51
|
Intestinal eosinophils, homeostasis and response to bacterial intrusion. Semin Immunopathol 2021; 43:295-306. [PMID: 33929602 PMCID: PMC8241669 DOI: 10.1007/s00281-021-00856-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/03/2021] [Indexed: 02/06/2023]
Abstract
Eosinophils are traditionally considered as end-stage effector cells involved in the pathogenesis of Th2 immune-mediated disorders as well as in the protection against parasite infection. However, this restricted view has recently been challenged by a series of studies revealing the highly plastic nature of these cells and implication in various homeostatic processes. Large numbers of eosinophils reside in the lamina propria of the gastrointestinal tract, at the front line of host defence, where they contribute to maintain the intestinal epithelial barrier function in the face of inflammation-associated epithelial cell damage. Eosinophils confer active protection against bacterial pathogens capable of penetrating the mucosal barrier through the release of cytotoxic compounds and the generation of extracellular DNA traps. Eosinophils also integrate tissue-specific cytokine signals such as IFN-γ, which synergise with bacterial recognition pathways to enforce different context-dependent functional responses, thereby ensuring a rapid adaptation to the ever-changing intestinal environment. The ability of eosinophils to regulate local immune responses and respond to microbial stimuli further supports the pivotal role of these cells in the maintenance of tissue homeostasis at the intestinal interface.
Collapse
|
52
|
Penrose HM, Iftikhar R, Collins ME, Toraih E, Ruiz E, Ungerleider N, Nakhoul H, Flemington EF, Kandil E, Shah SB, Savkovic SD. Ulcerative colitis immune cell landscapes and differentially expressed gene signatures determine novel regulators and predict clinical response to biologic therapy. Sci Rep 2021; 11:9010. [PMID: 33907256 PMCID: PMC8079702 DOI: 10.1038/s41598-021-88489-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/08/2021] [Indexed: 12/27/2022] Open
Abstract
The heterogeneous pathobiology underlying Ulcerative Colitis (UC) is not fully understood. Using publicly available transcriptomes from adult UC patients, we identified the immune cell landscape, molecular pathways, and differentially expressed genes (DEGs) across patient cohorts and their association with treatment outcomes. The global immune cell landscape of UC tissue included increased neutrophils, T CD4 memory activated cells, active dendritic cells (DC), and M0 macrophages, as well as reduced trends in T CD8, Tregs, B memory, resting DC, and M2 macrophages. Pathway analysis of DEGs across UC cohorts demonstrated activated bacterial, inflammatory, growth, and cellular signaling. We identified a specific transcriptional signature of one hundred DEGs (UC100) that distinctly separated UC inflamed from uninflamed transcriptomes. Several UC100 DEGs, with unidentified roles in UC, were validated in primary tissue. Additionally, non-responders to anti-TNFα and anti-α4β7 therapy displayed distinct profiles of immune cells and pathways pertaining to inflammation, growth, and metabolism. We identified twenty resistant DEGs in UC non-responders to both therapies of which four had significant predictive power to treatment outcome. We demonstrated the global immune landscape and pathways in UC tissue, highlighting a unique UC signature across cohorts and a UC resistant signature with predictive performance to biologic therapy outcome.
Collapse
Affiliation(s)
- Harrison M Penrose
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Rida Iftikhar
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Morgan E Collins
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Eman Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University, New Orleans, LA, 70112, USA
| | - Emmanuelle Ruiz
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University, New Orleans, LA, 70112, USA
| | - Nathan Ungerleider
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Hani Nakhoul
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Erik F Flemington
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Emad Kandil
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University, New Orleans, LA, 70112, USA
| | - Shamita B Shah
- Division of Gastroenterology, Ochsner Clinic Foundation, New Orleans, LA, 70121, USA
| | - Suzana D Savkovic
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA.
| |
Collapse
|
53
|
Masterson JC, Menard-Katcher C, Larsen LD, Furuta GT, Spencer LA. Heterogeneity of Intestinal Tissue Eosinophils: Potential Considerations for Next-Generation Eosinophil-Targeting Strategies. Cells 2021; 10:cells10020426. [PMID: 33671475 PMCID: PMC7922004 DOI: 10.3390/cells10020426] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/05/2023] Open
Abstract
Eosinophils are implicated in the pathophysiology of a spectrum of eosinophil-associated diseases, including gastrointestinal eosinophilic diseases (EGIDs). Biologics that target the IL-5 pathway and are intended to ablate eosinophils have proved beneficial in severe eosinophilic asthma and may offer promise in treating some endotypes of EGIDs. However, destructive effector functions of eosinophils are only one side of the coin; eosinophils also play important roles in immune and tissue homeostasis. A growing body of data suggest tissue eosinophils represent a plastic and heterogeneous population of functional sub-phenotypes, shaped by environmental (systemic and local) pressures, which may differentially impact disease outcomes. This may be particularly relevant to the GI tract, wherein the highest density of eosinophils reside in the steady state, resident immune cells are exposed to an especially broad range of external and internal environmental pressures, and greater eosinophil longevity may uniquely enrich for co-expression of eosinophil sub-phenotypes. Here we review the growing evidence for functional sub-phenotypes of intestinal tissue eosinophils, with emphasis on the multifactorial pressures that shape and diversify eosinophil identity and potential targets to inform next-generation eosinophil-targeting strategies designed to restrain inflammatory eosinophil functions while sustaining homeostatic roles.
Collapse
Affiliation(s)
- Joanne C. Masterson
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA; (J.C.M.); (C.M.-K.); (L.D.L.); (G.T.F.)
- GI and Liver Innate Immune Program, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Allergy, Inflammation & Remodeling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Calies Menard-Katcher
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA; (J.C.M.); (C.M.-K.); (L.D.L.); (G.T.F.)
| | - Leigha D. Larsen
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA; (J.C.M.); (C.M.-K.); (L.D.L.); (G.T.F.)
| | - Glenn T. Furuta
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA; (J.C.M.); (C.M.-K.); (L.D.L.); (G.T.F.)
- GI and Liver Innate Immune Program, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Lisa A. Spencer
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA; (J.C.M.); (C.M.-K.); (L.D.L.); (G.T.F.)
- GI and Liver Innate Immune Program, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-303-724-3277
| |
Collapse
|
54
|
Niccolai E, Russo E, Baldi S, Ricci F, Nannini G, Pedone M, Stingo FC, Taddei A, Ringressi MN, Bechi P, Mengoni A, Fani R, Bacci G, Fagorzi C, Chiellini C, Prisco D, Ramazzotti M, Amedei A. Significant and Conflicting Correlation of IL-9 With Prevotella and Bacteroides in Human Colorectal Cancer. Front Immunol 2021; 11:573158. [PMID: 33488574 PMCID: PMC7820867 DOI: 10.3389/fimmu.2020.573158] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIM Gut microbiota (GM) can support colorectal cancer (CRC) progression by modulating immune responses through the production of both immunostimulatory and/or immunosuppressive cytokines. The role of IL-9 is paradigmatic because it can either promote tumor progression in hematological malignancies or inhibit tumorigenesis in solid cancers. Therefore, we investigate the microbiota-immunity axis in healthy and tumor mucosa, focusing on the correlation between cytokine profile and GM signature. METHODS In this observational study, we collected tumor (CRC) and healthy (CRC-S) mucosa samples from 45 CRC patients, who were undergoing surgery in 2018 at the Careggi University Hospital (Florence, Italy). First, we characterized the tissue infiltrating lymphocyte subset profile and the GM composition. Subsequently, we evaluated the CRC and CRC-S molecular inflammatory response and correlated this profile with GM composition, using Dirichlet multinomial regression. RESULTS CRC samples displayed higher percentages of Th17, Th2, and Tregs. Moreover, CRC tissues showed significantly higher levels of MIP-1α, IL-1α, IL-1β, IL-2, IP-10, IL-6, IL-8, IL-17A, IFN-γ, TNF-α, MCP-1, P-selectin, and IL-9. Compared to CRC-S, CRC samples also showed significantly higher levels of the following genera: Fusobacteria, Proteobacteria, Fusobacterium, Ruminococcus2, and Ruminococcus. Finally, the abundance of Prevotella spp. in CRC samples negatively correlated with IL-17A and positively with IL-9. On the contrary, Bacteroides spp. presence negatively correlated with IL-9. CONCLUSIONS Our data consolidate antitumor immunity impairment and the presence of a distinct microbiota profile in the tumor microenvironment compared with the healthy mucosa counterpart. Relating the CRC cytokine profile with GM composition, we confirm the presence of bidirectional crosstalk between the immune response and the host's commensal microorganisms. Indeed, we document, for the first time, that Prevotella spp. and Bacteroides spp. are, respectively, positively and negatively correlated with IL-9, whose role in CRC development is still under debate.
Collapse
Affiliation(s)
- Elena Niccolai
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Simone Baldi
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Federica Ricci
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” University of Florence, Florence, Italy
| | - Giulia Nannini
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Matteo Pedone
- Department of Statistics, Computer Science, Applications “G. Parenti”, Florence, Italy
| | | | - Antonio Taddei
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | | | - Paolo Bechi
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
| | - Renato Fani
- Department of Biology, University of Florence, Florence, Italy
| | - Giovanni Bacci
- Department of Biology, University of Florence, Florence, Italy
| | - Camilla Fagorzi
- Department of Biology, University of Florence, Florence, Italy
| | | | - Domenico Prisco
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” University of Florence, Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Florence, Italy
| |
Collapse
|
55
|
Tozlu M, Cash B, Younes M, Ertan A. Dilemma in post-IBD patients with IBS-D symptoms: A 2020 overview. Expert Rev Gastroenterol Hepatol 2021; 15:5-8. [PMID: 32990090 DOI: 10.1080/17474124.2021.1829469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Inflammatory bowel disease (IBD) patients in apparent clinical remission who present with irritable bowel syndrome (IBS)-like symptoms pose a diagnostic and therapeutic dilemma that is called post-IBD IBS. When associated with a diarrheal IBS presentation, this clinical syndrome is known as post-IBD IBS-D. AREAS COVERED We review and describe the literature regarding the clinical overlap of IBD and IBS. We discuss prevalent theories regarding the pathophysiology of post-IBD IBS-D and whether this presentation represents coincident inherent IBS-D, IBS-D triggered by IBD, or an even more subtle level of IBD activity that is unrecognized by available laboratory modalities. We also discuss observations that post-IBD IBS-D patients harbor significantly increased colon mucosal eosinophils and appear to respond to a GI-hypoallergenic diet and budesonide therapy. EXPERT OPINION The symptoms overlap between IBD and IBS complicates diagnosis and subsequent management of patients with post-IBD IBS-D. In addition to current theories regarding the pathophysiology of this condition such as alterations in mucosal inflammation, the microbiota, mucosal permeability, and gut-brain interactions. This new avenue of eosinophilic colopathy and therapy directed toward food-derived immune response in patients with post-IBD IBS-D deserves additional investigation.
Collapse
Affiliation(s)
- Mukaddes Tozlu
- Gastroenterology, Hepatology and Nutrition Section, Ertan Digestive Disease Center, University of Texas McGovern Medical School , Houston, TX, USA
| | - Brooks Cash
- Gastroenterology, Hepatology and Nutrition Section, Ertan Digestive Disease Center, University of Texas McGovern Medical School , Houston, TX, USA
| | - Mamoun Younes
- Gastroenterology, Hepatology and Nutrition Section, Ertan Digestive Disease Center, University of Texas McGovern Medical School , Houston, TX, USA
| | - Atilla Ertan
- Gastroenterology, Hepatology and Nutrition Section, Ertan Digestive Disease Center, University of Texas McGovern Medical School , Houston, TX, USA
| |
Collapse
|
56
|
Sugimoto K, Fujita S, Miyazu T, Ishida N, Tani S, Yamade M, Hamaya Y, Iwaizumi M, Furuta T, Osawa S. Improvement in Ulcerative Colitis by Administration of Benralizumab for Comorbid Refractory Bronchial Asthma: A Novel Clinical Observation. Inflamm Bowel Dis 2021; 27:e3-e4. [PMID: 32812020 DOI: 10.1093/ibd/izaa225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present a case of ulcerative colitis improved through benralizumab, which binds to the eosinophil IL-5 receptor and the Fcy receptor on natural killer cells, inducing antibody-dependent cell-mediated cytotoxicity, causing apoptosis, and directly removing eosinophils, in treating comorbid refractory bronchial asthma.
Collapse
Affiliation(s)
- Ken Sugimoto
- The First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shoya Fujita
- The First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takahiro Miyazu
- The First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Natsuki Ishida
- The First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shinya Tani
- The First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mihoko Yamade
- The First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasushi Hamaya
- The First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Moriya Iwaizumi
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takahisa Furuta
- Center for Clinical Research, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoshi Osawa
- Department of Endoscopic and Photodynamic Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
57
|
Kuck K, Jürgenliemk G, Lipowicz B, Heilmann J. Sesquiterpenes from Myrrh and Their ICAM-1 Inhibitory Activity In Vitro. Molecules 2020; 26:E42. [PMID: 33374825 PMCID: PMC7796156 DOI: 10.3390/molecules26010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/08/2023] Open
Abstract
By using various chromatographic steps (silica flash, CPC, preparative HPLC), 16 sesquiterpenes could be isolated from an ethanolic extract of myrrh resin. Their chemical structures were elucidated by 1D and 2D NMR spectroscopy and HRESIMS. Among them, six previously unknown compounds (1-6) and another four metabolites previously not described for the genus Commiphora (7, 10, 12, 13) could be identified. Sesquiterpenes 1 and 2 are novel 9,10-seco-eudesmanes and exhibited an unprecedented sesquiterpene carbon skeleton, which is described here for the first time. New compound 3 is an 9,10 seco-guaian and the only peroxide isolated from myrrh so far. Compounds 1, 2, 4, 7-9, 11, 13-16 were tested in an ICAM-1 in vitro assay. Compound 7, as well as the reference compound furanoeudesma-1,3-diene, acted as moderate inhibitors of this adhesion molecule ICAM-1 (IC50: 44.8 and 46.3 μM, respectively). These results give new hints on the activity of sesquiterpenes with regard to ICAM-1 inhibition and possible modes of action of myrrh in anti-inflammatory processes.
Collapse
Affiliation(s)
- Katrin Kuck
- Institute of Pharmaceutical Biology, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany; (K.K.); (G.J.)
| | - Guido Jürgenliemk
- Institute of Pharmaceutical Biology, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany; (K.K.); (G.J.)
| | - Bartosz Lipowicz
- Repha GmbH Biologische Arzneimittel, Alt-Godshorn 87, D-30855 Langenhagen, Germany;
| | - Jörg Heilmann
- Institute of Pharmaceutical Biology, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany; (K.K.); (G.J.)
| |
Collapse
|
58
|
Gamez-Belmonte R, Erkert L, Wirtz S, Becker C. The Regulation of Intestinal Inflammation and Cancer Development by Type 2 Immune Responses. Int J Mol Sci 2020; 21:ijms21249772. [PMID: 33371444 PMCID: PMC7767427 DOI: 10.3390/ijms21249772] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
The gut is among the most complex organs of the human body. It has to exert several functions including food and water absorption while setting up an efficient barrier to the outside world. Dysfunction of the gut can be life-threatening. Diseases of the gastrointestinal tract such as inflammatory bowel disease, infections, or colorectal cancer, therefore, pose substantial challenges to clinical care. The intestinal epithelium plays an important role in intestinal disease development. It not only establishes an important barrier against the gut lumen but also constantly signals information about the gut lumen and its composition to immune cells in the bowel wall. Such signaling across the epithelial barrier also occurs in the other direction. Intestinal epithelial cells respond to cytokines and other mediators of immune cells in the lamina propria and shape the microbial community within the gut by producing various antimicrobial peptides. Thus, the epithelium can be considered as an interpreter between the microbiota and the mucosal immune system, safeguarding and moderating communication to the benefit of the host. Type 2 immune responses play important roles in immune-epithelial communication. They contribute to gut tissue homeostasis and protect the host against infections with helminths. However, they are also involved in pathogenic pathways in inflammatory bowel disease and colorectal cancer. The current review provides an overview of current concepts regarding type 2 immune responses in intestinal physiology and pathophysiology.
Collapse
|
59
|
Kogure Y, Kanda H, Wang S, Hao Y, Li J, Yamamoto S, Noguchi K, Dai Y. Daikenchuto attenuates visceral pain and suppresses eosinophil infiltration in inflammatory bowel disease in murine models. JGH Open 2020; 4:1146-1154. [PMID: 33319050 PMCID: PMC7731802 DOI: 10.1002/jgh3.12410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Daikenchuto (DKT), a traditional Japanese formula, comprises four herbal medicines and is used for abdominal pain. Inflammatory bowel disease (IBD) includes ulcerative colitis (UC) and Crohn's disease (CD) and is characterized by colonic inflammation and chronic abdominal pain. The present study aimed to investigate whether DKT suppresses colonic hypersensitivity and inflammation associated with IBD in animal models. METHODS Sprague-Dawley rats were administered 4% sodium dextran sulfate (DSS) or trinitrobenzene sulfate (TNBS) in the colon to establish UC or CD models, respectively. DKT and 5-aminosalicylic acid (5-ASA) were administered orally once a day from Days 3 to 7 after induction of colitis. On Day 7, visceral pain and inflammation were evaluated by measuring the visceromotor response (VMR) to colorectal distention (CRD) and inflammatory indicators, including histological score, length of leukocyte infiltration, MPO activity, and eosinophil count. RESULTS DSS and TNBS increased VMR to CRD and the inflammation indicators. DKT, but not 5-ASA, suppressed the VMR to CRD in DSS- and TNBS-treated rats. DKT and 5-ASA decreased the eosinophil count in both IBD models. In DSS-treated rats, 5-ASA, but not DKT, suppressed the MPO activity. In TNBS-treated rats, neither 5-ASA nor DKT suppressed MPO activity. CONCLUSION These results suggest that DKT is beneficial for abdominal pain associated with IBD. The anti-inflammatory effect of DKT on IBD may involve inhibition of eosinophils. The mechanism of anti-inflammatory effect of DKT partially differs from that of 5-ASA. Coapplication of DKT and conventional medicine may produce a positive synergy effect for IBD treatment.
Collapse
Affiliation(s)
- Yoko Kogure
- Department of Pharmacy, School of PharmacyHyogo University of Health SciencesKobeJapan
| | - Hirosato Kanda
- Department of Pharmacy, School of PharmacyHyogo University of Health SciencesKobeJapan
- Traditional Medicine Research CenterChinese Medicine Confucius Institute at Hyogo College of Medicine (CMCIHCM)KobeJapan
- Department of Anatomy and NeuroscienceHyogo College of MedicineNishinomiyaJapan
| | - Shenglan Wang
- Department of Pharmacy, School of PharmacyHyogo University of Health SciencesKobeJapan
- School of Acupuncture‐Moxibustion and TuinaBeijing University of Chinese Medicine (BUCM)BeijingChina
| | - Yongbiao Hao
- Department of Pharmacy, School of PharmacyHyogo University of Health SciencesKobeJapan
| | - Junxiang Li
- Division of Gastroenterology, Department of Internal MedicineDongfang Hospital of BUCMBeijingChina
| | - Satoshi Yamamoto
- Department of Pharmacy, School of PharmacyHyogo University of Health SciencesKobeJapan
| | - Koichi Noguchi
- Department of Anatomy and NeuroscienceHyogo College of MedicineNishinomiyaJapan
| | - Yi Dai
- Department of Pharmacy, School of PharmacyHyogo University of Health SciencesKobeJapan
- Traditional Medicine Research CenterChinese Medicine Confucius Institute at Hyogo College of Medicine (CMCIHCM)KobeJapan
- Department of Anatomy and NeuroscienceHyogo College of MedicineNishinomiyaJapan
| |
Collapse
|
60
|
Poddighe D, Telman A, Tuleutayev E, Ibrayeva A. Pediatric Ulcerative Colitis in Kazakhstan: First Case Series from Central Asia and Current Clinical Management. GASTROENTEROLOGY INSIGHTS 2020; 11:27-35. [DOI: 10.3390/gastroent11020006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The diagnoses of ulcerative colitis have increased in pediatric patients in the last two decades. Whereas there are several reports from most areas of the world, no clinical studies describing the clinical management of pediatric ulcerative colitis are currently available from Central Asia. In this article, we first describe a case series of pediatric patients affected with ulcerative colitis in Kazakhstan. This is a retrospective study including 25 consecutive pediatric patients diagnosed with ulcerative colitis in a tertiary pediatric hospital. The available demographic, clinical, hematological and inflammatory parameters at diagnosis and at the first one-year follow-up have been provided and analyzed. Most pediatric patients diagnosed with ulcerative colitis were older than 12 years, with prevalence of male gender. The analysis of clinical, laboratory, endoscopic parameters at the diagnosis suggested a significant diagnostic delay compared to developed countries; however, most of them showed clinical, laboratory and endoscopic improvements at the one-year follow-up. Even though the therapeutic approach and outcomes resulted to be consistent with other clinical studies from developed countries, several aspects of the medical follow-up should be improved, especially in pediatric patients with extensive disease.
Collapse
Affiliation(s)
- Dimitri Poddighe
- Department of Medicine, Nazarbayev University School of Medicine (NUSOM), Nur-Sultan 010000, Kazakhstan
- Department of Pediatrics, National Research Center for Mother and Child Health, University medical Center, Nur-Sultan 010000, Kazakhstan
| | - Aigerim Telman
- Department of Medicine, Nazarbayev University School of Medicine (NUSOM), Nur-Sultan 010000, Kazakhstan
| | - Ernas Tuleutayev
- Department of Pediatrics, National Research Center for Mother and Child Health, University medical Center, Nur-Sultan 010000, Kazakhstan
| | - Aigul Ibrayeva
- Department of Pediatrics, National Research Center for Mother and Child Health, University medical Center, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
61
|
Tan Y, Zhou J, Zhou Q, Hu L, Long Y. Role of eosinophils in the diagnosis and prognostic evaluation of COVID-19. J Med Virol 2020; 93:1105-1110. [PMID: 32915476 DOI: 10.1002/jmv.26506] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/08/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 is responsible for the coronavirus disease 2019 (COVID-19) epidemic, which has severely affected global public health security. However, the diagnosis and treatment of the disease need further exploration. Therefore, this retrospective analysis was conducted on multiple indicators of peripheral blood in patients with COVID-19 to determine the role of leukocytes, lymphocytes, and eosinophils in the diagnosis and prognostic evaluation of COVID-19. Baseline information and clinical records of 40 patients were collected, including demographic data, disease status, medication, and laboratory routine. The correlation between the inspection indicators and disease classification, as well as prognostic factors, was analyzed. Decreased eosinophils were detected in 33 out of 40 patients with COVID-19 on admission, while lymphocytes and eosinophils were inversely related to the severity of the disease, according to the Spearman's correlation coefficient. Thus, it could be deduced that eosinophils have better sensitivity for the diagnosis of COVID-19 and play a major role similar to lymphocytes in assessing the prognosis of patients.
Collapse
Affiliation(s)
- Yingzheng Tan
- Department of Infectious Diseases, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, Hunan, China
| | - Juan Zhou
- Department of Infectious Diseases, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, Hunan, China
| | - Qing Zhou
- Department of Infectious Diseases, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, Hunan, China
| | - Lingli Hu
- Department of Infectious Diseases, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, Hunan, China
| | - Yunzhu Long
- Department of Infectious Diseases, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, Hunan, China
| |
Collapse
|
62
|
von Richthofen HJ, Gollnast D, van Capel TMM, Giovannone B, Westerlaken GHA, Lutter L, Oldenburg B, Hijnen D, van der Vlist M, de Jong EC, Meyaard L. Signal Inhibitory Receptor on Leukocytes-1 is highly expressed on lung monocytes, but absent on mononuclear phagocytes in skin and colon. Cell Immunol 2020; 357:104199. [PMID: 32942189 DOI: 10.1016/j.cellimm.2020.104199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/07/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
Signal Inhibitory Receptor on Leukocytes-1 (SIRL-1) is expressed on human blood monocytes and granulocytes and inhibits myeloid effector functions. On monocytes, but not granulocytes, SIRL-1 expression is low or absent in individuals with the single nucleotide polymorphism (SNP) rs612529C. The expression of SIRL-1 in tissue and the influence of rs612529 hereon is currently unknown. Here, we used flow cytometry to determine SIRL-1 expression on immune cells in human blood and three barrier tissues; skin, colon and lung. SIRL-1 was expressed by virtually all neutrophils and eosinophils in these tissues. In contrast, SIRL-1 was not expressed by monocyte-derived cells in skin and colon, whereas it was highly expressed by lung classical monocytes. Lung monocytes from individuals with a rs612529C allele had decreased SIRL-1 expression, consistent with the genotype association in blood. Within the different monocyte subsets in blood and lung, SIRL-1 expression was highest in classical monocytes and lowest in nonclassical monocytes. SIRL-1 was not expressed by dendritic cells in blood and barrier tissues. Together, these results indicate that SIRL-1 is differentially expressed on phagocyte subsets in blood and barrier tissues, and that its expression on monocytes is genotype- and tissue-specific. Immune regulation of monocytes by SIRL-1 may be of particular importance in the lung.
Collapse
Affiliation(s)
- Helen J von Richthofen
- Center of Translational Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands; Oncode Institute, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Doron Gollnast
- Center of Translational Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands; Oncode Institute, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Toni M M van Capel
- Department of Experimental Immunology, Amsterdam University Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Barbara Giovannone
- Center of Translational Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands; Department of Dermatology and Allergology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Geertje H A Westerlaken
- Center of Translational Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands; Oncode Institute, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Lisanne Lutter
- Center of Translational Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands; Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - DirkJan Hijnen
- Center of Translational Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands; Department of Dermatology and Allergology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands; Department of Dermatology, Diakonessenhuis Utrecht, Bosboomstraat 1, 3582 KE Utrecht, the Netherlands
| | - Michiel van der Vlist
- Center of Translational Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands; Oncode Institute, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Esther C de Jong
- Department of Experimental Immunology, Amsterdam University Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Linde Meyaard
- Center of Translational Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands; Oncode Institute, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands.
| |
Collapse
|
63
|
Iacob SA, Olariu MC, Iacob DG. Eosinophilic Colitis and Clostridioides difficile Sepsis With Rapid Remission After Antimicrobial Treatment; A Rare Coincidence and Its Pathogenic Implications. Front Med (Lausanne) 2020; 7:328. [PMID: 32903297 PMCID: PMC7396602 DOI: 10.3389/fmed.2020.00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/03/2020] [Indexed: 11/24/2022] Open
Abstract
Eosinophilic colitis is a rare inflammatory disorder of the digestive tract with chronic evolution and unknown pathophysiological mechanisms. The article describes the case of a 64-year old woman with a history of asthma and hypereosinophilia, who presented to a surgical department for persistent abdominal pain in the past 4 months, weight loss and malabsorption. She was diagnosed with eosinophilic colitis based on the colonoscopic result indicating extensive eosinophilic infiltration of the colonic mucosa correlated with the laboratory data and abdominal CT scan results. Following the colonoscopy, the patient developed fever, hypotension and diarrhea and was transferred to an Infectious Diseases Department with a presumptive diagnosis of abdominal sepsis. Treatment with ertapenem was immediately started. Metronidazole was also added due to a PCR positive stool test for Clostridioides difficile toxins encoding-genes. The patient displayed a rapid remission of the fever and of the intestinal complaints following antibiotic therapy and was discharged after 14 days. During a 3 months follow-up, the patient remained asymptomatic with normal values of laboratory parameters except for a persistent hypereosinophilia. The case outlines two distinguishing features: a histopathologic diagnosis of eosinophilic colitis, a rare diagnosis of a patient with chronic abdominal pain and an unexpected and rapid remission of the eosinophilic colitis following the antibiotic treatment and the restoration of the intestinal eubiosis.
Collapse
Affiliation(s)
- Simona Alexandra Iacob
- Infectious Diseases Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Infectious Diseases Department, The National Institute of Infectious Diseases "Matei Bals", Bucharest, Romania
| | - Mihaela Cristina Olariu
- Infectious Diseases Department, The National Institute of Infectious Diseases "Matei Bals", Bucharest, Romania.,Gastroenterology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Diana Gabriela Iacob
- Infectious Diseases Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
64
|
Wang ST, Cui WQ, Pan D, Jiang M, Chang B, Sang LX. Tea polyphenols and their chemopreventive and therapeutic effects on colorectal cancer. World J Gastroenterol 2020; 26:562-597. [PMID: 32103869 PMCID: PMC7029350 DOI: 10.3748/wjg.v26.i6.562] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/30/2019] [Accepted: 01/11/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC), a multifactorial disease, is usually induced and developed through complex mechanisms, including impact of diet and lifestyle, genomic abnormalities, change of signaling pathways, inflammatory response, oxidation stress, dysbiosis, and so on. As natural polyphenolic phytochemicals that exist primarily in tea, tea polyphenols (TPs) have been shown to have many clinical applications, especially as anticancer agents. Most animal studies and epidemiological studies have demonstrated that TPs can prevent and treat CRC. TPs can inhibit the growth and metastasis of CRC by exerting the anti-inflammatory, anti-oxidative or pro-oxidative, and pro-apoptotic effects, which are achieved by modulations at multiple levels. Many experiments have demonstrated that TPs can modulate several signaling pathways in cancer cells, including the mitogen-activated protein kinase pathway, phosphatidylinositol-3 kinase/Akt pathway, Wnt/β-catenin pathway, and 67 kDa laminin receptor pathway, to inhibit proliferation and promote cell apoptosis. In addition, novel studies have also suggested that TPs can prevent the growth and metastasis of CRC by modulating the composition of gut microbiota to improve immune system and decrease inflammatory responses. Molecular pathological epidemiology, a novel multidisciplinary investigation, has made great progress on CRC, and the further molecular pathological epidemiology research should be developed in the field of TPs and CRC. This review summarizes the existing in vitro and in vivo animal and human studies and potential mechanisms to examine the effects of tea polyphenols on CRC.
Collapse
Affiliation(s)
- Shi-Tong Wang
- Department of Cardiovascular Ultrasound, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Wen-Qi Cui
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Dan Pan
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Xuan Sang
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|