51
|
Chauhan G, Madou MJ, Kalra S, Chopra V, Ghosh D, Martinez-Chapa SO. Nanotechnology for COVID-19: Therapeutics and Vaccine Research. ACS NANO 2020; 14:7760-7782. [PMID: 32571007 PMCID: PMC7325519 DOI: 10.1021/acsnano.0c04006] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/22/2020] [Indexed: 05/04/2023]
Abstract
The current global health threat by the novel coronavirus disease 2019 (COVID-19) requires an urgent deployment of advanced therapeutic options available. The role of nanotechnology is highly relevant to counter this "virus" nano enemy. Nano intervention is discussed in terms of designing effective nanocarriers to counter the conventional limitations of antiviral and biological therapeutics. This strategy directs the safe and effective delivery of available therapeutic options using engineered nanocarriers, blocking the initial interactions of viral spike glycoprotein with host cell surface receptors, and disruption of virion construction. Controlling and eliminating the spread and reoccurrence of this pandemic demands a safe and effective vaccine strategy. Nanocarriers have potential to design risk-free and effective immunization strategies for severe acute respiratory syndrome coronavirus 2 vaccine candidates such as protein constructs and nucleic acids. We discuss recent as well as ongoing nanotechnology-based therapeutic and prophylactic strategies to fight against this pandemic, outlining the key areas for nanoscientists to step in.
Collapse
Affiliation(s)
- Gaurav Chauhan
- School of Engineering and Sciences,
Tecnologico de Monterrey, Av. Eugenio
Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León,
Mexico
| | - Marc J. Madou
- School of Engineering and Sciences,
Tecnologico de Monterrey, Av. Eugenio
Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León,
Mexico
- Department of Mechanical and Aerospace
Engineering, University of California
Irvine, Engineering Gateway 4200, Irvine,
California 92697, United States
| | - Sourav Kalra
- Department of Pharmaceutical Technology
(Process Chemistry), National Institute of Pharmaceutical
Education and Research, Sector 67, S.A.S. Nagar,
Punjab 160062, India
| | - Vianni Chopra
- Institute of Nano Science
and Technology, Habitat Centre, Phase 10 Mohali,
160062 Punjab, India
| | - Deepa Ghosh
- Institute of Nano Science
and Technology, Habitat Centre, Phase 10 Mohali,
160062 Punjab, India
| | - Sergio O. Martinez-Chapa
- School of Engineering and Sciences,
Tecnologico de Monterrey, Av. Eugenio
Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León,
Mexico
| |
Collapse
|
52
|
Richardson N, Ng STH, Wraith DC. Antigen-Specific Immunotherapy for Treatment of Autoimmune Liver Diseases. Front Immunol 2020; 11:1586. [PMID: 32793226 PMCID: PMC7385233 DOI: 10.3389/fimmu.2020.01586] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
The liver is a critical organ in controlling immune tolerance. In particular, it is now clear that targeting antigens for presentation by antigen presenting cells in the liver can induce immune tolerance to either autoantigens from the liver itself or tissues outside of the liver. Here we review immune mechanisms active within the liver that contribute both to the control of infectious diseases and tolerance to self-antigens. Despite its extraordinary capacity for tolerance induction, the liver remains a target organ for autoimmune diseases. In this review, we compare and contrast known autoimmune diseases of the liver. Currently patients tend to receive strong immunosuppressive treatments and, in many cases, these treatments are associated with deleterious side effects, including a significantly higher risk of infection and associated health complications. We propose that, in future, antigen-specific immunotherapies are adopted for treatment of liver autoimmune diseases in order to avoid such adverse effects. We describe various therapeutic approaches that either are in or close to the clinic, highlight their mechanism of action and assess their suitability for treatment of autoimmune liver diseases.
Collapse
Affiliation(s)
| | | | - David C. Wraith
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
53
|
Relationship between IL10 and PD-L1 in Liver Hepatocellular Carcinoma Tissue and Cell Lines. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8910183. [PMID: 32724815 PMCID: PMC7381951 DOI: 10.1155/2020/8910183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022]
Abstract
Background Despite the large-scale clinical application of programmed death-ligand 1 (PD-L1) monoclonal antibody, reduction in its clinical response rate has become a gradual problem. As such, use of PD-L1 monoclonal antibody in combination with other anticarcinoma drugs has been the main strategy in improving its efficacy. Interleukin 10 (IL10) is a recognized inflammatory and immunosuppressive factor. Previous studies have suggested that there is a link between PD-L1 and IL10. Objective This study was aimed at clarifying the relationship between PD-L1 and IL10 in liver hepatocellular carcinoma (LIHC) and whether IL10 enhances the efficacy of PD-L1 inhibitor. Methods Expression levels of PD-L1 and IL10 in carcinoma and adjacent tissues were tested by immunochemistry, Western blotting, and RT-PCR. Survival duration and follow-up data of each patient were recorded. LIHC cell lines Bel7405 and MHCC 97-H were used for in vitro experiments. Exogenous IL10 and anti-IL10 were added to cell supernatant. Expression level of PD-L1 in the LIHC cell lines was determined using Western blotting and ELISA. CCK8 and transwell assays were adopted to examine the effect of PD-L1 combined with IL10 on proliferation, invasion, and metastasis of LIHC cells. Results The survival period of patients with low expression of IL10 was longer than that of patients with high expression (P = 0.01). Overexpression of PD-L1 increased the IL10 and Met levels in LIHC tissues and cell lines. IL10 downregulated the expression level of PD-L1 and enhanced the efficacy of crizotinib via the Met signaling pathway in the LIHC cells. Conclusions A combination of IL10 and PD-L1 inhibitor holds great promise as an effective treatment for LIHC.
Collapse
|
54
|
Feng X, Liu J, Xu W, Li G, Ding J. Tackling autoimmunity with nanomedicines. Nanomedicine (Lond) 2020; 15:1585-1597. [DOI: 10.2217/nnm-2020-0102] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Tolerogenic immunotherapy aims to blunt pathogenic inflammation without affecting systemic immunity. However, the anti-inflammatory drugs and immunosuppressive biologics that are used in the clinic usually result in nonspecific immune cell suppression and off-target toxicity. For this reason, strategies have been developed to induce antigen-specific immune tolerance through the delivery of disease-relevant antigens by nanocarriers as a benefit of their preferential internalization by antigen-presenting cells. Herein, we discuss the recent advances in the nanotechnology-based antigen-specific tolerance approaches. Some of these designs are based on nanoparticles delivering antigens and immunoregulatory agents to modulate antigen-presenting pathways, while others directly target T cells via nanoparticle-based artificial antigen-presenting cells. These antigen-specific therapies are hoped to replace systemic immune suppression and provide long-term disease remission.
Collapse
Affiliation(s)
- Xiangru Feng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
- University of Science & Technology of China, 96 Jinzhai Road, Hefei, 230026, PR China
| | - Jiaxue Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Weiguo Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Gao Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
- University of Science & Technology of China, 96 Jinzhai Road, Hefei, 230026, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| |
Collapse
|
55
|
Recent Advances in Antigen-Specific Immunotherapies for the Treatment of Multiple Sclerosis. Brain Sci 2020; 10:brainsci10060333. [PMID: 32486045 PMCID: PMC7348736 DOI: 10.3390/brainsci10060333] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system and is considered to be the leading non-traumatic cause of neurological disability in young adults. Current treatments for MS comprise long-term immunosuppressant drugs and disease-modifying therapies (DMTs) designed to alter its progress with the enhanced risk of severe side effects. The Holy Grail for the treatment of MS is to specifically suppress the disease while at the same time allow the immune system to be functionally active against infectious diseases and malignancy. This could be achieved via the development of immunotherapies designed to specifically suppress immune responses to self-antigens (e.g., myelin antigens). The present study attempts to highlight the various antigen-specific immunotherapies developed so far for the treatment of multiple sclerosis (e.g., vaccination with myelin-derived peptides/proteins, plasmid DNA encoding myelin epitopes, tolerogenic dendritic cells pulsed with encephalitogenic epitopes of myelin proteins, attenuated autologous T cells specific for myelin antigens, T cell receptor peptides, carriers loaded/conjugated with myelin immunodominant peptides, etc), focusing on the outcome of their recent preclinical and clinical evaluation, and to shed light on the mechanisms involved in the immunopathogenesis and treatment of multiple sclerosis.
Collapse
|
56
|
López González M, van de Ven R, de Haan H, van Eck van der Sluijs J, Dong W, van Beusechem VW, de Gruijl TD. Oncolytic adenovirus ORCA-010 increases the type 1 T cell stimulatory capacity of melanoma-conditioned dendritic cells. Clin Exp Immunol 2020; 201:145-160. [PMID: 32301504 PMCID: PMC7366753 DOI: 10.1111/cei.13442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
Immune checkpoint blockade has resulted in durable responses in patients with metastatic melanoma, but only in a fraction of treated patients. For immune checkpoint inhibitors (ICI) to be effective, sufficient infiltration with tumor‐reactive T cells is essential. Oncolytic viruses (OV) selectively replicate in and lyse tumor cells and so induce an immunogenic form of cell death, providing at once a source of tumor‐associated (neo)antigens and of danger signals that together induce effective T cell immunity and tumor infiltration. Melanoma‐associated suppression of dendritic cell (DC) differentiation effectively hampers OV‐ or immune checkpoint inhibitor (ICI)‐induced anti‐tumor immunity, due to a consequent inability to prime and attract anti‐tumor effector T cells. Here, we set out to study the effect of ORCA‐010, a clinical stage oncolytic adenovirus, on DC differentiation and functionality in the context of human melanoma. In melanoma and monocyte co‐cultures, employing a panel of five melanoma cell lines with varying origins and oncogenic mutation status, we observed clear suppression of DC development with apparent skewing of monocyte differentiation to a more M2‐macrophage‐like state. We established the ability of ORCA‐010 to productively infect and lyse the melanoma cells. Moreover, although ORCA‐010 was unable to restore DC differentiation, it induced activation and an increased co‐stimulatory capacity of monocyte‐derived antigen‐presenting cells. Their subsequent ability to prime effector T cells with a type I cytokine profile was significantly increased in an allogeneic mixed leukocyte reaction. Our findings suggest that ORCA‐010 is a valuable immunotherapeutic agent for melanoma.
Collapse
Affiliation(s)
- M López González
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - R van de Ven
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands.,Otolaryngology/Head-Neck Surgery, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - H de Haan
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - J van Eck van der Sluijs
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - W Dong
- ORCA Therapeutics, 's-Hertogenbosch, the Netherlands
| | - V W van Beusechem
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands.,ORCA Therapeutics, 's-Hertogenbosch, the Netherlands
| | - T D de Gruijl
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| |
Collapse
|
57
|
Freitag TL, Podojil JR, Pearson RM, Fokta FJ, Sahl C, Messing M, Andersson LC, Leskinen K, Saavalainen P, Hoover LI, Huang K, Phippard D, Maleki S, King NJ, Shea LD, Miller SD, Meri SK, Getts DR. Gliadin Nanoparticles Induce Immune Tolerance to Gliadin in Mouse Models of Celiac Disease. Gastroenterology 2020; 158:1667-1681.e12. [PMID: 32032584 PMCID: PMC7198359 DOI: 10.1053/j.gastro.2020.01.045] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Celiac disease could be treated, and potentially cured, by restoring T-cell tolerance to gliadin. We investigated the safety and efficacy of negatively charged 500-nm poly(lactide-co-glycolide) nanoparticles encapsulating gliadin protein (TIMP-GLIA) in 3 mouse models of celiac disease. Uptake of these nanoparticles by antigen-presenting cells was shown to induce immune tolerance in other animal models of autoimmune disease. METHODS We performed studies with C57BL/6; RAG1-/- (C57BL/6); and HLA-DQ8, huCD4 transgenic Ab0 NOD mice. Mice were given 1 or 2 tail-vein injections of TIMP-GLIA or control nanoparticles. Some mice were given intradermal injections of gliadin in complete Freund's adjuvant (immunization) or of soluble gliadin or ovalbumin (ear challenge). RAG-/- mice were given intraperitoneal injections of CD4+CD62L-CD44hi T cells from gliadin-immunized C57BL/6 mice and were fed with an AIN-76A-based diet containing wheat gluten (oral challenge) or without gluten. Spleen or lymph node cells were analyzed in proliferation and cytokine secretion assays or by flow cytometry, RNA sequencing, or real-time quantitative polymerase chain reaction. Serum samples were analyzed by gliadin antibody enzyme-linked immunosorbent assay, and intestinal tissues were analyzed by histology. Human peripheral blood mononuclear cells, or immature dendritic cells derived from human peripheral blood mononuclear cells, were cultured in medium containing TIMP-GLIA, anti-CD3 antibody, or lipopolysaccharide (controls) and analyzed in proliferation and cytokine secretion assays or by flow cytometry. Whole blood or plasma from healthy volunteers was incubated with TIMP-GLIA, and hemolysis, platelet activation and aggregation, and complement activation or coagulation were analyzed. RESULTS TIMP-GLIA did not increase markers of maturation on cultured human dendritic cells or induce activation of T cells from patients with active or treated celiac disease. In the delayed-type hypersensitivity (model 1), the HLA-DQ8 transgenic (model 2), and the gliadin memory T-cell enteropathy (model 3) models of celiac disease, intravenous injections of TIMP-GLIA significantly decreased gliadin-specific T-cell proliferation (in models 1 and 2), inflammatory cytokine secretion (in models 1, 2, and 3), circulating gliadin-specific IgG/IgG2c (in models 1 and 2), ear swelling (in model 1), gluten-dependent enteropathy (in model 3), and body weight loss (in model 3). In model 1, the effects were shown to be dose dependent. Splenocytes from HLA-DQ8 transgenic mice given TIMP-GLIA nanoparticles, but not control nanoparticles, had increased levels of FOXP3 and gene expression signatures associated with tolerance induction. CONCLUSIONS In mice with gliadin sensitivity, injection of TIMP-GLIA nanoparticles induced unresponsiveness to gliadin and reduced markers of inflammation and enteropathy. This strategy might be developed for the treatment of celiac disease.
Collapse
Affiliation(s)
- Tobias L. Freitag
- Department of Bacteriology and Immunology, University of Helsinki, Finland;,Translational Immunology Research Program, University of Helsinki, Finland;,Corresponding author. Address Correspondence to: Tobias L. Freitag, MD, Translational Immunology Research Program, Department of Bacteriology and Immunology, Haartmaninkatu 3, Room B327, 00290 University of Helsinki, Finland,
| | - Joseph R. Podojil
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA;,Cour Pharmaceutical Development Company, Northbrook, IL, USA
| | - Ryan M. Pearson
- Cour Pharmaceutical Development Company, Northbrook, IL, USA,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Frank J. Fokta
- Cour Pharmaceutical Development Company, Northbrook, IL, USA
| | - Cecilia Sahl
- Department of Bacteriology and Immunology, University of Helsinki, Finland
| | - Marcel Messing
- Department of Bacteriology and Immunology, University of Helsinki, Finland;,Translational Immunology Research Program, University of Helsinki, Finland
| | | | - Katarzyna Leskinen
- Translational Immunology Research Program, University of Helsinki, Finland
| | - Päivi Saavalainen
- Translational Immunology Research Program, University of Helsinki, Finland
| | | | | | | | - Sanaz Maleki
- Discipline of Pathology, School of Medical Sciences, Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Nicholas J.C. King
- Discipline of Pathology, School of Medical Sciences, Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Stephen D. Miller
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA;,Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Seppo K. Meri
- Department of Bacteriology and Immunology, University of Helsinki, Finland;,Translational Immunology Research Program, University of Helsinki, Finland
| | - Daniel R. Getts
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA;,Cour Pharmaceutical Development Company, Northbrook, IL, USA,Discipline of Pathology, School of Medical Sciences, Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, Australia;,Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
58
|
Qian Q, Wu C, Chen J, Wang W. Relationship between IL-10 and PD-L1 in esophageal carcinoma tissues and IL-10 down-regulates PD-L1 expression via Met signaling pathway. J Gastrointest Oncol 2020; 11:337-355. [PMID: 32399275 DOI: 10.21037/jgo.2020.01.06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Programmed death-ligand 1 (PD-L1) plays a critical role in host immunity in the setting of cancer progression. Interleukin 10 (IL-10) is a multi-cellular, multi-functional cytokine that regulates cell growth and differentiation and participates in inflammatory and immune responses. The purpose of this study was to clarify the relationship between PD-L1 and IL-10 and their clinical importance in esophageal carcinoma (ESCA). Methods ESCA patients (n=100) who underwent surgery with preoperative therapy were included in the study. By immuno-histochemical staining, PD-L1, IL-10 and CD8 positive cells were examined in resected specimens. The gene expression levels of PD-L1, IL-10 and Met were detected by qRT-PCR and Western blots, and differentially compared in cancer, adjacent and normal tissues. In cell experiments, the Eca109 and TE-1 cell-lines were incubated with IL-10 or anti-IL-10 antibody, and then PD-L1 and Met expression levels were compared by ELISA and Western blots. The effect of crizotinib and/or IL-10 on the proliferation, invasion and migration of esophageal squamous cell-lines was estimated by CCK8 and transwell assay. Results In tumor tissues, the mRNA and protein levels of PD-L1, IL-10 and Met were higher than those in adjacent tissues. The high expression levels of PD-L1 and IL-10 indicated a poor prognosis. IL-10 reduced the expression of PD-L1 in esophageal squamous cell-lines via Met signaling. Over-expression of PD-L1 in increased the levels of IL-10, and Met in in ESCA tissue and cell lines. The combination of crizotinib and IL-10 were more effective in inhibiting the proliferation, migration and invasion of esophageal squamous cell lines. Conclusions The combination of IL-10 and PD-L1 monoclonal antibody may have therapeutic promise in treating ESCA.
Collapse
Affiliation(s)
- Qian Qian
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Changping Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Jianping Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Weibing Wang
- Chinese People's Liberation Army 904 Hospital, Changzhou 214044, China
| |
Collapse
|
59
|
Saulite I, Ignatova D, Chang YT, Fassnacht C, Dimitriou F, Varypataki E, Anzengruber F, Nägeli M, Cozzio A, Dummer R, Scarisbrick J, Pascolo S, Hoetzenecker W, Bobrowicz M, Guenova E. Blockade of programmed cell death protein 1 (PD-1) in Sézary syndrome reduces Th2 phenotype of non-tumoral T lymphocytes but may enhance tumor proliferation. Oncoimmunology 2020; 9:1738797. [PMID: 32760603 PMCID: PMC7386859 DOI: 10.1080/2162402x.2020.1738797] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 02/08/2023] Open
Abstract
Sézary syndrome (SS) is an aggressive leukemic variant of cutaneous T-cell lymphoma (L-CTCL) that arises from malignant clonally derived skin-homing CD4+ T cells. Based on advancements in our understanding of the mechanisms underlying L-CTCL, boosting the suppressed immune response emerges as a promising strategy in SS management. Immune checkpoint inhibitory molecules have already demonstrated efficacy in a wide spectrum of malignancies. Currently, agents targeting the programmed death-1 (PD-1) axis are under evaluation in L-CTCL. Here we investigated the expression of PD-1 and its ligands, PD-L1 and PD-L2 in blood and skin from patients with L-CTCL. We demonstrate that PD-1 expression is markedly increased on tumor T cells compared to non-tumor CD4+ T cells from SS patients and to CD4+ cells from healthy individuals. In contrast, PD-L1 shows decreased expression on tumor T cells, while PD-L2 expression is low without significant differences between these groups. Functional PD-1 blockade in vitro resulted in reduced Th2 phenotype of non-tumor T lymphocytes, but enhanced the proliferation of tumor T cells from SS patients. Our study sheds some light on the PD-1 axis in both peripheral blood and skin compartments in SS patients, which may be relevant for the treatment of L-CTCL with immune checkpoint inhibitor.
Collapse
Affiliation(s)
- Ieva Saulite
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Dermatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Desislava Ignatova
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Yun-Tsan Chang
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christina Fassnacht
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Florentia Dimitriou
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Eleni Varypataki
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Florian Anzengruber
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mirjam Nägeli
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Antonio Cozzio
- Department of Dermatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Julia Scarisbrick
- Department of Dermatology, University Hospitals Birmingham, Birmingham, UK
| | - Steve Pascolo
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | | | - Emmanuella Guenova
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Dermatology, Lausanne University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
60
|
Lai X, Yao Z, Ning F, Zhang L, Fang J, Li G, Xu L, Xiong Y, Liu L, Chen R, Ma J, Chen Z. Blockade of OX40/OX40L pathway combined with ethylene-carbodiimide-fixed donor splenocytes induces donor-specific allograft tolerance in presensitized recipients. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:84. [PMID: 32175377 DOI: 10.21037/atm.2019.12.146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Memory T cells (Tms) are the major barrier preventing long-term allograft survival in presensitized transplant recipients. The OX40/OX40L pathway is important in the induction and maintenance of Tms. Methods In this study, we added anti-OX40L mAb to ethylene-carbodiimide-fixed donor splenocytes (ECDI-SPs)-a method which is effective in inducing allograft tolerance in non-presensitized mouse heart transplant model. Recipient mice received heart transplantation after 6 weeks of donor skin presensitization and were treated with anti-OX40L mAb, ECDI-SPs or anti-OX40L mAb + ECDI-SPs, respectively. Results Our data showed that the combination of ECDI-SPs and anti-OX40L mAb induced donor-specific tolerance in skin-presensitized heart transplant recipients, with the mechanism for this being associated with suppression of Tms and upregulation of CD4+CD25+Foxp3+ T regulatory cells (Tregs). Importantly, CD25+ T-cell depletion in the combined therapy-treated recipients broke the establishment of allograft tolerance, whereas adoptive transfer of presensitization-derived T cells into tolerant recipients suppressed Tregs expansion and abolished established tolerance. Conclusions Blockade of OX40/OX40L pathway in combination with ECDI-SPs appears to modulate the Tms/Tregs imbalance so as to create a protective milieu and induce graft tolerance in presensitized recipients.
Collapse
Affiliation(s)
- Xingqiang Lai
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Zhongpeng Yao
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Fen Ning
- Guangzhou Institute of Pediatrics, Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Lei Zhang
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Jiali Fang
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Guanghui Li
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Lu Xu
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yunyi Xiong
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Luhao Liu
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Rongxin Chen
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Junjie Ma
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Zheng Chen
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
61
|
Link C, Bujupi F, Krammer PH, Weyd H. Annexin-coated particles induce antigen-specific immunosuppression. Autoimmunity 2020; 53:86-94. [PMID: 31933381 DOI: 10.1080/08916934.2019.1710134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Apoptotic cells mediate the development of tolerogenic dendritic cells (DC) and thus facilitate induction and maintenance of peripheral tolerance. Following the identification of the evolutionary conserved annexin core domain (Anx) as a specific signal on apoptotic cells which antagonises Toll-like receptor (TLR) signalling, we examined whether the tolerogenic capacity of Anx can be exploited to downregulate antigen-specific immune responses. The treatment of bone marrow-derived dendritic cells (BMDC) with particles harbouring Anx as well as the model antigen ovalbumin (OVA) attenuated the response of OVA-specific OT-II T cells. The co-culture of Anx-particle-treated DC and T cells resulted in an anergy-like phenotype characterized by reduced proliferation and cytokine secretion. Here we demonstrate that the anti-inflammatory effects of Anx which are mediated through DC can be used as a tool to generate a particle-based antigen delivery system that promotes antigen-specific immunosuppression. Such Anx-particles may be a new therapeutic approach for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Corinna Link
- Division of Immunogenetics, German Cancer Research Center, Heidelberg, Germany.,Faculty of Biosciences, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Fatmire Bujupi
- Division of Immunogenetics, German Cancer Research Center, Heidelberg, Germany.,Faculty of Biosciences, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Peter H Krammer
- Division of Immunogenetics, German Cancer Research Center, Heidelberg, Germany
| | - Heiko Weyd
- Division of Immunogenetics, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
62
|
Anfray C, Mainini F, Andón FT. Nanoparticles for immunotherapy. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/b978-0-08-102828-5.00011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
63
|
Ethylene carbodiimide-fixed donor splenocytes combined with cordycepin induce long-term protection to mice cardiac allografts. Transpl Immunol 2019; 56:101196. [DOI: 10.1016/j.trim.2019.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 11/17/2022]
|
64
|
Singh A, Ramachandran S, Graham ML, Daneshmandi S, Heller D, Suarez-Pinzon WL, Balamurugan AN, Ansite JD, Wilhelm JJ, Yang A, Zhang Y, Palani NP, Abrahante JE, Burlak C, Miller SD, Luo X, Hering BJ. Long-term tolerance of islet allografts in nonhuman primates induced by apoptotic donor leukocytes. Nat Commun 2019; 10:3495. [PMID: 31375697 PMCID: PMC6677762 DOI: 10.1038/s41467-019-11338-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Immune tolerance to allografts has been pursued for decades as an important goal in transplantation. Administration of apoptotic donor splenocytes effectively induces antigen-specific tolerance to allografts in murine studies. Here we show that two peritransplant infusions of apoptotic donor leukocytes under short-term immunotherapy with antagonistic anti-CD40 antibody 2C10R4, rapamycin, soluble tumor necrosis factor receptor and anti-interleukin 6 receptor antibody induce long-term (≥1 year) tolerance to islet allografts in 5 of 5 nonsensitized, MHC class I-disparate, and one MHC class II DRB allele-matched rhesus macaques. Tolerance in our preclinical model is associated with a regulatory network, involving antigen-specific Tr1 cells exhibiting a distinct transcriptome and indirect specificity for matched MHC class II and mismatched class I peptides. Apoptotic donor leukocyte infusions warrant continued investigation as a cellular, nonchimeric and translatable method for inducing antigen-specific tolerance in transplantation. Injection of donor apoptotic cells induces graft tolerance in mice. Here the authors combine this approach with short immunosuppressive therapy to achieve long-term tolerance to allogeneic islets and restoration of normoglycemia in diabetic nonhuman primates, and delineate cellular and molecular correlates of tolerance induction.
Collapse
Affiliation(s)
- Amar Singh
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sabarinathan Ramachandran
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Melanie L Graham
- Preclinical Research Center, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Saeed Daneshmandi
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - David Heller
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wilma Lucia Suarez-Pinzon
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Appakalai N Balamurugan
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA.,Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY, 40202, USA
| | - Jeffrey D Ansite
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joshua J Wilhelm
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Amy Yang
- Biostatistics Collaboration Center, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Nagendra P Palani
- University of Minnesota Genomics Center, Minneapolis, MN, 55455, USA
| | - Juan E Abrahante
- University of Minnesota Informatics Institute, Minneapolis, MN, 55455, USA
| | - Christopher Burlak
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology and Interdepartmental Immunology Center, Northwestern University, Chicago, IL, 60611, USA.
| | - Xunrong Luo
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Biostatistics Collaboration Center, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Duke Transplant Center, Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Bernhard J Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
65
|
Gan PY, Godfrey AS, Ooi JD, O'Sullivan KM, Oudin V, Kitching AR, Holdsworth SR. Apoptotic Cell-Induced, Antigen-Specific Immunoregulation to Treat Experimental Antimyeloperoxidase GN. J Am Soc Nephrol 2019; 30:1365-1374. [PMID: 31337690 DOI: 10.1681/asn.2018090955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/04/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Myeloperoxidase (MPO)-ANCA-associated GN is a significant cause of renal failure. Manipulating autoimmunity by inducing regulatory T cells is potentially a more specific and safer therapeutic option than conventional immunosuppression. METHODS To generate MPO-specific regulatory T cells, we used a modified protein-conjugating compound, 1-ethyl-3-(3'dimethylaminopropyl)-carbodiimide (ECDI), to couple the immunodominant MPO peptide (MPO409-428) or a control ovalbumin peptide (OVA323-339) to splenocytes and induced apoptosis in the conjugated cells. We then administered MPO- and OVA-conjugated apoptotic splenocytes (MPO-Sps and OVA-Sps, respectively) to mice and compared their effects on development and severity of anti-MPO GN. We induced autoimmunity to MPO by immunizing mice with MPO in adjuvant; to trigger GN, we used low-dose antiglomerular basement membrane globulin, which transiently recruits neutrophils that deposit MPO in glomeruli. We also compared the effects of transferring CD4+ T cells from mice treated with MPO-Sp or OVA-Sp to recipient mice with established anti-MPO autoimmunity. RESULTS MPO-Sp but not OVA-Sp administration increased MPO-specific, peripherally derived CD4+Foxp3- type 1 regulatory T cells and reduced anti-MPO autoimmunity and GN. However, in mice depleted of regulatory T cells, MPO-Sp administration did not protect from anti-MPO autoimmunity or GN. Mice with established anti-MPO autoimmunity that received CD4+ T cells transferred from mice treated with MPO-Sp (but not CD4+ T cells transferred from mice treated with OVA-Sp) were protected from anti-MPO autoimmunity and GN, confirming the induction of therapeutic antigen-specific regulatory T cells. CONCLUSIONS These findings in a mouse model indicate that administering apoptotic splenocytes conjugated with the immunodominant MPO peptide suppresses anti-MPO GN by inducing antigen-specific tolerance.
Collapse
Affiliation(s)
- Poh-Yi Gan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of .,Immunology
| | - Andrea S Godfrey
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of
| | - Joshua D Ooi
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of
| | - Kim-Maree O'Sullivan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of
| | - Virginie Oudin
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of
| | - A Richard Kitching
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of.,Nephrology, and.,Pediatric Nephrology, Monash Health, Clayton, Victoria, Australia
| | - Stephen R Holdsworth
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of.,Immunology.,Nephrology, and
| |
Collapse
|
66
|
Yakoub AM, Schülke S. A Model for Apoptotic-Cell-Mediated Adaptive Immune Evasion via CD80-CTLA-4 Signaling. Front Pharmacol 2019; 10:562. [PMID: 31214024 PMCID: PMC6554677 DOI: 10.3389/fphar.2019.00562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 05/06/2019] [Indexed: 12/22/2022] Open
Abstract
Apoptotic cells carry a plethora of self-antigens but they suppress eliciting of innate and adaptive immune responses to them. How apoptotic cells evade and subvert adaptive immune responses has been elusive. Here, we propose a novel model to understand how apoptotic cells regulate T cell activation in different contexts, leading mostly to tolerogenic responses, mainly via taking control of the CD80-CTLA-4 coinhibitory signal delivered to T cells. This model may facilitate understanding of the molecular mechanisms of autoimmune diseases associated with dysregulation of apoptosis or apoptotic cell clearance, and it highlights potential therapeutic targets or strategies for treatment of multiple immunological disorders.
Collapse
Affiliation(s)
- Abraam M Yakoub
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Stefan Schülke
- Vice President's Research Group: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
67
|
Salem D, Subang R, Pernet E, Divangahi M, Pineau C, Cayrol R, Levine JS, Rauch J. Necroptotic cell binding of β 2 -glycoprotein I provides a potential autoantigenic stimulus in systemic lupus erythematosus. Immunol Cell Biol 2019; 97:799-814. [PMID: 31187539 DOI: 10.1111/imcb.12279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 01/11/2023]
Abstract
Systemic lupus erythematosus (SLE) is characterized by the development of autoantibodies against diverse self-antigens with damage to multiple organs. Immunization with the SLE autoantigen β2 -glycoprotein I (β2 GPI) and lipopolysaccharide (LPS), a known trigger of necroptosis, induces a murine model of SLE. We hypothesized that necroptotic cells, like apoptotic cells, provide a "scaffold" of cellular self-antigens, but, unlike apoptotic cells, necroptotic cells do so in a proinflammatory and immunogenic context. We demonstrate that β2 GPI indeed binds to necroptotic cells and serves as a target for anti-β2 GPI autoantibodies. We further demonstrate that necroptotic, but not apoptotic, cells promote antigenic presentation of β2 GPI to CD4 T cells by dendritic cells. Finally, we show that β2 GPI/LPS-immunized mice deficient in RIPK3 (receptor-interacting serine/threonine-protein kinase 3) or MLKL (mixed lineage kinase domain like), and consequently unable to undergo necroptosis, have reduced SLE autoantibody production and pathology. RIPK3-/- mice had low levels of SLE autoantibodies and no renal pathology, while MLKL-/- mice produced low levels of SLE autoantibodies initially, but later developed levels comparable with wild type (WT) mice and pathology intermediate to that of WT and RIPK3-/- mice. Serum cytokine levels induced by LPS tended to be lower in RIPK3-/- and MLKL-/- mice than in WT mice, suggesting that impaired proinflammatory cytokine production may impact the initiation of autoantibody production in both strains. Our data suggest that self-antigen (i.e. β2 GPI) presented in the context of necroptosis and proinflammatory signals may be sufficient to overcome immune tolerance and induce SLE.
Collapse
Affiliation(s)
- David Salem
- Division of Rheumatology, Department of Medicine, McGill University, Infectious Diseases and Immunity in Global Health Programme, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Rebecca Subang
- Division of Rheumatology, Department of Medicine, McGill University, Infectious Diseases and Immunity in Global Health Programme, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Erwan Pernet
- Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Maziar Divangahi
- Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Christian Pineau
- Division of Rheumatology, Department of Medicine, McGill University, Infectious Diseases and Immunity in Global Health Programme, McGill University Health Centre, Montreal, Quebec, Canada
| | - Romain Cayrol
- Department of Pathology and Cellular Biology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Jerrold S Levine
- Section of Nephrology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Section of Nephrology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Joyce Rauch
- Division of Rheumatology, Department of Medicine, McGill University, Infectious Diseases and Immunity in Global Health Programme, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Section of Nephrology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
68
|
Appiya Santharam M, Khan FU, Naveed M, Ali U, Ahsan MZ, Khongorzul P, Shoaib RM, Ihsan AU. Interventions to chronic prostatitis/Chronic pelvic pain syndrome treatment. Where are we standing and what's next? Eur J Pharmacol 2019; 857:172429. [PMID: 31170381 DOI: 10.1016/j.ejphar.2019.172429] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/29/2022]
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a frustrating syndrome. The pathogenesis and state of the art treatment of CP/CPPS are not known. A wide variety of therapies including anti-inflammatories, antibiotics, alpha-blockers, neuropathic pain modulators, and 5α-reductase inhibitors are in practice. These treatment strategies focus on alleviating symptoms in specific domains without treating root-cause and therapeutic outcome is far from satisfactory. We review the literature on current pharmacological treatments for CP/CPPS in detail and suggest future perspectives to modify the treatment strategies. We suggest that introducing novel treatment strategies such as gene editing, and Tregs expressing chimeric receptors may improve the treatment outcomes by inducing immune tolerance and controlling expression of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Madanraj Appiya Santharam
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Farhan Ullah Khan
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China; Shanghai Jiao Tong University, School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Muhammad Naveed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Jiangsu Province, Nanjing, 211166, PR China
| | - Usman Ali
- Shanghai Jiao Tong University, School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Muhammad Zaeem Ahsan
- Shanghai Jiao Tong University, School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Puregmaa Khongorzul
- State Key Laboratory of Natural Medicines, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Rana Muhammad Shoaib
- Shanghai Jiao Tong University, School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Awais Ullah Ihsan
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China.
| |
Collapse
|
69
|
Oakes RS, Froimchuk E, Jewell CM. Engineering Biomaterials to Direct Innate Immunity. ADVANCED THERAPEUTICS 2019; 2:1800157. [PMID: 31236439 PMCID: PMC6590522 DOI: 10.1002/adtp.201800157] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Indexed: 12/18/2022]
Abstract
Small alterations during early stages of innate immune response can drive large changes in how adaptive immune cells develop and function during protective immunity or disease. Controlling these events creates exciting potential in development of immune engineered vaccines and therapeutics. This progress report discusses recent biomaterial technologies exploiting innate immunity to dissect immune function and to design new vaccines and immunotherapies for infectious diseases, cancer, and autoimmunity. Across these examples, an important idea is the possibility to co-opt innate immune mechanisms to enhance immunity during infection and cancer. During inflammatory or autoimmune disease, some of these same innate immune mechanisms can be manipulated in different ways to control excess inflammation by promotion of immunological tolerance.
Collapse
Affiliation(s)
- R. S. Oakes
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - E. Froimchuk
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - C. M. Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- United States Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, Maryland 21201, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, 22 South Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
70
|
Optimizing PLG nanoparticle-peptide delivery platforms for transplantation tolerance using an allogeneic skin transplant model. Biomaterials 2019; 210:70-82. [PMID: 31077862 DOI: 10.1016/j.biomaterials.2019.04.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 12/19/2022]
Abstract
A robust regimen for inducing allogeneic transplantation tolerance involves pre-emptive recipient treatment with donor splenocytes (SP) rendered apoptotic by 1-ethyl-3-(3'-dimethylaminopropyl)-carbodiimide(ECDI) treatment. However, such a regimen is limited by availability of donor cells, cost of cell procurement, and regulatory hurdles associated with cell-based therapies. Nanoparticles (NP) delivering donor antigens are a promising alternative for promoting transplantation tolerance. Here, we used a B6.C-H-2bm12(bm12) to C57BL/6(B6) skin transplant model involving a defined major histocompatibility antigen mismatch to investigate design parameters of poly(lactide-co-glycolide) (PLG) NPs delivering peptides containing the donor antigen for optimizing skin allograft survival. We showed that an epitope-containing short peptide (P1) was more effective than a longer peptide (P2) at providing graft protection. Importantly, the NP and P1 complex (NP-ECDI-P1) resulted in a significant expansion of graft-infiltrating Tregs. Interestingly, in comparison to donor ECDI-SP that provided indefinite graft protection, NP-ECDI-P1 targeted different splenic phagocytes and skin allografts in these recipients harbored significantly more graft-infiltrating CD8+IFN-γ+ cells. Collectively, the current study provides initial engineering parameters for a cell-free and biocompatible NP-peptide platform for transplant immunoregulation. Moreover, it also provides guidance to future NP engineering endeavors to recapitulate the effects of donor ECDI-SP as a goal for maximizing tolerance efficacy of NP formulations.
Collapse
|
71
|
Lewis JS, Stewart JM, Marshall GP, Carstens MR, Zhang Y, Dolgova NV, Xia C, Brusko TM, Wasserfall CH, Clare-Salzler MJ, Atkinson MA, Keselowsky BG. Dual-Sized Microparticle System for Generating Suppressive Dendritic Cells Prevents and Reverses Type 1 Diabetes in the Nonobese Diabetic Mouse Model. ACS Biomater Sci Eng 2019; 5:2631-2646. [PMID: 31119191 PMCID: PMC6518351 DOI: 10.1021/acsbiomaterials.9b00332] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 03/26/2019] [Indexed: 02/08/2023]
Abstract
![]()
Antigen
specificity is a primary goal in developing curative therapies
for autoimmune disease. Dendritic cells (DCs), as the most effective
antigen presenting cells in the body, represent a key target to mediate
restoration of antigen-specific immune regulation. Here, we describe
an injectable, dual-sized microparticle (MP) approach that employs
phagocytosable ∼1 μm and nonphagocytosable ∼30
μm MPs to deliver tolerance-promoting factors both intracellularly
and extracellularly, as well as the type 1 diabetes autoantigen, insulin,
to DCs for reprogramming of immune responses and remediation of autoimmunity.
This poly(lactic-co-glycolic acid) (PLGA) MP system
prevented diabetes onset in 60% of nonobese diabetic (NOD) mice when
administered subcutaneously in 8 week old mice. Prevention of disease
was dependent upon antigen inclusion and required encapsulation of
factors in MPs. Moreover, administration of this “suppressive-vaccine”
boosted pancreatic lymph node and splenic regulatory T cells (Tregs),
upregulated PD-1 on CD4+ and CD8+ T cells, and
reversed hyperglycemia for up to 100 days in recent-onset NOD mice.
Our results demonstrate that a MP-based platform can reeducate the
immune system in an antigen-specific manner, augment immunomodulation
compared to soluble administration of drugs, and provide a promising
alternative to systemic immunosuppression for autoimmunity.
Collapse
Affiliation(s)
- Jamal S Lewis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, Florida 32611, United States.,OneVax, LLC, 12085 Research Drive, Alachua, Florida 32615, United States.,Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, California 95616, United States
| | - Joshua M Stewart
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, Florida 32611, United States
| | - Gregory P Marshall
- OneVax, LLC, 12085 Research Drive, Alachua, Florida 32615, United States
| | - Matthew R Carstens
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, Florida 32611, United States
| | - Ying Zhang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, Florida 32611, United States
| | - Natalia V Dolgova
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, Florida 32611, United States
| | - Changqing Xia
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, 1600 SW Archer Road, Gainesville, Florida 32611, United States
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, 1600 SW Archer Road, Gainesville, Florida 32611, United States
| | - Clive H Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, 1600 SW Archer Road, Gainesville, Florida 32611, United States
| | - Michael J Clare-Salzler
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, 1600 SW Archer Road, Gainesville, Florida 32611, United States
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, 1600 SW Archer Road, Gainesville, Florida 32611, United States.,Department of Pediatrics, University of Florida, 1600 SW Archer Road, Gainesville, Florida 32611, United States
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, Florida 32611, United States.,Department of Pathology, Immunology and Laboratory Medicine, University of Florida, 1600 SW Archer Road, Gainesville, Florida 32611, United States
| |
Collapse
|
72
|
Abstract
Celiac disease (CD) is an autoimmune enteropathy triggered by gluten. Gluten-free diets can be challenging because of their restrictive nature, inadvertent cross-contaminations, and the high cost of gluten-free food. Novel nondietary therapies are at the preclinical stage, clinical trial phase, or have already been developed for other indications and are now being applied to CD. These therapies include enzymatic gluten degradation, binding and sequestration of gluten, restoration of epithelial tight junction barrier function, inhibition of tissue transglutaminase-mediated potentiation of gliadin oligopeptide immunogenicity or of human leukocyte antigen-mediated gliadin presentation, induction of tolerance to gluten, and antiinflammatory interventions.
Collapse
Affiliation(s)
- Gloria Serena
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, 175 Cambridge Street, CPZS - 574, Boston, MA 02114, USA; Celiac Research Program, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Ciaran P Kelly
- Celiac Research Program, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, 175 Cambridge Street, CPZS - 574, Boston, MA 02114, USA; Celiac Research Program, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
73
|
Zhang L, DeBerge M, Wang J, Dangi A, Zhang X, Schroth S, Zhang Z, Thorp E, Luo X. Receptor tyrosine kinase MerTK suppresses an allogenic type I IFN response to promote transplant tolerance. Am J Transplant 2019; 19:674-685. [PMID: 30133807 PMCID: PMC6393931 DOI: 10.1111/ajt.15087] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/27/2018] [Accepted: 08/15/2018] [Indexed: 01/25/2023]
Abstract
Recipient infusion of donor apoptotic cells is an emerging strategy for inducing robust transplantation tolerance. Daily clearance of billions of self-apoptotic cells relies on homeostatic engagement of phagocytic receptors, in particular, receptors of the tyrosine kinase family TAM (Tyro3, Axl, and MerTK), to maintain self-tolerance. However, an outstanding question is if allogeneic apoptotic cells trigger the same receptor system for inducing allogeneic tolerance. Here, we employed allogeneic apoptotic splenocytes and discovered that the efferocytic receptor MerTK on recipient phagocytes is a critical mediator for transplantation tolerance induced by this strategy. Our findings indicate that the tolerogenic properties of allogeneic apoptotic splenocytes require MerTK transmission of intracellular signaling to suppress the production of inflammatory cytokine interferon α (IFN-α). We further demonstrate that MerTK is crucial for subsequent expansion of myeloid-derived suppressor cells and for promoting their immunomodulatory function, including maintaining graft-infiltrating CD4+ CD25+ Foxp3+ regulatory T cells. Consequently, recipient MerTK deficiency resulted in failure of tolerance by donor apoptotic cells, and this failure could be effectively rescued by IFN-α receptor blockade. These findings underscore the importance of the efferocytic receptor MerTK in mediating transplantation tolerance by donor apoptotic cells and implicate MerTK agonism as a promising target for promoting transplantation tolerance.
Collapse
Affiliation(s)
- Lei Zhang
- Center for Kidney Research and Therapeutics, Feinberg
Cardiovascular Research Institute, Northwestern University Feinberg School of
Medicine, Chicago, IL, United States,Northwestern University Feinberg School of Medicine,
Division of Nephrology and Hypertension, Chicago, IL, United States
| | - Mathew DeBerge
- Northwestern University Feinberg School of Medicine,
Department of Pathology & Feinberg Cardiovascular and Renal Research Institute,
Chicago, IL, United States
| | - Jiaojin Wang
- Comprehensive Transplant Center, Northwestern University
Feinberg School of Medicine, Chicago, IL, United States
| | - Anil Dangi
- Center for Kidney Research and Therapeutics, Feinberg
Cardiovascular Research Institute, Northwestern University Feinberg School of
Medicine, Chicago, IL, United States,Northwestern University Feinberg School of Medicine,
Division of Nephrology and Hypertension, Chicago, IL, United States
| | - Xiaomin Zhang
- Comprehensive Transplant Center, Northwestern University
Feinberg School of Medicine, Chicago, IL, United States
| | - Samantha Schroth
- Northwestern University Feinberg School of Medicine,
Department of Pathology & Feinberg Cardiovascular and Renal Research Institute,
Chicago, IL, United States
| | - Zheng Zhang
- Comprehensive Transplant Center, Northwestern University
Feinberg School of Medicine, Chicago, IL, United States
| | - Edward Thorp
- Northwestern University Feinberg School of Medicine,
Department of Pathology & Feinberg Cardiovascular and Renal Research Institute,
Chicago, IL, United States
| | - Xunrong Luo
- Center for Kidney Research and Therapeutics, Feinberg
Cardiovascular Research Institute, Northwestern University Feinberg School of
Medicine, Chicago, IL, United States,Northwestern University Feinberg School of Medicine,
Division of Nephrology and Hypertension, Chicago, IL, United States,Comprehensive Transplant Center, Northwestern University
Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
74
|
Smarr CB, Miller SD. The Use of Biodegradable Nanoparticles for Tolerogenic Therapy of Allergic Inflammation. Methods Mol Biol 2019; 1799:353-358. [PMID: 29956163 DOI: 10.1007/978-1-4939-7896-0_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Antigen-specific tolerance is the ultimate aim of treatment of allergic diseases. Here, we describe methods for the use of biodegradable nanoparticles to safely induce tolerance for the prevention and treatment of allergic inflammation in mice. Antigen is either conjugated to the surface of carboxylated poly(lactide-co-glycolide) (PLG) or encapsulated within PLG nanoparticles, and the resulting antigen-associated nanoparticles are then washed prior to intravenous injection to inhibit antigen-specific allergic immune responses.
Collapse
Affiliation(s)
- Charles B Smarr
- Department of Microbiology-Immunology and Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology and Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
75
|
Serra P, Santamaria P. Antigen-specific therapeutic approaches for autoimmunity. Nat Biotechnol 2019; 37:238-251. [PMID: 30804535 DOI: 10.1038/s41587-019-0015-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022]
Abstract
The main function of the immune system in health is to protect the host from infection by microbes and parasites. Because immune responses to nonself bear the risk of unleashing accidental immunity against self, evolution has endowed the immune system with central and peripheral mechanisms of tolerance, including regulatory T and B cells. Although the past two decades have witnessed the successful clinical translation of a whole host of novel therapies for the treatment of chronic inflammation, the development of antigen-based approaches capable of selectively blunting autoimmune inflammation without impairing normal immunity has remained elusive. Earlier autoantigen-specific approaches employing peptides or whole antigens have evolved into strategies that seek to preferentially deliver these molecules to autoreactive T cells either indirectly, via antigen-presenting cells, or directly, via major histocompatibility complex molecules, in ways intended to promote clonal deletion and/or immunoregulation. The disease specificity, mechanistic underpinnings, developability and translational potential of many of these strategies remain unclear.
Collapse
Affiliation(s)
- Pau Serra
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
| | - Pere Santamaria
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain. .,Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
76
|
Abstract
PURPOSE OF REVIEW To evaluate role of the lymph node in immune regulation and tolerance in transplantation and recent advances in the delivery of antigen and immune modulatory signals to the lymph node. RECENT FINDINGS Lymph nodes are a primary site of immune cell priming, activation, and modulation, and changes within the lymph node microenvironment have the potential to induce specific regulation, suppression, and potentially tolerance. Antigen enters the lymph node either from tissues via lymphatics, from blood via high endothelial venules, or directly via injection. Here we review different techniques and materials to deliver antigen to the lymph node including microparticles or nanoparticles, ex-vivo antigen presenting cell manipulation, and use of receptor conjugation for specific intralymph node targeting locations. SUMMARY The promising results point to powerful techniques to harness the lymph node microenvironment and direct systemic immune regulation. The materials, techniques, and approaches suggest that translational and clinical trials in nonhuman primate and patients may soon be possible.
Collapse
|
77
|
Cheng Y, Cao Y, Ihsan AU, Khan FU, Li X, Xie D, Cui X, Wang W, Liu Z, Li C, Ahmad KA, Sembatya KR, Mikrani R, Zhou X. Novel Treatment of Experimental Autoimmune Prostatitis by Nanoparticle-Conjugated Autoantigen Peptide T2. Inflammation 2019; 42:1071-1081. [DOI: 10.1007/s10753-019-00968-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
78
|
Gammon JM, Jewell CM. Engineering Immune Tolerance with Biomaterials. Adv Healthc Mater 2019; 8:e1801419. [PMID: 30605264 PMCID: PMC6384133 DOI: 10.1002/adhm.201801419] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/05/2018] [Indexed: 12/28/2022]
Abstract
Autoimmune diseases, rejection of transplanted organs and grafts, chronic inflammatory diseases, and immune-mediated rejection of biologic drugs impact a large number of people across the globe. New understanding of immune function is revealing exciting opportunities to help tackle these challenges by harnessing-or correcting-the specificity of immune function. However, realizing this potential requires precision control over the interaction between regulatory immune cues, antigens attacked during inflammation, and the tissues where these processes occur. Engineered materials-such as polymeric and lipid particles, scaffolds, and inorganic materials-offer powerful features that can help to selectively regulate immune function during disease without compromising healthy immune functions. This review highlights some of the exciting developments to leverage biomaterials as carriers, depots, scaffolds-and even as agents with intrinsic immunomodulatory features-to promote immunological tolerance.
Collapse
Affiliation(s)
- Joshua M. Gammon
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive RM 5110, College Park, MD 20742, USA
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive RM 5110, College Park, MD 20742, USA ; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD 20742, USA; United States Department of Veterans Affairs, Baltimore VA Medical center, 10. N Green Street, Baltimore, Maryland 21201, USA; Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD, 21201, USA; Marlene and Stewart Greenebaum Cancer Center, 22 South Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
79
|
Cao Y, Cheng Y, Ihsan AU, Khan FU, Xie D, Cui X, Wang W, Zhou X. A nanoparticle‐coupled T2 peptide induces immune tolerance and ameliorates chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) in mice model. Fundam Clin Pharmacol 2019; 33:267-276. [DOI: 10.1111/fcp.12438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/19/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Yanfang Cao
- Department of Clinical Pharmacy School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing Jiangsu Province 211198China
| | - Yijie Cheng
- Department of Clinical Pharmacy School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing Jiangsu Province 211198China
| | - Awais Ullah Ihsan
- Department of Clinical Pharmacy School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing Jiangsu Province 211198China
| | - Farhan Ullah Khan
- Department of Clinical Pharmacy School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing Jiangsu Province 211198China
- Department of Surgery Nanjing Shuiximen Hospital Nanjing Jiangsu Province 211198China
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Dianyou Xie
- Department of Clinical Pharmacy School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing Jiangsu Province 211198China
| | - Xingxing Cui
- Department of Clinical Pharmacy School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing Jiangsu Province 211198China
| | - Wenlu Wang
- Department of Clinical Pharmacy School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing Jiangsu Province 211198China
| | - Xiaohui Zhou
- Department of Clinical Pharmacy School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing Jiangsu Province 211198China
- Department of Surgery Nanjing Shuiximen Hospital Nanjing Jiangsu Province 211198China
- Zhongda Hospital Affiliated with Southeast University Nanjing Jiangsu Province 210017 China
| |
Collapse
|
80
|
Pearson RM, Podojil JR, Shea LD, King NJC, Miller SD, Getts DR. Overcoming challenges in treating autoimmuntity: Development of tolerogenic immune-modifying nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 18:282-291. [PMID: 30352312 DOI: 10.1016/j.nano.2018.10.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/02/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022]
Abstract
Autoimmune diseases, such as celiac disease, multiple sclerosis, and type 1 diabetes, are leading causes of morbidity and mortality in the United States. In these disease states, immune regulatory mechanisms fail that result in T and B cell-mediated destruction of self-tissues. The known role of T cells in mediating autoimmune diseases has led to the emergence of numerous therapies aimed at inactivating T cells, however successful 'tolerance-inducing' strategies have not yet emerged for approved standard-of-care clinical use. In this review, we describe relevant examples of antigen-specific tolerance approaches that have been applied in clinical trials for human diseases. Furthermore, we describe the evolution of biomaterial approaches from cell-based therapies to induce immune tolerance with a focus on the Tolerogenic Immune-Modifying nanoParticle (TIMP) platform. The TIMP platform can be designed to treat various autoimmune conditions and is currently in clinical trials testing its ability to reverse celiac disease.
Collapse
Affiliation(s)
- Ryan M Pearson
- Research & Development, Cour Pharmaceuticals Development Company, Northbrook, IL, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Joseph R Podojil
- Research & Development, Cour Pharmaceuticals Development Company, Northbrook, IL, USA; Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lonnie D Shea
- Research & Development, Cour Pharmaceuticals Development Company, Northbrook, IL, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas J C King
- Research & Development, Cour Pharmaceuticals Development Company, Northbrook, IL, USA; Bosch Institute and Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Medical Sciences Sydney Medical School, University of Sydney, Australia
| | - Stephen D Miller
- Research & Development, Cour Pharmaceuticals Development Company, Northbrook, IL, USA; Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniel R Getts
- Research & Development, Cour Pharmaceuticals Development Company, Northbrook, IL, USA; Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
81
|
Wan X, Pei W, Shahzad KA, Zhang L, Song S, Jin X, Wang L, Zhao C, Shen C. A Tolerogenic Artificial APC Durably Ameliorates Experimental Autoimmune Encephalomyelitis by Directly and Selectively Modulating Myelin Peptide–Autoreactive CD4+and CD8+T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:1194-1210. [DOI: 10.4049/jimmunol.1800108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/19/2018] [Indexed: 01/19/2023]
|
82
|
Takeda K, Fujimura T, Lyu C, Tsukada A, Tsuchiyama K, Hashimoto A, Aiba S. PD-L1-Expressing Radiation-Associated Angiosarcoma after Primary Breast Cancer. Case Rep Oncol 2018; 11:330-335. [PMID: 29928212 PMCID: PMC6006628 DOI: 10.1159/000489628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 11/20/2022] Open
Abstract
Radiation-associated angiosarcoma (RAAS) is a type of radiation-associated sarcoma (RAS) that develops at the previous field of radiation in breast cancer patients. Although several reports have suggested a poor prognosis for RAAS, the 5-year overall survival of RAAS is better than that of cutaneous angiosarcoma (CAS), suggesting that the prognostic factors of RAAS and CAS might be different, at least in part. In this report, we describe a case of RAAS, and employed immunohistochemical (IHC) staining of PD-L1 and MMP9 as well as periostin, IL-4, and CD163. Interestingly, IHC staining revealed that the RAAS in our case was positive for PD-L1 and negative for MMP9. Moreover, the predominant stromal factor of our case was periostin, suggesting that TAMs in the present case was not immunosuppressive, but an inflammatory subtype. These results might explain, at least in part, the better prognosis of RAAS compared to CAS.
Collapse
Affiliation(s)
- Kana Takeda
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chunbing Lyu
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Tsukada
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenichiro Tsuchiyama
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Hashimoto
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
83
|
Prasad S, Neef T, Xu D, Podojil JR, Getts DR, Shea LD, Miller SD. Tolerogenic Ag-PLG nanoparticles induce tregs to suppress activated diabetogenic CD4 and CD8 T cells. J Autoimmun 2018; 89:112-124. [PMID: 29258717 PMCID: PMC5902637 DOI: 10.1016/j.jaut.2017.12.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 01/22/2023]
Abstract
Type 1 diabetes (T1D) is mediated by destruction of pancreatic β cells by autoantigen-specific CD4+ and CD8+ T cells, thus the ideal solution for T1D is the restoration of immune tolerance to β cell antigens. We demonstrate the ability of carboxylated 500 nm biodegradable poly(lactide-co-glycolide) (PLG) nanoparticles PLG nanoparticles (either surface coupled with or encapsulating the cognate diabetogenic peptides) to rapidly and efficiently restore tolerance in NOD.SCID recipients of both activated diabetogenic CD4+ BDC2.5 chromagranin A-specific and CD8+ NY8.3 islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific TCR transgenic T cells in an antigen-specific manner. Further, initiation and maintenance of Ag-PLG tolerance operates via several overlapping, but independent, pathways including regulation via negative-co-stimulatory molecules (CTLA-4 and PD-1) and the systemic induction of peptide-specific Tregs which were critical for long-term maintenance of tolerance by controlling both trafficking of effector T cells to, and their release of pro-inflammatory cytokines within the pancreas, concomitant with selective retention of effector cells in the spleens of recipient mice.
Collapse
Affiliation(s)
- Suchitra Prasad
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tobias Neef
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Dan Xu
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph R Podojil
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Daniel R Getts
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109, USA.
| | - Stephen D Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
84
|
Abstract
Cell membrane engineering, including live cell membrane bioconjugation and cell membrane-derived nanomaterials is a highly promising strategy to modulate immune responses for treating diseases. Many cell membrane engineering methods have potential for translation for human clinical use in the near future. In this Topical Review, we summarize the cell membrane conjugation strategies that have been investigated for cancer immunotherapy, the prevention of immune rejection to donor cells and tissues, and the induction of antigen-specific tolerance in autoimmune diseases. Additionally, cell membrane-derived or membrane-coated nanomaterials are an emerging class of nanomaterials that is attracting significant attention in the field of nanomedicine. Some of these nanomaterials have been employed to elicit immune responses against cancer, toxins, and bacteria, although their application in establishing immune tolerance has not been explored. In addition to discussing potential problems, we provide our perspectives for promising future directions.
Collapse
Affiliation(s)
- Peter Y. Li
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Zhiyuan Fan
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Hao Cheng
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
85
|
Serra P, Santamaria P. Nanoparticle-based approaches to immune tolerance for the treatment of autoimmune diseases. Eur J Immunol 2018; 48:751-756. [PMID: 29427438 DOI: 10.1002/eji.201747059] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/20/2017] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
Abstract
Autoimmune diseases are caused by antigenically complex immune responses of the adaptive and innate immune system against specific cells, tissues or organs. Antigen-specific approaches for induction of immune tolerance in autoimmunity, based on the use of antigenic peptides or proteins, have failed to deliver the desired therapeutic results in clinical trials. These approaches, which are largely relying on triggering clonal anergy and/or deletion of defined autoreactive specificities, do not address the overwhelming antigenic, molecular, and cellular complexity of most autoimmune diseases, which involve various immune cells and ever-growing repertoires of antigenic epitopes on numerous self-antigens. Advances in the field of regulatory T-cell (Treg) biology have suggested that Treg cells might be able to afford dominant tolerance provided they are properly activated and expanded in vivo. More recently, nanotechnology has introduced novel technical advances capable of modulating immune responses. Here, we review nanoparticle-based approaches designed to induce immune tolerance, ranging from approaches that primarily trigger clonal T-cell anergy or deletion to approaches that trigger Treg cell formation and expansion from autoreactive T-cell effectors. We will also highlight the therapeutic potential and positive outcomes in numerous experimental models of autoimmunity.
Collapse
Affiliation(s)
- Pau Serra
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Pere Santamaria
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
86
|
Fujimura T, Kambayashi Y, Fujisawa Y, Hidaka T, Aiba S. Tumor-Associated Macrophages: Therapeutic Targets for Skin Cancer. Front Oncol 2018; 8:3. [PMID: 29410946 PMCID: PMC5787130 DOI: 10.3389/fonc.2018.00003] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/05/2018] [Indexed: 01/21/2023] Open
Abstract
Tumor-associated macrophages (TAMs) and regulatory T cells (Tregs) are significant components of the microenvironment of solid tumors in the majority of cancers. TAMs sequentially develop from monocytes into functional macrophages. In each differentiation stage, TAMs obtain various immunosuppressive functions to maintain the tumor microenvironment (e.g., expression of immune checkpoint molecules, production of Treg-related chemokines and cytokines, production of arginase I). Although the main population of TAMs is immunosuppressive M2 macrophages, TAMs can be modulated into M1-type macrophages in each differential stage, leading to the suppression of tumor growth. Because the administration of certain drugs or stromal factors can stimulate TAMs to produce specific chemokines, leading to the recruitment of various tumor-infiltrating lymphocytes, TAMs can serve as targets for cancer immunotherapy. In this review, we discuss the differentiation, activation, and immunosuppressive function of TAMs, as well as their benefits in cancer immunotherapy.
Collapse
Affiliation(s)
- Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yumi Kambayashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Takanori Hidaka
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
87
|
Ding J, Liu S, Zhang D, Song Y, Ma X, Yi C, Song B, Xiao B, Su Y, Guo S. Transfusion of ethylene carbodiimide–fixed donor splenocytes prolongs survival of vascularized skin allografts. J Surg Res 2018; 221:343-352. [DOI: 10.1016/j.jss.2017.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/24/2017] [Accepted: 06/06/2017] [Indexed: 10/18/2022]
|
88
|
Yu C, Xi J, Li M, An M, Liu H. Bioconjugate Strategies for the Induction of Antigen-Specific Tolerance in Autoimmune Diseases. Bioconjug Chem 2017; 29:719-732. [PMID: 29165988 DOI: 10.1021/acs.bioconjchem.7b00632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antigen-specific immunotherapy (ASI) holds great promise for the treatment of autoimmune diseases. In mice, administration of major histocompatibility complex (MHC) binding synthetic peptides which modulate T cell receptor (TCR) signaling under subimmunogenic conditions induces selective tolerance without suppressing the global immune responses. However, clinical translation has yielded limited success. It has become apparent that the TCR signaling pathway via synthetic peptide antigen alone is inadequate to induce an effective tolerogenic immunity in autoimmune diseases. Bioconjugate strategies combining additional immunomodulatory functions with TCR signaling can amplify the antigen-specific immune tolerance and possibly lead to the development of new treatments in autoimmune diseases. In this review, we provide a summary of recent advances in the development of bioconjugates to achieve antigen-specific immune tolerance in vivo, with the discussion focused on the underlying design principles and challenges that must be overcome to target these therapies to patients suffering from autoimmune diseases.
Collapse
Affiliation(s)
- Chunsong Yu
- Department of Chemical Engineering and Materials Science , Wayne State University , Detroit , Michigan 48202 , United States
| | - Jingchao Xi
- Department of Chemical Engineering and Materials Science , Wayne State University , Detroit , Michigan 48202 , United States
| | - Meng Li
- Department of Chemical Engineering and Materials Science , Wayne State University , Detroit , Michigan 48202 , United States
| | - Myunggi An
- Department of Chemical Engineering and Materials Science , Wayne State University , Detroit , Michigan 48202 , United States
| | - Haipeng Liu
- Department of Chemical Engineering and Materials Science , Wayne State University , Detroit , Michigan 48202 , United States.,Department of Oncology , Wayne State University , Detroit , Michigan 48201 , United States.,Tumor Biology and Microenvironment Program , Barbara Ann Karmanos Cancer Institute , Detroit , Michigan 48201 , United States
| |
Collapse
|
89
|
Differential Role of B Cells and IL-17 Versus IFN-γ During Early and Late Rejection of Pig Islet Xenografts in Mice. Transplantation 2017; 101:1801-1810. [PMID: 27893617 DOI: 10.1097/tp.0000000000001489] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Xenogeneic islet transplantation is an emerging therapeutic option for diabetic patients. However, immunological tolerance to xenogeneic islets remains a challenge. METHODS The current study used a pig-to-mouse discordant xenogeneic islet transplant model to examine antidonor xenogeneic immune responses during early and late rejection and to determine experimental therapeutic interventions that promote durable pig islet xenograft survival. RESULTS We found that during early acute rejection of pig islet xenografts, the rejecting hosts exhibited a heavy graft infiltration with B220 B cells and a robust antipig antibody production. In addition, early donor-stimulated IL-17 production, but not IFN-γ production, dominated during early acute rejection. Recipient treatment with donor apoptotic 1-ethyl-3-(3'-dimethylaminopropyl)-carbodiimide-treated splenocytes significantly inhibited antidonor IL-17 response, and when combined with B cell depletion and a short course of rapamycin led to survival of pig islet xenografts beyond 100 days in approximately 65% recipients. Interestingly, treated recipients in this model experienced late rejection between 100 and 200 days posttransplant, which coincided with B cell reconstitution and an ensuing emergence of a robust antidonor IFN-γ, but not IL-17, response. CONCLUSIONS These findings reveal that early and late rejection of pig islet xenografts may be dominated by different immune responses and that maintenance of long-term xenogeneic tolerance will require strategies that target the temporal sequence of antixenogeneic immune responses.
Collapse
|
90
|
Lai X, Qiu L, Zhao Y, Yu S, Wang C, Zhang J, Ning F, Chen L, Chen G. Ethylene carbodiimide-fixed donor splenocytes combined with α-1 antitrypsin induce indefinite donor-specific protection to mice cardiac allografts. Transpl Int 2017; 30:305-317. [PMID: 27957767 DOI: 10.1111/tri.12903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/07/2016] [Accepted: 12/02/2016] [Indexed: 12/17/2022]
Abstract
Peritransplant infusion of ethylene carbodiimide-fixed donor splenocytes (ECDI-SPs) induces protection of islet and cardiac allografts. However, pro-inflammatory cytokine production during the peritransplantation period may negate the effect of ECDI-SPs. Therefore, we hypothesized that blocking pro-inflammatory cytokine secretion while increasing levels of anti-inflammatory cytokines would enhance the tolerance-induced efficacy of ECDI-SPs. The objective of this study was to determine the effectiveness of using ECDI-SPs combined with a short course of α1-antitrypsin (AAT) for induction of tolerance. Using a mice cardiac transplant model, we demonstrated that ECDI-SPs + AAT effectively induced indefinite mice cardiac allograft protection in a donor-specific fashion. This effect was accompanied by modulation of cytokines through decreasing levels of pro-inflammatory cytokines (including IFN-γ, TNF-α, IL-1β, IL-6, IL-17, and IL-23) and increasing levels of anti-inflammatory cytokines (including IL-10, IL-13, and TGF-β), and by inhibition of effector T cells (Teff) and expansion of regulatory T cells (Tregs). Therefore, we concluded that combined ECDI-SPs and AAT appeared to modulate the expression of cytokines and regulate the Teff:Treg balance to create a support milieu for graft protection. Our strategy of combining ECDI-SPs and AAT provides a promising approach for inducing donor-specific transplant tolerance.
Collapse
Affiliation(s)
- Xingqiang Lai
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Organ Transplantation Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Longhui Qiu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yi Zhao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shuangjin Yu
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chang Wang
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jin Zhang
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fen Ning
- Department of Obstetrics, Preterm Birth Prevention and Treatment Research Unit, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lizhong Chen
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Guodong Chen
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| |
Collapse
|
91
|
Pozsgay J, Szekanecz Z, Sármay G. Antigen-specific immunotherapies in rheumatic diseases. Nat Rev Rheumatol 2017; 13:525-537. [DOI: 10.1038/nrrheum.2017.107] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
92
|
Kuo R, Saito E, Miller SD, Shea LD. Peptide-Conjugated Nanoparticles Reduce Positive Co-stimulatory Expression and T Cell Activity to Induce Tolerance. Mol Ther 2017; 25:1676-1685. [PMID: 28408181 PMCID: PMC5498812 DOI: 10.1016/j.ymthe.2017.03.032] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/11/2022] Open
Abstract
Targeted approaches to treat autoimmune diseases would improve upon current therapies that broadly suppress the immune system and lead to detrimental side effects. Antigen-specific tolerance was induced using poly(lactide-co-glycolide) nanoparticles conjugated with disease-relevant antigen to treat a model of multiple sclerosis. Increasing the nanoparticle dose and amount of conjugated antigen both resulted in more durable immune tolerance. To identify active tolerance mechanisms, we investigated downstream cellular and molecular events following nanoparticle internalization by antigen-presenting cells. The initial cell response to nanoparticles indicated suppression of inflammatory signaling pathways. Direct and functional measurement of surface MHC-restricted antigen showed positive correlation with both increasing particle dose from 1 to 100 μg/mL and increasing peptide conjugation by 2-fold. Co-stimulatory analysis of cells expressing MHC-restricted antigen revealed most significant decreases in positive co-stimulatory molecules (CD86, CD80, and CD40) following high doses of nanoparticles with higher peptide conjugation, whereas expression of a negative co-stimulatory molecule (PD-L1) remained high. T cells isolated from mice immunized against myelin proteolipid protein (PLP139-151) were co-cultured with antigen-presenting cells administered PLP139-151-conjugated nanoparticles, which resulted in reduced T cell proliferation, increased T cell apoptosis, and a stronger anti-inflammatory response. These findings indicate several potential mechanisms used by peptide-conjugated nanoparticles to induce antigen-specific tolerance.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/drug effects
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/pathology
- Antigens/chemistry
- Antigens/immunology
- Antigens/pharmacology
- B7-1 Antigen/genetics
- B7-1 Antigen/immunology
- B7-2 Antigen/genetics
- B7-2 Antigen/immunology
- CD40 Antigens/genetics
- CD40 Antigens/immunology
- Delayed-Action Preparations/administration & dosage
- Delayed-Action Preparations/chemistry
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Female
- Gene Expression
- Immune Tolerance/drug effects
- Immunoconjugates/chemistry
- Immunoconjugates/metabolism
- Immunoconjugates/pharmacology
- Mice
- Mice, Inbred C57BL
- Myelin Proteolipid Protein/chemistry
- Myelin Proteolipid Protein/immunology
- Myelin Proteolipid Protein/pharmacology
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Ovalbumin/chemistry
- Ovalbumin/immunology
- Ovalbumin/pharmacology
- Particle Size
- Polyglactin 910/chemistry
- Polyglactin 910/metabolism
- Primary Cell Culture
- Spleen/drug effects
- Spleen/immunology
- Spleen/pathology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- Robert Kuo
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eiji Saito
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL 60611, USA
| | - Lonnie D Shea
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
93
|
Snell LM, McGaha TL, Brooks DG. Type I Interferon in Chronic Virus Infection and Cancer. Trends Immunol 2017; 38:542-557. [PMID: 28579323 DOI: 10.1016/j.it.2017.05.005] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/16/2022]
Abstract
Type I interferons (IFN-Is) are emerging as key drivers of inflammation and immunosuppression in chronic infection. Control of these infections requires IFN-I signaling; however, prolonged IFN-I signaling can lead to immune dysfunction. IFN-Is are also emerging as double-edged swords in cancer, providing necessary inflammatory signals, while initiating feedback suppression in both immune and cancer cells. Here, we review the proinflammatory and suppressive mechanisms potentiated by IFN-Is during chronic virus infections and discuss the similar, newly emerging dichotomy in cancer. We then discuss how this understanding is leading to new therapeutic concepts and immunotherapy combinations. We propose that, by modulating the immune response at its foundation, it may be possible to widely reshape immunity to control these chronic diseases.
Collapse
Affiliation(s)
- Laura M Snell
- Princess Margaret Cancer Center, Tumor Immunotherapy Program, University Health Network, Toronto, ONT, M5G 2M9, Canada
| | - Tracy L McGaha
- Princess Margaret Cancer Center, Tumor Immunotherapy Program, University Health Network, Toronto, ONT, M5G 2M9, Canada; Department of Immunology, University of Toronto, Toronto, ONT, M5S 1A8, Canada.
| | - David G Brooks
- Princess Margaret Cancer Center, Tumor Immunotherapy Program, University Health Network, Toronto, ONT, M5G 2M9, Canada; Department of Immunology, University of Toronto, Toronto, ONT, M5S 1A8, Canada.
| |
Collapse
|
94
|
Pearson RM, Casey LM, Hughes KR, Miller SD, Shea LD. In vivo reprogramming of immune cells: Technologies for induction of antigen-specific tolerance. Adv Drug Deliv Rev 2017; 114:240-255. [PMID: 28414079 PMCID: PMC5582017 DOI: 10.1016/j.addr.2017.04.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/01/2017] [Accepted: 04/11/2017] [Indexed: 02/07/2023]
Abstract
Technologies that induce antigen-specific immune tolerance by mimicking naturally occurring mechanisms have the potential to revolutionize the treatment of many immune-mediated pathologies such as autoimmunity, allograft rejection, and allergy. The immune system intrinsically has central and peripheral tolerance pathways for eliminating or modulating antigen-specific responses, which are being exploited through emerging technologies. Antigen-specific tolerogenic responses have been achieved through the functional reprogramming of antigen-presenting cells or lymphocytes. Alternatively, immune privileged sites have been mimicked using biomaterial scaffolds to locally suppress immune responses and promote long-term allograft survival. This review describes natural mechanisms of peripheral tolerance induction and the various technologies being developed to achieve antigen-specific immune tolerance in vivo. As currently approved therapies are non-specific and carry significant associated risks, these therapies offer significant progress towards replacing systemic immune suppression with antigen-specific therapies to curb aberrant immune responses.
Collapse
Affiliation(s)
- Ryan M Pearson
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA
| | - Liam M Casey
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Ave., Ann Arbor, MI 48105, USA
| | - Kevin R Hughes
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 E. Chicago Avenue, Chicago, IL 60611, USA; Chemistry of Life Processes Institute (CLP), Northwestern University, Evanston, IL 60208, USA; The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA.
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA; Department of Chemical Engineering, University of Michigan, 2300 Hayward Ave., Ann Arbor, MI 48105, USA.
| |
Collapse
|
95
|
Jones A, Hawiger D. Peripherally Induced Regulatory T Cells: Recruited Protectors of the Central Nervous System against Autoimmune Neuroinflammation. Front Immunol 2017; 8:532. [PMID: 28536579 PMCID: PMC5422564 DOI: 10.3389/fimmu.2017.00532] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 04/21/2017] [Indexed: 12/14/2022] Open
Abstract
Defects in regulatory T cells (Treg cells) aggravate multiple sclerosis (MS) after its onset and the absence of Treg cell functions can also exacerbate the course of disease in an animal model of MS. However, autoimmune neuroinflammation in many MS models can be acutely provoked in healthy animals leading to an activation of encephalitogenic T cells despite the induction of immune tolerance in the thymus including thymically produced (t)Treg cells. In contrast, neuroinflammation can be ameliorated or even completely prevented by the antigen-specific Treg cells formed extrathymically in the peripheral immune system (pTreg cells) during tolerogenic responses to relevant neuronal antigens. This review discusses the specific roles of Treg cells in blocking neuroinflammation, examines the impact of peripheral tolerance and dendritic cells on a relevant regulation of neuroinflammation, and explores some of the most recent advances in elucidation of specific mechanisms of the conversion and function of pTreg cells including the roles of CD5 and Hopx in these processes.
Collapse
Affiliation(s)
- Andrew Jones
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
96
|
Elbadry MI, Espinoza JL, Nakao S. Induced pluripotent stem cell technology: A window for studying the pathogenesis of acquired aplastic anemia and possible applications. Exp Hematol 2017; 49:9-18. [DOI: 10.1016/j.exphem.2016.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/09/2016] [Accepted: 12/25/2016] [Indexed: 01/08/2023]
|
97
|
Wilson EH. Regulation is no bad thing. Immunol Cell Biol 2017; 95:422-423. [PMID: 28440313 DOI: 10.1038/icb.2017.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Emma H Wilson
- Division of Biomedical Sciences, School of Medicine, UC Riverside, Riverside, CA, USA
| |
Collapse
|
98
|
Chlamydia trachomatis Cellular Exit Alters Interactions with Host Dendritic Cells. Infect Immun 2017; 85:IAI.00046-17. [PMID: 28223346 DOI: 10.1128/iai.00046-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 02/10/2017] [Indexed: 12/23/2022] Open
Abstract
The strategies utilized by pathogens to exit host cells are an area of pathogenesis which has received surprisingly little attention, considering the necessity of this step for infections to propagate. Even less is known about how exit through these pathways affects downstream host-pathogen interactions and the generation of an immune response. Chlamydia trachomatis exits host epithelial cells through two equally active mechanisms: lysis and extrusion. Studies have characterized the outcome of interactions between host innate immune cells, such as dendritic cells and macrophages, and free, extracellular Chlamydia bacteria, such as those resulting from lysis. Exit via extrusion generates a distinct, host-membrane-bound compartment of Chlamydia separate from the original infected cell. In this study, we assessed the effect of containment within extrusions upon the interaction between Chlamydia and host dendritic cells. Extrusion dramatically affected the outcome of Chlamydia-dendritic cell interactions for both the bacterium and the host cell. Dendritic cells rapidly underwent apoptosis in response to engulfment of an extrusion, while uptake of an equivalent dose of free Chlamydia had no such effect. Containment within an extrusion also prolonged bacterial survival within dendritic cells and altered the initial innate immune signaling by the dendritic cell.
Collapse
|
99
|
Engineered erythrocytes covalently linked to antigenic peptides can protect against autoimmune disease. Proc Natl Acad Sci U S A 2017; 114:3157-3162. [PMID: 28270614 DOI: 10.1073/pnas.1701746114] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Current therapies for autoimmune diseases rely on traditional immunosuppressive medications that expose patients to an increased risk of opportunistic infections and other complications. Immunoregulatory interventions that act prophylactically or therapeutically to induce antigen-specific tolerance might overcome these obstacles. Here we use the transpeptidase sortase to covalently attach disease-associated autoantigens to genetically engineered and to unmodified red blood cells as a means of inducing antigen-specific tolerance. This approach blunts the contribution to immunity of major subsets of immune effector cells (B cells, CD4+ and CD8+ T cells) in an antigen-specific manner. Transfusion of red blood cells expressing self-antigen epitopes can alleviate and even prevent signs of disease in experimental autoimmune encephalomyelitis, as well as maintain normoglycemia in a mouse model of type 1 diabetes.
Collapse
|
100
|
McCarthy DP, Yap JWT, Harp CT, Song WK, Chen J, Pearson RM, Miller SD, Shea LD. An antigen-encapsulating nanoparticle platform for T H1/17 immune tolerance therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2017; 13:191-200. [PMID: 27720992 PMCID: PMC5237397 DOI: 10.1016/j.nano.2016.09.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/12/2016] [Accepted: 09/20/2016] [Indexed: 01/19/2023]
Abstract
Tolerogenic nanoparticles (NPs) are rapidly being developed as specific immunotherapies to treat autoimmune disease. However, many NP-based therapies conjugate antigen (Ag) directly to the NP posing safety concerns due to antibody binding or require the co-delivery of immunosuppressants to induce tolerance. Here, we developed Ag encapsulated NPs comprised of poly(lactide-co-glycolide) [PLG(Ag)] and investigated the mechanism of action for Ag-specific tolerance induction in an autoimmune model of T helper type 1/17 dysfunction - relapse-remitting experimental autoimmune encephalomyelitis (R-EAE). PLG(Ag) completely abrogated disease induction in an organ specific manner, where the spleen was dispensable for tolerance induction. PLG(Ag) delivered intravenously distributed to the liver, associated with macrophages, and recruited Ag-specific T cells. Furthermore, programmed death ligand 1 (PD-L1) was increased on Ag presenting cells and PD-1 blockade lessened tolerance induction. The robust promotion of tolerance by PLG(Ag) without co-delivery of immunosuppressive drugs, suggests that these NPs effectively deliver antigen to endogenous tolerogenic pathways.
Collapse
Affiliation(s)
- Derrick P McCarthy
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Christopher T Harp
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - W Kelsey Song
- Department of Chemical and Biological Engineering, Evanston, IL, USA
| | - Jeane Chen
- Department of Chemical and Biological Engineering, Evanston, IL, USA
| | - Ryan M Pearson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Chemistry of Life Processes Institute (CLP), Northwestern University, Evanston, IL, USA; The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.
| | - Lonnie D Shea
- Department of Biomedical Engineering, Evanston, IL, USA; Department of Chemical and Biological Engineering, Evanston, IL, USA; Chemistry of Life Processes Institute (CLP), Northwestern University, Evanston, IL, USA; The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA; Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|