated for each mother by matching intakes reported using 24-h dietary recalls during pregnancy to a reference database of commonly consumed foods' AGEs values. Child diagnoses of asthma and allergies up to 8 years were obtained from electronic medical records. Cord sera cytokines and chemokines were analysed in a subset (N = 462) of children. RESULTS The median [IQR] AGEs intake for the overall sample was 11,919 kU/day [8293, 16,573]. Unadjusted analysis showed a positive association between maternal AGEs intake in pregnancy and rhinitis up to 8 years of age (HR = 1.03; 95% CI: 1.01, 1.06), but the association was attenuated and no longer significant in adjusted models (HR = 1.01; 95% CI: 0.98, 1.04). Both adjusted and unadjusted models showed no associations between AGEs intake in pregnancy and any of the other outcomes (p > .05). There were no significant associations between any cytokine or chemokine measured and AGEs intake or any of the outcomes studied (p > .05). CONCLUSION The study showed that maternal AGEs intake was not associated with offspring asthma and allergy outcomes. AGEs exposure during pregnancy may not have the same impact on child development as postnatal exposure.
Collapse
Affiliation(s)
- Carina Venter
- Section of Allergy & Immunology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Kaci Pickett
- Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Anne Starling
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado, USA.,Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado, USA
| | | | - Pete K Smith
- Qld Allergy Services, Southport, Queensland, Australia.,Department of Clinical Medicine, Griffith University, Southport, Queensland, Australia
| | - Michaela P Palumbo
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado, USA
| | - Liam O'Mahony
- Departments of Medicine and Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Miriam Ben Abdallah
- Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Dana Dabelea
- Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Denver, Aurora, Colorado, USA.,Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado, USA.,Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
98
|
Li Y, Yang X, Plummer R, Hayashi Y, Deng XS, Nie YZ, Taniguchi H. Human Pluripotent Stem Cell-Derived Hepatocyte-Like Cells and Organoids for Liver Disease and Therapy. Int J Mol Sci 2021; 22:ijms221910471. [PMID: 34638810 PMCID: PMC8508923 DOI: 10.3390/ijms221910471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Liver disease is a global health issue that has caused an economic burden worldwide. Organ transplantation is the only effective therapy for end-stage liver disease; however, it has been hampered by a shortage of donors. Human pluripotent stem cells (hPSCs) have been widely used for studying liver biology and pathology as well as facilitating the development of alternative therapies. hPSCs can differentiate into multiple types of cells, which enables the generation of various models that can be applied to investigate and recapitulate a range of biological activities in vitro. Here, we summarize the recent development of hPSC-derived hepatocytes and their applications in disease modeling, cell therapy, and drug discovery. We also discuss the advantages and limitations of these applications and critical challenges for further development.
Collapse
Affiliation(s)
- Yang Li
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Xia Yang
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Richie Plummer
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yoshihito Hayashi
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Xiao-Shan Deng
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yun-Zhong Nie
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Kanagawa, Japan
- Correspondence: (Y.-Z.N.); (H.T.); Tel.: +81-03-5449-5698 (H.T.)
| | - Hideki Taniguchi
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Kanagawa, Japan
- Correspondence: (Y.-Z.N.); (H.T.); Tel.: +81-03-5449-5698 (H.T.)
| |
Collapse
|
99
|
Bárcena B, Salamanca A, Pintado C, Mazuecos L, Villar M, Moltó E, Bonzón-Kulichenko E, Vázquez J, Andrés A, Gallardo N. Aging Induces Hepatic Oxidative Stress and Nuclear Proteomic Remodeling in Liver from Wistar Rats. Antioxidants (Basel) 2021; 10:antiox10101535. [PMID: 34679670 PMCID: PMC8533122 DOI: 10.3390/antiox10101535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is a continuous, universal, and irreversible process that determines progressive loss of adaptability. The liver is a critical organ that supports digestion, metabolism, immunity, detoxification, vitamin storage, and hormone signaling. Nevertheless, the relationship between aging and the development of liver diseases remains elusive. In fact, although prolonged fasting in adult rodents and humans delays the onset of the disease and increases longevity, whether prolonged fasting could exert adverse effects in old organisms remains incompletely understood. In this work, we aimed to characterize the oxidative stress and nuclear proteome in the liver of 3-month- and 24-month-old male Wistar rats upon 36 h of fasting and its adaptation in response to 30 min of refeeding. To this end, we analyzed the hepatic lipid peroxidation levels (TBARS) and the expression levels of genes associated with fat metabolism and oxidative stress during aging. In addition, to gain a better insight into the molecular and cellular processes that characterize the liver of old rats, the hepatic nuclear proteome was also evaluated by isobaric tag quantitation (iTRAQ) mass spectrometry-based proteomics. In old rats, aging combined with prolonged fasting had great impact on lipid peroxidation in the liver that was associated with a marked downregulation of antioxidant genes (Sod2, Fmo3, and Cyp2C11) compared to young rats. Besides, our proteomic study revealed that RNA splicing is the hepatic nuclear biological process markedly affected by aging and this modification persists upon refeeding. Our results suggest that aged-induced changes in the nuclear proteome could affect processes associated with the adaptative response to refeeding after prolonged fasting, such as those involved in the defense against oxidative stress.
Collapse
Affiliation(s)
- Brenda Bárcena
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; (B.B.); (A.S.); (L.M.); (A.A.)
| | - Aurora Salamanca
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; (B.B.); (A.S.); (L.M.); (A.A.)
| | - Cristina Pintado
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; (C.P.); (E.M.)
| | - Lorena Mazuecos
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; (B.B.); (A.S.); (L.M.); (A.A.)
| | - Margarita Villar
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; (B.B.); (A.S.); (L.M.); (A.A.)
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
- Correspondence: (M.V.); (N.G.)
| | - Eduardo Moltó
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; (C.P.); (E.M.)
| | - Elena Bonzón-Kulichenko
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III and CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.B.-K.); (J.V.)
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III and CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.B.-K.); (J.V.)
| | - Antonio Andrés
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; (B.B.); (A.S.); (L.M.); (A.A.)
| | - Nilda Gallardo
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; (B.B.); (A.S.); (L.M.); (A.A.)
- Correspondence: (M.V.); (N.G.)
| |
Collapse
|
100
|
Litwinowicz K, Waszczuk E, Gamian A. Advanced Glycation End-Products in Common Non-Infectious Liver Diseases: Systematic Review and Meta-Analysis. Nutrients 2021; 13:3370. [PMID: 34684371 PMCID: PMC8537188 DOI: 10.3390/nu13103370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Excessive intake of fructose, glucose and alcohol is associated with the development of non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD). At the same time, these dietetic factors create an environment favorable for the generation of advanced glycation end-products. For this reason, advanced glycation end-products (AGEs) are hypothesized to play role in the development of NAFLD and ALD. In this systematic review and meta-analysis, we explore the relationship between NAFLD and ALD with AGE levels, including their diagnostic accuracy. METHODS The systematic review and meta-analysis has been pre-registered with PROSPERO (CRD42021240954) and was performed in accordance with the PRISMA guidelines. Meta-analyses were performed using the meta R package. RESULTS We have obtained 11 studies meeting our inclusion criteria, reporting data on 1844 participants (909 with NAFLD, 169 with ALD and 766 healthy controls). NAFLD was associated with significantly higher AGE fluorescence and serum N-(carboxyethyl)lysine (CEL) levels. Patients with alcoholic cirrhosis had significantly higher levels of N-(carboxymethyl)lysine (CML). Only individual studies examined AGEs in the context of their diagnostic accuracy. AGE fluorescence distinguished low and moderate steatosis with an AUC of 0.76. The ratio of CML, CEL and pentosidine to a soluble variant of the AGE receptor differentiated patients with NAFLD from healthy controls with high AUC (0.83-0.85). Glyceraldehyde-derived AGE separated non-alcoholic fatty liver (NAFL) from non-alcoholic steatohepatitis (NASH) with acceptable performance (AUC 0.78). CONCLUSIONS In conclusion, NAFLD and ALD are associated with significantly higher levels of several AGEs. More research is needed to examine the diagnostic accuracy of AGEs, however individual studies show that AGEs perform well in distinguishing NAFL from NASH.
Collapse
Affiliation(s)
- Kamil Litwinowicz
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland
| | - Ewa Waszczuk
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, 50-556 Wrocław, Poland;
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland;
| |
Collapse
|