51
|
Zhu YY, Meng XC, Zhou YJ, Zhu JX, Chang YN. Major royal jelly proteins alleviate non-alcoholic fatty liver disease in mice model by regulating disordered metabolic pathways. J Food Biochem 2022; 46:e14214. [PMID: 35510379 DOI: 10.1111/jfbc.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 11/29/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), the major cause of global chronic hepatic injury, has obtained increasing attention while the current drug treatment still laid safety hazards. Major royal jelly proteins (MRJPs), the water-soluble proteins enriched in royal jelly (RJ), were applied to study its effects on improving NAFLD in the NAFLD mouse model. Herein, we demonstrated that intaking of 250-500 mg/kg/day MRJPs significantly decreased the rate of obesity, dyslipidemia, hepatic steatosis, and insulin resistance. Next, TOF to MRM ("TM") widely targeted metabolomics (untargeted metabolomics + widely targeted metabolomics) was further used to explore the potential mechanism, and we found that 500 mg/kg MRJPs alleviated lipid metabolism, oxidative stress, and inflammation mainly by regulating the metabolisms of alpha-linolenic acid, linoleic acid, arachidonic acid, and biosynthesis of unsaturated fatty acids. Moreover, by detecting multiple oxidative stress factors and inflammatory cytokines, we found that MRJPs indeed exerted antioxidant and anti-inflammatory effects. Together, we demonstrated that MRJPs could mediate the progress of NAFLD through the "multi-component-multi-target-multi-pathway" mechanism, which could be considered as an ideal functional food in alleviating NAFLD. PRACTICAL APPLICATIONS: Royal jelly (RJ) is a bee product with high nutritional value. Major royal jelly proteins (MRJPs) are water-soluble proteins in RJ. Our research showed that MRJPs significantly ameliorated NAFLD induced by a high-fat diet in mice, suggesting that MRJPs could be used as an active ingredient to help improve NAFLD, which was beneficial for the development of related functional foods and the economic value of RJ. Moreover, the metabolic pathways involved in the ameliorative effect of MRJPs were investigated, which provided new ideas for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Yu-Yan Zhu
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xiang-Chun Meng
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Ying-Jun Zhou
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jian-Xiang Zhu
- Class Eight Grade Two, Caoyang NO.2 High School, Shanghai, People's Republic of China
| | - Ya-Ning Chang
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
52
|
Ma C, Ma B, Li J, Fang Y. Changes in chemical composition and antioxidant activity of royal jelly produced at different floral periods during migratory beekeeping. Food Res Int 2022; 155:111091. [PMID: 35400464 DOI: 10.1016/j.foodres.2022.111091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022]
Abstract
Over 90% of global royal jelly (RJ), a functional food with various health benefits, is produced in China mainly by migratory beekeeping of a high RJ-producing honeybee (RJB) strain. To explore quality changes of RJ produced by migratory RJBs at different floral periods, we performed metabolomics and proteomics analysis and assessed RJ antioxidant activity. Overall, the RJ metabolic and proteomic profiles were observed to vary with floral periods. Minor sugars (raffinose, erlose, and sucrose) and major RJ protein 5 (MRJP5) were identified among the discriminating components mainly contributing to the altered profiles. Water, crude protein, and the trans-10-hydroxy-2-decenoic acid (10-HDA) content fulfill the requirements of the International Organization for Standardization regardless of floral periods. Notably, the 10-HDA content increased 11.05%-19.65% during tea blooming. Moreover, changes in antioxidants resulted in significant difference in RJ antioxidant activity. The integrated omics data provide a detailed view of chemical composition for RJ quality evaluation.
Collapse
Affiliation(s)
- Chuan Ma
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Beibei Ma
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jianke Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yu Fang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
53
|
Hamza RZ, Al-Eisa RA, El-Shenawy NS. Possible Ameliorative Effects of the Royal Jelly on Hepatotoxicity and Oxidative Stress Induced by Molybdenum Nanoparticles and/or Cadmium Chloride in Male Rats. BIOLOGY 2022; 11:450. [PMID: 35336823 PMCID: PMC8945475 DOI: 10.3390/biology11030450] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 01/24/2023]
Abstract
The present study aimed to investigate the effect of the royal jelly (RJ) on hepatotoxicity induced by molybdenum nanoparticles (MoO3-NPs), cadmium chloride (CdCl2), or their combination in male rats at biochemical, inflammation, immune response, histological, and ultrastructural levels. The physicochemical properties of MoO3-NPs have been characterized, as well as their ultrastructural organization. A rat experimental model was employed to assess the liver toxicity of MoO3-NPs, even in combination with CdCl2. Different cellular studies indicate divergent mechanisms, from increased reactive oxygen species production to antioxidative damage and cytoprotective activity. Seventy male rats were allocated to groups: (i) control; (ii) MoO3-NPs (500 mg/kg); (iii) CdCl2 (6.5 mg/kg); (iv) RJ (85 mg/kg diluted in saline); (v) MoO3-NPs followed by RJ (30 min after the MoO3-NPs dose); (vi) CdCl2 followed by RJ; and (vii) a combination of MoO3-NPs and CdCl2, followed by RJ, for a total of 30 successive days. Hepatic functions, lipid profile, inflammation marker (CRP), antioxidant biomarkers (SOD, CAT, GPx, and MDA), and genotoxicity were examined. Histological changes, an immunological marker for caspase-3, and transmission electron microscope variations in the liver were also investigated to indicate liver status. The results showed that RJ alleviated the hepatotoxicity of MoO3-NPs and/or CdCl2 by improving all hepatic vitality markers. In conclusion, the RJ was more potent and effective as an antioxidant over the oxidative damage induced by the combination of MoO3-NPs and CdCl2.
Collapse
Affiliation(s)
- Reham Z. Hamza
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Biology Department, Main Campus, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Rasha A. Al-Eisa
- Biology Department, Main Campus, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Nahla S. El-Shenawy
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; or
| |
Collapse
|
54
|
Functional probiotic yoghurt production with royal jelly fortification and determination of some properties. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
55
|
Ojwach J, Adetunji AI, Mutanda T, Mukaratirwa S. Oligosaccharides production from coprophilous fungi: An emerging functional food with potential health-promoting properties. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 33:e00702. [PMID: 35127459 PMCID: PMC8803601 DOI: 10.1016/j.btre.2022.e00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/08/2022] [Accepted: 01/13/2022] [Indexed: 11/26/2022]
Abstract
Functional foods are essential food products that possess health-promoting properties for the treatment of infectious diseases. In addition, they provide energy and nutrients, which are required for growth and survival. They occur as prebiotics or dietary supplements, including oligosaccharides, processed foods, and herbal products. However, oligosaccharides are more efficiently recognized and utilized, as they play a fundamental role as functional ingredients with great potential to improve health in comparison to other dietary supplements. They are low molecular weight carbohydrates with a low degree of polymerization. They occur as fructooligosaccharide (FOS), inulooligosaccharadie (IOS), and xylooligosaccahride (XOS), depending on their monosaccharide units. Oligosaccharides are produced by acid or chemical hydrolysis. However, this technique is liable to several drawbacks, including inulin precipitation, high processing temperature, low yields, and high production costs. As a consequence, the application of microbial enzymes for oligosaccharide production is recognized as a promising strategy. Microbial enzymatic production of FOS and IOS occurs by submerged or solid-state fermentation in the presence of suitable substrates (sucrose, inulin) and catalyzed by fructosyltransferases and inulinases. Incorporation of FOS and IOS enriches the rheological and physiological characteristics of foods. They are used as low cariogenic sugar substitutes, suitable for diabetics, and as prebiotics, probiotics and nutraceutical compounds. In addition, these oligosaccharides are employed as anticancer, antioxidant agents and aid in mineral absorption, lipid metabolism, immune regulation etc. This review, therefore, focuses on the occurrence, physico-chemical characteristics, and microbial enzymatic synthesis of FOS and IOS from coprophilous fungi. In addition, the potential health benefits of these oligosaccharides were discussed in detail.
Collapse
Affiliation(s)
- Jeff Ojwach
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
- Department of Biodiversity and Conservation Biology, Faculty of Natural Science, University of the Western Cape, Private Bag X17 Bellville 7530, South Africa
- School of Life Sciences, College of Agriculture Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Adegoke Isiaka Adetunji
- School of Life Sciences, College of Agriculture Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Taurai Mutanda
- Centre for Algal Biotechnology, Department of Nature Conservation, Faculty of Natural Sciences, Mangosuthu University of Technology, P.O. Box 12363, Jacobs 4026, Durban, South Africa
| | - Samson Mukaratirwa
- School of Life Sciences, College of Agriculture Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
- One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University, School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts, West Indies
| |
Collapse
|
56
|
Bakour M, Laaroussi H, Ousaaid D, El Ghouizi A, Es-safi I, Mechchate H, Lyoussi B. New Insights into Potential Beneficial Effects of Bioactive Compounds of Bee Products in Boosting Immunity to Fight COVID-19 Pandemic: Focus on Zinc and Polyphenols. Nutrients 2022; 14:nu14050942. [PMID: 35267917 PMCID: PMC8912813 DOI: 10.3390/nu14050942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 02/01/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is an epidemic caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). Populations at risk as well as those who can develop serious complications are people with chronic diseases such as diabetes, hypertension, and the elderly. Severe symptoms of SARS-CoV-2 infection are associated with immune failure and dysfunction. The approach of strengthening immunity may be the right choice in order to save lives. This review aimed to provide an overview of current information revealing the importance of bee products in strengthening the immune system against COVID-19. We highlighted the immunomodulatory and the antiviral effects of zinc and polyphenols, which may actively contribute to improving symptoms and preventing complications caused by COVID-19 and can counteract viral infections. Thus, this review will pave the way for conducting advanced experimental research to evaluate zinc and polyphenols-rich bee products to prevent and reduce the severity of COVID-19 symptoms.
Collapse
Affiliation(s)
- Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Driss Ousaaid
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Asmae El Ghouizi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| | - Imane Es-safi
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland;
| | - Hamza Mechchate
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland;
- Correspondence:
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco; (M.B.); (H.L.); (D.O.); (A.E.G.); (B.L.)
| |
Collapse
|
57
|
Fouad S, El Gendy A, Monir R, Abdel-Wahhab KG, Shafei HF, Hegazi AG. Bee Products for Relieving Menopausal Symptoms. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: An overview of honey and other bee products and their health and biological health potentials was highlighted.
AIM: The aim of the study was to help females alleviate their menopausal symptoms, when estrogen hormone levels decrease at the end of their fertility phase of life using natural bee products.
SUBJECTS AND METHODS: Two groups of Egyptian women in the menopausal stage, suffering from different symptoms of menopause, participated as volunteers. Full clinical examination, Menopause Rating Scale, Beck anxiety score, and Beck depression score evaluations were recorded. Blood sampling and biochemical analysis were done including female sex hormones, and anti-inflammatory, and antioxidant markers. Participants consumed two tablespoon of the honey (32 ml) diluted in 250 ml of water once daily in the morning for 2 months. Control group received conventional clover honey while the other group consumed a calculated ratio of clover honey enriched with bee pollen, royal jelly, and bee gum.
RESULTS: Subjects with a mean age of 49.51 ± 0.82 years who consumed enriched clover honey had significant improvement in somatic, psychological, urogenital, and anxiety score assessment and depression score evaluation. Data from this study group showed that the women experienced the disappearance of hot flushes, night sweats, generalized body pain, and psychological symptoms such as irritability, anxiety, depression, and disturbed sleeping. As for biochemical parameters, estradiol, free testosterone, the antioxidant marker malondialdehyde (MDA), and the anti-inflammatory marker interleukin-6 (IL-6) significantly improved at the end of the study. While the control group had mean age of 48.24 ± 0.74 years, they experienced significant improvement of the somatic subscale, depression score, and MDA, and there was no significant effect on urogenital symptoms, anxiety score, IL-6, or any of the female sex hormones.
CONCLUSION: Adding Bee pollen, propolis, and royal jelly to the clover honey are more effective in slowing down menopausal symptoms.
Collapse
|
58
|
Liu Y, Wu D, Wang K, Chen H, Xu H, Zong W, Zhang N, Zhao L, Lin Z, Ji T. Dose-Dependent Effects of Royal Jelly on Estrogen- and Progesterone-Induced Mammary Gland Hyperplasia in Rats. Mol Nutr Food Res 2021; 66:e2100355. [PMID: 34914178 DOI: 10.1002/mnfr.202100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/28/2021] [Indexed: 11/11/2022]
Abstract
SCOPE Royal jelly (RJ) has a wide range of biological functions, its effect on hyperplasia of the mammary gland (HMG) in mammals is unclear. This study aims to investigate the effect of RJ on HMG and the dose-response relationship of RJ in the treatment of HMG. METHODS AND RESULTS HMG rats are induced by intramuscular injection of estrogen (E2) and progesterone, and are treated with different doses of RJ (100, 200, 400, and 800 mg kg-1 d-1 ). As a result, RJ improves the expansion of acinar and breast tissue ducts, particularly at 100 and 800 mg kg-1 d-1 . These two doses also inhibit serum E2 and prolactin (PRL) secretion and increase serum progesterone secretion and the expression of estrogen receptor (ER)-β in the breast tissue. In addition, 800 mg kg-1 d-1 decrease and increase the mRNA expression of, respectively, hypothalamic gonadotropin-releasing hormone (GnRH) and pituitary GnRH receptors (GnRH-R). The lowest dosage (100 mg kg-1 d-1 ) increases GnRH-R mRNA expression as well. However, the effects of 200 and 400 mg kg-1 d-1 RJ on the reproductive parameters of HMG are not significant, implying a dose-dependent effect. CONCLUSION RJ regulates endocrine dyscrasia in HMG rats and improves the breast tissue structure, indicating its potential in the prevention and treatment on HMG.
Collapse
Affiliation(s)
- Yibing Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Dequn Wu
- Department of Clinical Laboratory, Yangzhou Maternal and Child Health Hospital, Yangzhou, 225002, China
| | - Kang Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Heng Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.,Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Hao Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wencheng Zong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Nan Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Luan Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zheguang Lin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
59
|
Queen bee larva consumption improves sleep disorder and regulates gut microbiota in mice with PCPA-induced insomnia. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
60
|
Sidor E, Miłek M, Zaguła G, Bocian A, Dżugan M. Searching for Differences in Chemical Composition and Biological Activity of Crude Drone Brood and Royal Jelly Useful for Their Authentication. Foods 2021; 10:foods10092233. [PMID: 34574343 PMCID: PMC8466182 DOI: 10.3390/foods10092233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 11/21/2022] Open
Abstract
Drone brood is a little-known bee product which is frequently considered as a male equivalent of royal jelly and is sometimes used as its adulterant. The aim of the study was to compare the chemical composition and biological activity of both bee products originated from the same apiaries (n = 3) limiting the influence of genetic and environmental factors. Moreover, for drone brood study covered testing three stages of larval development (days 7, 11, and 14). The comparison included mineral composition (ICP-OES method), protein content and protein profile (SDS-PAGE), testosterone and estradiol content (ELISA tests). HPTLC method was used to analyze of sugar, amino acids, and polyphenolic profile of drone brood and royal jelly. Moreover, their antioxidant and enzymatic properties were compared. A lot of similarities between drone brood and royal jelly were found in terms of chemical components. However, drone brood was more abundant in iron and manganese, reducing sugars and some amino acids, especially proline, tyrosine, and leucine. It contained more testosterone (especially on the 14th day) and estradiol (on the 7th day). The greatest differences in the enzymatic activities and polyphenolic profile were found. Diastase and α-glucosidase activity were found as specific enzymes of the drone brood. Similarly, ferulic and ellagic acids were characteristic for brood and were not present in royal jelly. The study showed a lot of similar features for both tested bee products, however, some specific markers which can serve to differentiate drone brood and royal jelly were found.
Collapse
Affiliation(s)
- Ewelina Sidor
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszów, Ćwiklińskiej 1a St., 35-601 Rzeszów, Poland; (E.S.); (M.M.)
| | - Michał Miłek
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszów, Ćwiklińskiej 1a St., 35-601 Rzeszów, Poland; (E.S.); (M.M.)
| | - Grzegorz Zaguła
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszów University, Ćwiklińskiej 2D St., 35-601 Rzeszów, Poland;
| | - Aleksandra Bocian
- Department of Biotechnology and Bioinformatics, Rzeszów University of Technology, Powstańców Warszawy 6 St., 35-959 Rzeszów, Poland;
| | - Małgorzata Dżugan
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszów, Ćwiklińskiej 1a St., 35-601 Rzeszów, Poland; (E.S.); (M.M.)
- Correspondence:
| |
Collapse
|
61
|
Bee Products: A Representation of Biodiversity, Sustainability, and Health. Life (Basel) 2021; 11:life11090970. [PMID: 34575119 PMCID: PMC8464958 DOI: 10.3390/life11090970] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
Biodiversity strengthens the productivity of any ecosystem (agricultural land, forest, lake, etc.). The loss of biodiversity contributes to food and energy insecurity; increases vulnerability to natural disasters, such as floods or tropical storms; and decreases the quality of both life and health. Wild and managed bees play a key role in maintaining the biodiversity and in the recovery and restoration of degraded habitats. The novelty character of this perspective is to give an updated representation of bee products’ biodiversity, sustainability, and health relationship. The role of bees as bioindicators, their importance in the conservation of biodiversity, their ecosystem services, and the variety of the bee products are described herein. An overview of the main components of bee products, their biological potentials, and health is highlighted and detailed as follows: (i) nutritional value of bee products, (ii) bioactive profile of bee products and the related beneficial properties; (iii) focus on honey and health through a literature quantitative analysis, and (iv) bee products explored through databases. Moreover, as an example of the interconnection between health, biodiversity, and sustainability, a case study, namely the “Cellulose Park”, realized in Rome (Italy), is presented here. This case study highlights how bee activities can be used to assess and track changes in the quality of agricultural ecosystems—hive products could be valid indicators of the quality and health of the surrounding environment, as well as the changes induced by the biotic and abiotic factors that impact the sustainability of agricultural production and biodiversity conservation in peri-urban areas.
Collapse
|
62
|
Honeybee and Plant Products as Natural Antimicrobials in Enhancement of Poultry Health and Production. SUSTAINABILITY 2021. [DOI: 10.3390/su13158467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The quality and safety attributes of poultry products have attracted increasing widespread attention and interest from scholarly groups and the general population. As natural and safe alternatives to synthetic and artificial chemical drugs (e.g., antibiotics), botanical products are recently being used in poultry farms more than 60% of the time for producing organic products. Medicinal plants, and honeybee products, are natural substances, and they were added to poultry diets in a small amount (between 1% and 3%) as a source of nutrition and to provide health benefits for poultry. In addition, they have several biological functions in the poultry body and may help to enhance their welfare. These supplements can increase the bodyweight of broilers and the egg production of laying hens by approximately 7% and 10% and enhance meat and egg quality by more than 25%. Moreover, they can improve rooster semen quality by an average of 20%. Previous research on the main biological activities performed by biotics has shown that most research only concentrated on the notion of using botanical products as growth promoters, anti-inflammatory, and antibacterial agents. In the current review, the critical effects and functions of bee products and botanicals are explored as natural and safe alternative feed additives in poultry production, such as antioxidants, sexual-stimulants, immuno-stimulants, and for producing healthy products.
Collapse
|
63
|
Peršurić Ž, Pavelić SK. Bioactives from Bee Products and Accompanying Extracellular Vesicles as Novel Bioactive Components for Wound Healing. Molecules 2021; 26:molecules26123770. [PMID: 34205731 PMCID: PMC8233762 DOI: 10.3390/molecules26123770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/28/2022] Open
Abstract
In recent years, interest has surged among researchers to determine compounds from bee products such as honey, royal jelly, propolis and bee pollen, which are beneficial to human health. Mass spectrometry techniques have shown that bee products contain a number of proven health-promoting compounds but also revealed rather high diversity in the chemical composition of bee products depending on several factors, such as for example botanical sources and geographical origin. In the present paper, we present recent scientific advances in the field of major bioactive compounds from bee products and corresponding regenerative properties. We also discuss extracellular vesicles from bee products as a potential novel bioactive nutraceutical component. Extracellular vesicles are cell-derived membranous structures that show promising potential in various therapeutic areas. It has been extensively reported that the use of vesicles, which are naturally formed in plant and animal cells, as delivery agents have many advantages. Whether the use of extracellular vesicles from bee products represents a new solution for wound healing remains still to be elucidated. However, promising results in specific applications of the bee products in wound healing and tissue regenerative properties of extracellular vesicles provide a good rationale to further explore this idea.
Collapse
Affiliation(s)
- Željka Peršurić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia;
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, HR-52100 Pula, Croatia
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 5, HR-51000 Rijeka, Croatia
- Correspondence:
| |
Collapse
|
64
|
Bee Pollen and Bee Bread as a Source of Bacteria Producing Antimicrobials. Antibiotics (Basel) 2021; 10:antibiotics10060713. [PMID: 34199247 PMCID: PMC8231920 DOI: 10.3390/antibiotics10060713] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
The principal objective of the study was the isolation and identification of bacteria that are present in mature bee bread (BB) and dried (ready for selling and consumption) bee pollen (BP). Obtained isolates were screened for their potential to inhibit select human pathogenic bacteria and their ability to produce enzymes of particular industrial importance. Four and five samples of BP and BB, respectively, were used for the study. In total, 81 strains of bacteria were isolated, and 34 (42%) of them exhibited antagonistic interactions with at least one reference strain of pathogenic bacteria, namely Staphylococcus aureus ATCC 25923, Staphylococcus aureus ATCC 29213, Staphylococcus epidermidis 12228, Pseudomonas aeruginosa ATCC 27857, and Escherichia coli ATCC 25922. The sequencing of the 16S rRNA gene revealed that all strains producing antimicrobials belong to the genus Bacillus spp., and among them, five species were identified: B. pumilus (n = 17), B. altitudinis (n = 9), B. licheniformis (n = 4), B. subtilis (n = 2), and B. safensis (n = 1). Furthermore, 69, 54, 39, and 29 of the strains exhibited lipolytic, proteolytic, cellulolytic, and esterolytic activity, respectively. Alpha amylase and beta galactosidase activity were rarely observed, and none of the strains produced laccase. The outcomes of the study revealed that BP and BB can be considered potential sources of bacteria producing antimicrobial agents and/or enzymes of particular industrial importance. Of course, additional research is required to verify this hypothesis, but the results of preliminary studies are promising.
Collapse
|
65
|
Mining the Royal Jelly Proteins: Combinatorial Hexapeptide Ligand Library Significantly Improves the MS-Based Proteomic Identification in Complex Biological Samples. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26092762. [PMID: 34067143 PMCID: PMC8125745 DOI: 10.3390/molecules26092762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022]
Abstract
Royal jelly (RJ) is a complex, creamy secretion produced by the glands of worker bees. Due to its health-promoting properties, it is used by humans as a dietary supplement. However, RJ compounds are not fully characterized yet. Hence, in this research, we aimed to broaden the knowledge of the proteomic composition of fresh RJ. Water extracts of the samples were pre-treated using combinatorial hexapeptide ligand libraries (ProteoMinerTM kit), trypsin-digested, and analyzed by a nanoLC-MALDI-TOF/TOF MS system. To check the ProteoMinerTM performance in the MS-based protein identification, we also examined RJ extracts that were not prepared with the ProteoMinerTM kit. We identified a total of 86 proteins taxonomically classified to Apis spp. (bees). Among them, 74 proteins were detected in RJ extracts pre-treated with ProteoMinerTM kit, and only 50 proteins were found in extracts non-enriched with this technique. Ten of the identified features were hypothetical proteins whose existence has been predicted, but any experimental evidence proves their in vivo expression. Additionally, we detected four uncharacterized proteins of unknown functions. The results of this research indicate that the ProteoMinerTM strategy improves proteomic identification in complex biological samples. Broadening the knowledge of RJ composition may contribute to the development of standards and regulations, enhancing the quality of RJ, and consequently, the safety of its supplementation.
Collapse
|