51
|
Rashidi N, Khatibjoo A, Taherpour K, Akbari-Gharaei M, Shirzadi H. Effects of licorice extract, probiotic, toxin binder and poultry litter biochar on performance, immune function, blood indices and liver histopathology of broilers exposed to aflatoxin-B 1. Poult Sci 2020; 99:5896-5906. [PMID: 33142507 PMCID: PMC7647870 DOI: 10.1016/j.psj.2020.08.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/14/2020] [Accepted: 08/07/2020] [Indexed: 11/14/2022] Open
Abstract
Probiotics, toxin binders, and plant extracts improve health and immunity of broiler chickens exposed to aflatoxin. The effects of licorice extract (LE), Protexin probiotic, toxin binder (Agrabound), and poultry litter biochar (PLB) in experimental aflatoxicosis were evaluated. In a completely randomized design, 504 broiler chickens were allotted to 7 treatments and 6 replicates with 12 broiler chickens in each. The experimental groups were as follows: T1) basal diet (B) without any feed additive or aflatoxin B1 (AFB1); T2) B + 0.5 mg AFB1/kg; T3) T2 + 3 g LE/kg; T4) T2 + 6 g LE/kg; T5) T2 + 0.5 g Protexin/kg; T6) T2 + 1 g toxin binder/kg, and T7) T2 + 5 g/kg PLB. Broiler chickens fed AFB diet (T2) had lower body weight gain at the end of grower period and higher feed conversion ratio at the end of the finisher period, whereas inclusion of LE, probiotic, toxin binder, or PLB restores body weight of broiler chickens to that of the control group. Aflatoxicosis decreased total protein, TG, albumin, Ca, and P concentrations and greater uric acid concentration in broiler chickens as compared with the control group (P < 0.05). As compared with the T2 group, inclusion of 3 mg LE/kg increased serum total protein; inclusion of 3 mg LE/kg, probiotic, and toxin binder increased TG; inclusion of 3 and 6 mg LE/kg, probiotic, and PLB increased serum albumin; and the whole additive decreased serum uric acid of broiler chickens comparing with the control group. Lymphocyte percentage, avian influenza antibody titer, thymus relative weight, and immune response to phytohemagglutinin were decreased in the T2 group, whereas heterophil percentage and heterophil-to-lymphocyte ratio were increased (P < 0.05). Aflatoxicosis increased breast meat malondialdehyde concentration, liver enzymes activities, and number of fat vacuoles (P < 0.05). As compared with the T2 group, all of the additives lowered alkaline phosphatase, aspartate aminotransferase, and alanine transaminase activities, breast meat malondialdehyde concentration, and liver pathological damages (P < 0.05). It can be concluded that all of the additives are capable to decrease the negative impact of AFB1 on broiler chickens' performance, blood indices, and immunity.
Collapse
Affiliation(s)
- Nasrin Rashidi
- Department of Animal Science, Ilam University, Ilam, Iran
| | - Ali Khatibjoo
- Department of Animal Science, Ilam University, Ilam, Iran.
| | | | | | | |
Collapse
|
52
|
Choi SY, Kim TH, Hong MW, Park TS, Lee H, Lee SJ. Transcriptomic alterations induced by aflatoxin B1 and ochratoxin A in LMH cell line. Poult Sci 2020; 99:5265-5274. [PMID: 33142442 PMCID: PMC7647754 DOI: 10.1016/j.psj.2020.05.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/09/2020] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
Aflatoxin B1 (AFB1) and ochratoxin A (OTA), which are toxic metabolites of ubiquitously occurring molds, show diverse toxicological effects such as hepatotoxicity, genotoxicity, and immunotoxicity in human and animals. Despite poultry show sensitivity to AFB1 and OTA, the mechanism of these mycotoxins in chickens has not been fully investigated. Here, we aimed to elucidate the molecular mechanism induced by AFB1 and/or OTA in chicken hepatic cells using transcriptomic analysis. Aflatoxin B1 and OTA induced cytotoxic effects in a dose-dependent manner at 48 h after exposure. Furthermore, correlation effect indicated an antagonism between the 2 toxins. The mRNA sequencing of AFB1-treated or OTA-treated chicken hepatocarcinoma and functional analysis revealed the pathways that were commonly regulated by both mycotoxins, especially PPAR signaling, focal adhesion, and MAPK signaling. Based on these findings, a possible hypothesis is that AFB1 and OTA have similar toxic mechanisms and compete for some steps in the chicken liver, and it is expected that the mycotoxins would have antagonistic effects. In addition, genes identified through transcriptome analysis provide candidates for further study of AFB1 and OTA toxicity and targets for efforts to improve the health of chickens exposed to mycotoxins.
Collapse
Affiliation(s)
- So-Young Choi
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea
| | - Tae Hyun Kim
- Department of Animal Science, University of California, Davis, Davis, CA 95616, USA
| | - Min-Wook Hong
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea
| | - Tae Sub Park
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Korea
| | - Hyojeong Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea
| | - Sung-Jin Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea.
| |
Collapse
|
53
|
Pauletto M, Giantin M, Tolosi R, Bassan I, Barbarossa A, Zaghini A, Dacasto M. Curcumin Mitigates AFB1-Induced Hepatic Toxicity by Triggering Cattle Antioxidant and Anti-inflammatory Pathways: A Whole Transcriptomic In Vitro Study. Antioxidants (Basel) 2020; 9:antiox9111059. [PMID: 33137966 PMCID: PMC7692341 DOI: 10.3390/antiox9111059] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Aflatoxin B1 (AFB1) toxicity in livestock and human beings is a major economic and health concern. Natural polyphenolic substances with antioxidant properties have proven to be effective in ameliorating AFB1-induced toxicity. Here we assessed the potential anti-AFB1 activity of curcumin (pure curcumin, C, and curcumin from Curcuma longa, CL) in a bovine fetal hepatocyte-derived cell line (BFH12). First, we measured viability of cells exposed to AFB1 in presence or absence of curcumin treatment. Then, we explored all the transcriptional changes occurring in AFB1-exposed cells cotreated with curcumin. Results demonstrated that curcumin is effective in reducing AFB1-induced toxicity, decreasing cells mortality by approximately 30%. C and CL induced similar transcriptional changes in BFH12 exposed to AFB1, yet C treatment resulted in a larger number of significant genes compared to CL. The mitigating effects of curcuminoids towards AFB1 toxicity were mainly related to molecular pathways associated with antioxidant and anti-inflammatory response, cancer, and drug metabolism. Investigating mRNA changes induced by curcumin in cattle BFH12 cells exposed to AFB1 will help us to better characterize possible tools to reduce its consequences in this susceptible and economically important food-producing species.
Collapse
Affiliation(s)
- Marianna Pauletto
- Division of Pharmacology and Toxicology, Department of Comparative Biomedicine and Food Science, University of Padova, viale dell’Università 16, Legnaro, 35020 Padova, Italy; (M.P.); (M.G.); (R.T.); (I.B.)
| | - Mery Giantin
- Division of Pharmacology and Toxicology, Department of Comparative Biomedicine and Food Science, University of Padova, viale dell’Università 16, Legnaro, 35020 Padova, Italy; (M.P.); (M.G.); (R.T.); (I.B.)
| | - Roberta Tolosi
- Division of Pharmacology and Toxicology, Department of Comparative Biomedicine and Food Science, University of Padova, viale dell’Università 16, Legnaro, 35020 Padova, Italy; (M.P.); (M.G.); (R.T.); (I.B.)
| | - Irene Bassan
- Division of Pharmacology and Toxicology, Department of Comparative Biomedicine and Food Science, University of Padova, viale dell’Università 16, Legnaro, 35020 Padova, Italy; (M.P.); (M.G.); (R.T.); (I.B.)
| | - Andrea Barbarossa
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (A.Z.)
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (A.Z.)
| | - Mauro Dacasto
- Division of Pharmacology and Toxicology, Department of Comparative Biomedicine and Food Science, University of Padova, viale dell’Università 16, Legnaro, 35020 Padova, Italy; (M.P.); (M.G.); (R.T.); (I.B.)
- Correspondence: ; Tel.: +39-049-827-2935
| |
Collapse
|
54
|
Ledur PC, Santurio JM. Cytoprotective effects of curcumin and silymarin on PK-15 cells exposed to ochratoxin A, fumonisin B 1 and deoxynivalenol. Toxicon 2020; 185:97-103. [PMID: 32622693 DOI: 10.1016/j.toxicon.2020.06.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/22/2022]
Abstract
Mycotoxins are toxic secondary metabolites produced by fungus which cause worldwide concern regarding food and feed safety. Ochratoxin A (OTA), fumonisin B1 (FB1) and deoxynivalenol (DON) are some of the main mycotoxins and oxidative stress is the main mechanism of toxicity. Thereby, this study investigates the in vitro cytoprotective effects of curcumin (CUR) and silymarin (SIL) - known for their strong antioxidant activity - in PK-15 cells exposed to OTA, FB1 and DON. Pretreatment with CUR and SIL enhanced the viability of cells exposed to the mycotoxins (P < 0.001) and attenuated reactive oxygen species (ROS) formation by DON (P < 0.01), partially reduced ROS formation by FB1 (P < 0.001), but not OTA. CUR significantly decreased apoptosis in cells exposed to DON (P < 0.01) but was not able to prevent apoptosis in cells exposed to OTA and FB1. Whereas SIL was able to prevent apoptosis in PK-15 cells exposed to FB1 and DON (P < 0.01) but was not able to decrease apoptosis in cells exposed to OTA. In summary, these data indicate that curcumin and silymarin are able to provide cytoprotection against toxicity induced by OTA, FB1 and DON in PK-15 cells.
Collapse
Affiliation(s)
- Pauline Christ Ledur
- Programa de Pós-graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Janio M Santurio
- Programa de Pós-graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.
| |
Collapse
|
55
|
Cheng P, Ishfaq M, Yu H, Yang Y, Li S, Li X, Fazlani SA, Guo W, Zhang X. Curcumin ameliorates duodenal toxicity of AFB1 in chicken through inducing P-glycoprotein and downregulating cytochrome P450 enzymes. Poult Sci 2020; 99:7035-7045. [PMID: 33248620 PMCID: PMC7705060 DOI: 10.1016/j.psj.2020.09.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/14/2020] [Accepted: 09/11/2020] [Indexed: 01/02/2023] Open
Abstract
It has been reported that oral intake of aflatoxin B1 (AFB1)-contaminated feed could cause acute, sub-chronic, or chronic toxicity in livestock and poultry. However, the harmful effect of AFB1 on the small intestine is still controversial. Therefore, blocking the entry of AFB1 into the body through the digestive tract is one of the important methods to prevent its toxicity. In the present study, 1-day-old Arbor Acres broilers were randomly divided into 6 groups including control group, curcumin control group (450 mg curcumin/kg feed), curcumin low-, medium-, and high-dose group (150, 300, and 450 mg curcumin/kg feed + 5 mg AFB1/kg feed), and AFB1 group (5 mg AFB1/kg feed). After 28 d, the samples of chickens' duodenums were collected for further analyses. AFB1 caused abnormal functional and morphological changes in the duodenum, including histological lesions, increased the length of the duodenum and depth of crypt, decreased the unit weight of the duodenum, height of villus, and the value of villus height/crypt depth. Meanwhile, AFB1 administration enhanced malonaldehyde activity, 8-HOdG level, and the mRNA expression of cytochrome P450 (CYP450) enzymes, and reduced superoxide dismutase, catalase, adenosine triphosphatase (ATPase) activity and the mRNA expression of Abcb1. Importantly, curcumin supplementation partially ameliorated AFB1-induced abnormal functional and morphological signs of the duodenum, alleviated AFB1-induced oxidative stress, and decreased the mRNA expression of CYP450 enzymes. Furthermore, curcumin ameliorated AFB1-induced decrease in the Abcb1 mRNA expression, P-glycoprotein (P-gp) level, and ATPase activities. It has been suggested from these results that curcumin supplementation in the feed could ameliorate AFB1-induced duodenal toxicity and damage through downregulating CYP450 enzymes, promoting ATPase activities, and inducing P-gp in chickens.
Collapse
Affiliation(s)
- Ping Cheng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, P R China
| | - Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, P R China
| | - Hongxiao Yu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, P R China
| | - Yuqi Yang
- Pharmacology Teaching and Research Department, School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, P R China
| | - Sihong Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, P R China
| | - Xiaotin Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, P R China
| | - Saqib Ali Fazlani
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, P R China
| | - Wenxin Guo
- Technical Identification Department of Agricultural Products and Veterinary Medicine Feed, Heilongjiang Institute of Veterinary Drug and Feed Control, Harbin, P R China
| | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, P R China.
| |
Collapse
|
56
|
Mehta K, Kaur B, Pandey KK, Kaler S, Dhar P. Curcumin supplementation shows modulatory influence on functional and morphological features of hippocampus in mice subjected to arsenic trioxide exposure. Anat Cell Biol 2020; 53:355-365. [PMID: 32929054 PMCID: PMC7527119 DOI: 10.5115/acb.18.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 06/13/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
Since, oxidative stress has been suggested as one of the mechanisms underlying arsenic-induced toxicity, the present study focused on the role of antioxidant (curcumin) supplementation on behavioral, biochemical, and morphological alterations with context to mice hippocampus (CA1) following arsenic trioxide (As2O3) administration. Healthy male Swiss albino mice were divided into control and experimental groups. As2O3 (2 mg/kg bw) alone or along with curcumin (100 mg/kg bw) was administered to experimental groups by oral route for 45 days whereas the control groups received either no treatment or vehicle for curcumin. Animals were subjected to behavioral study towards the end of the experimental period (day 33-45). On day 46, the brain samples were obtained and subjected either to immersion fixation (for morphometric observations) or used afresh for biochemical test. Behavioral tests (open field, elevated plus maze, and Morris water maze) revealed enhanced anxiety levels and impairment of cognitive functions in As2O3 alone treated groups whereas a trend of recovery was evident in mice simultaneously treated with As2O3 and curcumin. Morphological observations showed noticeable reduction in stratum pyramidale thickness (CA1), along with decrease in density and size of pyramidal neurons in As2O3 alone exposed group as compared to As2O3+Cu co-treated group. Hippocampal glutathione levels were found to be downregulated in animals receiving As2O3 as against the levels of controls and curcumin supplemented animals, thereby, suggestive of beneficial role of curcumin on As2O3 induced adverse effects.
Collapse
Affiliation(s)
- Kamakshi Mehta
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Balpreet Kaur
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Kamlesh Kumar Pandey
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Saroj Kaler
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Pushpa Dhar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
57
|
Tao C, Zhang B, Wei X, Zhao M, Sun Z, Wang S, Bi J, Qi D, Sun L, Zhang N. Effects of dietary cadmium supplementation on production performance, cadmium residue in eggs, and hepatic damage in laying hens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33103-33111. [PMID: 32529616 DOI: 10.1007/s11356-020-09496-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
This study was conducted to investigate the adverse effects of cadmium (Cd) on the production performance, serum biochemistry, liver antioxidant status, histopathology, and egg residue in laying hens. A total of 72 healthy Hy-Line brown laying hens at 40-week-old were randomly assigned to four diets containing 0 (control diet), 15, 30, or 60 mg/kg Cd for 6 weeks. Laying hens exposed to 60 mg/kg Cd had lower egg production rate and worse feed to egg ratio (P < 0.05). Dietary Cd exposure (≥ 15 mg/kg) significantly decreased hepatic glutathione peroxide (GPX) activities, while increasing malondialdehyde (MDA) (P < 0.05). Hepatic histopathology and ultrastructure also showed damage and the symptoms were exacerbated in a dose-dependent manner. The residue of Cd in the yolk was increased with increasing dietary Cd concentration. The mRNA expression levels of mt4L, mt3, sod1, sod2, gpx1, gpx3, and gpx4 in the liver of laying hens exposed to 60 mg Cd/kg feed were significantly decreased (P < 0.05). In conclusion, dietary Cd exposure at ≥ 15 mg/kg induced hepatic damage in laying hens, indicating that the content of Cd in feed must be critically controlled.
Collapse
Affiliation(s)
- Can Tao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Beiyu Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaotian Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Man Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhangjian Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiwen Bi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lvhui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Niya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
58
|
El-Mekkawy HI, Al-Kahtani MA, Shati AA, Alshehri MA, Al-Doaiss AA, Elmansi AA, Ahmed AE. Black tea and curcumin synergistically mitigate the hepatotoxicity and nephropathic changes induced by chronic exposure to aflatoxin-B1 in Sprague-Dawley rats. J Food Biochem 2020; 44:e13346. [PMID: 32602579 DOI: 10.1111/jfbc.13346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 01/18/2023]
Abstract
The study aimed to clarify the characteristics of black tea (BTE) and/or curcumin (CMN) against aflatoxin-B1 (AFB1). Forty eight adult male Sprague-Dawley rats were divided into eight groups. G1 was non-treated control. G2, G3, and G4 were olive oil, BTE, and CMN, respectively. G5 was olive oil-dissolved AFB1 (25 µg/kg b.w). G6, G7, and G8 were AFB1 along with BTE (2%), CMN (200 mg/kg b.w.), and BTE plus CMN, respectively. All treatments were orally given for consecutive 90 days. After treatment period, rats were sacrificed. Serobiochemical analysis and histopathology showed hepatorenal dysfunction in response to AFB1. Glutathione-antioxidants were significantly decreased versus increased lipid peroxides (p < .05-.001). AFB1 significantly increased the expression of the antitumor p53, but decreased that of antiapoptotic Bcl2 in liver or kidney tissue, either (p < .05). BTE or CMN ameliorated those changes induced by AFB1 in both liver and kidney with highly pronounced improvement when combined BTE/CMN was used. PRACTICAL APPLICATIONS: Black tea (BTE) and curcumin (CMN) were known for their antioxidant effects, and several studies reported their independent effects against different toxicities including aflatoxicosis. The current study clarifies the ameliorative characteristics of both agents; BTE and/or CMN, against the toxicity resulted from the chronic exposure to aflatoxin-B1 (AFB1) (25 µg/kg b.w. for consecutive 90 days). The dose of either agents, BTE or CMN, was 200 mg/kg b.w. along with AFB1. The pathologic changes, serobiochemical parameters, oxidative stress, histological changes, and the molecular disruption, induced by AFB1 in both liver and kidney were obviously and significantly ameliorated after BTE and/or CMN treatments in variable potencies where both agents showed the most effective antitoxic capacities.
Collapse
Affiliation(s)
- Haitham I El-Mekkawy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A Al-Kahtani
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A Alshehri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Amin A Al-Doaiss
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Department of Histology and Anatomy, Faculty of Medicine, Sana'a University, Sana'a, Republic of Yemen
| | - Ahmed A Elmansi
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
59
|
Moniruzzaman M, Min T. Curcumin, Curcumin Nanoparticles and Curcumin Nanospheres: A Review on Their Pharmacodynamics Based on Monogastric Farm Animal, Poultry and Fish Nutrition. Pharmaceutics 2020; 12:E447. [PMID: 32403458 PMCID: PMC7284824 DOI: 10.3390/pharmaceutics12050447] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology is an emerging field of science that is widely used in medical sciences. However, it has limited uses in monogastric farm animal as well as fish and poultry nutrition. There are some works that have been done on curcumin and curcumin nanoparticles as pharmaceutics in animal nutrition. However, studies have shown that ingestion of curcumin or curcumin nanoparticles does not benefit the animal health much due to their lower bioavailability, which may result because of low absorption, quick metabolism and speedy elimination of curcumin from the animal body. For these reasons, advanced formulations of curcumin are needed. Curcumin nanospheres is a newly evolved field of nanobiotechnology which may have beneficial effects in terms of growth increment, anti-microbial, anti-inflammatory and neuroprotective effects on animal and fish health by means of nanosphere forms that are biodegradable and biocompatible. Thus, this review aims to highlight the potential application of curcumin, curcumin nanoparticles and curcumin nanospheres in the field of monogastric farm animal, poultry and fish nutrition. We do believe that the review provides the perceptual vision for the future development of curcumin, curcumin nanoparticles and curcumin nanospheres and their applications in monogastric farm animal, poultry and fish nutrition.
Collapse
Affiliation(s)
| | - Taesun Min
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea;
| |
Collapse
|
60
|
Fathi MA, Han G, Kang R, Shen D, Shen J, Li C. Disruption of cytochrome P450 enzymes in the liver and small intestine in chicken embryos in ovo exposed to glyphosate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16865-16875. [PMID: 32144705 DOI: 10.1007/s11356-020-08269-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Glyphosate is the active component of several commercial formulations as in Roundup®. The present study was investigated the toxic effects of pure glyphosate or Roundup® on the liver and small intestine of chick embryos. On day 6, a total of 180 fertile eggs injected with deionized water (control group), 10 mg pure glyphosate, or 10 mg of the active ingredient glyphosate in Roundup®/kg egg mass. The results showed an increase in relative weights of the liver in embryos that treated with Roundup®. Furthermore, oxidative stress was observed in the embryos treated with glyphosate or Roundup®, increased total superoxide dismutase, and content of malondialdehyde in the liver and intestine; moreover, decrease of glutathione peroxidase in the liver with increased in the intestine compared with the control. Besides, glutamic-pyruvic transaminase was increased in Roundup® group compared with other groups. Moreover, histopathological alterations in the liver and intestine tissues were observed in treated groups. Suppression of hepatic CYP1A2, CYP1A4, CYP1B1, and MDR1 mRNA expression after exposed to Roundup®. Furthermore, inhibition of CYP1A4 in the duodenum, CYP1A4, and MRP2 in the jejunum in embryos exposed to glyphosate or Roundup®. In addition, glyphosate treatment caused an increase of CYP3A5, CYP1C1, and IFNY mRNA expression in the jejunum and CYP1A2 expression in the ileum, while IFN-Y gene increase in embryos treated with Roundup®. In conclusion, in ovo exposure to glyphosate caused histopathological alterations and induced oxidative stress in the liver and small intestines. Moreover, the expression of cytochrome P450, MDR1, and MRP2 transporters was also modulated in the liver and small intestines for chick embryos.
Collapse
Affiliation(s)
- Mohamed Ahmed Fathi
- Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
- Animal Production Research Institute, Agriculture Research Centre, Dokki, Giza, 12618, Egypt
| | - Guofeng Han
- Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Ruifen Kang
- Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Dan Shen
- Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jiakun Shen
- Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Chunmei Li
- Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
61
|
Single components of botanicals and nature-identical compounds as a non-antibiotic strategy to ameliorate health status and improve performance in poultry and pigs. Nutr Res Rev 2020; 33:218-234. [PMID: 32100670 DOI: 10.1017/s0954422420000013] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the current post-antibiotic era, botanicals represent one of the most employed nutritional strategies to sustain antibiotic-free and no-antibiotic-ever production. Botanicals can be classified either as plant extracts, meaning the direct products derived by extraction from the raw plant materials (essential oils (EO) and oleoresins (OR)), or as nature-identical compounds (NIC), such as the chemically synthesised counterparts of the pure bioactive compounds of EO/OR. In the literature, differences between the use of EO/OR or NIC are often unclear, so it is difficult to attribute certain effects to specific bioactive compounds. The aim of the present review was to provide an overview of the effects exerted by botanicals on the health status and growth performance of poultry and pigs, focusing attention on those studies where only NIC were employed or those where the composition of the EO/OR was defined. In particular, phenolic compounds (apigenin, quercetin, curcumin and resveratrol), organosulfur compounds (allicin), terpenes (eugenol, thymol, carvacrol, capsaicin and artemisinin) and aldehydes (cinnamaldehyde and vanillin) were considered. These molecules have different properties such as antimicrobial (including antibacterial, antifungal, antiviral and antiprotozoal), anti-inflammatory, antioxidant, immunomodulatory, as well as the improvement of intestinal morphology and integrity of the intestinal mucosa. The use of NIC allows us to properly combine pure compounds, according to the target to achieve. Thus, they represent a promising non-antibiotic tool to allow better intestinal health and a general health status, thereby leading to improved growth performance.
Collapse
|
62
|
Zhai SS, Ruan D, Zhu YW, Li MC, Ye H, Wang WC, Yang L. Protective effect of curcumin on ochratoxin A-induced liver oxidative injury in duck is mediated by modulating lipid metabolism and the intestinal microbiota. Poult Sci 2020; 99:1124-1134. [PMID: 32036964 PMCID: PMC7587726 DOI: 10.1016/j.psj.2019.10.041] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022] Open
Abstract
Curcumin has antioxidant functions, regulates the intestinal microbial composition, and alleviates mycotoxin toxicity. The present study aimed to explore whether curcumin could alleviate ochratoxin A (OTA)-induced liver injury via the intestinal microbiota. A total of 720 mixed-sex 1-day-old White Pekin ducklings were randomly assigned into 4 groups: CON (control group, without OTA), OTA (fed a diet with 2 mg/kg OTA), CUR (ducks fed a diet with 400 mg/kg curcumin), and OTA + CUR (2 mg/kg OTA plus 400 mg/kg curcumin). Each treatment consisted of 6 replicates and 30 ducklings per replicate. Treatment lasted for 21 D. Results were analyzed by a two-tailed Student t test between 2 groups. Our results demonstrated that OTA treatment had the highest serum low-density lipoprotein (LDL) level among 4 groups. Compared with OTA group, OTA + CUR decreased serum LDL level (P < 0.05). OTA decreased liver catalase (CAT) activity in ducks (P < 0.05), while addition of curcumin in OTA group increased liver CAT activity (P < 0.05). 16S ribosomal RNA sequencing suggested that curcumin increased the richness indices (ACE index) and diversity indices (Simpson index) compared with OTA group (P < 0.05) and recovered the OTA-induced alterations in composition of the intestinal microbiota. Curcumin supplementation relieved the decreased abundance of butyric acid producing bacteria, including blautia, butyricicoccus, and butyricimonas, induced by OTA (P < 0.05). OTA also significantly influenced the metabolism of the intestinal microbiota, such as tryptophan metabolism and glyceropholipid metabolism. Curcumin could alleviate the upregulation of oxidative stress pathways induced by OTA. OTA treatment also increased SREBP-1c expression (P < 0.05). The curcumin group had the lowest expression of FAS and PPARG mRNA (P < 0.05) and the highest expression of NRF2 and HMOX1 mRNA. These results indicated that curcumin could alleviate OTA-induced oxidative injury and lipid metabolism disruption by modulating the cecum microbiota.
Collapse
Affiliation(s)
- S S Zhai
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - D Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Y W Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - M C Li
- Dayitongchuang Biotech Co., Ltd., Tianjin 300000, China
| | - H Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - W C Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - L Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
63
|
The Multifarious Link between Cytochrome P450s and Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3028387. [PMID: 31998435 PMCID: PMC6964729 DOI: 10.1155/2020/3028387] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/08/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a leading cause of death worldwide. Cytochrome P450s (P450s) play an important role in the metabolism of endogenous as well as exogenous substances, especially drugs. Moreover, many P450s can serve as targets for disease therapy. Increasing reports of epidemiological, diagnostic, and clinical research indicate that P450s are enzymes that play a major part in the formation of cancer, prevention, and metastasis. The purposes of this review are to shed light on the current state of knowledge about the cancer molecular mechanism involving P450s and to summarize the link between the cancer effects and the participation of P450s.
Collapse
|
64
|
de Freitas Souza C, Baldissera MD, Baldisserotto B, Petrolli TG, da Glória EM, Zanette RA, Da Silva AS. Dietary vegetable choline improves hepatic health of Nile tilapia (Oreochromis niloticus) fed aflatoxin-contaminated diet. Comp Biochem Physiol C Toxicol Pharmacol 2020; 227:108614. [PMID: 31493584 DOI: 10.1016/j.cbpc.2019.108614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 01/15/2023]
Abstract
Aflatoxin B1 (AFB1) is one of the most important mycotoxins due to its hepatotoxic and carcinogenic effects on animals. The effect of dietary supplementation with vegetable choline (VC) at 400, 800, and 1200 mg/kg against the deleterious effects of AFB1 (2 ppm/kg diet) in the liver of Nile tilapia (Oreochromis niloticus) was studied. The experimental period was 81 days, and the diet with VC was offered to the fish for 60 days prior to challenge with AFB1. Diets with AFB1 were tested in three replications and animals were analyzed at days 14 and 21 of dietary intake. The addition of VC to tilapia diet increased body weight (days 30 and 60 pre-challenge and day 21 post-challenge). The group fed aflatoxin-contaminated diet presented significantly reduced antioxidant enzymes and increased reactive oxygen species (ROS) levels, thiobarbituric acid reactive species (TBARS) levels, and protein carbonyl (PC) content in the liver. Dietary supplementation with VC at 800 and 1200 mg/kg demonstrated a significant protective effect, avoiding the increase of ROS, TBARS, and PC levels in the liver of tilapia from the aflatoxin contaminated groups. Thus, dietary VC supplementation may be used in tilapia to increase antioxidant status and reduce the negative effects caused by AFB1 toxicity. Based on the findings, it is recommended to use VC as a food supplement for Nile tilapia in order to avoid AFB1 toxication. In addition, decreased aflatoxin toxicity can be attributed to the VC antioxidant property.
Collapse
Affiliation(s)
- Carine de Freitas Souza
- Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil.
| | - Matheus Dellaméa Baldissera
- Graduate Program in Physiology and Pharmacology, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS 97105-900, Brazil
| | - Bernardo Baldisserotto
- Graduate Program in Physiology and Pharmacology, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS 97105-900, Brazil
| | - Tiago G Petrolli
- Graduate Program in Animal Health and Production on Small Farms, Universidade do Oeste de Santa Catarina, Xanxerê, Brazil
| | | | - Régis A Zanette
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-190, Brazil
| | - Aleksandro S Da Silva
- Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil; Graduate Program in Physiology and Pharmacology, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
65
|
Ruan D, Zhu YW, Fouad AM, Yan SJ, Chen W, Zhang YN, Xia WG, Wang S, Jiang SQ, Yang L, Zheng CT. Dietary curcumin enhances intestinal antioxidant capacity in ducklings via altering gene expression of antioxidant and key detoxification enzymes. Poult Sci 2019; 98:3705-3714. [PMID: 30869142 DOI: 10.3382/ps/pez058] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/26/2019] [Indexed: 12/11/2022] Open
Abstract
The study investigated the effects of dietary curcumin supplementation on tissue distribution of curcumin and its metabolites, intestinal antioxidant capacity, and expression of detoxification-related genes in ducks. A total of 720 one-day-old male Cherry Valley Pekin ducklings (initial BW 58.6 ± 0.1 g) were randomly assigned to 4 dietary groups each with 6 replicates of 30 ducks using a single factorial arrangement design. Ducks in the control group were fed a basal diet and the remainder were fed the basal diet supplemented with 200, 400, or 800 mg/kg curcumin. The experiment lasted for 21 D. Curcumin was present at 13.12 to 16.18 mg/g in the cecal digesta, 75.50 to 575.40 μg/g in jejunal mucosa, 35.10 to 73.65 μg/g in liver, and 7.02 to 7.88 μg/mL in plasma. The jejunal and hepatic contents of curcumin increased significantly (P < 0.05) in response to supplementation with 400 and 800 mg/kg of curcumin respectively, compared with 200 mg curcumin/kg group. There was a linear (P < 0.001) effect of dietary curcumin on relative abundance of SOD1, GPX1, CAT, HO-1, and Nrf2 transcripts, and a quadratic (P < 0.001) increase in the activities of GSH-Px and T-AOC in jejunal mucosa. The expression of CYP1A4, CYP2D17 increased and CYP1B1, CYP2A6 decreased linearly (P < 0.001) with dietary curcumin concentrations. In addition, dietary curcumin increased gene expression of GST, MRP6, and ABCB1 in jejunal mucosa. In conclusion, dietary supplementation with 200 to 800 mg/kg curcumin enhanced the accumulation of curcumin and its metabolites in jejunum as well as increasing the antioxidant capacity and detoxification potential, which play major roles in the protection of duck intestines against damage.
Collapse
Affiliation(s)
- D Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Pubic Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China.,College of Animal Science, South China Agricultural University, Guangzhou 510640, P. R. China
| | - Y W Zhu
- College of Animal Science, South China Agricultural University, Guangzhou 510640, P. R. China
| | - A M Fouad
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Pubic Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - S J Yan
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P. R. China
| | - W Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Pubic Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China
| | - Y N Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Pubic Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China
| | - W G Xia
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Pubic Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China
| | - S Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Pubic Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China
| | - S Q Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Pubic Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China
| | - L Yang
- College of Animal Science, South China Agricultural University, Guangzhou 510640, P. R. China
| | - C T Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Pubic Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China
| |
Collapse
|
66
|
Li S, Muhammad I, Yu H, Sun X, Zhang X. Detection of Aflatoxin adducts as potential markers and the role of curcumin in alleviating AFB1-induced liver damage in chickens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 176:137-145. [PMID: 30925330 DOI: 10.1016/j.ecoenv.2019.03.089] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/23/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
In this study, we identified AFB1 adducts as potential markers and investigated the role of curcumin in alleviating AFB1-induced liver damage by suppressing the production of AFB1 adducts and oxidative stress in AA broilers liver. A total of 64 one-day-old Arbor Acres (AA) broilers were randomly divided into four groups, including control group, AFB1 group (5 mg/kg AFB1), cur + AFB1 group (300 mg/kg curcumin+5 mg/kg AFB1) and curcumin group (300 mg/kg). Serum biochemical parameters, liver antioxidant abilities, AFB1 adducts and oxidative stress mechanism were studied in broilers. AFB1 administration accompany with signs of liver injury, including hepatic histological lesions, increased serum enzymes activities, decreased liver antioxidant enzymes activities and the suppression of ROS and 8-OHdG. Meanwhile, Nrf2/HO-1 pathway was depressed by AFB1 treatment. Immunohistochemistry and ELISA showed that AFB1 significantly increased AFB1-DNA adduct in liver (p < 0.05) and AFB1-lysine adduct in serum (p < 0.05). Importantly, supplementation of curcumin can ameliorate these alterations. Intriguingly, curcumin alleviated AFB1-induced toxicity and oxidative stress by inhibiting the generation of ROS, 8-OHdG and AFB1 adducts, and activated Nrf2 signaling pathway in broilers. Conclusively, our experiments suggest that curcumin could be considered as a potential agent for prevention of AFB1-induced toxicity and oxidative stress, and AFB1 adducts could be suitable therapeutic targets.
Collapse
Affiliation(s)
- Sihong Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, PR China
| | - Ishfaq Muhammad
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, PR China
| | - Hongxiao Yu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, PR China
| | - Xiaoqi Sun
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, PR China
| | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, PR China.
| |
Collapse
|
67
|
Praditya D, Kirchhoff L, Brüning J, Rachmawati H, Steinmann J, Steinmann E. Anti-infective Properties of the Golden Spice Curcumin. Front Microbiol 2019; 10:912. [PMID: 31130924 PMCID: PMC6509173 DOI: 10.3389/fmicb.2019.00912] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/10/2019] [Indexed: 01/02/2023] Open
Abstract
The search for novel anti-infectives is one of the most important challenges in natural product research, as diseases caused by bacteria, viruses, and fungi are influencing the human society all over the world. Natural compounds are a continuing source of novel anti-infectives. Accordingly, curcumin, has been used for centuries in Asian traditional medicine to treat various disorders. Numerous studies have shown that curcumin possesses a wide spectrum of biological and pharmacological properties, acting, for example, as anti-inflammatory, anti-angiogenic and anti-neoplastic, while no toxicity is associated with the compound. Recently, curcumin’s antiviral and antibacterial activity was investigated, and it was shown to act against various important human pathogens like the influenza virus, hepatitis C virus, HIV and strains of Staphylococcus, Streptococcus, and Pseudomonas. Despite the potency, curcumin has not yet been approved as a therapeutic antiviral agent. This review summarizes the current knowledge and future perspectives of the antiviral, antibacterial, and antifungal effects of curcumin.
Collapse
Affiliation(s)
- Dimas Praditya
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany.,Institute of Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and The Helmholtz Centre for Infection Research, Hanover, Germany.,Research Center for Biotechnology, Indonesian Institute of Science, Cibinong, Indonesia
| | - Lisa Kirchhoff
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Janina Brüning
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Heni Rachmawati
- School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia.,Research Center for Nanosciences and Nanotechnology, Bandung Institute of Technology, Bandung, Indonesia
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nürnberg, Paracelsus Medical University, Nuremberg, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
68
|
Fouad AM, Ruan D, El-Senousey HK, Chen W, Jiang S, Zheng C. Harmful Effects and Control Strategies of Aflatoxin B₁ Produced by Aspergillus flavus and Aspergillus parasiticus Strains on Poultry: Review. Toxins (Basel) 2019; 11:E176. [PMID: 30909549 PMCID: PMC6468546 DOI: 10.3390/toxins11030176] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
The presence of aflatoxin B₁ (AFB₁) in poultry diets decreases the hatchability, hatchling weight, growth rate, meat and egg production, meat and egg quality, vaccination efficiency, as well as impairing the feed conversion ratio and increasing the susceptibility of birds to disease and mortality. AFB₁ is transferred from poultry feed to eggs, meat, and other edible parts, representing a threat to the health of consumers because AFB₁ is carcinogenic and implicated in human liver cancer. This review considers how AFB₁ produced by Aspergillus flavus and Aspergillus parasiticus strains can affect the immune system, antioxidant defense system, digestive system, and reproductive system in poultry, as well as its effects on productivity and reproductive performance. Nutritional factors can offset the effects of AFB₁ in poultry and, thus, it is necessary to identify and select suitable additives to address the problems caused by AFB₁ in poultry.
Collapse
Affiliation(s)
- Ahmed Mohamed Fouad
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt.
| | - Dong Ruan
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - HebatAllah Kasem El-Senousey
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt.
| | - Wei Chen
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Shouqun Jiang
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Chuntian Zheng
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
69
|
Rajput SA, Zhang C, Feng Y, Wei XT, Khalil MM, Rajput IR, Baloch DM, Shaukat A, Rajput N, Qamar H, Hassan M, Qi D. Proanthocyanidins Alleviates AflatoxinB₁-Induced Oxidative Stress and Apoptosis through Mitochondrial Pathway in the Bursa of Fabricius of Broilers. Toxins (Basel) 2019; 11:E157. [PMID: 30857375 PMCID: PMC6468869 DOI: 10.3390/toxins11030157] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 01/08/2023] Open
Abstract
Aflatoxin B₁ (AFB₁) is a serious threat to the poultry industry. Proanthocyanidins (PCs) demonstrates a broad range of biological, pharmacological, therapeutic, and chemoprotective properties. The aim of this study was to investigate the ameliorative effects of PCs against AFB₁-induced histopathology, oxidative stress, and apoptosis via the mitochondrial pathway in the bursa of Fabricius (BF) of broilers. One hundred forty-four one-day old Cobb chicks were randomly assigned into four treatment groups of six replicates (6 birds each replicate) for 28 days. Groups were fed on the following four diets; (1) Basal diet without addition of PCs or AFB₁ (Control); (2) basal diet supplemented with 1 mg/kg AFB₁ from contaminated corn (AFB₁); (3) basal diet supplemented with 250 mg/kg PCs (PCs); and (4) basal diet supplemented with 1 mg/kg AFB₁ + 250 mg/kg PCs (AFB₁+ PCs). The present study results showed that antioxidant enzymes activities of total superoxide dismutase (T-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione S-transferase (GST) in AFB₁ treated group were (p < 0.05) decreased, whereas malondialdehyde (MDA) contents were significantly increased in comparison with the control group. Furthermore, we found that dietary PCs treatment ameliorated AFB₁-induced oxidative stress in the BF through inhibiting the accumulation of MDA content and enhancing the antioxidant enzymes activities (T-SOD, CAT, GSH-Px, and GST). Similarly, PCs markedly enhanced messenger RNA (mRNA) expression of antioxidant genes (SOD, CAT, GPx1, and GST) in comparison with AFB₁ group. Moreover, histological results showed that PCs alleviated AFB₁-induced apoptotic cells in the BF of broilers. In addition, both mRNA and protein expression results manifested that mitochondrial-apoptosis-associated genes (Bax, caspase-9, caspase-3, and p53 and cytochrome c) showed up-regulation, while (Bcl-2) showed down-regulation in AFB₁ fed group. The supplementation of PCs to AFB₁ diet significantly reversed the mRNA and protein expression of these apoptosis-associated genes, as compared to the AFB₁ group. Our results demonstrated that PCs ameliorated AFB₁-induced oxidative stress by modulating the antioxidant defense system and apoptosis in the BF through mitochondrial pathway in broilers.
Collapse
Affiliation(s)
- Shahid Ali Rajput
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Cong Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yue Feng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiao Tian Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mahmoud Mohamed Khalil
- Animal Production Department, Faculty of Agriculture, Benha University, 13736 Banha, Egypt.
| | - Imran Rashid Rajput
- Faculty of Veterinary and Animal Science, Department of Biotechnology, Lasbela Univesity of Agriculture Water and Marine Science, 89250 Uthal, Balochistan, Pakistan.
| | - Dost Muhammad Baloch
- Faculty of Veterinary and Animal Science, Department of Biotechnology, Lasbela Univesity of Agriculture Water and Marine Science, 89250 Uthal, Balochistan, Pakistan.
| | - Aftab Shaukat
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Nasir Rajput
- Department of Poultry Husbandry, Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University, 70060 Tandojam, Pakistan.
| | - Hammad Qamar
- Research Center of Animal Nutrition and Metabolic Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mubashar Hassan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
70
|
Ghadiri S, Spalenza V, Dellafiora L, Badino P, Barbarossa A, Dall'Asta C, Nebbia C, Girolami F. Modulation of aflatoxin B1 cytotoxicity and aflatoxin M1 synthesis by natural antioxidants in a bovine mammary epithelial cell line. Toxicol In Vitro 2019; 57:174-183. [PMID: 30849473 DOI: 10.1016/j.tiv.2019.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/14/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023]
Abstract
Aflatoxin (AF) B1, a widespread food and feed contaminant, is bioactivated by drug metabolizing enzymes (DME) to cytotoxic and carcinogenic metabolites like AFB1-epoxide and AFM1, a dairy milk contaminant. A number of natural antioxidants have been reported to afford a certain degree of protection against AFB1 (cyto)toxicity. As the mammary gland potentially participates in the generation of AFB1 metabolites, we evaluated the role of selected natural antioxidants (i.e. curcumin, quercetin and resveratrol) in the modulation of AFB1 toxicity and metabolism using a bovine mammary epithelial cell line (BME-UV1). Quercetin and, to a lesser extent, resveratrol and curcumin from Curcuma longa (all at 5 μM) significantly counteracted the AFB1-mediated impairment of cell viability (concentration range: 96-750 nM). Moreover, quercetin was able to significantly reduce the synthesis of AFM1. The quantitative PCR analysis on genes encoding for DME (phase I and II) and antioxidant enzymes showed that AFB1 caused an overall downregulation of the detoxifying systems, and mainly of GSTA1, which mediates the GSH conjugation of the AFB1-epoxide. The negative modulation of GSTA1 was efficiently reversed in the presence of quercetin, which significantly increased GSH levels as well. It is suggested that quercetin exerts its beneficial effects by depressing the bio-transformation of AFB1 and counterbalancing its pro-oxidant effects.
Collapse
Affiliation(s)
- Shiva Ghadiri
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, Grugliasco, Italy
| | - Veronica Spalenza
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, Grugliasco, Italy
| | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Via G.P. Usberti 27/A, 43124 Parma, Italy
| | - Paola Badino
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, Grugliasco, Italy
| | - Andrea Barbarossa
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Italy
| | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, Via G.P. Usberti 27/A, 43124 Parma, Italy
| | - Carlo Nebbia
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, Grugliasco, Italy
| | - Flavia Girolami
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, Grugliasco, Italy.
| |
Collapse
|
71
|
Grape Seed Proanthocyanidin Extract Alleviates AflatoxinB₁-Induced Immunotoxicity and Oxidative Stress via Modulation of NF-κB and Nrf2 Signaling Pathways in Broilers. Toxins (Basel) 2019; 11:toxins11010023. [PMID: 30621062 PMCID: PMC6356337 DOI: 10.3390/toxins11010023] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 12/22/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a widely spread mycotoxin contaminates food and feed, causing severe oxidative stress damages and immunotoxicity. Grape seed proanthocyanidin (GSPE), a natural antioxidant with wide range of pharmacological and medicinal properties. The goal of the present study was to investigate the protective effects of GSPE against AFB1-induced immunotoxicity and oxidative stress via NF-κB and Nrf2 signaling pathways in broiler chickens. For the experiment, 240 one-day old Cobb chicks were allocated into four dietary treatment groups of six replicates (10 birds per replicate): 1. Basal diet (control); 2. Basal diet + AFB1 1mg/kg contaminated corn (AFB1); 3. Basal diet + GSPE 250 mg/kg (GSPE); 4. Basal diet + AFB1 1 mg/kg + GSPE 250 mg/kg (AFB1 + GSPE). The results showed that GSPE significantly decreased serum inflammatory cytokines TNF-α, IFN-γ, IL-1β, IL-10, and IL-6 induced by AFB1. Similarly, GSPE + AFB1 treated group revealed a significant decrease in mRNA expressions of pro-inflammatory cytokines (TNF-α, IFN-γ, IL-1β, and IL-6) in the splenic tissue compared to the AFB1 treatment group. In addition, western blotting results manifested that GSPE treatment normalized the phosphorylation of nuclear factor kappa B (p65) and the degradation of IκBα protein induced by AFB1. Furthermore, GSPE enhanced the antioxidant defense system through activating the nuclear factor-erythroid-2-related factor (Nrf2) signaling pathway. The mRNA and protein expression level of Nrf2 and its down streaming associated genes were noted up-regulated by the addition of GSPE, and down-regulated in the AFB1 group. Taken together, GSPE alleviates AFB1-induced immunotoxicity and oxidative damage by inhibiting the NF-κB and activating the Nrf2 signaling pathways in broiler chickens. Conclusively, our results suggest that GSPE could be considered as a potential natural agent for the prevention of AFB1-induced immunotoxicity and oxidative damage.
Collapse
|
72
|
Aflatoxin B1 metabolism: Regulation by phase I and II metabolizing enzymes and chemoprotective agents. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 778:79-89. [DOI: 10.1016/j.mrrev.2018.10.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 10/26/2018] [Indexed: 01/13/2023]
|
73
|
Yu YY, Niu J, Yin P, Mei XT, Liu YJ, Tian LX, Xu DH. Detoxification and immunoprotection of Zn(II)-curcumin in juvenile Pacific white shrimp (Litopenaeus vannamei) feed with aflatoxin B1. FISH & SHELLFISH IMMUNOLOGY 2018; 80:480-486. [PMID: 29782917 DOI: 10.1016/j.fsi.2018.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/08/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Aflatoxins, which was produced by Aspergillus flavus or Aspergillus parasiticus fungi during grain and feed processing or storage, could cause severe health problems and reduction of yield during shrimp cultures. To evaluate toxic effects of aflatoxin B1 (AFB1) in juvenile Pacific white shrimp (Litopenaeus vannamei) and potential protective effect of Zn(II)-curcumin (Zn-CM), four experimental diets (control, 500 μg/kg AFB1, 500 μg/kg AFB1+100 mg/kg Zn-CM, 500 μg/kg AFB1+200 mg/kg Zn-CM) were formulated in quadruplicate to feed the shrimp for 8 weeks. The results revealed that AFB1 could induce significant decrease in final body weight (FBW), weight gain (WG, %) and visible variations of the hepatopancreas structures in L.vannamei. Compared with AFB1 group, AFB1+100 mg/kg Zn-CM group significantly ameliorated the toxic effects of AFB1 on growth performance, while AFB1+100 mg/kg Zn-CM group had no effect on growth performance. Dietary AFB1+100 mg/kg Zn-CM enhanced phenoloxidase (PO) (P < 0.05) activity. Both dietary AFB1+100 mg/kg Zn-CM and AFB1+200 mg/kg Zn-CM reduced inducible nitric oxide synthase (iNOS) activity and glutathione (GSH) level, decreased the content of malondialdehyde (MDA) (P < 0.05) in hepatopancreas compared with AFB1 group. Transmission electron microscopy (TEM) analysis demonstrated that Zn-CM could relieve the microvilli transformation and mitochondria accumulation reduction caused by AFB1. Consequently, the results demonstrated that suitable Zn-CM could mitigate the AFB1-induced hepatotoxicity and immunotoxicity effects on L.vannamei.
Collapse
Affiliation(s)
- Ying-Ying Yu
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Department of Biochemistry, Traditional Chinese Medicine and Marine Drugs, School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jin Niu
- Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peng Yin
- Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xue-Ting Mei
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Department of Biochemistry, Traditional Chinese Medicine and Marine Drugs, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yong-Jian Liu
- Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li-Xia Tian
- Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dong-Hui Xu
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Department of Biochemistry, Traditional Chinese Medicine and Marine Drugs, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
74
|
Wang X, Muhammad I, Sun X, Han M, Hamid S, Zhang X. Protective role of curcumin in ameliorating AFB 1-induced apoptosis via mitochondrial pathway in liver cells. Mol Biol Rep 2018; 45:881-891. [PMID: 29974318 DOI: 10.1007/s11033-018-4234-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/29/2018] [Indexed: 12/01/2022]
Abstract
It is well documented that liver is the primary target organ of aflatoxin B1 (AFB1) and curcumin proved to be effective against AFB1-induced liver injury. In the present study, we investigated the preventive effects of curcumin against AFB1-induced apoptosis through the molecular regulation of p53, caspase-3, Bax, caspase-9, Bcl-2 and cytochrome-C associated with mitochondrial pathway. Liver antioxidant levels were measured. The hallmarks of apoptosis were analysed by methyl green-pyronin-Y staining, transmission electron microscopy, RT-PCR and western blot. Results revealed that dietary curcumin ameliorated AFB1-induced oxidative stress in a dose-dependent manner. Methyl green-pyronin-Y staining and transmission electron microscopy showed that AFB1 induced apoptosis and caused abnormal changes in liver cells morphology such as condensation of chromatin material, reduces cell volume and damaged mitochondria. Moreover, mRNA and protein expression results manifested that apoptosis associated genes showed up-regulation in AFB1 fed group. However, the supplementation of dietary curcumin (dose-dependently) alleviated the increased expression of the apoptosis associated genes at mRNA and protein level, and restored the hepatocytes normal morphology. The study provides an insight and a better understanding of the preventive mechanism of curcumin against AFB1-induced apoptosis in hepatocytes and provide scientific basis for the therapeutic uses of curcumin.
Collapse
Affiliation(s)
- Xinghe Wang
- Laboratory of Veterinary Pathology, Faculty of Basic Veterinary Science, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Ishfaq Muhammad
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, People's Republic of China
| | - Xiaoqi Sun
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, People's Republic of China
| | - Meiyu Han
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, People's Republic of China
| | - Sattar Hamid
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, People's Republic of China
| | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, People's Republic of China.
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, Heilongjiang, People's Republic of China.
| |
Collapse
|
75
|
Ružić M, Pellicano R, Fabri M, Luzza F, Boccuto L, Brkić S, Abenavoli L. Hepatitis C virus-induced hepatocellular carcinoma: a narrative review. Panminerva Med 2018; 60:185-191. [PMID: 29856183 DOI: 10.23736/s0031-0808.18.03472-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver carcinoma, accounting for about 80% of cases. In spite of advances in modern oncology, this neoplasia still holds the second place in overall cancer mortality. HCC is a multifactor disease: it results from accumulated oncogenic potentials made up of several groups of risk factors, the most significant of which is an infection with hepatotropic viruses. The hepatitis C virus (HCV) is one of the primary causes of morbidity and mortality across the world and affects 1.1% of worldwide population. It has been calculated that on average 2.5% of patients affected by chronic HCV infection develops HCC. Hepatocarcinogenesis is the result of the combination of superposing virus specific factors, immunological mechanisms, environmental factors and factors related to the individuals genetic background. Host-related factors include male gender, age of at least 50 years, family predisposition, obesity, advanced liver fibrosis or cirrhosis and coinfection with other hepatotropic viruses and human immunodeficiency virus. Environmental factors include heavy alcohol abuse, cigarette smoking, and exposure to aflatoxin. In the era of interferon (IFN)-based therapy, the risk of HCC development after established sustained virological response (SVR) was 1% yearly. Data reported in patients with SVR about the increase of HCC prevalence have appeared, after the initial enthusiasm on the efficacy of HCV direct acting antiviral drugs (DAA) protocols. Actually, these data are controversial, but they certainly suggest the need to undertake large, multicenter studies and caution in everyday clinical practice.
Collapse
Affiliation(s)
- Maja Ružić
- Clinic for Infectious Diseases, Clinical Centre of Vojvodina, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Milotka Fabri
- Clinic for Infectious Diseases, Clinical Centre of Vojvodina, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Francesco Luzza
- Department of Health Sciences, University "Magna Graecia", Catanzaro, Italy
| | - Luigi Boccuto
- Greenwood Genetic Center, Greenwood, SC, USA.,Clemson University School of Health Research, Clemson, SC, USA
| | - Snežana Brkić
- Clinic for Infectious Diseases, Clinical Centre of Vojvodina, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Ludovico Abenavoli
- Department of Health Sciences, University "Magna Graecia", Catanzaro, Italy -
| |
Collapse
|
76
|
Muhammad I, Wang H, Sun X, Wang X, Han M, Lu Z, Cheng P, Hussain MA, Zhang X. Dual Role of Dietary Curcumin Through Attenuating AFB 1-Induced Oxidative Stress and Liver Injury via Modulating Liver Phase-I and Phase-II Enzymes Involved in AFB 1 Bioactivation and Detoxification. Front Pharmacol 2018; 9:554. [PMID: 29887802 PMCID: PMC5981209 DOI: 10.3389/fphar.2018.00554] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
It is well understood that liver cytochrome p450 enzymes are responsible for AFB1 bioactivation, while phase-II enzymes regulated by the transcription factor nuclear factor-erythroid-2-related factor 2 (Nrf2) are involved in detoxification of AFB1. In this study, we explored the potential of curcumin to prevent AFB1-induced liver injury by modulating liver phase-I and phase-II enzymes along with Nrf2 involved in AFB1 bioactivation and detoxification. Arbor Acres broiler were divided into four groups including control group (G1; fed only basal feed), curcumin alone-treated group (G2; 450 mg/kg feed), AFB1-fed group (G3; 5 mg/kg feed), and curcumin plus AFB1 group (G4; 5 mg AFB1+450 mg curcumin/kg feed). After 28 days, liver and blood samples were collected for different analyses. Histological and phenotypic results revealed that AFB1-induced liver injury was partially ameliorated by curcumin supplementation. Compared to AFB1 alone-treated group, serum biochemical parameters and liver antioxidant status showed that curcumin supplementation significantly prevented AFB1-induced liver injury. RT-PCR and western blot results revealed that curcumin inhibited CYP enzymes-mediated bioactivation of AFB1 at mRNA and protein level. Transcription factor Nrf2, its downstream genes such as GSTA3, and GSTM2 mRNA, and protein expression level significantly upregulated via dietary curcumin. In addition, GSTs enzyme activity was enhanced with dietary curcumin which plays a crucial role in AFB1-detoxification. Conclusively, the study provided a scientific basis for the use of curcumin in broiler's diet and contributed to explore the multi-target preventive actions of curcumin against AFB1-induced liver injury through the modulation of phase-I and phase-II enzymes, and its potent anti-oxidative effects.
Collapse
Affiliation(s)
- Ishfaq Muhammad
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - He Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoqi Sun
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinghe Wang
- Laboratory of Veterinary Pathology, Faculty of Basic Veterinary Science, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Meiyu Han
- Changchun Dirui Medical Company Ltd., Changchun, China
| | - Ziyin Lu
- College of Life Science Engineering, Shenyang Institute of Technology, Fushun, China
| | - Ping Cheng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | | | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
77
|
Wang H, Muhammad I, Li W, Sun X, Cheng P, Zhang X. Sensitivity of Arbor Acres broilers and chemoprevention of aflatoxin B 1-induced liver injury by curcumin, a natural potent inducer of phase-II enzymes and Nrf2. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 59:94-104. [PMID: 29550706 DOI: 10.1016/j.etap.2018.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/10/2018] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
In this study, we scrutinized the effects of curcumin and AFB1 supplemented diet alone or in combination on phase-ӀӀ enzymes. Histopathological examination showed that after 28 days, AFB1 (5.0 mg/kg diet) induced liver injury in broilers, but curcumin supplementation partially ameliorated liver injury in a dose-dependent manner. RT-PCR data revealed that AFB1 significantly (p < 0.01) down-regulated Nrf2 and its downstream genes mRNA expression level. Moreover, Western blot analysis showed that Nrf2, GSTM2, and GSTA3 protein expression level was markedly (p < 0.01) reduced in AFB1-fed group. However, curcumin supplementation ameliorated AFB1-induced liver injury via enhancing phase-ӀӀ enzymes expressions and activity. HPLC results showed that curcumin increased AFB1-GSH conjugation in-vitro in liver cytosol. Surprisingly, similar trends were noted in mRNA, protein expression level of Nrf2 and its downstream genes at day 35, one week after the withdrawal of AFB1 and curcumin from the diet, showing the preventive effects of curcumin.
Collapse
Affiliation(s)
- He Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, PR China
| | - Ishfaq Muhammad
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, PR China
| | - Wei Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, PR China
| | - Xiaoqi Sun
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, PR China
| | - Ping Cheng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, PR China
| | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, PR China.
| |
Collapse
|
78
|
Abstract
Mycotoxins are secondary fungal metabolites associated with adverse human health and animal productivity consequences.[...].
Collapse
Affiliation(s)
- Yousef I Hassan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| |
Collapse
|
79
|
Ma R, Zhang L, Liu M, Su YT, Xie WM, Zhang NY, Dai JF, Wang Y, Rajput SA, Qi DS, Karrow NA, Sun LH. Individual and Combined Occurrence of Mycotoxins in Feed Ingredients and Complete Feeds in China. Toxins (Basel) 2018; 10:E113. [PMID: 29518909 PMCID: PMC5869401 DOI: 10.3390/toxins10030113] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 01/12/2023] Open
Abstract
The objective of this study was to investigate the individual and combined contamination of aflatoxin B₁ (AFB₁), zearalenone (ZEN) and deoxynivalenol (DON) in feedstuffs from different Provinces of China between 2016 and 2017. A total of 1569 samples, including 742 feed ingredients and 827 complete pig feed samples, were collected from various regions of China for mycotoxins analysis. The results showed that individual occurrence rates of AFB₁, ZEN, and DON were more than 83.3%, 88%, and 74.5%, respectively, in all the tested samples. DON was the most prevalent contaminant, followed by ZEN and AFB₁, with the average concentrations ranging from 450.0-4381.5 μg/kg, 2.3-729.2 μg/kg, and 1.3-10.0 μg/kg, respectively. Notable, 38.2%, 10.8%, and 0.6% of complete pig feeds were contaminated with DON, ZEN, and AFB₁ over China's regulatory limits, respectively. Moreover, over 75.0% analyzed samples were co-contaminated with two or three mycotoxins. In conclusion, the current study revealed that the feedstuffs in China were severely contaminated with DON, followed by ZEN and AFB₁ during the past two years. These findings highlight the importance of monitoring mycotoxins in livestock feed and implementing feed management and bioremediation strategies to reduce mycotoxin exposure.
Collapse
Affiliation(s)
- Rui Ma
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Lei Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Meng Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Yong-Teng Su
- Jiangsu Aomai Bio-Technology Co., Ltd., Nanjing 211226, China.
| | - Wen-Mei Xie
- Jiangsu Aomai Bio-Technology Co., Ltd., Nanjing 211226, China.
| | - Ni-Ya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Jie-Fan Dai
- Sichuan Green Food Development Center, Chengdu 610041, China.
| | - Yun Wang
- Hubei Gosign Bio-Feed Co., Ltd., Wuhan 430040, China.
| | - Shahid Ali Rajput
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - De-Sheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | | | - Lv-Hui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
80
|
Wang H, Li W, Muhammad I, Sun X, Cui X, Cheng P, Qayum A, Zhang X. Biochemical basis for the age-related sensitivity of broilers to aflatoxin B1. Toxicol Mech Methods 2018; 28:361-368. [PMID: 29327633 DOI: 10.1080/15376516.2018.1428258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study, we investigated the mechanism underlying age-related susceptibility in broilers to aflatoxin B1 (AFB1). The results showed that AFB1 induced significant changes in serum alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT) activity & liver superoxide dismutase (SOD), malonaldehyde (MDA), glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST) activity at day 7, 21 and 42 relative to control group. However, AFB1-induced changes in serum biochemical parameters and liver antioxidant activities become less severe with increasing age of broilers. Particularly, liver cytosolic GST activity increases with the age of broilers, crucial for the detoxification of AFB1. The mRNA expression level of Cytochrome P450 (CYP) enzymes was significantly higher at day 7, and decreases at day 21 and 42. While, the mRNA expression level of liver GSTA3, GSTA4 and EPHX1 increases with age of broilers. Maximum AFB1 residues level was detected at day 42 relative to day 7 and 21. While, AFM1 residues level increases (p < 0.05) from day 7 to 21, but decreases (p > 0.05) at day 42. Most importantly, our data confirmed the efficient AFB1-bioactivation by CYP enzymes and deficient detoxification of GST enzymes at younger age (∼7-day old) compared to older age. In summary, the age-related changes particularly in phase-I and phase-II enzymes mainly responsible for AFB1 bioactivation and detoxification may be partially accountable for the increased susceptibility of younger broilers (∼7-day old) compared to older broilers.
Collapse
Affiliation(s)
- He Wang
- a Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science , College of Veterinary Medicine, Northeast Agricultural University , Harbin , PR China
| | - Wei Li
- a Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science , College of Veterinary Medicine, Northeast Agricultural University , Harbin , PR China
| | - Ishfaq Muhammad
- a Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science , College of Veterinary Medicine, Northeast Agricultural University , Harbin , PR China
| | - Xiaoqi Sun
- a Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science , College of Veterinary Medicine, Northeast Agricultural University , Harbin , PR China
| | - Xiaoxu Cui
- b Changchun Dirui Medical Company Ltd , Changchun , PR China
| | - Ping Cheng
- a Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science , College of Veterinary Medicine, Northeast Agricultural University , Harbin , PR China
| | - Abdul Qayum
- c College of Food Science , Northeast Agricultural University , Harbin , PR China
| | - Xiuying Zhang
- a Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science , College of Veterinary Medicine, Northeast Agricultural University , Harbin , PR China
| |
Collapse
|
81
|
Limaye A, Yu RC, Chou CC, Liu JR, Cheng KC. Protective and Detoxifying Effects Conferred by Dietary Selenium and Curcumin against AFB1-Mediated Toxicity in Livestock: A Review. Toxins (Basel) 2018; 10:E25. [PMID: 29301315 PMCID: PMC5793112 DOI: 10.3390/toxins10010025] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/28/2017] [Accepted: 12/28/2017] [Indexed: 12/21/2022] Open
Abstract
Aflatoxin B1 (AFB1), among other aflatoxins of the aflatoxin family, is the most carcinogenic and hazardous mycotoxin to animals and human beings with very high potency leading to aflatoxicosis. Selenium is an essential trace mineral possessing powerful antioxidant functions. Selenium is widely reported as an effective antioxidant against aflatoxicosis. By preventing oxidative liver damage, suppressing pro-apoptotic proteins and improving immune status in AFB1 affected animals; selenium confers specific protection against AFB1 toxicity. Meticulous supplementation of animal feed by elemental selenium in the organic and inorganic forms has proven to be effective to ameliorate AFB1 toxicity. Curcumin is another dietary agent of importance in tackling aflatoxicosis. Curcumin is one of the major active ingredients in the tubers of a spice Curcuma longa L., a widely reported antioxidant, anticarcinogenic agent with reported protective potential against aflatoxin-mediated liver damage. Curcumin restricts the aflatoxigenic potential of Aspergillusflavus. Curcumin inhibits cytochrome P450 isoenzymes, particularly CYP2A6 isoform; thereby reducing the formation of AFB1-8, 9-epoxide and other toxic metabolites causing aflatoxicosis. In this review, we have briefly reviewed important aflatoxicosis symptoms among animals. With the main focus on curcumin and selenium, we have reviewed their underlying protective mechanisms in different animals along with their extraction and production methods for feed applications.
Collapse
Affiliation(s)
- Aniket Limaye
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan.
| | - Roch-Chui Yu
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Cheng-Chun Chou
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| | - Je-Ruei Liu
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan.
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan.
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
82
|
Ali Rajput S, Sun L, Zhang N, Mohamed Khalil M, Gao X, Ling Z, Zhu L, Khan FA, Zhang J, Qi D. Ameliorative Effects of Grape Seed Proanthocyanidin Extract on Growth Performance, Immune Function, Antioxidant Capacity, Biochemical Constituents, Liver Histopathology and Aflatoxin Residues in Broilers Exposed to Aflatoxin B₁. Toxins (Basel) 2017; 9:toxins9110371. [PMID: 29140290 PMCID: PMC5705986 DOI: 10.3390/toxins9110371] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/03/2017] [Accepted: 11/14/2017] [Indexed: 01/05/2023] Open
Abstract
Aflatoxicosis is a grave threat to the poultry industry. Dietary supplementation with antioxidants showed a great potential in enhancing the immune system; hence, protecting animals against aflatoxin B1-induced toxicity. Grape seed proanthocyanidin extract (GSPE) one of the most well-known and powerful antioxidants. Therefore, the purpose of this research was to investigate the effectiveness of GSPE in the detoxification of AFB1 in broilers. A total of 300 one-day-old Cobb chicks were randomly allocated into five treatments of six replicates (10 birds per replicate), fed ad libitum for four weeks with the following dietary treatments: 1. Basal diet (control); 2. Basal diet + 1 mg/kg AFB1 contaminated corn (AFB1); 3. Basal diet + GSPE 250 mg/kg; (GSPE 250 mg/kg) 4. Basal diet + AFB1 (1 mg/kg) + GSPE 250 mg/kg; (AFB1 + GSPE 250 mg/kg) 5. Basal diet + AFB1 (1mg/kg) + GSPE 500 mg/kg, (AFB1 + GSPE 500 mg/kg). When compared with the control group, feeding broilers with AFB1 alone significantly reduced growth performance, serum immunoglobulin contents, negatively altered serum biochemical contents, and enzyme activities, and induced histopathological lesion in the liver. In addition, AFB1 significantly increased malondialdehyde content and decreased total superoxide dismutase, catalase, glutathione peroxide, glutathione-S transferase, glutathione reductase activities, and glutathione concentration within the liver and serum. The supplementation of GSPE (250 and 500 mg/kg) to AFB1 contaminated diet reduced AFB1 residue in the liver and significantly mitigated AFB1 negative effects. From these results, it can be concluded that dietary supplementation of GSPE has protective effects against aflatoxicosis caused by AFB1 in broiler chickens.
Collapse
Affiliation(s)
- Shahid Ali Rajput
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lvhui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Niya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mahmoud Mohamed Khalil
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Animal Production Department, Faculty of Agriculture, Benha University, Moshtohor, Benha, Kalubia 13736, Egypt.
| | - Xin Gao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhao Ling
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Luoyi Zhu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Farhan Anwar Khan
- Department of Animal Health, Faculty of Animal Husbandry and Veterinary Sciences, University of Agriculture, Peshawar 25120, Pakistan.
| | - Jiacai Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
83
|
Mohajeri M, Behnam B, Cicero AFG, Sahebkar A. Protective effects of curcumin against aflatoxicosis: A comprehensive review. J Cell Physiol 2017; 233:3552-3577. [PMID: 29034472 DOI: 10.1002/jcp.26212] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/29/2017] [Indexed: 12/22/2022]
Abstract
Aflatoxicosis is a deleterious medical condition that results from aflatoxins (AFs) or ochratoxins (OTs). Contamination with these toxins exerts detrimental effects on the liver, kidneys, reproductive organs, and also on immunological and cardiovascular systems. Aflatoxicosis is closely associated with overproduction of reactive oxygen species (ROS) as key contributors to oxidative and nitrosative stress responses, and subsequent damages to lipids, proteins, RNA, and DNA. The main target organ for AF toxicity is the liver, where DNA adducts, degranulation of endoplasmic reticulum, increased hepatic lipid peroxide, GSH depletion, mitochondrial dysfunction, and reduction of enzymatic and non-enzymatic antioxidants are manifestations of aflatoxicosis. Curcuma longa L. (turmeric) is a medicinal plant widely utilized all over the world for culinary and phytomedical purposes. Considering the antioxidant characteristic of curcumin, the main active component of turmeric, this review is intended to critically summarize the available evidence supporting possible effectiveness of curcumin against aflatoxicosis. Curcumin can serve as a promising candidate for attenuation of the adverse consequences of aflatoxicosis, acting mainly through intrinsic antioxidant effects aroused from its structure, modulation of the immune system as reflected by interleukin-1β and transforming growth factor-β, and interfering with AF's biotransformation by cytochrome P450 isoenzymes CYP1A, CYP3A, CYP2A, CYP2B, and CYP2C.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behzad Behnam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Arrigo F G Cicero
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
84
|
El Khoury R, Caceres I, Puel O, Bailly S, Atoui A, Oswald IP, El Khoury A, Bailly JD. Identification of the Anti-Aflatoxinogenic Activity of Micromeria graeca and Elucidation of Its Molecular Mechanism in Aspergillus flavus. Toxins (Basel) 2017; 9:toxins9030087. [PMID: 28257049 PMCID: PMC5371842 DOI: 10.3390/toxins9030087] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 01/25/2023] Open
Abstract
Of all the food-contaminating mycotoxins, aflatoxins, and most notably aflatoxin B1 (AFB1), are found to be the most toxic and economically costly. Green farming is striving to replace fungicides and develop natural preventive strategies to minimize crop contamination by these toxic fungal metabolites. In this study, we demonstrated that an aqueous extract of the medicinal plant Micromeria graeca—known as hyssop—completely inhibits aflatoxin production by Aspergillus flavus without reducing fungal growth. The molecular inhibitory mechanism was explored by analyzing the expression of 61 genes, including 27 aflatoxin biosynthesis cluster genes and 34 secondary metabolism regulatory genes. This analysis revealed a three-fold down-regulation of aflR and aflS encoding the two internal cluster co-activators, resulting in a drastic repression of all aflatoxin biosynthesis genes. Hyssop also targeted fifteen regulatory genes, including veA and mtfA, two major global-regulating transcription factors. The effect of this extract is also linked to a transcriptomic variation of several genes required for the response to oxidative stress such as msnA, srrA, catA, cat2, sod1, mnsod, and stuA. In conclusion, hyssop inhibits AFB1 synthesis at the transcriptomic level. This aqueous extract is a promising natural-based solution to control AFB1 contamination.
Collapse
Affiliation(s)
- Rhoda El Khoury
- Toxalim, Université de Toulouse, INRA, ENVT, INP Purpan, UPS, Toulouse F-31027, France.
- Laboratoire de Mycologie et Sécurité des Aliments (LMSA), Département des sciences de la vie et de la terres - Biochimie, Faculté des Sciences, Université Saint-Joseph, P.O. Box 17-5208, Mar Mikhael Beirut 1104 2020 Lebanon.
| | - Isaura Caceres
- Toxalim, Université de Toulouse, INRA, ENVT, INP Purpan, UPS, Toulouse F-31027, France.
| | - Olivier Puel
- Toxalim, Université de Toulouse, INRA, ENVT, INP Purpan, UPS, Toulouse F-31027, France.
| | - Sylviane Bailly
- Toxalim, Université de Toulouse, INRA, ENVT, INP Purpan, UPS, Toulouse F-31027, France.
| | - Ali Atoui
- Laboratory of Microbiology, Department of Natural Sciences and Earth, Faculty of Sciences I, Lebanese University, Hadath Campus, P.O. Box 5, Beirut, Lebanon.
| | - Isabelle P Oswald
- Toxalim, Université de Toulouse, INRA, ENVT, INP Purpan, UPS, Toulouse F-31027, France.
| | - André El Khoury
- Laboratoire de Mycologie et Sécurité des Aliments (LMSA), Département des sciences de la vie et de la terres - Biochimie, Faculté des Sciences, Université Saint-Joseph, P.O. Box 17-5208, Mar Mikhael Beirut 1104 2020 Lebanon.
| | - Jean-Denis Bailly
- Toxalim, Université de Toulouse, INRA, ENVT, INP Purpan, UPS, Toulouse F-31027, France.
| |
Collapse
|
85
|
Antonissen G, Devreese M, De Baere S, Martel A, Van Immerseel F, Croubels S. Impact of Fusarium mycotoxins on hepatic and intestinal mRNA expression of cytochrome P450 enzymes and drug transporters, and on the pharmacokinetics of oral enrofloxacin in broiler chickens. Food Chem Toxicol 2017; 101:75-83. [DOI: 10.1016/j.fct.2017.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/19/2016] [Accepted: 01/05/2017] [Indexed: 11/16/2022]
|