51
|
Efficacy of omega-3-rich Camelina sativa on the metabolic and clinical markers in nonalcoholic fatty liver disease: a randomized, controlled trial. Eur J Gastroenterol Hepatol 2022; 34:537-545. [PMID: 35421019 DOI: 10.1097/meg.0000000000002297] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Recently, omega-3 fatty acids and antioxidants co-supplementation was considered as alternative treatment in the management of nonalcoholic fatty liver disease (NAFLD). This trial evaluated effects of Camelina sativa oil (CSO) as a rich source of omega-3 fatty acids and antioxidants on anthropometric indices, lipid profile, liver enzymes, and adiponectin in NAFLD patients. PARTICIPANTS AND METHODS This triple-blind, placebo-controlled, randomized clinical trial was conducted on 46 NAFLD patients who were randomly assigned to either a CSO supplement or placebo for 12 weeks. Both groups received a loss weight diet. Levels of liver enzymes, adiponectin, lipid profile, atherogenic index, and anthropometric indices were assessed for all patients at baseline and post-intervention. RESULTS CSO caused significant differences in weight, BMI, waist circumference, waist-to-hip ratio, triglyceride, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), TC/HDL-c, LDL-c/HDL-c, atherogenic index, alanine aminotransferase, and adiponectin concentrations in the CSO group compared with the placebo group (P < 0.046 for all). No significant differences were found in hip circumference, neck circumference, HDL-c, and other liver enzymes in the CSO group compared with the placebo group (P = 0.790, P = 0.091, P = 0.149, P < 0.159 for liver enzymes, respectively). DISCUSSION AND CONCLUSION This study showed that CSO supplementation for 12 weeks causes significant changes in all of anthropometric indices (except hip circumference and neck circumference), ALT, lipid profile (except HDL-c), atherogenic index, and adiponectin in NAFLD patients.
Collapse
|
52
|
Furse S, Virtue S, Snowden SG, Vidal-Puig A, Stevenson PC, Chiarugi D, Koulman A. Dietary PUFAs drive diverse system-level changes in lipid metabolism. Mol Metab 2022; 59:101457. [PMID: 35150907 PMCID: PMC8894240 DOI: 10.1016/j.molmet.2022.101457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Polyunsaturated fatty acid (PUFA) supplements have been trialled as a treatment for a number of conditions and produced a variety of results. This variety is ascribed to the supplements, that often comprise a mixture of fatty acids, and to different effects in different organs. In this study, we tested the hypothesis that the supplementation of individual PUFAs has system-level effects that are dependent on the molecular structure of the PUFA. METHODS We undertook a network analysis using Lipid Traffic Analysis to identify both local and system-level changes in lipid metabolism using publicly available lipidomics data from a mouse model of supplementation with FA(20:4n-6), FA(20:5n-3), and FA(22:6n-3); arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, respectively. Lipid Traffic Analysis is a new computational/bioinformatics tool that uses the spatial distribution of lipids to pinpoint changes or differences in control of metabolism, thereby suggesting mechanistic reasons for differences in observed lipid metabolism. RESULTS There was strong evidence for changes to lipid metabolism driven by and dependent on the structure of the supplemented PUFA. Phosphatidylcholine and triglycerides showed a change in the variety more than the total number of variables, whereas phosphatidylethanolamine and phosphatidylinositol showed considerable change in both which variables and the number of them, in a highly PUFA-dependent manner. There was also evidence for changes to the endogenous biosynthesis of fatty acids and to both the elongation and desaturation of fatty acids. CONCLUSIONS These results show that the full biological impact of PUFA supplementation is far wider than any single-organ effect and implies that supplementation and dosing with PUFAs require a system-level assessment.
Collapse
Affiliation(s)
- Samuel Furse
- Core Metabolomics and Lipidomics Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Treatment Centre, Keith Day Road Cambridge, CB2 0QQ, UK; Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Addenbrooke's Treatment Centre, Keith Day Road Cambridge, CB2 0QQ, UK; Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey, TW9 3AE, UK.
| | - Samuel Virtue
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Addenbrooke's Treatment Centre, Keith Day Road Cambridge, CB2 0QQ, UK
| | - Stuart G Snowden
- Biology Department, Royal Holloway College, University of London, UK; Centro de Investigacion Principe Felipe, 46012 Valencia, Spain
| | - Antonio Vidal-Puig
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Addenbrooke's Treatment Centre, Keith Day Road Cambridge, CB2 0QQ, UK
| | - Philip C Stevenson
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey, TW9 3AE, UK; Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, UK
| | - Davide Chiarugi
- Bioinformatics and Biostatistics Core, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Treatment Centre, Keith Day Road Cambridge, CB2 0QQ, UK
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Treatment Centre, Keith Day Road Cambridge, CB2 0QQ, UK; Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Addenbrooke's Treatment Centre, Keith Day Road Cambridge, CB2 0QQ, UK.
| |
Collapse
|
53
|
Effectiveness of omega-3 and prebiotics on adiponectin, leptin, liver enzymes lipid profile and anthropometric indices in patients with non-alcoholic fatty liver disease: A randomized controlled trial. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
54
|
Dionysopoulos G, Kalopitas G, Vadarlis A, Bakaloudi DR, Gkiourtzis N, Karanika E, Tsekitsidi E, Chourdakis M. Can omega-3 fatty acids be beneficial in pediatric NAFLD? A systematic review and meta-analysis. Crit Rev Food Sci Nutr 2022; 63:8545-8553. [PMID: 35400251 DOI: 10.1080/10408398.2022.2062589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in children and no medications or supplements are currently recommended. The role of omega-3 (n-3) fatty acids has been investigated in clinical trials with promising results. The aim of this study is to provide a detailed summary of the evidence about the efficacy of n-3 in the treatment of pediatric NAFLD. A systematic literature search was performed through major electronic databases up to September 20, 2021 for randomized placebo-controlled trials, investigating the efficacy of n-3 fatty acids in children with NAFLD. The primary outcomes were changes in serum transaminases concentration, Body Mass Index (BMI) and improvement of ultrasonographic liver steatosis. The secondary outcomes were changes in the patients' serum lipid profile, γ-glutamyl transferase (GGT), fasting blood glucose (FBG), homeostatic model assessment of insulin resistance (ΗΟΜΑ-ΙR) and waist circumference (WC). Results were expressed as mean differences for continuous outcomes and odds ratios for dichotomous outcomes with 95% confidence intervals. Six RCTs (n = 378 patients) were included. Treatment with n-3, compared to placebo, resulted in a statistically significant reduction in transaminases concentration. In addition, a significant improvement in liver steatosis assessed by ultrasonography and a decrease in BMI were observed. N-3 fatty acids supplementation seems to be an effective alternative treatment in pediatric NAFLD by improving liver biochemistry, ultrasonographic steatosis and BMI. Further research is required concerning the effect of n-3 fatty acids in liver histology.
Collapse
Affiliation(s)
- Georgios Dionysopoulos
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Kalopitas
- Division of Gastroenterology and Hepatology, 1st Department of Internal Medicine, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Vadarlis
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Gastroenterology and Hepatology, General Hospital of Thessaloniki "G. Papanikolaou,"Thessaloniki, Greece
| | - Dimitra Rafailia Bakaloudi
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Gkiourtzis
- 4th Department of Paediatrics, Papageorgiou University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Karanika
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eirini Tsekitsidi
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Michail Chourdakis
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
55
|
Videla LA, Valenzuela R. Perspectives in liver redox imbalance: Toxicological and pharmacological aspects underlying iron overloading, nonalcoholic fatty liver disease, and thyroid hormone action. Biofactors 2022; 48:400-415. [PMID: 34687092 DOI: 10.1002/biof.1797] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 01/19/2023]
Abstract
Oxidative stress is an imbalance between oxidants and antioxidants in favor of the oxidants, leading to a disruption of redox signaling and control, and/or molecular damage altering cellular functions. This redox imbalance may trigger different responses depending on the antioxidant potential of a given cell, the level of reactive oxygen/nitrogen species (ROS/RNS) attained and the time of exposure, with protective effects being induced at low ROS/RNS levels in acute or short-term conditions, and harmful effects after high ROS/RNS exposure in prolonged situations. Relevant conditions underlying liver redox imbalance include iron overload associated with ROS production via Fenton chemistry and the magnitude of the iron labile pool achieved, with low iron exposure inducing protective effects related to nuclear factor-κB, signal transducer and activation of transcription 3, and nuclear factor erythroid-related factor 2 (Nrf2) activation and upregulation of ferritin, hepcidin, acute-phase response and antioxidant components, whereas high iron exposure causes drastic oxidation of biomolecules, mitochondrial dysfunction, and cell death due to necrosis, apoptosis and/or ferroptosis. Redox imbalance in nonalcoholic fatty liver disease (NAFLD) is related to polyunsaturated fatty acid depletion, lipogenic factor sterol regulatory element-binding protein-1c upregulation, fatty acid oxidation-dependent peroxisome proliferator-activated receptor-α downregulation, low antioxidant factor Nrf2 and insulin resistance, a phenomenon that is exacerbated in nonalcoholic steatohepatitis triggering an inflammatory response. Thyroid hormone (T3 ) administration determines liver preconditioning against ischemia-reperfusion injury due to the redox activation of several transcription factors, AMP-activated protein kinase, unfolded protein response and autophagy. High grade liver redox imbalance occurring in severe iron overload is adequately handled by iron chelation, however, that underlying NAFLD/NASH is currently under study in several Phase II and Phase III trials.
Collapse
Affiliation(s)
- Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
56
|
Refaat B, Abdelghany AH, Ahmad J, Abdalla OM, Elshopakey GE, Idris S, El-Boshy M. Vitamin D 3 enhances the effects of omega-3 oils against metabolic dysfunction-associated fatty liver disease in rat. Biofactors 2022; 48:498-513. [PMID: 34767670 DOI: 10.1002/biof.1804] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022]
Abstract
This study investigated the effects of omega-3 oils (OM) and/or vitamin D3 (VD) against metabolic dysfunction-associated fatty liver disease (MAFLD). Forty rats were divided into negative (NC) and positive (PC) controls, OM, VD, and OM + VD groups, and MAFLD was induced by high-fat/high-fructose diet (12 weeks). Oral OM (415 mg/kg/day) and/or intramuscular VD (290 IU/kg/day) were given for 4 weeks (5 times/week). The PC animals were markedly obese and had hyperglycemia, insulin resistance, dyslipidemia, elevated liver enzymes, abnormal hepatic histology, and increased caspase-3 with apoptosis than the NC group. The expression of hepatic peroxisome proliferator-activated receptor-α (PPAR-α; 5.3-fold), insulin induced gene-1 (INSIG1; 7.8-fold), adiponectin receptor-1 (AdipoR1; 4.4-fold), and leptin receptor (LEPR; 6-fold) declined, while PPAR-γ (3.7-fold) and sterol regulatory element-binding protein-1 (SREBP1; 2.4-fold) increased, in the PC than the NC group. Leptin (2.2-fold), malondialdehyde (2.1-fold), protein carbonyl groups (17.3-fold), IL-1β (4.4-fold), IL-6 (2.1-fold), TNF-α (1.8-fold) also increased, whereas adiponectin (2.8-fold) glutathione (2.1-fold), glutathione peroxidase-1 (2.4-fold), glutathione reductase (2.2-fold), catalase (1.4-fold), and IL-10 (2.8-fold) decreased, in the PC livers. Both monotherapies attenuated obesity, metabolic profiles, and PPAR-γ/SREBP1/leptin/Caspase-3/apoptosis, while induced PPAR-α/adiponectin/AdipoR1/LEPR/INSIG1. The monotherapies also reduced the oxidative stress and pro-inflammatory markers and increased the antioxidant and anti-inflammatory molecules. However, the OM effects were better than VD monotherapy. Alternatively, the co-therapy group showed the greatest ameliorations in liver functions, lipid-regulatory molecules, oxidative stress, inflammation, and apoptosis. In conclusion, while OM monotherapy was superior to VD, the co-therapy protocol displayed the best alleviations against MAFLD, possibly by enhanced modulation of metabolic, antioxidant, and anti-inflammatory pathways.
Collapse
Affiliation(s)
- Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Jawwad Ahmad
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Osama M Abdalla
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Gehad E Elshopakey
- Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Shakir Idris
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed El-Boshy
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
57
|
Maevskaya M, Kotovskaya Y, Ivashkin V, Tkacheva O, Troshina E, Shestakova M, Breder V, Geyvandova N, Doschitsin V, Dudinskaya E, Ershova E, Kodzoeva K, Komshilova K, Korochanskaya N, Mayorov A, Mishina E, Nadinskaya M, Nikitin I, Pogosova N, Tarzimanova A, Shamkhalova M. The National Consensus statement on the management of adult patients with non-alcoholic fatty liver disease and main comorbidities. TERAPEVT ARKH 2022; 94:216-253. [PMID: 36286746 DOI: 10.26442/00403660.2022.02.201363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 12/15/2022]
Abstract
The National Consensus was prepared with the participation of the National Medical Association for the Study of the Multimorbidity, Russian Scientific Liver Society, Russian Association of Endocrinologists, Russian Association of Gerontologists and Geriatricians, National Society for Preventive Cardiology, Professional Foundation for the Promotion of Medicine Fund PROFMEDFORUM.
The aim of the multidisciplinary consensus is a detailed analysis of the course of non-alcoholic fatty liver disease (NAFLD) and the main associated conditions. The definition of NAFLD is given, its prevalence is described, methods for diagnosing its components such as steatosis, inflammation and fibrosis are described.
The association of NAFLD with a number of cardio-metabolic diseases (arterial hypertension, atherosclerosis, thrombotic complications, type 2 diabetes mellitus (T2DM), obesity, dyslipidemia, etc.), chronic kidney disease (CKD) and the risk of developing hepatocellular cancer (HCC) were analyzed. The review of non-drug methods of treatment of NAFLD and modern opportunities of pharmacotherapy are presented.
The possibilities of new molecules in the treatment of NAFLD are considered: agonists of nuclear receptors, antagonists of pro-inflammatory molecules, etc. The positive properties and disadvantages of currently used drugs (vitamin E, thiazolidinediones, etc.) are described. Special attention is paid to the multi-target ursodeoxycholic acid (UDCA) molecule in the complex treatment of NAFLD as a multifactorial disease. Its anti-inflammatory, anti-oxidant and cytoprotective properties, the ability to reduce steatosis an independent risk factor for the development of cardiovascular pathology, reduce inflammation and hepatic fibrosis through the modulation of autophagy are considered.
The ability of UDCA to influence glucose and lipid homeostasis and to have an anticarcinogenic effect has been demonstrated. The Consensus statement has advanced provisions for practitioners to optimize the diagnosis and treatment of NAFLD and related common pathogenetic links of cardio-metabolic diseases.
Collapse
|
58
|
André-Dumont SI, Lanthier N. Quelle alimentation proposer aux patients présentant une stéatohépatite non-alcoolique ? NUTR CLIN METAB 2022. [DOI: 10.1016/j.nupar.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
59
|
Tzanaki I, Agouridis AP, Kostapanos MS. Is there a role of lipid-lowering therapies in the management of fatty liver disease? World J Hepatol 2022; 14:119-139. [PMID: 35126843 PMCID: PMC8790403 DOI: 10.4254/wjh.v14.i1.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/30/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Atherogenic dyslipidemia is characterized by increased triglyceride-rich lipoproteins and low high-density lipoprotein cholesterol concentrations. It is highly prevalent in non-alcoholic fatty liver disease (NAFLD) and contributes to the increased cardiovascular risk associated with this condition. Alongside insulin resistance it plays an important pathogenetic role in NAFLD/non-alcoholic steatohepatitis (NASH) development and progression. It has been shown that cholesterol-lowering reduces cardiovascular risk more in NAFLD vs non-NAFLD high-risk individuals. This evidence highlights the importance of effective lipid modulation in NAFLD. In this narrative review the effects of the most commonly used lipid-lowering therapies on liver outcomes alongside their therapeutic implications in NAFLD/NASH are critically discussed. Preclinical and clinical evidence suggests that statins reduce hepatic steatosis, inflammation and fibrosis in patients with NAFLD/NASH. Most data are derived from observational and small prospective clinical studies using changes in liver enzyme activities, steatosis/fibrosis scores, and imaging evidence of steatosis as surrogates. Also, relevant histologic benefits were noted in small biopsy studies. Atorvastatin and rosuvastatin showed greater benefits, whereas data for other statins are scarce and sometimes conflicting. Similar studies to those of statins showed efficacy of ezetimibe against hepatic steatosis. However, no significant anti-inflammatory and anti-fibrotic actions of ezetimibe have been shown. Preclinical studies showed that fibrates through peroxisome proliferator-activated receptor (PPAR)α activation may have a role in NAFLD prevention and management. Nevertheless, no relevant benefits have been noted in human studies. Species-related differences in PPARα expression and its activation responsiveness may help explain this discrepancy. Omega-3 fatty acids reduced hepatic steatosis in numerous heterogeneous studies, but their benefits on hepatic inflammation and fibrosis have not been established. Promising preliminary data for the highly purified eicosapentaenoic acid require further confirmation. Observational studies suggest that proprotein convertase subtilisin/kexin9 inhibitors may also have a role in the management of NAFLD, though this needs to be established by future prospective studies.
Collapse
Affiliation(s)
- Ismini Tzanaki
- School of Medicine, European University Cyprus, Nicosia, Cyprus, Nicosia 2404, Cyprus
| | - Aris P Agouridis
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus
| | - Michael S Kostapanos
- General Medicine, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge CB20QQ, United Kingdom
| |
Collapse
|
60
|
Prikhodko VA, Bezborodkina NN, Okovityi SV. Pharmacotherapy for Non-Alcoholic Fatty Liver Disease: Emerging Targets and Drug Candidates. Biomedicines 2022; 10:274. [PMID: 35203484 PMCID: PMC8869100 DOI: 10.3390/biomedicines10020274] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), or metabolic (dysfunction)-associated fatty liver disease (MAFLD), is characterized by high global incidence and prevalence, a tight association with common metabolic comorbidities, and a substantial risk of progression and associated mortality. Despite the increasingly high medical and socioeconomic burden of NAFLD, the lack of approved pharmacotherapy regimens remains an unsolved issue. In this paper, we aimed to provide an update on the rapidly changing therapeutic landscape and highlight the major novel approaches to the treatment of this disease. In addition to describing the biomolecules and pathways identified as upcoming pharmacological targets for NAFLD, we reviewed the current status of drug discovery and development pipeline with a special focus on recent evidence from clinical trials.
Collapse
Affiliation(s)
- Veronika A. Prikhodko
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 14A Prof. Popov Str., 197022 St. Petersburg, Russia;
| | - Natalia N. Bezborodkina
- Zoological Institute, Russian Academy of Sciences, 1 Universitetskaya emb., 199034 St. Petersburg, Russia;
| | - Sergey V. Okovityi
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 14A Prof. Popov Str., 197022 St. Petersburg, Russia;
- Scientific, Clinical and Educational Center of Gastroenterology and Hepatology, Saint Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| |
Collapse
|
61
|
Jiang W, Li FR, Yang HH, Chen GC, Hua YF. Relationship Between Fish Oil Use and Incidence of Primary Liver Cancer: Findings From a Population-Based Prospective Cohort Study. Front Nutr 2022; 8:771984. [PMID: 35036409 PMCID: PMC8759152 DOI: 10.3389/fnut.2021.771984] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Background: N-3 long-chain polyunsaturated fatty acids (LCPUFAs) prevented non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) in studies of mouse models. We examined prospective relationships between fish oil use and risk of primary liver cancer and the major histological subtypes, such as HCC and intrahepatic cholangiocarcinoma (ICC). Methods: We included 434,584 middle-aged and older men and women who were free of cancer at recruitment of the UK Biobank (2006–2010). Information on fish oil use and other dietary habits was collected via questionnaires. Cox proportional hazards models were used to compute the hazard ratio (HR) and 95% CI of liver cancer associated with fish oil use, with adjustment for socio-demographic, lifestyle, dietary, and other clinical risk factors. Results: At baseline, 31.4% of participants reported regular use of fish oil supplements. During a median of 7.8 years of follow-up, 262 incident liver cancer cases were identified, among which 127 were HCC and 110 were ICC cases. As compared with non-users, fish oil users had a significantly 44% (95% CI: 25–59%) lower risk of total liver cancer, and 52% (95% CI: 24–70%) and 40% (95% CI: 7–61%) lower risk of HCC and ICC, respectively. Higher intake of oily fish also was associated with a lower risk of HCC (≥2 vs. <1 serving/week: HR = 0.46; 95% CI: 0.23–0.96; P-trend = 0.027) but not ICC (P-trend = 0.96). Conclusion: Habitual use of fish oil supplements was associated lower risk of primary liver cancer regardless of cancer histological subtypes, potentially supporting a beneficial role of dietary n-3 LCPUFAs in liver cancer prevention.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Fu-Rong Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China.,Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Huan-Huan Yang
- Wanke School of Public Health, Tsinghua University, Beijing, China
| | - Guo-Chong Chen
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Yong-Fei Hua
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
62
|
Rojas Á, Lara-Romero C, Muñoz-Hernández R, Gato S, Ampuero J, Romero-Gómez M. Emerging pharmacological treatment options for MAFLD. Ther Adv Endocrinol Metab 2022; 13:20420188221142452. [PMID: 36533188 PMCID: PMC9747889 DOI: 10.1177/20420188221142452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/13/2022] [Indexed: 12/14/2022] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) prevalence and incidence is rising globally. It is associated with metabolic comorbidities, obesity, overweight, type 2 diabetes mellitus, and at least two metabolic risk factors, such as hypertension, hypertriglyceridemia, hypercholesterolemia, insulin resistance, and cardiovascular risk, increasing the risk of mortality. The excessive accumulation of fat comprises apoptosis, necrosis, inflammation and ballooning degeneration progressing to fibrosis, cirrhosis, and liver decompensations including hepatocellular carcinoma development. The limitation of approved drugs to prevent MAFLD progression is a paradigm. This review focuses on recent pathways and targets with evidence results in phase II/III clinical trials.
Collapse
Affiliation(s)
- Ángela Rojas
- SeLiver Group, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Calle Antonio Maura Montaner s/n, 41013 Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0 28029 Madrid, Madrid, Spain
| | - Carmen Lara-Romero
- SeLiver Group, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Digestive Diseases Unit, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Rocío Muñoz-Hernández
- SeLiver Group, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain
| | - Sheila Gato
- SeLiver Group, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain
| | - Javier Ampuero
- SeLiver Group, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain
- Digestive Diseases Unit, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | | |
Collapse
|
63
|
Chi CC, Kuo LT, Shao SC. Ten essential steps for performing a systematic review: A quick tutorial. DERMATOL SIN 2022. [DOI: 10.4103/1027-8117.362992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
64
|
Willis SA, Bawden SJ, Malaikah S, Sargeant JA, Stensel DJ, Aithal GP, King JA. The role of hepatic lipid composition in obesity-related metabolic disease. Liver Int 2021; 41:2819-2835. [PMID: 34547171 DOI: 10.1111/liv.15059] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022]
Abstract
Obesity is a primary antecedent to non-alcoholic fatty liver disease whose cardinal feature is excessive hepatic lipid accumulation. Although total hepatic lipid content closely associates with hepatic and systemic metabolic dysfunction, accumulating evidence suggests that the composition of hepatic lipids may be more discriminatory. This review summarises cross-sectional human studies using liver biopsy/lipidomics and proton magnetic resonance spectroscopy to characterise hepatic lipid composition in people with obesity and related metabolic disease. A comprehensive literature search identified 26 relevant studies published up to 31st March 2021 which were included in the review. The available evidence provides a consistent picture showing that people with hepatic steatosis possess elevated saturated and/or monounsaturated hepatic lipids and a reduced proportion of polyunsaturated hepatic lipids. This altered hepatic lipid profile associates more directly with metabolic derangements, such as insulin resistance, and may be exacerbated in non-alcoholic steatohepatitis. Further evidence from lipidomic studies suggests that these deleterious changes may be related to defects in lipid desaturation and elongation, and an augmentation of the de novo lipogenic pathway. These observations are consistent with mechanistic studies implicating saturated fatty acids and associated bioactive lipid intermediates (ceramides, lysophosphatidylcholines and diacylglycerol) in the development of hepatic lipotoxicity and wider metabolic dysfunction, whilst monounsaturated fatty acids and polyunsaturated fatty acids may exhibit a protective role. Future studies are needed to prospectively determine the relevance of hepatic lipid composition for hepatic and non-hepatic morbidity and mortality; and to further evaluate the impact of therapeutic interventions such as pharmacotherapy and lifestyle interventions.
Collapse
Affiliation(s)
- Scott A Willis
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | - Stephen J Bawden
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Leicester, UK
| | - Sundus Malaikah
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK.,Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jack A Sargeant
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - David J Stensel
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | - Guruprasad P Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Leicester, UK.,Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - James A King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| |
Collapse
|
65
|
Xie Y, Tian H, Xiang B, Li D, Liu J, Cai Z, Liu Y, Xiang H. Total polyunsaturated fatty acid intake and the risk of non-alcoholic fatty liver disease in Chinese Han adults: a secondary analysis based on a case-control study. BMC Gastroenterol 2021; 21:451. [PMID: 34847883 PMCID: PMC8638208 DOI: 10.1186/s12876-021-02039-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/23/2021] [Indexed: 02/23/2023] Open
Abstract
Background Previous studies have revealed obesity, nutrition, lifestyle, genetic and epigenetic factors may be risk factors for the occurrence and development of non-alcoholic fatty liver disease (NAFLD). However, the effect of total polyunsaturated fatty acid (PUFA) consumption on the risk of NAFLD is uncertain. Therefore, this study aimed to determine whether the total PUFA intake is independently associated with the risk of NAFLD and explore the threshold of PUFA intake better illustrate the correlation between them in Chinese Han adults. Methods The present study was a retrospective case–control study. A total of 534 NAFLD patients and 534 controls matched by gender and age in the same center were included in this study. Using a semi-quantitative food frequency questionnaire in a health examination center in China to collect information about dietary intake and calculate nutrient consumption. A multivariate logistic regression model was used to estimate the association between total PUFA daily intake and its quartile and the incidence of NAFLD. Results Multivariate analyses suggested a significant association between total PUFA intake and the occurrence of NAFLD. A non-linear relationship between total PUFA consumption and NAFLD risk was detected after adjusting for potential confounding factors. There was a significant connection between PUFA and the risk of NAFLD (OR: 1.32, 95% CI: 1.23–1.41, P < 0.0001) when PUFA intake is between 18.8 and 29.3 g/day. Conclusions The relationship between total PUFA intake and NAFLD is non-linear. Total PUFA was positively related to the risk of NAFLD when PUFA intake is between 18.8 and 29.3 g/day among Chinese Han adults.
Collapse
Affiliation(s)
- Yong Xie
- Institute of Clinical Interventional Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410005, China.
| | - Huan Tian
- Department of Radiology, The Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Bin Xiang
- Institute of Clinical Interventional Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410005, China
| | - Ding Li
- Institute of Clinical Interventional Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410005, China
| | - Jian Liu
- Institute of Clinical Interventional Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410005, China
| | - Zhuoyan Cai
- Institute of Clinical Interventional Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410005, China
| | - Yuzhou Liu
- Institute of Clinical Interventional Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410005, China
| | - Hua Xiang
- Institute of Clinical Interventional Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410005, China.
| |
Collapse
|
66
|
Kavyani M, Saleh-Ghadimi S, Dehghan P, Abbasalizad Farhangi M, Khoshbaten M. Co-supplementation of camelina oil and a prebiotic is more effective for in improving cardiometabolic risk factors and mental health in patients with NAFLD: a randomized clinical trial. Food Funct 2021; 12:8594-8604. [PMID: 34338703 DOI: 10.1039/d1fo00448d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This trial evaluated the effects of co-supplementing Camelina sativa oil (CSO) and a prebiotic as modulators of the gut microbiota on cardiometabolic risk factors and mental health in NAFLD patients. In all, 44 subjects with NAFLD were allocated to either an intervention (20 g d-1 CSO + resistant dextrin) or a placebo (20 g d-1 CSO + maltodextrin) group and received a calorie-restricted diet (-500 kcal d-1) for 12 weeks. Fasting plasma levels of gucose, insulin, hs-CRP, endotoxin, antioxidant enzyme activity, total antioxidant capacity (TAC), malondialdehyde (MDA), 8-iso-prostaglandin F2α, and uric acid were measured at the baseline and post-intervention. The depression, anxiety and stress scale (DASS) and the general health questionnaire (GHQ) were used to assess mental health. Co-supplementing CSO and resistant dextrin significantly decreased the level of insulin concentration (-0.84 μU ml-1, p = 0.011), HOMA-IR (-0.27, p = 0.021), hs-CRP (-1.25 pg ml-1, p = 0.023), endotoxin (-3.70 EU mL-1, p = 0.001), cortisol (-2.43, p = 0.033), GHQ (-5.03, p = 0.035), DASS (-9.01, p = 0.024), and MDA (-0.54 nmol mL-1, p = 0.021) and increased the levels of TAC (0.16 mmol L-1, p = 0.032) and superoxide dismutase (106.32 U g-1 Hb, p = 0.45) in the intervention group compared with the placebo group. No significant changes were observed in the levels of other biomarkers. Co-supplementing CSO and resistant dextrin in combination with a low-calorie diet may improve metabolic risk factors and mental health in NAFLD patients.
Collapse
Affiliation(s)
- Maryam Kavyani
- Student research committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Saleh-Ghadimi
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Parvin Dehghan
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahdieh Abbasalizad Farhangi
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. and Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Khoshbaten
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
67
|
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy -
| | - Francesco Luzza
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| |
Collapse
|
68
|
Werida RH, Abou-Madawy S, Abdelsalam M, Helmy MW. Omega 3 fatty acids effect on the vascular calcification biomarkers fetuin A and osteoprotegerin in hemodialysis patients. Clin Exp Med 2021; 22:301-310. [PMID: 34286397 DOI: 10.1007/s10238-021-00740-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/26/2021] [Indexed: 11/25/2022]
Abstract
Chronic renal failure patients on dialysis are at a high risk of death due to vascular calcification. This study aimed at investigating the effect of omega-3 fatty acids on the vascular calcification biomarkers fetuin-A and osteoprotegerin (OPG) in patients with chronic renal failure who are undergoing hemodialysis. This prospective, open-label, controlled, parallel study included 60 hemodialysis patients who were randomized to receive either omega-3 fatty acids capsule along with their standard care of treatment (omega-3 group) or their standard care of treatment only (control group). Serum levels of fetuin-A, OPG, calcium, phosphorus, hemoglobin, parathyroid hormone, blood urea nitrogen (BUN), albumin, serum creatinine (SCr), and serum triglycerides (TG) were measured at baseline and after six months of intervention and follow-up of both groups. Significantly increased levels of fetuin-A and OPG (p < 0.001) were observed in the omega-3 group six months after the intervention compared with the control group. Levels of TG, albumin, SCr, BUN, phosphorous, calcium, hemoglobin, and parathyroid hormone were not significantly different in the omega-3 group compared with the control group after six months of intervention. Our study concluded that omega-3 may have a clinically beneficial effect in decreasing cardiovascular events by increasing the levels of the protective vascular calcification inhibitors fetuin-A and osteoprotegerin in chronic renal failure patients who are undergoing hemodialysis.
Collapse
Affiliation(s)
- Rehab H Werida
- Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Damanhour University, Damanhour, 22514, Egypt.
| | - Sohaila Abou-Madawy
- Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Damanhour University, Damanhour, 22514, Egypt
| | - Mohamed Abdelsalam
- Nephrology Unit, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Maged W Helmy
- Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, 22514, Egypt
| |
Collapse
|
69
|
Maciejewska-Markiewicz D, Stachowska E, Hawryłkowicz V, Stachowska L, Prowans P. The Role of Resolvins, Protectins and Marensins in Non-Alcoholic Fatty Liver Disease (NAFLD). Biomolecules 2021; 11:937. [PMID: 34202667 PMCID: PMC8301825 DOI: 10.3390/biom11070937] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022] Open
Abstract
Increased triacylglycerols' (TAG) synthesis, insulin resistance, and prolonged liver lipid storage might lead to the development of non-alcoholic fatty liver disease (NAFLD). Global prevalence of NAFLD has been estimated to be around 25%, with gradual elevation of this ratio along with the increased content of adipose tissue in a body. The initial stages of NAFLD may be reversible, but the exposition to pathological factors should be limited. As dietary factors greatly influence various disease development, scientists try to find dietary components, helping to alleviate the steatosis. These components include n-3 polyunsaturated (PUFA) fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acids (DHA). This review focused on the role of resolvins, protectins and merensins in NAFLD.
Collapse
Affiliation(s)
- Dominika Maciejewska-Markiewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 70-204 Szczecin, Poland; (E.S.); (V.H.); (L.S.)
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 70-204 Szczecin, Poland; (E.S.); (V.H.); (L.S.)
| | - Viktoria Hawryłkowicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 70-204 Szczecin, Poland; (E.S.); (V.H.); (L.S.)
| | - Laura Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 70-204 Szczecin, Poland; (E.S.); (V.H.); (L.S.)
| | - Piotr Prowans
- Clinic of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, 72-009 Police, Poland;
| |
Collapse
|
70
|
Zhou Y, Tian S, Qian L, Jiang S, Tang Y, Han T. DHA-enriched phosphatidylserine ameliorates non-alcoholic fatty liver disease and intestinal dysbacteriosis in mice induced by a high-fat diet. Food Funct 2021; 12:4021-4033. [PMID: 33977946 DOI: 10.1039/d0fo03471a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Docosahexaenoic acid-enriched phosphatidylserine (DHA-PS) has attracted increasing attention because of its unique health benefits. In this study, DHA-PS was biosynthesized from DHA-enriched phosphatidylcholine (DHA-PC), which was extracted from herring roe, Clupea harengus. The ameliorating effect of DHA-PS on high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) was investigated using a mouse model. The DHA-PS treatment ameliorated NAFLD and effectively decreased the serum total cholesterol, triglyceride, non-esterified fatty acid, and low-density lipoprotein cholesterol levels and considerably increased the serum high-density lipoprotein cholesterol levels. Moreover, the DHA-PS treatment reduced the levels of liver-function enzymes and pro-inflammatory cytokines and also the oxidative stress indices. Furthermore, DHA-PS increased the diversity and richness of the beneficial intestinal microorganisms, suggesting its potential as a dietary supplement and functional food to combat HFD-induced NAFLD.
Collapse
Affiliation(s)
- Yafeng Zhou
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Shanshan Tian
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Li Qian
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Su Jiang
- ECA Healthcare Inc., Shanghai 201101, China
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China.
| |
Collapse
|
71
|
Vancells Lujan P, Viñas Esmel E, Sacanella Meseguer E. Overview of Non-Alcoholic Fatty Liver Disease (NAFLD) and the Role of Sugary Food Consumption and Other Dietary Components in Its Development. Nutrients 2021; 13:nu13051442. [PMID: 33923255 PMCID: PMC8145877 DOI: 10.3390/nu13051442] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
NAFLD is the world's most common chronic liver disease, and its increasing prevalence parallels the global rise in diabetes and obesity. It is characterised by fat accumulation in the liver evolving to non-alcoholic steatohepatitis (NASH), an inflammatory subtype that can lead to liver fibrosis and cirrhosis. Currently, there is no effective pharmacotherapeutic treatment for NAFLD. Treatment is therefore based on lifestyle modifications including changes to diet and exercise, although it is unclear what the most effective form of intervention is. The aim of this review, then, is to discuss the role of specific nutrients and the effects of different dietary interventions on NAFLD. It is well established that an unhealthy diet rich in calories, sugars, and saturated fats and low in polyunsaturated fatty acids, fibre, and micronutrients plays a critical role in the development and progression of this disease. However, few clinical trials have evaluated the effects of nutrition interventions on NAFLD. We, therefore, summarise what is currently known about the effects of macronutrients, foods, and dietary patterns on NAFLD prevention and treatment. Most current guidelines recommend low-calorie, plant-based diets, such as the Mediterranean diet, as the most effective dietary pattern to treat NAFLD. More clinical trials are required, however, to identify the best evidence-based dietary treatment approach.
Collapse
Affiliation(s)
- Pau Vancells Lujan
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; (P.V.L.); (E.V.E.)
| | - Esther Viñas Esmel
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; (P.V.L.); (E.V.E.)
- Department of Internal Medicine, Hospital Clínic de Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | - Emilio Sacanella Meseguer
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; (P.V.L.); (E.V.E.)
- Department of Internal Medicine, Hospital Clínic de Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-932-275539
| |
Collapse
|
72
|
Extra virgin olive oil improved body weight and insulin sensitivity in high fat diet-induced obese LDLr-/-.Leiden mice without attenuation of steatohepatitis. Sci Rep 2021; 11:8250. [PMID: 33859314 PMCID: PMC8050103 DOI: 10.1038/s41598-021-87761-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Dietary fatty acids play a role in the pathogenesis of obesity-associated non-alcoholic fatty liver disease (NAFLD), which is associated with insulin resistance (IR). Fatty acid composition is critical for IR and subsequent NAFLD development. Extra-virgin olive oil (EVOO) is the main source of monounsaturated fatty acids (MUFA) in Mediterranean diets. This study examined whether EVOO-containing high fat diets may prevent diet-induced NAFLD using Ldlr−/−. Leiden mice. In female Ldlr−/−.Leiden mice, the effects of the following high fat diets (HFDs) were examined: a lard-based HFD (HFD-L); an EVOO-based HFD (HFD-EVOO); a phenolic compounds-rich EVOO HFD (HFD-OL). We studied changes in body weight (BW), lipid profile, transaminases, glucose homeostasis, liver pathology and transcriptome. Both EVOO diets reduced body weight (BW) and improved insulin sensitivity. The EVOOs did not improve transaminase values and increased LDL-cholesterol and liver collagen content. EVOOs and HFD-L groups had comparable liver steatosis. The profibrotic effects were substantiated by an up-regulation of gene transcripts related to glutathione metabolism, chemokine signaling and NF-kappa-B activation and down-regulation of genes relevant for fatty acid metabolism. Collectivelly, EVOO intake improved weight gain and insulin sensitivity but not liver inflammation and fibrosis, which was supported by changes in hepatic genes expression.
Collapse
|
73
|
Mantovani A, Dalbeni A. Treatments for NAFLD: State of Art. Int J Mol Sci 2021; 22:ijms22052350. [PMID: 33652942 PMCID: PMC7956331 DOI: 10.3390/ijms22052350] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is to date the most common chronic liver disease in clinical practice and, consequently, a major health problem worldwide. It affects approximately 30% of adults in the general population and up to 70% of patients with type 2 diabetes (T2DM). Despite the current knowledge of the epidemiology, pathogenesis, and natural history of NAFLD, no specific pharmacological therapies are until now approved for this disease and, consequently, general strategies have been proposed to manage it. They include: (a) lifestyle change in order to promote weight loss by diet and physical activity, (b) control of the main cardiometabolic risk factors, (c) correction of all modifiable risk factors leading the development and progression of advanced forms of NAFLD, and (d) prevention of hepatic and extra-hepatic complications. In the last decade, several potential agents have been widely investigated for the treatment of NAFLD and its advanced forms—shedding some light but casting a few shadows. They include some glucose-lowering drugs (such as pioglitazone, glucagon-like peptide-1 (GLP-1) receptor agonists, sodium-glucose co-transporter-2 (SGLT-2) inhibitors), antioxidants (such as vitamin E), statins or other lipid lowering agents, bile and non-bile acid farnesoid X activated receptor (FXR) agonists, and others. This narrative review discusses in detail the different available approaches with the potential to prevent and treat NAFLD and its advanced forms.
Collapse
Affiliation(s)
- Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, University and Azienda Ospedaliera Universitaria Integrata of Verona, 37126 Verona, Italy
- Correspondence:
| | - Andrea Dalbeni
- Section of General Medicine, Hypertension and Liver Unit, University and Azienda Ospedaliera Universitaria Integrata of Verona, 37134 Verona, Italy;
| |
Collapse
|
74
|
Antunes MM, Godoy G, Fernandes IDL, Manin LP, Zappielo C, Masi LN, de Oliveira VAB, Visentainer JV, Curi R, Bazotte RB. The Dietary Replacement of Soybean Oil by Canola Oil Does Not Prevent Liver Fatty Acid Accumulation and Liver Inflammation in Mice. Nutrients 2020; 12:E3667. [PMID: 33260679 PMCID: PMC7760057 DOI: 10.3390/nu12123667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 12/24/2022] Open
Abstract
A high-carbohydrate diet (HCD) is a well-established experimental model of accelerated liver fatty acid (FA) deposition and inflammation. In this study, we evaluated whether canola oil can prevent these physiopathological changes. We evaluated hepatic FA accumulation and inflammation in mice fed with a HCD (72.1% carbohydrates) and either canola oil (C group) or soybean oil (S group) as a lipid source for 0, 7, 14, 28, or 56 days. Liver FA compositions were analyzed by gas chromatography. The mRNA expression of acetyl-CoA carboxylase 1 (ACC1) was measured as an indicator of lipogenesis. The mRNA expression of F4/80, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-10, as mediators of liver inflammation, were also measured. The C group stored less n-6 polyunsaturated FAs (n-6 PUFAs) and had more intense lipid deposition of monounsaturated FAs (MUFAs), n-3 PUFAs, and total FAs. The C group also showed higher ACC1 expression. Moreover, on day 56, the C group showed higher expressions of the inflammatory genes F4/80, TNF-α, IL-1β, and IL-6, as well as the anti-inflammatory IL-10. In conclusion, a diet containing canola oil as a lipid source does not prevent the fatty acid accumulation and inflammation induced by a HCD.
Collapse
Affiliation(s)
- Marina Masetto Antunes
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá 87020-900, Brazil; (M.M.A.); (G.G.)
| | - Guilherme Godoy
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá 87020-900, Brazil; (M.M.A.); (G.G.)
| | - Ingrid de Lima Fernandes
- Department of Chemistry, State University of Maringá, Maringá 87020-900, Brazil; (I.d.L.F.); (L.P.M.); (C.Z.); (J.V.V.)
| | - Luciana Pelissari Manin
- Department of Chemistry, State University of Maringá, Maringá 87020-900, Brazil; (I.d.L.F.); (L.P.M.); (C.Z.); (J.V.V.)
| | - Caroline Zappielo
- Department of Chemistry, State University of Maringá, Maringá 87020-900, Brazil; (I.d.L.F.); (L.P.M.); (C.Z.); (J.V.V.)
| | - Laureane Nunes Masi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 03342-000, Brazil; (L.N.M.); (V.A.B.d.O.); (R.C.)
| | - Vivian Araújo Barbosa de Oliveira
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 03342-000, Brazil; (L.N.M.); (V.A.B.d.O.); (R.C.)
| | - Jesuí Vergílio Visentainer
- Department of Chemistry, State University of Maringá, Maringá 87020-900, Brazil; (I.d.L.F.); (L.P.M.); (C.Z.); (J.V.V.)
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 03342-000, Brazil; (L.N.M.); (V.A.B.d.O.); (R.C.)
| | - Roberto Barbosa Bazotte
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá 87020-900, Brazil; (M.M.A.); (G.G.)
| |
Collapse
|