51
|
Monguió-Tortajada M, Bayes-Genis A, Rosell A, Roura S. Are mesenchymal stem cells and derived extracellular vesicles valuable to halt the COVID-19 inflammatory cascade? Current evidence and future perspectives. Thorax 2021; 76:196-200. [PMID: 33323479 PMCID: PMC7815888 DOI: 10.1136/thoraxjnl-2020-215717] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Marta Monguió-Tortajada
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Catalunya, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Bayes-Genis
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Catalunya, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, Autonomous University of Barcelona (UAB), Barcelona, Catalunya, Spain
- Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Catalunya, Spain
| | - Antoni Rosell
- Department of Medicine, Autonomous University of Barcelona (UAB), Barcelona, Catalunya, Spain
- Servei de Pneumologia, Germans Trias i Pujol University Hospital, Badalona, Catalunya, Spain
- CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Santiago Roura
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Catalunya, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
52
|
Abstract
Currently, there are no specific and efficient vaccines or drugs for COVID-19, particularly in severe cases. A wide range of variations in the clinical symptoms of different patients attributed to genomic differences. Therefore, personalized treatments seem to play a critical role in improving these symptoms and even similar conditions. Prompted by the uncertainties in the area of COVID-19 therapies, we reviewed the published papers and concepts to gather and provide useful information to clinicians and researchers interested in personalized medicine and cell-based therapy. One novel aspect of this study focuses on the potential application of personalized medicine in treating severe cases of COVID-19. However, it is theoretical, as any real-world examples of the use of genuinely personalized medicine have not existed yet. Nevertheless, we know that stem cells, especially MSCs, have immune-modulatory effects and can be stored for future personalized medicine applications. This theory has been conjugated with some evidence that we review in the present study. Besides, we discuss the importance of personalized medicine and its possible aspects in COVID-19 treatment, then review the cell-based therapy studies for COVID-19 with a particular focus on stem cell-based therapies as a primary personalized tool medicine. However, the idea of cell-based therapy has not been accepted by several scientific communities due to some concerns of lack of satisfactory clinical studies; still, the MSCs and their clinical outcomes have been revealed the safety and potency of this therapeutic approach in several diseases, especially in the immune-mediated inflammatory diseases and some incurable diseases. Promising outcomes have resulted in that clinical studies are going to continue.
Collapse
|
53
|
MSC Based Therapies to Prevent or Treat BPD-A Narrative Review on Advances and Ongoing Challenges. Int J Mol Sci 2021; 22:ijms22031138. [PMID: 33498887 PMCID: PMC7865378 DOI: 10.3390/ijms22031138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains one of the most devastating consequences of preterm birth resulting in life-long restrictions in lung function. Distorted lung development is caused by its inflammatory response which is mainly provoked by mechanical ventilation, oxygen toxicity and bacterial infections. Dysfunction of resident lung mesenchymal stem cells (MSC) represents one key hallmark that drives BPD pathology. Despite all progress in the understanding of pathomechanisms, therapeutics to prevent or treat BPD are to date restricted to a few drugs. The limited therapeutic efficacy of established drugs can be explained by the fact that they fail to concurrently tackle the broad spectrum of disease driving mechanisms and by the huge overlap between distorted signal pathways of lung development and inflammation. The great enthusiasm about MSC based therapies as novel therapeutic for BPD arises from the capacity to inhibit inflammation while simultaneously promoting lung development and repair. Preclinical studies, mainly performed in rodents, raise hopes that there will be finally a broadly acting, efficient therapy at hand to prevent or treat BPD. Our narrative review gives a comprehensive overview on preclinical achievements, results from first early phase clinical studies and challenges to a successful translation into the clinical setting.
Collapse
|
54
|
Ibrahim A, Ibrahim A, Parimon T. Diagnostic and Therapeutic Applications of Extracellular Vesicles in Interstitial Lung Diseases. Diagnostics (Basel) 2021; 11:diagnostics11010087. [PMID: 33430301 PMCID: PMC7825759 DOI: 10.3390/diagnostics11010087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/01/2021] [Accepted: 01/01/2021] [Indexed: 02/06/2023] Open
Abstract
Interstitial lung diseases (ILDs) are chronic irreversible pulmonary conditions with significant morbidity and mortality. Diagnostic approaches to ILDs are complex and multifactorial. Effective therapeutic interventions are continuously investigated and explored with substantial progress, thanks to advances in basic understanding and translational efforts. Extracellular vesicles (EVs) offer a new paradigm in diagnosis and treatment. This leads to two significant implications: new disease biomarker discovery that enables reliable diagnosis and disease assessment and the development of regenerative medicine therapeutics that target fibroproliferative processes in diseased lung tissue. In this review, we discuss the current understanding of the role of diseased tissue-derived EVs in the development of interstitial lung diseases, the utility of these EVs as diagnostic and prognostic tools, and the existing therapeutic utility of EVs. Furthermore, we review the potential therapeutic application of EVs derived from various cellular sources.
Collapse
Affiliation(s)
- Abdulrahman Ibrahim
- Faculty of Medicine, University of Queensland/Ochsner Clinical School, New Orleans, LA 70121, USA;
| | - Ahmed Ibrahim
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Tanyalak Parimon
- Pulmonary and Critical Care Division, Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Correspondence: ; Tel.: +1-310-248-8069
| |
Collapse
|
55
|
Xie L, Zeng Y. Therapeutic Potential of Exosomes in Pulmonary Fibrosis. Front Pharmacol 2020; 11:590972. [PMID: 33343360 PMCID: PMC7746877 DOI: 10.3389/fphar.2020.590972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Pulmonary fibrosis is closely associated with the recruitment of fibroblasts from capillary vessels with damaged endothelial cells, the epithelial mesenchymal transition (EMT) of type II alveolar epithelial cells, and the transformation of fibroblasts to myofibroblasts. Recent studies suggest that EMT is a key factor in the pathogenesis of pulmonary fibrosis, as the disruption of EMT-related effector molecules can inhibit the occurrence and development of PF. With the numerous advancements made in molecular biology in recent years, researchers have discovered that exosomes and their cargos, such as miRNAs, lncRNAs, and proteins, can promote or inhibit the EMT, modulate the transformation of fibroblasts into myofibroblasts, contribute to the proliferation of fibroblasts and promote immunoregulatory and mitochondrial damage during pulmonary fibrosis. Exosomes are key factors regulating the differentiation of bone marrow mesenchymal stem cells (BMSCs) into myofibroblasts. Interestingly, exosomes derived from BMSCs under pathological and physiological conditions may promote or inhibit the EMT of type II alveolar epithelial cells and the transformation of fibroblasts into myofibroblasts to regulate pulmonary fibrosis. Thus, exosomes may become a new direction in the study of drugs for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
56
|
Massa M, Croce S, Campanelli R, Abbà C, Lenta E, Valsecchi C, Avanzini MA. Clinical Applications of Mesenchymal Stem/Stromal Cell Derived Extracellular Vesicles: Therapeutic Potential of an Acellular Product. Diagnostics (Basel) 2020; 10:diagnostics10120999. [PMID: 33255416 PMCID: PMC7760121 DOI: 10.3390/diagnostics10120999] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
In the last decade, the secreting activity of mesenchymal stem/stromal cells (MSCs) has been widely investigated, due to its possible therapeutic role. In fact, MSCs release extracellular vesicles (EVs) containing relevant biomolecules such as mRNAs, microRNAs, bioactive lipids, and signaling receptors, able to restore physiological conditions where regenerative or anti-inflammatory actions are needed. An actual advantage would come from the therapeutic use of EVs with respect to MSCs, avoiding the possible immune rejection, the lung entrapment, improving the safety, and allowing the crossing of biological barriers. A number of concerns still have to be solved regarding the mechanisms determining the beneficial effect of MSC-EVs, the possible alteration of their properties as a consequence of the isolation/purification methods, and/or the best approach for a large-scale production for clinical use. Most of the preclinical studies have been successful, reporting for MSC-EVs a protecting role in acute kidney injury following ischemia reperfusion, a potent anti-inflammatory and anti-fibrotic effects by reducing disease associated inflammation and fibrosis in lung and liver, and the modulation of both innate and adaptive immune responses in graft versus host disease (GVHD) as well as autoimmune diseases. However, the translation of MSC-EVs to the clinical stage is still at the initial phase. Herein, we discuss the therapeutic potential of an acellular product such as MSC derived EVs (MSC-EVs) in acute and chronic pathologies.
Collapse
Affiliation(s)
- Margherita Massa
- Biochemistry, Biotechnology and Advanced Diagnostics Laboratory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (M.M.); (C.A.)
| | - Stefania Croce
- General Surgery Department, Fondazione IRCCS Policlinico S. Matteo, Department of Clinical, Surgical, Diagnostic & Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Rita Campanelli
- Center for the Study of Myelofibrosis, Biochemistry, Biotechnology and Advanced Diagnostics Laboratory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Carlotta Abbà
- Biochemistry, Biotechnology and Advanced Diagnostics Laboratory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (M.M.); (C.A.)
| | - Elisa Lenta
- Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Chiara Valsecchi
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Maria Antonietta Avanzini
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
- Correspondence:
| |
Collapse
|
57
|
Trivisonno A, Nachira D, Boškoski I, Porziella V, Di Rocco G, Baldari S, Toietta G. Regenerative medicine approaches for the management of respiratory tract fistulas. Stem Cell Res Ther 2020; 11:451. [PMID: 33097096 PMCID: PMC7583298 DOI: 10.1186/s13287-020-01968-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Respiratory tract fistulas (or fistulae) are abnormal communications between the respiratory system and the digestive tract or the adjacent organs. The origin can be congenital or, more frequently, iatrogenic and the clinical presentation is heterogeneous. Respiratory tract fistulas can lead to severely reduced health-related quality of life and short survival. Therapy mainly relies on endoscopic surgical interventions but patients often require prolonged hospitalization and may develop complications. Therefore, more conservative regenerative medicine approaches, mainly based on lipotransfer, have also been investigated. Adipose tissue can be delivered either as unprocessed tissue, or after enzymatic treatment to derive the cellular stromal vascular fraction. In the current narrative review, we provide an overview of the main tissue/cell-based clinical studies for the management of various types of respiratory tract fistulas or injuries. Clinical experience is limited, as most of the studies were performed on a small number of patients. Albeit a conclusive proof of efficacy cannot be drawn, the reviewed studies suggest that grafting of adipose tissue-derived material may represent a minimally invasive and conservative treatment option, alternative to more aggressive surgical procedures. Knowledge on safety and tolerability acquired in prior studies can lead to the design of future, larger trials that may exploit innovative procedures for tissue processing to further improve the clinical outcome.
Collapse
Affiliation(s)
- Angelo Trivisonno
- Department of Surgical Science, University of Rome "La Sapienza", Viale Regina Elena 324, 00161, Rome, Italy
| | - Dania Nachira
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Ivo Boškoski
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Venanzio Porziella
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Giuliana Di Rocco
- Department of Research, Advanced Diagnostic, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, via E. Chianesi 53, 00144, Rome, Italy
| | - Silvia Baldari
- Department of Research, Advanced Diagnostic, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, via E. Chianesi 53, 00144, Rome, Italy
| | - Gabriele Toietta
- Department of Research, Advanced Diagnostic, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, via E. Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
58
|
Klimczak A. Perspectives on mesenchymal stem/progenitor cells and their derivates as potential therapies for lung damage caused by COVID-19. World J Stem Cells 2020; 12:1013-1022. [PMID: 33033561 PMCID: PMC7524694 DOI: 10.4252/wjsc.v12.i9.1013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
The new coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which emerged in December 2019 in Wuhan, China, has reached worldwide pandemic proportions, causing coronavirus disease 2019 (COVID-19). The clinical manifestations of COVID-19 vary from an asymptomatic disease course to clinical symptoms of acute respiratory distress syndrome and severe pneumonia. The lungs are the primary organ affected by SARS-CoV-2, with a very slow turnover for renewal. SARS-CoV-2 enters the lungs via angiotensin-converting enzyme 2 receptors and induces an immune response with the accumulation of immunocompetent cells, causing a cytokine storm, which leads to target organ injury and subsequent dysfunction. To date, there is no effective antiviral therapy for COVID-19 patients, and therapeutic strategies are based on experience treating previously recognized coronaviruses. In search of new treatment modalities of COVID-19, cell-based therapy with mesenchymal stem cells (MSCs) and/or their secretome, such as soluble bioactive factors and extracellular vesicles, is considered supportive therapy for critically ill patients. Multipotent MSCs are able to differentiate into different types of cells of mesenchymal origin, including alveolar epithelial cells, lung epithelial cells, and vascular endothelial cells, which are severely damaged in the course of COVID-19 disease. Moreover, MSCs secrete a variety of bioactive factors that can be applied for respiratory tract regeneration in COVID-19 patients thanks to their trophic, anti-inflammatory, immunomodulatory, anti-apoptotic, pro-regenerative, and proangiogenic properties.
Collapse
Affiliation(s)
- Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Wrocław 53-114, Poland
| |
Collapse
|
59
|
Regulation of JAM2 Expression in the Lungs of Streptozotocin-Induced Diabetic Mice and Human Pluripotent Stem Cell-Derived Alveolar Organoids. Biomedicines 2020; 8:biomedicines8090346. [PMID: 32932992 PMCID: PMC7555027 DOI: 10.3390/biomedicines8090346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/30/2020] [Accepted: 09/09/2020] [Indexed: 12/26/2022] Open
Abstract
Hyperglycemia is a causative factor in the pathogenesis of respiratory diseases, known to induce fibrosis and inflammation in the lung. However, little attention has been paid to genes related to hyperglycemic-induced lung alterations and stem cell applications for therapeutic use. In this study, our microarray data revealed significantly increased levels of junctional adhesion molecule 2 (JAM2) in the high glucose (HG)-induced transcriptional profile in human perivascular cells (hPVCs). The elevated level of JAM2 in HG-treated hPVCs was transcriptionally and epigenetically reversible when HG treatment was removed. We further investigated the expression of JAM2 using in vivo and in vitro hyperglycemic models. Our results showed significant upregulation of JAM2 in the lungs of streptozotocin (STZ)-induced diabetic mice, which was greatly suppressed by the administration of conditioned medium obtained from human mesenchymal stem cell cultures. Furthermore, JAM2 was found to be significantly upregulated in human pluripotent stem cell-derived multicellular alveolar organoids by exposure to HG. Our results suggest that JAM2 may play an important role in STZ-induced lung alterations and could be a potential indicator for predicting the therapeutic effects of stem cells and drugs in diabetic lung complications.
Collapse
|
60
|
Börger V, Weiss DJ, Anderson JD, Borràs FE, Bussolati B, Carter DRF, Dominici M, Falcón-Pérez JM, Gimona M, Hill AF, Hoffman AM, de Kleijn D, Levine BL, Lim R, Lötvall J, Mitsialis SA, Monguió-Tortajada M, Muraca M, Nieuwland R, Nowocin A, O'Driscoll L, Ortiz LA, Phinney DG, Reischl I, Rohde E, Sanzenbacher R, Théry C, Toh WS, Witwer KW, Lim SK, Giebel B. International Society for Extracellular Vesicles and International Society for Cell and Gene Therapy statement on extracellular vesicles from mesenchymal stromal cells and other cells: considerations for potential therapeutic agents to suppress coronavirus disease-19. Cytotherapy 2020; 22:482-485. [PMID: 32425691 PMCID: PMC7229942 DOI: 10.1016/j.jcyt.2020.05.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 02/08/2023]
Abstract
STATEMENT The International Society for Cellular and Gene Therapies (ISCT) and the International Society for Extracellular Vesicles (ISEV) recognize the potential of extracellular vesicles (EVs, including exosomes) from mesenchymal stromal cells (MSCs) and possibly other cell sources as treatments for COVID-19. Research and trials in this area are encouraged. However, ISEV and ISCT do not currently endorse the use of EVs or exosomes for any purpose in COVID-19, including but not limited to reducing cytokine storm, exerting regenerative effects or delivering drugs, pending the generation of appropriate manufacturing and quality control provisions, pre-clinical safety and efficacy data, rational clinical trial design and proper regulatory oversight.
Collapse
Affiliation(s)
- Verena Börger
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniel J Weiss
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Johnathon D Anderson
- Department of Otolaryngology, Stem Cell Program, University of California, Davis, Davis, California, USA
| | - Francesc E Borràs
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, and Nephrology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - David R F Carter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Massimo Dominici
- Department of Medical and Surgical Sciences of Children and Adults, University Hospital of Modena, Modena, Italy
| | - Juan M Falcón-Pérez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain; Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Mario Gimona
- GMP Unit and EV-TT Transfer Center, Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
| | - Andrew F Hill
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Andrew M Hoffman
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dominique de Kleijn
- Department of Vascular Surgery, University Medical Center Utrecht and Netherlands Heart Institute, Utrecht, the Netherlands
| | - Bruce L Levine
- Center for Cellular Immunotherapies at the Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rebecca Lim
- Department of Obstetrics and Gynaecology, Hudson Institute of Medical Research, Monash University and The Ritchie Centre, Melbourne, Australia
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - S Alex Mitsialis
- Department of Pediatrics, Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts, USA
| | - Marta Monguió-Tortajada
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, and Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Maurizio Muraca
- Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry and Vesicle Observation Center, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Anna Nowocin
- Biotherapeutics, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare Products Regulatory Agency, Hertfordshire, UK
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Luis A Ortiz
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Donald G Phinney
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida, USA
| | - Ilona Reischl
- Federal Office for Safety in Health Care (BASG) and Austrian Agency for Health and Food Safety (AGES), Institute Surveillance, Vienna, Austria
| | - Eva Rohde
- Department of Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria; GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
| | - Ralf Sanzenbacher
- Section Tissue Engineering and Cell Therapeutics, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Clotilde Théry
- Institut Curie/INSERM U932/PSL Research University, Paris, France
| | - Wei Seong Toh
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Sai Kiang Lim
- Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research, Singapore.
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
61
|
Gardin C, Ferroni L, Chachques JC, Zavan B. Could Mesenchymal Stem Cell-Derived Exosomes Be a Therapeutic Option for Critically Ill COVID-19 Patients? J Clin Med 2020; 9:E2762. [PMID: 32858940 PMCID: PMC7565764 DOI: 10.3390/jcm9092762] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a pandemic viral disease originated in Wuhan, China, in December 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The severe form of the disease is often associated with acute respiratory distress syndrome (ARDS), and most critically ill patients require mechanical ventilation and support in intensive care units. A significant portion of COVID-19 patients also develop complications of the cardiovascular system, primarily acute myocardial injury, arrhythmia, or heart failure. To date, no specific antiviral therapy is available for patients with SARS-CoV-2 infection. Exosomes derived from mesenchymal stem cells (MSCs) are being explored for the management of a number of diseases that currently have limited or no therapeutic options, thanks to their anti-inflammatory, immunomodulatory, and pro-angiogenic properties. Here, we briefly introduce the pathogenesis of SARS-CoV-2 and its implications in the heart and lungs. Next, we describe some of the most significant clinical evidence of the successful use of MSC-derived exosomes in animal models of lung and heart injuries, which might strengthen our hypothesis in terms of their utility for also treating critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Chiara Gardin
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy; (C.G.); (L.F.)
- Department of Morphology, Experimental Medicine and Surgery, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy; (C.G.); (L.F.)
- Department of Morphology, Experimental Medicine and Surgery, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Juan Carlos Chachques
- Department of Cardiac Surgery Pompidou Hospital, Laboratory of Biosurgical Research, Carpentier Foundation, University Paris Descartes, 75015 Paris, France;
| | - Barbara Zavan
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy; (C.G.); (L.F.)
- Department of Morphology, Experimental Medicine and Surgery, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| |
Collapse
|
62
|
Gupta A, Kashte S, Gupta M, Rodriguez HC, Gautam SS, Kadam S. Mesenchymal stem cells and exosome therapy for COVID-19: current status and future perspective. Hum Cell 2020; 33:907-918. [PMID: 32780299 PMCID: PMC7418088 DOI: 10.1007/s13577-020-00407-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is the main cause for the COVID-19 infection-related morbidity and mortality. Recent clinical evidences suggest increased level of cytokines and chemokines targeting lung tissue as a prominent etiological factor. The immunomodulatory effect of mesenchymal stem cells (MSCs) as the alternative therapy for the treatment of inflammatory and autoimmune diseases is well known. Several studies have also revealed that similar therapeutic impacts of parent MSCs are also exhibited by MSCs-derived extracellular vesicles (EVs) including exosomes. In this review, we explored the therapeutic potential of both MSCs and exosomes in mitigating the COVID-19 induced cytokine storm as well as promoting the regeneration of alveolar tissue, attributed to the intrinsic cytokines and growth factor present in the secretome. The preliminary studies have demonstrated the safety and efficacy of MSCs and exosomes in mitigating symptoms associated with COVID-19. Thus, they can be used on compassionate basis, owing to their ability to endogenously repair and decrease the inflammatory reactions involved in the morbidity and mortality of COVID-19. However, more preclinical and clinical studies are warranted to understand their mechanism of action and further establish their safety and efficacy.
Collapse
Affiliation(s)
- Ashim Gupta
- Future Biologics, Lawrenceville, GA, USA.,BioIntegrate, Lawrenceville, GA, USA.,South Texas Orthopaedic Research Institute, Laredo, TX, USA.,Veterans in Pain, Los Angeles, CA, USA
| | - Shivaji Kashte
- Department of Stem Cell and Regenerative Medicine, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed To Be University), Kolhapur, 416006, India
| | - Manu Gupta
- Future Biologics, Lawrenceville, GA, USA
| | - Hugo C Rodriguez
- Future Biologics, Lawrenceville, GA, USA.,South Texas Orthopaedic Research Institute, Laredo, TX, USA.,School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX, USA
| | | | - Sachin Kadam
- Department of Stem Cell and Regenerative Medicine, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed To Be University), Kolhapur, 416006, India. .,Advancells Group, Noida, A-102, Sector 5, Noida, Uttar Pradesh, 201301, India.
| |
Collapse
|
63
|
Ji HL, Liu C, Zhao RZ. Stem cell therapy for COVID-19 and other respiratory diseases: Global trends of clinical trials. World J Stem Cells 2020; 12:471-480. [PMID: 32742564 PMCID: PMC7360994 DOI: 10.4252/wjsc.v12.i6.471] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/17/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Respiratory diseases, including coronavirus disease 2019 and chronic obstructive pulmonary disease (COPD), are leading causes of global fatality. There are no effective and curative treatments, but supportive care only. Cell therapy is a promising therapeutic strategy for refractory and unmanageable pulmonary illnesses, as proved by accumulating preclinical studies. Stem cells consist of totipotent, pluripotent, multipotent, and unipotent cells with the potential to differentiate into cell types requested for repair. Mesenchymal stromal cells, endothelial progenitor cells, peripheral blood stem cells, and lung progenitor cells have been applied to clinical trials. To date, the safety and feasibility of stem cell and extracellular vesicles administration have been confirmed by numerous phase I/II trials in patients with COPD, acute respiratory distress syndrome, bronchial dysplasia, idiopathic pulmonary fibrosis, pulmonary artery hypertension, and silicosis. Five routes and a series of doses have been tested for tolerance and advantages of different regimes. In this review, we systematically summarize the global trends for the cell therapy of common airway and lung diseases registered for clinical trials. The future directions for both new clinical trials and preclinical studies are discussed.
Collapse
Affiliation(s)
- Hong-Long Ji
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, TX 75708, United States
- Texas Lung Injury Institute, University of Texas Health Science Centre at Tyler, Tyler, TX 75708, United States
| | - Cong Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, Guangdong Province, China
| | - Run-Zhen Zhao
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, TX 75708, United States
| |
Collapse
|
64
|
Gieseler F, Ender F. Extracellular Vesicles and Cell-Cell Communication: New Insights and New Therapeutic Strategies Not Only in Oncology. Int J Mol Sci 2020; 21:ijms21124331. [PMID: 32570703 PMCID: PMC7352511 DOI: 10.3390/ijms21124331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
|
65
|
Li J, Shao J, Wang C, Li W. The epidemiology and therapeutic options for the COVID-19. PRECISION CLINICAL MEDICINE 2020; 3:71-84. [PMID: 35960683 PMCID: PMC7376264 DOI: 10.1093/pcmedi/pbaa017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 02/05/2023] Open
Abstract
An outbreak of coronavirus disease 2019 (COVID-19), a disease caused by a novel pneumonia virus, has affected over 200 countries and regions worldwide. With the increasing number of patients and deaths, WHO have declared it as a global pandemic currently, indicating a third large-scale epidemic coronavirus has appeared since the emergence of severe acute respiratory syndrome coronavirus (SARS) and Middle-East respiratory syndrome (MERS) in the twenty-first century. Considering the great harm it has caused, researchers throughout the world have been chasing to exploit the pathophysiology, characteristics, and potential remedies for COVID-19 to better battle the outbreak. Therefore, the current study revisits advances of the virology, epidemiology, clinical features, therapeutic options, and prevention of COVID-19. The features of asymptomatic carriers are also been explored.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jun Shao
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
66
|
O'Driscoll L. Extracellular vesicles from mesenchymal stem cells as a Covid-19 treatment. Drug Discov Today 2020; 25:1124-1125. [PMID: 32387262 PMCID: PMC7202814 DOI: 10.1016/j.drudis.2020.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|