51
|
Abstract
Diseases caused by Leishmania present a worldwide problem, and current therapeutic approaches are unable to achieve a sterile cure. Leishmania is able to persist in host cells by evading or exploiting host immune mechanisms. A thorough understanding of these mechanisms could lead to better strategies for effective management of Leishmania infections. Current research has focused on parasite modification of host cell signaling pathways, entry into phagocytic cells, and modulation of cytokine and chemokine profiles that alter immune cell activation and trafficking to sites of infection. Immuno-therapeutic approaches that target these mechanisms of immune evasion by Leishmania offer promising areas for preclinical and clinical research.
Collapse
|
52
|
Soares-Silva M, Diniz FF, Gomes GN, Bahia D. The Mitogen-Activated Protein Kinase (MAPK) Pathway: Role in Immune Evasion by Trypanosomatids. Front Microbiol 2016; 7:183. [PMID: 26941717 PMCID: PMC4764696 DOI: 10.3389/fmicb.2016.00183] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/02/2016] [Indexed: 01/08/2023] Open
Abstract
Leishmania spp. and Trypanosoma cruzi are the causative agents of leishmaniasis and Chagas disease, respectively, two neglected tropical diseases that affect about 25 million people worldwide. These parasites belong to the family Trypanosomatidae, and are both obligate intracellular parasites that manipulate host signaling pathways and the innate immune system to establish infection. Mitogen-activated protein kinases (MAPKs) are serine and threonine protein kinases that are highly conserved in eukaryotes, and are involved in signal transduction pathways that modulate physiological and pathophysiological cell responses. This mini-review highlights existing knowledge concerning the mechanisms that Leishmania spp. and T. cruzi have evolved to target the host’s MAPK signaling pathways and highjack the immune response, and, in this manner, promote parasite maintenance in the host.
Collapse
Affiliation(s)
- Mercedes Soares-Silva
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Minas Gerais, Brazil
| | - Flavia F Diniz
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Minas Gerais, Brazil
| | - Gabriela N Gomes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Minas Gerais, Brazil
| | - Diana Bahia
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisMinas Gerais, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil
| |
Collapse
|
53
|
Brandt AML, Batista PR, Souza-Silva F, Alves CR, Caffarena ER. Exploring the unbinding of Leishmania (L.) amazonensis CPB derived-epitopes from H2 MHC class I proteins. Proteins 2016; 84:473-87. [PMID: 26798994 DOI: 10.1002/prot.24994] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 11/07/2022]
Abstract
New strategies to control Leishmania disease demand an extensive knowledge about several aspects of infection including the understanding of its molecular events. In murine models, cysteine proteinase B from Leishmania amazonensis promotes regulation of immune response, and fragments from its C-terminus extension (cyspep) can play a decisive role in the host-parasite interaction. The interaction between cyspep-derived peptides and major histocompatibility complex (MHC) proteins is a crucial factor in Leishmania infections. Seven cyspep-derived peptides, previously identified as capable of interacting with H-2 (murine) MHC class I proteins, were studied in this work. We established a protocol to simulate the unbinding of these peptides from the cleft of H-2 receptors. From the simulations, we estimated the corresponding free energy of dissociation (ΔGd ) and described the molecular events that occur during the exit of peptides from the cleft. To test the reliability of this method, we first applied it to a calibration set of four crystallographic MHC/peptide complexes. Next, we explored the unbinding of the seven complexes mentioned above. Results were consistent with ΔGd values obtained from surface plasmon resonance (SPR) experiments. We also identified some of the primary interactions between peptides and H-2 receptors, and we detected three regions of influence for the interaction. This pattern was systematically observed for the peptides and helped determine a minimum distance for the real interaction between peptides and H-2 proteins occurring at ∼ 25 Å.
Collapse
Affiliation(s)
- Artur M L Brandt
- Programa De Computação Científica (PROCC), Fundação Oswaldo Cruz, Manguinhos, Rio De Janeiro, RJ, CEP 21040-360, Brazil.,Faculdade De Educação Tecnológica Do Estado Do Rio De Janeiro (FAETERJ), Rio De Janeiro, RJ, CEP 21311-280, Brazil
| | - Paulo Ricardo Batista
- Programa De Computação Científica (PROCC), Fundação Oswaldo Cruz, Manguinhos, Rio De Janeiro, RJ, CEP 21040-360, Brazil
| | - Franklin Souza-Silva
- Laboratório De Biologia Molecular E Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio De Janeiro, RJ, CEP 21040-360, Brazil
| | - Carlos Roberto Alves
- Laboratório De Biologia Molecular E Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio De Janeiro, RJ, CEP 21040-360, Brazil
| | - Ernesto Raul Caffarena
- Programa De Computação Científica (PROCC), Fundação Oswaldo Cruz, Manguinhos, Rio De Janeiro, RJ, CEP 21040-360, Brazil
| |
Collapse
|
54
|
Markikou-Ouni W, Drini S, Bahi-Jaber N, Chenik M, Meddeb-Garnaoui A. Immunomodulatory Effects of Four Leishmania infantum Potentially Excreted/Secreted Proteins on Human Dendritic Cells Differentiation and Maturation. PLoS One 2015; 10:e0143063. [PMID: 26581100 PMCID: PMC4651425 DOI: 10.1371/journal.pone.0143063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 10/07/2015] [Indexed: 11/18/2022] Open
Abstract
Leishmania parasites and some molecules they secrete are known to modulate innate immune responses through effects on dendritic cells (DCs) and macrophages. Here, we characterized four Leishmania infantum potentially excreted/secreted recombinant proteins (LipESP) identified in our laboratory: Elongation Factor 1 alpha (LiEF-1α), a proteasome regulatory ATPase (LiAAA-ATPase) and two novel proteins with unknown functions, which we termed LiP15 and LiP23, by investigating their effect on in vitro differentiation and maturation of human DCs and on cytokine production by DCs and monocytes. During DCs differentiation, LipESP led to a significant decrease in CD1a. LiP23 and LiEF-1α, induced a decrease of HLA-DR and an increase of CD86 surface expression, respectively. During maturation, an up-regulation of HLA-DR and CD80 was found in response to LiP15, LiP23 and LiAAA-ATPase, while an increase of CD40 expression was only observed in response to LiP15. All LipESP induced an over-expression of CD86 with significant differences between proteins. These proteins also induced significant IL-12p70 levels in immature DCs but not in monocytes. The LipESP-induced IL-12p70 production was significantly enhanced by a co-treatment with IFN-γ in both cell populations. TNF-α and IL-10 were induced in DCs and monocytes with higher levels observed for LiP15 and LiAAA-ATPase. However, LPS-induced cytokine production during DC maturation or in monocyte cultures was significantly down regulated by LipESP co-treatment. Our findings suggest that LipESP strongly interfere with DCs differentiation suggesting a possible involvement in mechanisms established by the parasite for its survival. These proteins also induce DCs maturation by up-regulating several costimulatory molecules and by inducing the production of proinflammatory cytokines, which is a prerequisite for T cell activation. However, the reduced ability of LipESP-stimulated DCs and monocytes to respond to lipopolysaccharide (LPS) that can be observed during human leishmaniasis, suggests that under certain circumstances LipESP may play a role in disease progression.
Collapse
Affiliation(s)
- Wafa Markikou-Ouni
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Sima Drini
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis, Tunisia
- Unité de Parasitologie moléculaire et Signalisation, Institut Pasteur, Paris, France
| | - Narges Bahi-Jaber
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis, Tunisia
- UPSP EGEAL Institut Polytechnique LaSalle Beauvais, Beauvais, France
| | - Mehdi Chenik
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Amel Meddeb-Garnaoui
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis, Tunisia
- * E-mail:
| |
Collapse
|
55
|
Hodgson A, Wier EM, Fu K, Sun X, Yu H, Zheng W, Sham HP, Johnson K, Bailey S, Vallance BA, Wan F. Metalloprotease NleC suppresses host NF-κB/inflammatory responses by cleaving p65 and interfering with the p65/RPS3 interaction. PLoS Pathog 2015; 11:e1004705. [PMID: 25756944 PMCID: PMC4355070 DOI: 10.1371/journal.ppat.1004705] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
Attaching/Effacing (A/E) pathogens including enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC) and the rodent equivalent Citrobacter rodentium are important causative agents of foodborne diseases. Upon infection, a myriad of virulence proteins (effectors) encoded by A/E pathogens are injected through their conserved type III secretion systems (T3SS) into host cells where they interfere with cell signaling cascades, in particular the nuclear factor kappaB (NF-κB) signaling pathway that orchestrates both innate and adaptive immune responses for host defense. Among the T3SS-secreted non-LEE-encoded (Nle) effectors, NleC, a metalloprotease, has been recently elucidated to modulate host NF-κB signaling by cleaving NF-κB Rel subunits. However, it remains elusive how NleC recognizes NF-κB Rel subunits and how the NleC-mediated cleavage impacts on host immune responses in infected cells and animals. In this study, we show that NleC specifically targets p65/RelA through an interaction with a unique N-terminal sequence in p65. NleC cleaves p65 in intestinal epithelial cells, albeit a small percentage of the molecule, to generate the p65¹⁻³⁸ fragment during C. rodentium infection in cultured cells. Moreover, the NleC-mediated p65 cleavage substantially affects the expression of a subset of NF-κB target genes encoding proinflammatory cytokines/chemokines, immune cell infiltration in the colon, and tissue injury in C. rodentium-infected mice. Mechanistically, the NleC cleavage-generated p65¹⁻³⁸ fragment interferes with the interaction between p65 and ribosomal protein S3 (RPS3), a 'specifier' subunit of NF-κB that confers a subset of proinflammatory gene transcription, which amplifies the effect of cleaving only a small percentage of p65 to modulate NF-κB-mediated gene expression. Thus, our results reveal a novel mechanism for A/E pathogens to specifically block NF-κB signaling and inflammatory responses by cleaving a small percentage of p65 and targeting the p65/RPS3 interaction in host cells, thus providing novel insights into the pathogenic mechanisms of foodborne diseases.
Collapse
Affiliation(s)
- Andrea Hodgson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Eric M. Wier
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kai Fu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Xin Sun
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Hongbing Yu
- Division of Gastroenterology, Department of Pediatrics, BC’s Children’s Hospital and Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Wenxin Zheng
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ho Pan Sham
- Division of Gastroenterology, Department of Pediatrics, BC’s Children’s Hospital and Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Kaitlin Johnson
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Scott Bailey
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Bruce A. Vallance
- Division of Gastroenterology, Department of Pediatrics, BC’s Children’s Hospital and Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
56
|
Leroux LP, Dasanayake D, Rommereim LM, Fox BA, Bzik DJ, Jardim A, Dzierszinski FS. Secreted Toxoplasma gondii molecules interfere with expression of MHC-II in interferon gamma-activated macrophages. Int J Parasitol 2015; 45:319-32. [PMID: 25720921 DOI: 10.1016/j.ijpara.2015.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/16/2015] [Accepted: 01/18/2015] [Indexed: 11/15/2022]
Abstract
The obligate intracellular protozoan parasite Toxoplasma gondii interferes with major histocompatibility complex class II antigen presentation to dampen host CD4(+) T cell responses. While it is known that T. gondii inhibits major histocompatibility complex class II gene transcription and expression in infected host cells, the mechanism of this host manipulation is unknown. Here, we show that soluble parasite proteins inhibit IFNγ-induced expression of major histocompatibility complex class II on the surface of the infected cell in a dose-dependent response that was abolished by protease treatment. Subcellular fractionation of T. gondii tachyzoites revealed that the major histocompatibility complex class II inhibitory activity co-partitioned with rhoptries and/or dense granules. However, parasite mutants deleted for single rhoptries or dense granules genes (ROP1, 4/7, 14, 16 and 18 or GRA 2-9 and 12 knock-out strains) retained the ability to inhibit expression of major histocompatibility complex class II. In addition, excreted/secreted antigens released by extracellular tachyzoites displayed immunomodulatory activity characterized by an inhibition of major histocompatibility complex class II expression, and reduced expression and release of TNFα by macrophages. Tandem MS analysis of parasite excreted/secreted antigens generated a list of T. gondii secreted proteins that may participate in major histocompatibility complex class II inhibition and the modulation of host immune functions.
Collapse
Affiliation(s)
- Louis-Philippe Leroux
- Institute of Parasitology, McGill University, Parasitology Building, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; Centre for Host-Parasite Interaction, McGill University, Parasitology Building, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Dayal Dasanayake
- Institute of Parasitology, McGill University, Parasitology Building, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; Centre for Host-Parasite Interaction, McGill University, Parasitology Building, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Leah M Rommereim
- Geisel School of Medicine at Dartmouth, Borwell Research Building, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Barbara A Fox
- Geisel School of Medicine at Dartmouth, Borwell Research Building, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - David J Bzik
- Geisel School of Medicine at Dartmouth, Borwell Research Building, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Armando Jardim
- Institute of Parasitology, McGill University, Parasitology Building, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; Centre for Host-Parasite Interaction, McGill University, Parasitology Building, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Florence S Dzierszinski
- Institute of Parasitology, McGill University, Parasitology Building, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; Carleton University Research Office, Dunton Tower, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
57
|
Chatterjee N, Das S, Bose D, Banerjee S, Jha T, Saha KD. Leishmanial lipid affords protection against oxidative stress induced hepatic injury by regulating inflammatory mediators and confining apoptosis progress. Toxicol Lett 2014; 232:499-512. [PMID: 25445725 DOI: 10.1016/j.toxlet.2014.11.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/15/2014] [Accepted: 11/21/2014] [Indexed: 02/07/2023]
Abstract
Persistence of liver injury alters the internal milieu, promotes deregulation of inflammatory factors, and leads to dysplastic lesions like fibrosis, cirrhosis to hepatocellular carcinoma. Our previous study revealed that leishmanial lipid (pLLD) exerts potential anti-inflammatory activity in sepsis associated hepatic injury. We now show that pLLD gives protection against chemical induced hepatotoxicity in murine system. The beneficial effect of treatment with pLLD on such hepatic injury in mice was analyzed using different assays including ELISA, FACS, western blot and immunohistochemical analysis. pLLD significantly suppressed serum enzymes and rectified the histopathological alteration to induce the antioxidant level in CCl4 intoxicated liver. Levels of several growth factors including TGF-β, HGF, and EGF were significantly improved in serum and hepatic tissue with consequent reduction of caspase activities and expressions of Bad, Bax, p53, and NF-κBp65. Moreover, pLLD modulated inflammatory responses by decreasing the production of several cytokines and chemokines, thus preventing the infiltration of immune cells to the damaged area. It accelerated the repair process in liver damage with modulation of signalling cascade via alteration of apoptotic factors. Our experimental approaches suggest that pLLD effectively prevents liver injury mainly through down regulation of oxidative stress and inflammatory response towards anti-apoptotic changes.
Collapse
Affiliation(s)
- Nabanita Chatterjee
- Cancer Biology & Inflammatory Disorder Division, CSIR - Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Subhadip Das
- Cancer Biology & Inflammatory Disorder Division, CSIR - Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Dipayan Bose
- Cancer Biology & Inflammatory Disorder Division, CSIR - Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Somenath Banerjee
- Cancer Biology & Inflammatory Disorder Division, CSIR - Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Tarun Jha
- Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata 700032, India
| | - Krishna Das Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR - Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India.
| |
Collapse
|
58
|
Cecílio P, Pérez-Cabezas B, Santarém N, Maciel J, Rodrigues V, Cordeiro da Silva A. Deception and manipulation: the arms of leishmania, a successful parasite. Front Immunol 2014; 5:480. [PMID: 25368612 PMCID: PMC4202772 DOI: 10.3389/fimmu.2014.00480] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/19/2014] [Indexed: 12/12/2022] Open
Abstract
Leishmania spp. are intracellular parasitic protozoa responsible for a group of neglected tropical diseases, endemic in 98 countries around the world, called leishmaniasis. These parasites have a complex digenetic life cycle requiring a susceptible vertebrate host and a permissive insect vector, which allow their transmission. The clinical manifestations associated with leishmaniasis depend on complex interactions between the parasite and the host immune system. Consequently, leishmaniasis can be manifested as a self-healing cutaneous affliction or a visceral pathology, being the last one fatal in 85–90% of untreated cases. As a result of a long host–parasite co-evolutionary process, Leishmania spp. developed different immunomodulatory strategies that are essential for the establishment of infection. Only through deception and manipulation of the immune system, Leishmania spp. can complete its life cycle and survive. The understanding of the mechanisms associated with immune evasion and disease progression is essential for the development of novel therapies and vaccine approaches. Here, we revise how the parasite manipulates cell death and immune responses to survive and thrive in the shadow of the immune system.
Collapse
Affiliation(s)
- Pedro Cecílio
- Parasite Disease Group, Institute for Molecular and Cell Biology (IBMC), University of Porto , Porto , Portugal
| | - Begoña Pérez-Cabezas
- Parasite Disease Group, Institute for Molecular and Cell Biology (IBMC), University of Porto , Porto , Portugal
| | - Nuno Santarém
- Parasite Disease Group, Institute for Molecular and Cell Biology (IBMC), University of Porto , Porto , Portugal
| | - Joana Maciel
- Parasite Disease Group, Institute for Molecular and Cell Biology (IBMC), University of Porto , Porto , Portugal
| | - Vasco Rodrigues
- Parasite Disease Group, Institute for Molecular and Cell Biology (IBMC), University of Porto , Porto , Portugal
| | - Anabela Cordeiro da Silva
- Parasite Disease Group, Institute for Molecular and Cell Biology (IBMC), University of Porto , Porto , Portugal ; Department of Biological Sciences, Faculty of Pharmacy, University of Porto , Porto , Portugal
| |
Collapse
|
59
|
Gonzalez-Leal IJ, Röger B, Schwarz A, Schirmeister T, Reinheckel T, Lutz MB, Moll H. Cathepsin B in antigen-presenting cells controls mediators of the Th1 immune response during Leishmania major infection. PLoS Negl Trop Dis 2014; 8:e3194. [PMID: 25255101 PMCID: PMC4177854 DOI: 10.1371/journal.pntd.0003194] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/18/2014] [Indexed: 12/20/2022] Open
Abstract
Resistance and susceptibility to Leishmania major infection in the murine model is determined by the capacity of the host to mount either a protective Th1 response or a Th2 response associated with disease progression. Previous reports involving the use of cysteine cathepsin inhibitors indicated that cathepsins B (Ctsb) and L (Ctsl) play important roles in Th1/Th2 polarization during L. major infection in both susceptible and resistant mouse strains. Although it was hypothesized that these effects are a consequence of differential patterns of antigen processing, the mechanisms underlying these differences were not further investigated. Given the pivotal roles that dendritic cells and macrophages play during Leishmania infection, we generated bone-marrow derived dendritic cells (BMDC) and macrophages (BMM) from Ctsb−/− and Ctsl−/− mice, and studied the effects of Ctsb and Ctsl deficiency on the survival of L. major in infected cells. Furthermore, the signals used by dendritic cells to instruct Th cell polarization were addressed: the expression of MHC class II and co-stimulatory molecules, and cytokine production. We found that Ctsb−/− BMDC express higher levels of MHC class II molecules than wild-type (WT) and Ctsl−/− BMDC, while there were no significant differences in the expression of co-stimulatory molecules between cathepsin-deficient and WT cells. Moreover, both BMDC and BMM from Ctsb−/− mice significantly up-regulated the levels of interleukin 12 (IL-12) expression, a key Th1-inducing cytokine. These findings indicate that Ctsb−/− BMDC display more pro-Th1 properties than their WT and Ctsl−/− counterparts, and therefore suggest that Ctsb down-regulates the Th1 response to L. major. Moreover, they propose a novel role for Ctsb as a regulator of cytokine expression. The emergence of resistance to the available drugs against cutaneous leishmaniasis emphasizes the need of new chemotherapeutic approaches. Cysteine proteases from Leishmania are important virulence factors and, therefore, interesting drug targets. Studies on inhibitors against these enzymes during Leishmania major infection in mice had shown that host equivalents of these proteases are also affected, namely cathepsin B and cathepsin L. The inhibition of cathepsin B resulted in immune-mediated protection, while inhibition of cathepsin L caused susceptibility to the parasite. In the present study, we investigated the effect of cathepsin deficiency on the signals used by dendritic cells to orchestrate the T helper (Th)-mediated immune response against L. major and the control of parasite proliferation within infected macrophages. The results demonstrate that cathepsin B-deficient dendritic cells express higher levels of the antigen-presenting MHC class II molecules than WT and cathepsin L-deficient cells. Surprisingly, dendritic cells and macrophages deficient for cathepsin B showed higher expression of the protective Th1-inducing cytokine IL-12. Therefore, we propose a novel role of this protease as a regulator of cytokine expression. Altogether, these findings suggest that cathepsin B down-regulates the Th1 response to L. major, and, in its absence, antigen-presenting cells express signals protecting against the parasite.
Collapse
Affiliation(s)
- Iris J. Gonzalez-Leal
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Bianca Röger
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Angela Schwarz
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Tanja Schirmeister
- University of Mainz, Institute for Pharmacy and Biochemistry, Mainz, Germany
| | - Thomas Reinheckel
- University of Freiburg, Institute of Molecular Medicine and Cell Research, Freiburg, Germany
| | - Manfred B. Lutz
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Heidrun Moll
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
60
|
Kima PE. Leishmania molecules that mediate intracellular pathogenesis. Microbes Infect 2014; 16:721-6. [PMID: 25107580 DOI: 10.1016/j.micinf.2014.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 07/27/2014] [Accepted: 07/28/2014] [Indexed: 10/25/2022]
Abstract
Parasites of the Leishmania genus are the causative agents of a complex disease called leishmaniasis. Many activities of infected cells including their responses to a range of stimuli are modulated by Leishmania parasites. This review will profile some of the parasite molecules that target host cell processes for which there has been recent progress.
Collapse
Affiliation(s)
- Peter E Kima
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
61
|
Chouhan G, Islamuddin M, Sahal D, Afrin F. Exploring the role of medicinal plant-based immunomodulators for effective therapy of leishmaniasis. Front Immunol 2014; 5:193. [PMID: 24829566 PMCID: PMC4017133 DOI: 10.3389/fimmu.2014.00193] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/18/2014] [Indexed: 01/08/2023] Open
Abstract
Leishmaniasis is a pestilent affliction that importunately needs better therapeutics necessitated by the absence of effective vaccine, emergence as HIV co-infection, and the dread of debilitating chemotherapy. The Leishmania parasites incapacitate host macrophages by preventing the formation of phagolysosomes, impeding antigen presentation to T cells, leading to suppression of cell-mediated immunity. An ideal approach to cure leishmaniasis includes administration of antileishmanial compounds that can concomitantly establish an effective Th1 response via restoration of requisite signaling between macrophages and T cells, for subsequent activation of macrophages to eliminate intracellular amastigotes. Plants have provided an opulent treasure of biomolecules that have fueled the discovery of antileishmanial drugs. Modulation of immune functions using medicinal plants and their products has emerged as an effective therapeutic strategy. Herein, we review the plant extracts and natural products that have resulted in therapeutic polarization of host immunity to cure leishmaniasis. These immunostimulatory phytochemicals as source of potential antileishmanials may provide new strategies to combat leishmaniasis, alone or as adjunct modality.
Collapse
Affiliation(s)
- Garima Chouhan
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University) , New Delhi , India
| | - Mohammad Islamuddin
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University) , New Delhi , India
| | - Dinkar Sahal
- Malaria Group, International Centre for Genetic Engineering and Biotechnology , New Delhi , India
| | - Farhat Afrin
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University) , New Delhi , India
| |
Collapse
|
62
|
Lewis DL, Barker DE, McKinley RS. Modulation of cellular innate immunity by Lepeophtheirus salmonis secretory products. FISH & SHELLFISH IMMUNOLOGY 2014; 38:175-183. [PMID: 24657318 DOI: 10.1016/j.fsi.2014.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 02/06/2014] [Accepted: 03/10/2014] [Indexed: 06/03/2023]
Abstract
Lepeophtheirus salmonis produces pharmacologically active substances that have been shown to modify genetic expression of inflammatory mediators in SHK-1 cells and head kidney macrophages of salmon. Differences in genetic expression among genera of Oncorhynchus and Salmo reflect different susceptibilities to L. salmonis. This study was conducted to determine if the presence of L. salmonis secretory products (SEPs)(1) alters the cellular innate immune response (specifically macrophage function) among several salmonids. Phagocytic assays were performed using SHK-1 cells and macrophages isolated from pink (Oncorhynchus gorbuscha), chum (Oncorhynchus keta) and Atlantic (Salmo salar) salmon following incubation with SEPs and Aeromonas salmonicida. Respiratory burst assays were analyzed using pink, chum and Atlantic salmon macrophages after exposure to SEPs. For SHK-1 cells, incubation with SEPS led to dose-dependent increases in phagocytosis. Following incubation with SEPs, chum salmon macrophages had the highest phagocytic index (55.1%) followed by Atlantic (26.4%) and pink (15.8%) salmon. In contrast, respiratory burst response was greatest in pink salmon and minimal in the other two species. Our results suggest that the cellular innate immune response of salmon is modified in the presence of L. salmonis secretions and differences observed among species provide insight into species-specific consequences of sea lice infection.
Collapse
Affiliation(s)
- D L Lewis
- Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC V6T 1Z4, Canada; Fisheries and Aquaculture Department, Vancouver Island University, 900 Fifth Street, Nanaimo, BC V9R 5S5, Canada.
| | - D E Barker
- Fisheries and Aquaculture Department, Vancouver Island University, 900 Fifth Street, Nanaimo, BC V9R 5S5, Canada
| | - R S McKinley
- UBC Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| |
Collapse
|
63
|
Faria MS, Calegari-Silva TC, de Carvalho Vivarini A, Mottram JC, Lopes UG, Lima APCA. Role of protein kinase R in the killing of Leishmania major by macrophages in response to neutrophil elastase and TLR4 via TNFα and IFNβ. FASEB J 2014; 28:3050-63. [PMID: 24732131 PMCID: PMC4210457 DOI: 10.1096/fj.13-245126] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In cutaneous leishmaniasis, Leishmania amazonensis activates macrophage double-stranded, RNA-activated protein kinase R (PKR) to promote parasite growth. In our study, Leishmania major grew normally in RAW cells, RAW-expressing dominant-negative PKR (PKR-DN) cells, and macrophages of PKR-knockout mice, revealing that PKR is dispensable for L. major growth in macrophages. PKR activation in infected macrophages with poly I:C resulted in parasite death. Fifty percent of L. major-knockout lines for the ecotin-like serine peptidase inhibitor (ISP2; Δisp2/isp3), an inhibitor of neutrophil elastase (NE), died in RAW cells or macrophages from 129Sv mice, as a result of PKR activation. Inhibition of PKR or NE or neutralization of Toll-like receptor 4 or 2(TLR4 or TLR2) prevented the death of Δisp2/isp3. Δisp2/isp3 grew normally in RAW-PKR-DN cells or macrophages from 129Sv pkr−/−, tlr2−/−, trif−/−, and myd88−/− mice, associating NE activity, PKR, and TLR responses with parasite death. Δisp2/isp3 increased the expression of mRNA for TNF-α by 2-fold and of interferon β (IFNβ) in a PKR-dependent manner. Antibodies to TNF-α reversed the 95% killing by Δisp2/isp3, whereas they grew normally in macrophages from IFN receptor–knockout mice. We propose that ISP2 prevents the activation of PKR via an NE-TLR4-TLR2 axis to control innate responses that contribute to the killing of L. major.—Faria, M. S., Calegari-Silva, T. C., de Carvalho Vivarini, A., Mottram, J. C., Lopes, U. G., Lima, A. P. C. A. Role of protein kinase R in the killing of Leishmania major by macrophages in response to neutrophil elastase and TLR4 via TNFα and IFNβ.
Collapse
Affiliation(s)
- Marilia S Faria
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; and
| | - Tereza C Calegari-Silva
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; and
| | - Aislan de Carvalho Vivarini
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; and
| | - Jeremy C Mottram
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ulisses Gazos Lopes
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; and
| | - Ana Paula C A Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; and
| |
Collapse
|
64
|
Ricardo-Carter C, Favila M, Polando RE, Cotton RN, Bogard Horner K, Condon D, Ballhorn W, Whitcomb JP, Yadav M, Geister RL, Schorey JS, McDowell MA. Leishmania major inhibits IL-12 in macrophages by signalling through CR3 (CD11b/CD18) and down-regulation of ETS-mediated transcription. Parasite Immunol 2014; 35:409-20. [PMID: 23834512 DOI: 10.1111/pim.12049] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/03/2013] [Indexed: 01/17/2023]
Abstract
Leishmania major is an aetiological agent of cutaneous leishmaniasis. The parasite primarily infects immune sentinel cells, specifically macrophages and dendritic cells, in the mammalian host. Infection is receptor mediated and is known to involve parasite binding to cell surface protein complement receptor 3 (CR3, Mac-1, CD11b/CD18). Engagement of CR3 by various ligands inhibits production of interleukin-12 (IL-12), the cytokine that drives antileishmanial T helper 1-type immune responses. Likewise, L. major infection inhibits IL-12 production and activation of host macrophages. Our data indicate that in the absence of CR3, L. major-infected bone marrow-derived macrophages produce more IL-12 and nitric oxide compared with WT cells upon lipopolysaccharide (LPS) stimulation. We therefore investigated multiple signalling pathways by which L. major may inhibit IL-12 transcription through CR3 ligation. We demonstrate that L. major infection does not elicit significant NFκB p65, MAPK, IRF-1 or IRF-8 activation in WT or CD11b-deficient macrophages. Furthermore, infection neither inhibits LPS-induced MAPK or NFκB activation nor blocks IFN-γ-activated IRF-1 and IRF-8. ETS-mediated transcription, however, is inhibited by L. major infection independently of CR3. Our data indicate that L. major-mediated inhibition of IL-12 occurs through CR3 engagement; however, the mechanism of inhibition is independent of NFκB, MAPK, IRF and ETS.
Collapse
Affiliation(s)
- C Ricardo-Carter
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Rodriguez-Pinto D, Saravia NG, McMahon-Pratt D. CD4 T cell activation by B cells in human Leishmania (Viannia) infection. BMC Infect Dis 2014; 14:108. [PMID: 24568275 PMCID: PMC3937821 DOI: 10.1186/1471-2334-14-108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/21/2014] [Indexed: 11/20/2022] Open
Abstract
Background An effective adaptive immune response requires activation of specific CD4 T cells. The capacity of B cells to activate CD4 T cells in human cutaneous leishmaniasis caused by Leishmania (Viannia) has not been evaluated. Methods CD4 T cell activation by B cells of cutaneous leishmaniasis patients was evaluated by culture of PBMCs or purified B cells and CD4 T cells with Leishmania panamensis antigens. CD4 T cell and B cell activation markers were evaluated by flow cytometry and 13 cytokines were measured in supernatants with a bead-based capture assay. The effect of Leishmania antigens on BCR-mediated endocytosis of ovalbumin was evaluated in the Ramos human B cell line by targeting the antigen with anti-IgM-biotin and anti-biotin-ovalbumin-FITC. Results Culture of PBMCs from cutaneous leishmaniasis patients with Leishmania antigens resulted in upregulation of the activation markers CD25 and CD69 as well as increased frequency of CD25hiCD127- cells among CD4 T cells. Concomitantly, B cells upregulated the costimulatory molecule CD86. These changes were not observed in PBMCs from healthy subjects, indicating participation of Leishmania-specific lymphocytes expanded in vivo. Purified B cells from these patients, when interacting with purified CD4 T cells and Leishmania antigens, were capable of inducing significant increases in CD25 and CD69 expression and CD25hiCD127- frequency in CD4 T cells. These changes were associated with upregulation of CD86 in B cells. Comparison of changes in CD4 T cell activation parameters between PBMC and B cell/CD4 T cell cultures showed no statistically significant differences; further, significant secretion of IFN-γ, TNF-α, IL-6 and IL-13 was induced in both types of cultures. Additionally, culture with Leishmania antigens enhanced BCR-mediated endocytosis of ovalbumin in Ramos human B cells. Conclusions The capacity of B cells specific for Leishmania antigens in peripheral blood of cutaneous leishmaniasis patients to activate CD4 T cells and induce cytokine secretion is similar to that of all cell populations present in PBMCs. This capacity implicates B cells as a plausible target for modulation of the immune response to Leishmania infection as a therapeutic strategy.
Collapse
Affiliation(s)
- Daniel Rodriguez-Pinto
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia.
| | | | | |
Collapse
|
66
|
Nirujogi RS, Pawar H, Renuse S, Kumar P, Chavan S, Sathe G, Sharma J, Khobragade S, Pande J, Modak B, Prasad TSK, Harsha HC, Patole MS, Pandey A. Moving from unsequenced to sequenced genome: reanalysis of the proteome of Leishmania donovani. J Proteomics 2014; 97:48-61. [PMID: 23665000 PMCID: PMC4710096 DOI: 10.1016/j.jprot.2013.04.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 04/02/2013] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
Abstract
The kinetoplastid protozoan parasite, Leishmania donovani, is the causative agent of kala azar or visceral leishmaniasis. Kala azar is a severe form of leishmaniasis that is fatal in the majority of untreated cases. Studies on proteomic analysis of L. donovani thus far have been carried out using homology-based identification based on related Leishmania species (L. infantum, L. major and L. braziliensis) whose genomes have been sequenced. Recently, the genome of L. donovani was fully sequenced and the data became publicly available. We took advantage of the availability of its genomic sequence to carry out a more accurate proteogenomic analysis of L. donovani proteome using our previously generated dataset. This resulted in identification of 17,504 unique peptides upon database-dependent search against the annotated proteins in L. donovani. These peptides were assigned to 3999 unique proteins in L. donovani. 2296 proteins were identified in both the life stages of L. donovani, while 613 and 1090 proteins were identified only from amastigote and promastigote stages, respectively. The proteomic data was also searched against six-frame translated L. donovani genome, which led to 255 genome search-specific peptides (GSSPs) resulting in identification of 20 novel genes and correction of 40 existing gene models in L. donovani. BIOLOGICAL SIGNIFICANCE Leishmania donovani genome sequencing was recently completed, which permitted us to use a proteogenomic approach to map its proteome and to carry out annotation of it genome. This resulted in mapping of 50% (3999 proteins) of L. donovani proteome. Our study identified 20 novel genes previously not predicted from the L. donovani genome in addition to correcting annotations of 40 existing gene models. The identified proteins may help in better understanding of stage-specific protein expression profiles in L. donovani and to identify novel stage-specific drug targets in L. donovani which could be used in the treatment of leishmaniasis. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Raja Sekhar Nirujogi
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; Bioinformatics Centre, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Harsh Pawar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; Rajiv Gandhi University of Health Sciences, Bangalore 560041, India
| | - Santosh Renuse
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; Department of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Praveen Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Sandip Chavan
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; Manipal University, Madhav Nagar, Manipal 576104, India
| | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; Manipal University, Madhav Nagar, Manipal 576104, India
| | - Jyoti Sharma
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; Manipal University, Madhav Nagar, Manipal 576104, India
| | | | | | - Bhakti Modak
- National Centre for Cell Sciences, Pune 411007, India
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; Bioinformatics Centre, School of Life Sciences, Pondicherry University, Puducherry 605014, India; Manipal University, Madhav Nagar, Manipal 576104, India
| | - H C Harsha
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | | | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205, MD, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore 21205, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21205, MD, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore 21205, MD, USA.
| |
Collapse
|
67
|
Walker DM, Oghumu S, Gupta G, McGwire BS, Drew ME, Satoskar AR. Mechanisms of cellular invasion by intracellular parasites. Cell Mol Life Sci 2013; 71:1245-63. [PMID: 24221133 DOI: 10.1007/s00018-013-1491-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 12/22/2022]
Abstract
Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.
Collapse
Affiliation(s)
- Dawn M Walker
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | | | | | | | | | | |
Collapse
|
68
|
Wanderley JLM, Thorpe PE, Barcinski MA, Soong L. Phosphatidylserine exposure on the surface of Leishmania amazonensis amastigotes modulates in vivo infection and dendritic cell function. Parasite Immunol 2013; 35:109-119. [PMID: 23163958 DOI: 10.1111/pim.12019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 10/23/2012] [Indexed: 12/14/2022]
Abstract
Leishmania amazonensis parasites can cause diverse forms of leishmaniasis in humans and persistent lesions in most inbred strains of mice. In both cases, the infection is characterized by a marked immunosuppression of the host. We previously showed that amastigote forms of the parasite make use of surface-exposed phosphatidylserine (PS) molecules to infect host cells and promote alternative macrophage activation, leading to uncontrolled intracellular proliferation of the parasites. In this study, we demonstrated that treatment of infected mice with a PS-targeting monoclonal antibody ameliorated parasite loads and lesion development, which correlated with increased proliferative responses by lymphocytes. In addition, we observed an enhanced dendritic cell (DC) activation and antigen presentation in vitro. Our data imply that the recognition of PS exposed on the surface of amastigotes plays a role in down-modulating DC functions, in a matter similar to that of apoptotic cell clearance. This study provides new information regarding the mechanism of immune suppression in Leishmania infection.
Collapse
Affiliation(s)
- J L M Wanderley
- Morphological Sciences Program, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Campus UFRJ Macaé, Pólo Universitário, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - P E Thorpe
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M A Barcinski
- Parasitology Department, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil.,Laboratory of Cellular Biology, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - L Soong
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
69
|
Schroeder J, McGachy HA, Woods S, Plevin R, Alexander J. T cell hypo-responsiveness against Leishmania major in MAP kinase phosphatase (MKP) 2 deficient C57BL/6 mice does not alter the healer disease phenotype. PLoS Negl Trop Dis 2013; 7:e2064. [PMID: 23437409 PMCID: PMC3578781 DOI: 10.1371/journal.pntd.0002064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/13/2012] [Indexed: 12/26/2022] Open
Abstract
We have recently demonstrated that MAP kinase phosphatase 2 (MKP-2) deficient C57BL/6 mice, unlike their wild-type counterparts, are unable to control infection with the protozoan parasite Leishmania mexicana. Increased susceptibility was associated with elevated Arginase-1 levels and reduced iNOS activity in macrophages as well as a diminished TH1 response. By contrast, in the present study footpad infection of MKP-2−/− mice with L. major resulted in a healing response as measured by lesion size and parasite numbers similar to infected MKP-2+/+ mice. Analysis of immune responses following infection demonstrated a reduced TH1 response in MKP-2−/− mice with lower parasite specific serum IgG2b levels, a lower frequency of IFN-γ and TNF-α producing CD4+ and CD8+ T cells and lower antigen stimulated spleen cell IFN-γ production than their wild-type counterparts. However, infected MKP-2−/− mice also had similarly reduced levels of antigen induced spleen and lymph node cell IL-4 production compared with MKP-2+/+ mice as well as reduced levels of parasite-specific IgG1 in the serum, indicating a general T cell hypo-responsiveness. Consequently the overall TH1/TH2 balance was unaltered in MKP-2−/− compared with wild-type mice. Although non-stimulated MKP-2−/− macrophages were more permissive to L. major growth than macrophages from MKP-2+/+ mice, reflecting their reduced iNOS and increased Arginase-1 expression, LPS/IFN-γ activation was equally effective at controlling parasite growth in MKP-2−/− and MKP-2+/+ macrophages. Consequently, in the absence of any switch in the TH1/TH2 balance in MKP-2−/− mice, no significant change in disease phenotype was observed. Leishmania species are parasites that are of extensive public health importance in the tropics and subtropics. Within humans the parasites are intracellular and reside particularly within macrophages. Classical activation of macrophages by Interferon-γ (IFN-γ) induces the enzyme nitric oxide synthase (iNOS) and parasites are killed via the production of nitric oxide (NO) from the substrate L-arginine. Alternative activation by Interleukin-4 (IL-4) results in Arginase-1 expression, which depletes L-arginine and facilitates parasite growth. We have recently shown that MAP Kinase Phosphatase-2 (MKP-2) suppresses macrophage Arginase-1 and that C57BL/6 mice with a deletion of this gene are subsequently extremely susceptible to New World cutaneous leishmaniasis caused by Leishmania mexicana. Surprisingly, MKP-2 deficient mice have been shown here to be resistant to Old World cutaneous leishmaniasis caused by L. major. We show that during infection with L. major, enhanced Arginase-1 in MKP-2 deficient mice serves to induce a generalized T cell hypo-responsiveness so that IFN-γ and IL-4 levels are equally suppressed compared with intact mice. In addition, unlike L. mexicana, classically activated MKP-2 deficient macrophages were able to control L. major growth equally as well as MKP-2 intact macrophages, highlighting a fundamental difference in the control of these two species.
Collapse
Affiliation(s)
- Juliane Schroeder
- Strathclyde Institute for Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | | | | | | | | |
Collapse
|
70
|
Identification and functional characterization of Leishmania donovani secretory peroxidase: delineating its role in NRAMP1 regulation. PLoS One 2013; 8:e53442. [PMID: 23326430 PMCID: PMC3543463 DOI: 10.1371/journal.pone.0053442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/28/2012] [Indexed: 01/02/2023] Open
Abstract
Leishmania silently evades host immune system and establish in the hostile environment of host macrophage phagolysosomes. For differentiation, growth and division parasite acquires divalent cations especially iron from the host nutritive pool. Natural resistance associated with macrophage protein1 (NRAMP1), a cation transporter that effluxes out divalent cations specifically iron from phagosomal milieu to the cytosol, to create ions deprived status for pathogenic microorganisms. The mechanisms of NRAMP1 regulation are largely unknown in leishmanial infections. In the present study, we identified a secretory Leishmania donovani peroxidase (Prx) that showed peroxidoxin like peroxidase activity and significantly reduced H2O2, O2.− and NO levels in LPS activated macrophages. Further, we also observed down regulated Nramp1 expression and concomitantly declined labile iron pool in activated macrophages treated with identified peroxidase. Prx also decreased levels of TNF-α, IFN-γ and IL-12 in LPS activated macrophages. These observations indicate a bifunctional protective role of secretory Prx; first it reduces redox activation of macrophages, and secondly it allows iron access to Leishmania by down regulating NRAMP1 expression.
Collapse
|
71
|
Olivier M, Atayde VD, Isnard A, Hassani K, Shio MT. Leishmania virulence factors: focus on the metalloprotease GP63. Microbes Infect 2012; 14:1377-89. [DOI: 10.1016/j.micinf.2012.05.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/16/2012] [Accepted: 05/28/2012] [Indexed: 12/20/2022]
|
72
|
Santarém N, Silvestre R, Tavares J, Silva M, Cabral S, Maciel J, Cordeiro-da-Silva A. Immune response regulation by leishmania secreted and nonsecreted antigens. J Biomed Biotechnol 2012; 2007:85154. [PMID: 17710243 PMCID: PMC1940321 DOI: 10.1155/2007/85154] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Revised: 03/06/2007] [Accepted: 04/29/2007] [Indexed: 11/17/2022] Open
Abstract
Leishmania infection consists in two sequential events, the host cell colonization followed by the proliferation/dissemination of the parasite. In this review, we discuss the importance of two distinct sets of molecules, the secreted and/or surface and the nonsecreted antigens. The importance of the immune response against secreted and surface antigens is noted in the establishment of the infection and we dissect the contribution of the nonsecreted antigens in the immunopathology associated with leishmaniasis, showing the importance of these panantigens during the course of the infection. As a further example of proteins belonging to these two different groups, we include several laboratorial observations on Leishmania Sir2 and LicTXNPx as excreted/secreted proteins and LmS3arp and
LimTXNPx as nonsecreted/panantigens. The role of these two groups of antigens in the immune response observed during the infection is discussed.
Collapse
Affiliation(s)
- Nuno Santarém
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Ricardo Silvestre
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Joana Tavares
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Marta Silva
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Sofia Cabral
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Joana Maciel
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Anabela Cordeiro-da-Silva
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- *Anabela Cordeiro-da-Silva:
| |
Collapse
|
73
|
Castanys-Muñoz E, Brown E, Coombs GH, Mottram JC. Leishmania mexicana metacaspase is a negative regulator of amastigote proliferation in mammalian cells. Cell Death Dis 2012; 3:e385. [PMID: 22951982 PMCID: PMC3461358 DOI: 10.1038/cddis.2012.113] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metacaspases (MCAs) are caspase family cysteine peptidases that have been implicated in cell death processes in plants, fungi and protozoa. MCAs have also been suggested to be involved in cell cycle control, differentiation and clearance of aggregates; they are virulence factors. Dissecting the function of MCAs has been complicated by the presence in many organisms of multiple MCA genes or limitations on genetic manipulation. We describe here the creation of a MCA gene-deletion mutant (Δmca) in the protozoan parasite Leishmania mexicana, which has allowed us to dissect the role of the parasite's single MCA gene in cell growth and cell death. Δmca parasites are viable as promastigotes, and differentiate normally to the amastigote form both in in vitro macrophages infection and in mice. Δmca promastigotes respond to cell death inducers such as the drug miltefosine and H2O2 similarly to wild-type (WT) promastigotes, suggesting that MCAs do not have a caspase-like role in execution of L. mexicana cell death. Δmca amastigotes replicated significantly faster than WT amastigotes in macrophages and in mice, but not as axenic culture in vitro. We propose that the Leishmania MCA acts as a negative regulator of amastigote proliferation, thereby acting to balance cell growth and cell death.
Collapse
Affiliation(s)
- E Castanys-Muñoz
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | | | | | | |
Collapse
|
74
|
Silva-Almeida M, Pereira BAS, Ribeiro-Guimarães ML, Alves CR. Proteinases as virulence factors in Leishmania spp. infection in mammals. Parasit Vectors 2012; 5:160. [PMID: 22871236 PMCID: PMC3436776 DOI: 10.1186/1756-3305-5-160] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 07/12/2012] [Indexed: 11/10/2022] Open
Abstract
Leishmania parasites cause human tegumentary and visceral infections that are commonly referred to as leishmaniasis. Despite the high incidence and prevalence of cases, leishmaniasis has been a neglected disease because it mainly affects developing countries. The data obtained from the analysis of patients' biological samples and from assays with animal models confirm the involvement of an array of the parasite's components in its survival inside the mammalian host. These components are classified as virulence factors. In this review, we focus on studies that have explored the role of proteinases as virulence factors that promote parasite survival and immune modulation in the mammalian host. Additionally, the direct involvement of proteinases from the host in lesion evolution is analyzed. The gathered data shows that both parasite and host proteinases are involved in the clinical manifestation of leishmaniasis. It is interesting to note that although the majority of the classes of proteinases are present in Leishmania spp., only cysteine-proteinases, metalloproteinases and, to a lesser scale, serine-proteinases have been adequately studied. Members from these classes have been implicated in tissue invasion, survival in macrophages and immune modulation by parasites. This review reinforces the importance of the parasite proteinases, which are interesting candidates for new chemo or immunotherapies, in the clinical manifestations of leishmaniasis.
Collapse
Affiliation(s)
- Mariana Silva-Almeida
- Laboratório de Biologia Molecular e Doenças Endêmicas, IOC, Fiocruz, Avenida Brasil, 4365 Manguinhos Pavilhão Leônidas Deane-Sala 209, CEP: 21040-900, Rio de Janeiro, RJ, Brasil
| | | | | | | |
Collapse
|
75
|
Liu D, Uzonna JE. The early interaction of Leishmania with macrophages and dendritic cells and its influence on the host immune response. Front Cell Infect Microbiol 2012; 2:83. [PMID: 22919674 PMCID: PMC3417671 DOI: 10.3389/fcimb.2012.00083] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/27/2012] [Indexed: 01/26/2023] Open
Abstract
The complicated interactions between Leishmania and the host antigen-presenting cells (APCs) have fundamental effects on the final outcome of the disease. Two major APCs, macrophages and dendritic cells (DCs), play critical roles in mediating resistance and susceptibility during Leishmania infection. Macrophages are the primary resident cell for Leishmania: they phagocytose and permit parasite proliferation. However, these cells are also the major effector cells to eliminate infection. The effective clearance of parasites by macrophages depends on activation of appropriate immune response, which is usually initiated by DCs. Here, we review the early interaction of APCs with Leishmania parasites and how these interactions profoundly impact on the ensuing adaptive immune response. We also discuss how the current knowledge will allow further refinement of our understanding of the interplay between Leishmania and its hosts that leads to resistance or susceptibility.
Collapse
Affiliation(s)
- Dong Liu
- Department of Immunology, University of Manitoba, Winnipeg MB, Canada
| | | |
Collapse
|
76
|
Srivastav S, Kar S, Chande AG, Mukhopadhyaya R, Das PK. Leishmania donovani exploits host deubiquitinating enzyme A20, a negative regulator of TLR signaling, to subvert host immune response. THE JOURNAL OF IMMUNOLOGY 2012; 189:924-34. [PMID: 22685311 DOI: 10.4049/jimmunol.1102845] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
TLRs, which form an interface between mammalian host and microbe, play a key role in pathogen recognition and initiation of proinflammatory response thus stimulating antimicrobial activity and host survival. However, certain intracellular pathogens such as Leishmania can successfully manipulate the TLR signaling, thus hijacking the defensive strategies of the host. Despite the presence of lipophosphoglycan, a TLR2 ligand capable of eliciting host-defensive cytokine response, on the surface of Leishmania, the strategies adopted by the parasite to silence the TLR2-mediated proinflammatory response is not understood. In this study, we showed that Leishmania donovani modulates the TLR2-mediated pathway in macrophages through inhibition of the IKK-NF-κB cascade and suppression of IL-12 and TNF-α production. This may be due to impairment of the association of TRAF6 with the TAK-TAB complex, thus inhibiting the recruitment of TRAF6 in TLR2 signaling. L. donovani infection drastically reduced Lys 63-linked ubiquitination of TRAF6, and the deubiquitinating enzyme A20 was found to be significantly upregulated in infected macrophages. Small interfering RNA-mediated silencing of A20 restored the Lys 63-linked ubiquitination of TRAF6 as well as IL-12 and TNF-α levels with a concomitant decrease in IL-10 and TGF-β synthesis in infected macrophages. Knockdown of A20 led to lower parasite survival within macrophages. Moreover, in vivo silencing of A20 by short hairpin RNA in BALB/c mice led to increased NF-κB DNA binding and host-protective proinflammatory cytokine response resulting in effective parasite clearance. These results suggest that L. donovani might exploit host A20 to inhibit the TLR2-mediated proinflammatory gene expression, thus escaping the immune responses of the host.
Collapse
|
77
|
Isnard A, Shio MT, Olivier M. Impact of Leishmania metalloprotease GP63 on macrophage signaling. Front Cell Infect Microbiol 2012; 2:72. [PMID: 22919663 PMCID: PMC3417651 DOI: 10.3389/fcimb.2012.00072] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 05/03/2012] [Indexed: 11/18/2022] Open
Abstract
The intramacrophage protozoan parasites of Leishmania genus have developed sophisticated ways to subvert the innate immune response permitting their infection and propagation within the macrophages of the mammalian host. Several Leishmania virulence factors have been identified and found to be of importance for the development of leishmaniasis. However, recent findings are now further reinforcing the critical role played by the zinc-metalloprotease GP63 as a virulence factor that greatly influence host cell signaling mechanisms and related functions. GP63 has been found to be involved not only in the cleavage and degradation of various kinases and transcription factors, but also to be the major molecule modulating host negative regulatory mechanisms involving for instance protein tyrosine phosphatases (PTPs). Those latter being well recognized for their pivotal role in the regulation of a great number of signaling pathways. In this review article, we are providing a complete overview about the role of Leishmania GP63 in the mechanisms underlying the subversion of macrophage signaling and functions.
Collapse
Affiliation(s)
- Amandine Isnard
- Faculty of Medicine, Department of Medicine, Microbiology, and Immunology, The Research Institute of the McGill University Health Centre, McGill University Montréal, QC, Canada
| | | | | |
Collapse
|
78
|
Pereira BAS, Britto C, Alves CR. Expression of infection-related genes in parasites and host during murine experimental infection with Leishmania (Leishmania) amazonensis. Microb Pathog 2012; 52:101-8. [DOI: 10.1016/j.micpath.2011.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/09/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
|
79
|
McConville MJ, Naderer T. Metabolic pathways required for the intracellular survival of Leishmania. Annu Rev Microbiol 2012; 65:543-61. [PMID: 21721937 DOI: 10.1146/annurev-micro-090110-102913] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Leishmania spp. are sandfly-transmitted parasitic protozoa that cause a spectrum of important diseases and lifelong chronic infections in humans. In the mammalian host, these parasites proliferate within acidified vacuoles in several phagocytic host cells, including macrophages, dendritic cells, and neutrophils. In this review, we discuss recent progress that has been made in defining the nutrient composition of the Leishmania parasitophorous vacuole, as well as metabolic pathways required by these parasites for virulence. Analysis of the virulence phenotype of Leishmania mutants has been particularly useful in defining carbon sources and nutrient salvage pathways that are essential for parasite persistence and/or induction of pathology. We also review data suggesting that intracellular parasite stages modulate metabolic processes in their host cells in order to generate a more permissive niche.
Collapse
Affiliation(s)
- Malcolm J McConville
- Department of Biochemistry and Molecular Biology, University of Melbourne, Bio21 Institute of Molecular Science and Biotechnology, Parkville, Victoria 3010, Australia.
| | | |
Collapse
|
80
|
Host cell signalling and leishmania mechanisms of evasion. J Trop Med 2011; 2012:819512. [PMID: 22131998 PMCID: PMC3216306 DOI: 10.1155/2012/819512] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/16/2011] [Indexed: 12/18/2022] Open
Abstract
Leishmania parasites are able to secure their survival and propagation within their host by altering signalling pathways involved in the ability of macrophages to kill pathogens or to engage adaptive immune system. An important step in this immune evasion process is the activation of host protein tyrosine phosphatase SHP-1 by Leishmania. SHP-1 has been shown to directly inactivate JAK2 and Erk1/2 and to play a role in the negative regulation of several transcription factors involved in macrophage activation. These signalling alterations contribute to the inactivation of critical macrophage functions (e.g., Nitric oxide, IL-12, and TNF-α). Additionally, to interfere with IFN-γ receptor signalling, Leishmania also alters several LPS-mediated responses. Recent findings from our laboratory revealed a pivotal role for SHP-1 in the inhibition of TLR-induced macrophage activation through binding to and inactivating IL-1-receptor-associated kinase 1 (IRAK-1). Furthermore, we identified the binding site as an evolutionarily conserved ITIM-like motif, which we named kinase tyrosine-based inhibitory motif (KTIM). Collectively, a better understanding of the evasion mechanisms utilized by Leishmania parasite could help to develop more efficient antileishmanial therapies in the near future.
Collapse
|
81
|
Caffrey CR, Lima AP, Steverding D. Cysteine peptidases of kinetoplastid parasites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:84-99. [PMID: 21660660 DOI: 10.1007/978-1-4419-8414-2_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We review Clan CA Family C1 peptidases of kinetoplastid parasites (Trypanosoma and Leishmania) with respect to biochemical and genetic diversity, genomic organization and stage-specificity and control of expression. We discuss their contributions to parasite metabolism, virulence and pathogenesis and modulation of the host's immune response. Their applications as vaccine candidates and diagnostic markers as well as their chemical and genetic validation as drug targets are also summarized.
Collapse
Affiliation(s)
- Conor R Caffrey
- Sandler Center for Drug Discovery, California Institute for Quantitative Biosciences, Byers Hall, University of California San Francisco, San Francisco, USA.
| | | | | |
Collapse
|
82
|
Doyle PS, Zhou YM, Hsieh I, Greenbaum DC, McKerrow JH, Engel JC. The Trypanosoma cruzi protease cruzain mediates immune evasion. PLoS Pathog 2011; 7:e1002139. [PMID: 21909255 PMCID: PMC3164631 DOI: 10.1371/journal.ppat.1002139] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 05/11/2011] [Indexed: 11/19/2022] Open
Abstract
Trypanosoma cruzi is the causative agent of Chagas' disease. Novel chemotherapy with the drug K11777 targets the major cysteine protease cruzain and disrupts amastigote intracellular development. Nevertheless, the biological role of the protease in infection and pathogenesis remains unclear as cruzain gene knockout failed due to genetic redundancy. A role for the T. cruzi cysteine protease cruzain in immune evasion was elucidated in a comparative study of parental wild type- and cruzain-deficient parasites. Wild type T. cruzi did not activate host macrophages during early infection (<60 min) and no increase in ∼P iκB was detected. The signaling factor NF-κB P65 colocalized with cruzain on the cell surface of intracellular wild type parasites, and was proteolytically cleaved. No significant IL-12 expression occurred in macrophages infected with wild type T. cruzi and treated with LPS and BFA, confirming impairment of macrophage activation pathways. In contrast, cruzain-deficient parasites induced macrophage activation, detectable iκB phosphorylation, and nuclear NF-κB P65 localization. These parasites were unable to develop intracellularly and survive within macrophages. IL 12 expression levels in macrophages infected with cruzain-deficient T. cruzi were comparable to LPS activated controls. Thus cruzain hinders macrophage activation during the early (<60 min) stages of infection, by interruption of the NF-κB P65 mediated signaling pathway. These early events allow T. cruzi survival and replication, and may lead to the spread of infection in acute Chagas' disease.
Collapse
Affiliation(s)
- Patricia S. Doyle
- Tropical Disease Research Unit and Sandler Center for Drug Discovery, Department of Pathology, University of California, San Francisco, California, United States of America
| | - Yuan M. Zhou
- Tropical Disease Research Unit and Sandler Center for Drug Discovery, Department of Pathology, University of California, San Francisco, California, United States of America
| | - Ivy Hsieh
- Tropical Disease Research Unit and Sandler Center for Drug Discovery, Department of Pathology, University of California, San Francisco, California, United States of America
| | - Doron C. Greenbaum
- Tropical Disease Research Unit and Sandler Center for Drug Discovery, Department of Pathology, University of California, San Francisco, California, United States of America
| | - James H. McKerrow
- Tropical Disease Research Unit and Sandler Center for Drug Discovery, Department of Pathology, University of California, San Francisco, California, United States of America
| | - Juan C. Engel
- Tropical Disease Research Unit and Sandler Center for Drug Discovery, Department of Pathology, University of California, San Francisco, California, United States of America
| |
Collapse
|
83
|
In silico predicted epitopes from the COOH-terminal extension of cysteine proteinase B inducing distinct immune responses during Leishmania (Leishmania) amazonensis experimental murine infection. BMC Immunol 2011; 12:44. [PMID: 21824434 PMCID: PMC3167762 DOI: 10.1186/1471-2172-12-44] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 08/08/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leishmania parasites have been reported to interfere and even subvert their host immune responses to enhance their chances of survival and proliferation. Experimental Leishmania infection in mice has been widely used in the identification of specific parasite virulence factors involved in the interaction with the host immune system. Cysteine-proteinase B (CPB) is an important virulence factor in parasites from the Leishmania (Leishmania) mexicana complex: it inhibits lymphocytes Th1 and/or promotes Th2 responses either through proteolytic activity or through epitopes derived from its COOH-terminal extension. In the present study we analyzed the effects of Leishmania (Leishmania) amazonensis CPB COOH-terminal extension-derived peptides on cell cultures from murine strains with distinct levels of susceptibility to infection: BALB/c, highly susceptible, and CBA, mildly resistant. RESULTS Predicted epitopes, obtained by in silico mapping, displayed the ability to induce cell proliferation and expression of cytokines related to Th1 and Th2 responses. Furthermore, we applied in silico simulations to investigate how the MHC/epitopes interactions could be related to the immunomodulatory effects on cytokines, finding evidence that specific interaction patterns can be related to in vitro activities. CONCLUSIONS Based on our results, we consider that some peptides from the CPB COOH-terminal extension may influence host immune responses in the murine infection, thus helping Leishmania survival.
Collapse
|
84
|
L'Abbate C, Cipriano I, Pérez-Hurtado EC, Leão SC, Carneiro CRW, Machado J. TGF-β-mediated sustained ERK1/2 activity promotes the inhibition of intracellular growth of Mycobacterium avium in epithelioid cells surrogates. PLoS One 2011; 6:e21465. [PMID: 21731758 PMCID: PMC3120888 DOI: 10.1371/journal.pone.0021465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 06/01/2011] [Indexed: 01/29/2023] Open
Abstract
Transforming growth factor beta (TGF-β) has been implicated in the pathogenesis of several diseases including infection with intracellular pathogens such as the Mycobacterium avium complex. Infection of macrophages with M. avium induces TGF-β production and neutralization of this cytokine has been associated with decreased intracellular bacterial growth. We have previously demonstrated that epithelioid cell surrogates (ECs) derived from primary murine peritoneal macrophages through a process of differentiation induced by IL-4 overlap several features of epithelioid cells found in granulomas. In contrast to undifferentiated macrophages, ECs produce larger amounts of TGF-β and inhibit the intracellular growth of M. avium. Here we asked whether the levels of TGF-β produced by ECs are sufficient to induce a self-sustaining autocrine TGF-β signaling controlling mycobacterial replication in infected-cells. We showed that while exogenous addition of increased concentration of TGF-β to infected-macrophages counteracted M. avium replication, pharmacological blockage of TGF-β receptor kinase activity with SB-431542 augmented bacterial load in infected-ECs. Moreover, the levels of TGF-β produced by ECs correlated with high and sustained levels of ERK1/2 activity. Inhibition of ERK1/2 activity with U0126 increased M. avium replication in infected-cells, suggesting that modulation of intracellular bacterial growth is dependent on the activation of ERK1/2. Interestingly, blockage of TGF-β receptor kinase activity with SB-431542 in infected-ECs inhibited ERK1/2 activity, enhanced intracellular M. avium burden and these effects were followed by a severe decrease in TGF-β production. In summary, our findings indicate that the amplitude of TGF-β signaling coordinates the strength and duration of ERK1/2 activity that is determinant for the control of intracellular mycobacterial growth.
Collapse
Affiliation(s)
- Carolina L'Abbate
- Disciplina de Imunologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Ivone Cipriano
- Disciplina de Biologia do Desenvolvimento, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Elizabeth Cristina Pérez-Hurtado
- Disciplina de Imunologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Sylvia Cardoso Leão
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Célia Regina Whitaker Carneiro
- Disciplina de Imunologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Joel Machado
- Departamento de Ciências Biológicas, Campus de Diadema, Universidade Federal de São Paulo, São Paulo, Brasil
- * E-mail:
| |
Collapse
|
85
|
Abstract
More than 20 years ago, immunologists discovered that resistance and susceptibility to experimental infection with the intracellular protozoan Leishmania major was associated with the development of T-helper 1 (Th1)- and Th2-dominated immune responses, respectively. This infectious disease model was later used to identify and assess the role of key factors, such as interleukin-12 (IL-12) and IL-4, in Th1 and Th2 maturation. While infection by Leishmania remains a popular model for immunologists who wish to assess the role of their favorite molecule in T-cell differentiation, other investigators have tried to better understand how Leishmania interact with its insect and mammalian hosts. In this review, we discuss some of these new data with an emphasis on the early events that shape the immune response to Leishmania and on the immune evasion mechanisms that allow this parasite to avoid the development of sterilizing immunity and to secure its transmission to a new host.
Collapse
Affiliation(s)
- Evelyne Mougneau
- Institut National de la Santé et de la Recherche Médicale, University of Nice-Sophia Antipolis, Valbonne, France
| | | | | |
Collapse
|
86
|
Shweash M, Adrienne McGachy H, Schroeder J, Neamatallah T, Bryant CE, Millington O, Mottram JC, Alexander J, Plevin R. Leishmania mexicana promastigotes inhibit macrophage IL-12 production via TLR-4 dependent COX-2, iNOS and arginase-1 expression. Mol Immunol 2011; 48:1800-8. [PMID: 21664694 PMCID: PMC3173610 DOI: 10.1016/j.molimm.2011.05.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 05/09/2011] [Accepted: 05/09/2011] [Indexed: 11/29/2022]
Abstract
The effects of Leishmania mexicana metacyclic promastigotes upon MAP kinase signalling in mouse bone marrow macrophages and subsequent expression of the disease regulatory proteins iNOS and COX-2 were studied. At a ratio of 5:1, promastigotes caused a marked increase in phosphorylation of the three major MAP kinases, ERK, p38 and JNK. MAP kinase signalling was substantially reduced in TLR-4−/− but not TLR-2−/− deficient macrophages and completely abolished in double TLR-2/4−/− macrophages. A similar outcome was observed using cysteine peptidase B deficient amastigotes. Furthermore, whilst promastigotes had no independent effect on iNOS or COX-2 expression, they prolonged the induction of these proteins stimulated by LPS and enhanced PGE2 and NO production. Induction of COX-2 and iNOS was also TLR-4 dependent. Blockade of either PGE2 or NO production with indomethacin or l-NAME reversed promastigote inhibition of LPS induced IL-12 production. Promastigotes also increased macrophage arginase-1 expression and enhanced arginase activity, both of which were substantially reduced in TLR-4 but not TLR-2 deficient macrophages. Surprisingly, arginase inhibition by Nor-NOHA also caused a reversal of promastigote mediated inhibition of macrophage IL-12 production. These data demonstrate for the first time the role of TLR-4 in mediating the effects of L. mexicana promastigotes on MAP kinase activation, up-regulation of COX-2, iNOS as well as arginase-1 expression in macrophages and further shows that PGE2, NO and arginase activity all contribute substantially to the inhibition of host cell IL-12 production.
Collapse
Affiliation(s)
- Muhannad Shweash
- Division of Physiology & Pharmacology, Strathclyde Institute for Pharmacy & Biomedical Sciences, 27 Taylor Street, Glasgow G4 0NR, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Jørgensen LVG, Buchmann K. Cysteine proteases as potential antigens in antiparasitic DNA vaccines. Vaccine 2011; 29:5575-83. [PMID: 21664399 DOI: 10.1016/j.vaccine.2011.05.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/12/2011] [Accepted: 05/25/2011] [Indexed: 12/17/2022]
Abstract
Cysteine proteases in parasites are potent inducers of vertebrate host immune responses and may under certain circumstances take part in the pathogen's immune evasion strategies. These capacities place these parasite molecules as interesting candidate antigens in antiparasitic vaccines for use in vertebrates. Parasite cysteine proteases are able to skew the Th1/Th2 profile in mammals towards a response which allows sustainable parasite burdens in the host. DNA vaccines are also able to skew the Th1/Th2 profile by different administration techniques and the use of cysteine proteases in these genetic immunizations open perspectives for manipulation of the host immune response towards higher protection.
Collapse
Affiliation(s)
- Louise von Gersdorff Jørgensen
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Denmark.
| | | |
Collapse
|
88
|
How pathogen-derived cysteine proteases modulate host immune responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:192-207. [PMID: 21660666 PMCID: PMC7123607 DOI: 10.1007/978-1-4419-8414-2_12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In mammals, cysteine proteases are essential for the induction and development of both innate and adaptive immune responses. These proteases play a role in antigen-and pathogen-recognition and elimination, signal processing and cell homeostasis. Many pathogens also secrete cysteine proteases that often act on the same target proteins as the mammalian proteases and thereby can modulate host immunity from initial recognition to effector mechanisms. Pathogen-derived proteases range from nonspecific proteases that degrade multiple proteins involved in the immune response to enzymes that are very specific in their mode of action. Here, we overview current knowledge of pathogen-derived cysteine proteases that modulate immune responses by altering the normal function of key receptors or pathways in the mammalian immune system.
Collapse
|
89
|
Cheekatla SS, Aggarwal A, Naik S. mTOR signaling pathway regulates the IL-12/IL-10 axis in Leishmania donovani infection. Med Microbiol Immunol 2011; 201:37-46. [PMID: 21567173 DOI: 10.1007/s00430-011-0202-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Indexed: 12/22/2022]
Abstract
Leishmania-induced interleukin-12 (IL-12) expression is negatively regulated by the phosphatidylinositol 3-kinase (PI3K) and extracellular signal regulated kinase (ERK) 1/2 pathways in human monocyte derived macrophages (MDMs). To extend these studies, we examined the pathways downstream from PI3K in L. donovani-induced reciprocal regulation of IL-12/IL-10 axis in THP-1-derived macrophages. We show for the first time that in THP-1-derived macrophages and human monocytes, mTOR inhibition by rapamycin reversed L. donovani-induced IL-12 and IL-10 modulation. L. donovani-induced phosphorylation of P70S6K, a correlate of mTOR activity, in TLR-stimulated THP-1 derived macrophages. This increase in P70S6K phosphorylation was completely blocked by rapamycin (mTOR inhibitor) and partially by wortmannin (PI3K inhibitor). These observations suggest that a PI3K independent pathway is operative in the modulation of IL-12 and IL-10. Blocking of TLR2 significantly attenuated IL-10 induced by the parasite, but did not affect IL-12 production. Thus, our data suggests that intracellular network of PI3K and mTOR pathway control IL-12/IL-10 modulation by L. donovani. mTOR inhibitors may be attractive molecules to reverse this modulation and may result in control of disease.
Collapse
|
90
|
Bryson KJ, Millington OR, Mokgethi T, McGachy HA, Brombacher F, Alexander J. BALB/c mice deficient in CD4 T cell IL-4Rα expression control Leishmania mexicana Load although female but not male mice develop a healer phenotype. PLoS Negl Trop Dis 2011; 5:e930. [PMID: 21245915 PMCID: PMC3014948 DOI: 10.1371/journal.pntd.0000930] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 12/01/2010] [Indexed: 11/18/2022] Open
Abstract
Immunologically intact BALB/c mice infected with Leishmania mexicana develop non-healing progressively growing lesions associated with a biased Th2 response while similarly infected IL-4Rα-deficient mice fail to develop lesions and develop a robust Th1 response. In order to determine the functional target(s) for IL-4/IL-13 inducing non-healing disease, the course of L. mexicana infection was monitored in mice lacking IL-4Rα expression in specific cellular compartments. A deficiency of IL-4Rα expression on macrophages/neutrophils (in LysM(cre)IL-4Rα(-/lox) animals) had minimal effect on the outcome of L. mexicana infection compared with control (IL-4Rα(-/flox)) mice. In contrast, CD4(+) T cell specific (Lck(cre)IL-4Rα(-/lox)) IL-4Rα(-/-) mice infected with L. mexicana developed small lesions, which subsequently healed in female mice, but persisted in adult male mice. While a strong Th1 response was manifest in both male and female CD4(+) T cell specific IL-4Rα(-/-) mice infected with L. mexicana, induction of IL-4 was manifest in males but not females, independently of CD4(+) T cell IL-4 responsiveness. Similar results were obtained using pan-T cell specific (iLck(cre)IL-4Rα(-/lox)) IL-4Rα(-/-) mice. Collectively these data demonstrate that upon infection with L. mexicana, initial lesion growth in BALB/c mice is dependent on non-T cell population(s) responsive to IL-4/IL-13 while progressive infection is dependent on CD4(+) T cells responsive to IL-4.
Collapse
Affiliation(s)
- Karen J. Bryson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Owain R. Millington
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Thabang Mokgethi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - H. Adrienne McGachy
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Frank Brombacher
- Institute of Infectious Diseases and Molecular Medicine, Health Science Faculty, University of Cape Town, Cape Town, South Africa
| | - James Alexander
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
91
|
Neves BM, Silvestre R, Resende M, Ouaissi A, Cunha J, Tavares J, Loureiro I, Santarém N, Silva AM, Lopes MC, Cruz MT, Cordeiro da Silva A. Activation of phosphatidylinositol 3-kinase/Akt and impairment of nuclear factor-kappaB: molecular mechanisms behind the arrested maturation/activation state of Leishmania infantum-infected dendritic cells. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2898-911. [PMID: 21037075 DOI: 10.2353/ajpath.2010.100367] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Understanding the complex interactions between Leishmania and dendritic cells (DCs) is central to the modulation of the outcome of this infection, given that an effective immune response against Leishmania is dependent on the successful activation and maturation of DCs. We report here that Leishmania infantum promastigotes successfully infect mouse bone marrow-derived DCs without triggering maturation, as shown by a failure in the up-regulation of CD40 and CD86 expression, and that parasites strongly counteract the lipopolysaccharide-triggered maturation of DCs. A small increase in interleukin (IL)-12 and IL-10 transcription and secretion and a decrease in IL-6 were observed in infected cells. This arrested DC maturation state is actively promoted by parasites because heat-killed or fixed parasites increased cytokine and costimulatory molecule expression. At a molecular level, L. infantum rapidly induced activation of phosphatidylinositol 3-kinase/Akt and extracellular signal-regulated kinase 1/2, whereas no effect was observed in the c-Jun N-terminal kinase and p38 mitogen-activated protein kinase proinflammatory pathways. Moreover, parasites actively promoted cleavage of the nuclear factor-κB p65(RelA) subunit, causing its impairment. The blockade of phosphatidylinositol 3-kinase/Akt by either treatment of bone marrow-derived DCs with wortmannin or transfection with an Akt dominant-negative mutant resulted in a strong decrease in infection rates, revealing for the first time a crucial role of this pathway on Leishmania engulfment by DCs. Overall, our data indicate that activation of Akt and impairment of nuclear factor-κB are responsible for immunogenicity subversion of L. infantum-infected DCs.
Collapse
Affiliation(s)
- Bruno Miguel Neves
- Faculdade de Farmácia, and Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Kima PE, Bonilla JA, Cho E, Ndjamen B, Canton J, Leal N, Handfield M. Identification of Leishmania proteins preferentially released in infected cells using change mediated antigen technology (CMAT). PLoS Negl Trop Dis 2010; 4. [PMID: 20957202 PMCID: PMC2950143 DOI: 10.1371/journal.pntd.0000842] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 09/08/2010] [Indexed: 01/01/2023] Open
Abstract
Although Leishmania parasites have been shown to modulate their host cell's responses to multiple stimuli, there is limited evidence that parasite molecules are released into infected cells. In this study, we present an implementation of the change mediated antigen technology (CMAT) to identify parasite molecules that are preferentially expressed in infected cells. Sera from mice immunized with cell lysates prepared from L. donovani or L. pifanoi-infected macrophages were adsorbed with lysates of axenically grown amastigotes of L. donovani or L. pifanoi, respectively, as well as uninfected macrophages. The sera were then used to screen inducible parasite expression libraries constructed with genomic DNA. Eleven clones from the L. pifanoi and the L. donovani screen were selected to evaluate the characteristics of the molecules identified by this approach. The CMAT screen identified genes whose homologs encode molecules with unknown function as well as genes that had previously been shown to be preferentially expressed in the amastigote form of the parasite. In addition a variant of Tryparedoxin peroxidase that is preferentially expressed within infected cells was identified. Antisera that were then raised to recombinant products of the clones were used to validate that the endogenous molecules are preferentially expressed in infected cells. Evaluation of the distribution of the endogenous molecules in infected cells showed that some of these molecules are secreted into parasitophorous vacuoles (PVs) and that they then traffic out of PVs in vesicles with distinct morphologies. This study is a proof of concept study that the CMAT approach can be applied to identify putative Leishmania parasite effectors molecules that are preferentially expressed in infected cells. In addition we provide evidence that Leishmania molecules traffic out of the PV into the host cell cytosol and nucleus. Leishmania are intracellular parasites that reside within parasitophorous vacuoles (PV) in phagocytes. From within these compartments parasites control the host cell's responses to multiple stimuli. There is limited knowledge of the molecules that Leishmania parasites elaborate in the host cell to target processes therein. Furthermore, the mechanism by which such molecules would access their targets beyond the PV is not known. In the study presented here, we implemented the change mediated antigen technology (CMAT) to identify parasite molecules that are preferentially expressed inside infected cells. The approach was based on the reasoning that parasites express ‘new’ or antigenically modified molecules in the intracellular environment; therefore antiserum that is reactive to infected cells would contain immunoglobulins that are specific to these ‘new’ molecules. After adsorption of the antiserum with axenically cultured parasites, the antiserum was used to screen a parasite genomic expression library to identify genes encoding the molecules that are preferentially expressed in infected cells. We present for the first time evidence that some of these CMAT molecules accumulate in the PV and then traffic into the host cell in vesicles of distinct morphologies. Furthermore, several of these parasite molecules become localized in discrete compartments within the host cell.
Collapse
Affiliation(s)
- Peter E Kima
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America.
| | | | | | | | | | | | | |
Collapse
|
93
|
Ribeiro CMS, Pontes MJSL, Bird S, Chadzinska M, Scheer M, Verburg-van Kemenade BML, Savelkoul HFJ, Wiegertjes GF. Trypanosomiasis-induced Th17-like immune responses in carp. PLoS One 2010; 5:e13012. [PMID: 20885956 PMCID: PMC2946394 DOI: 10.1371/journal.pone.0013012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 08/05/2010] [Indexed: 11/19/2022] Open
Abstract
Background In mammalian vertebrates, the cytokine interleukin (IL)-12 consists of a heterodimer between p35 and p40 subunits whereas interleukin-23 is formed by a heterodimer between p19 and p40 subunits. During an immune response, the balance between IL-12 and IL-23 can depend on the nature of the pathogen associated molecular pattern (PAMP) recognized by, for example TLR2, leading to a preferential production of IL-23. IL-23 production promotes a Th17-mediated immune response characterized by the production of IL-17A/F and several chemokines, important for neutrophil recruitment and activation. For the cold blooded vertebrate common carp, only the IL-12 subunits have been described so far. Methodology/Principal Findings Common carp is the natural host of two protozoan parasites: Trypanoplasma borreli and Trypanosoma carassii. We found that these parasites negatively affect p35 and p40a gene expression in carp. Transfection studies of HEK293 and carp macrophages show that T. carassii-derived PAMPs are agonists of carp TLR2, promoting p19 and p40c gene expression. The two protozoan parasites induce different immune responses as assessed by gene expression and histological studies. During T. carassii infections, in particular, we observed a propensity to induce p19 and p40c gene expression, suggestive of the formation of IL-23. Infections with T. borreli and T. carassii lead to an increase of IFN-γ2 gene expression whereas IL-17A/F2 gene expression was only observed during T. carasssii infections. The moderate increase in the number of splenic macrophages during T. borreli infection contrasts the marked increase in the number of splenic neutrophilic granulocytes during T. carassii infection, along with an increased gene expression of metalloproteinase-9 and chemokines. Conclusion/Significance This is the first study that provides evidence for a Th17-like immune response in fish in response to infection with a protozoan parasite.
Collapse
Affiliation(s)
- Carla M. S. Ribeiro
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Maria J. S. L. Pontes
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Steve Bird
- School of Biological Sciences, Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen, United Kingdom
| | - Magdalena Chadzinska
- Department of Evolutionary Immunobiology, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | - Marleen Scheer
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | | | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Geert F. Wiegertjes
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
94
|
Comparative study of the ability of Leishmania mexicana promastigotes and amastigotes to alter macrophage signaling and functions. Infect Immun 2010; 78:2438-45. [PMID: 20368344 DOI: 10.1128/iai.00812-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Leishmania alternates between two morphologically different stages, promastigotes and amastigotes. While the majority of reports focused on how the promastigote form can alter macrophage (Mphi) signaling and function, fewer reports investigated signaling alterations mediated by amastigotes, and there is a lack of comparative studies. In this study, we performed a comparison between the ability of both forms of the parasite to alter Mphi signaling and functions. Here, we show that both promastigotes and amastigotes were able to rapidly activate host protein tyrosine phosphatases (PTPs), importantly the Src homology 2 domain-containing PTP (SHP-1). However, we found that PTP-1B is specifically activated by promastigote but not amastigote infection and that lmcpb(-/-) promastigotes were no longer able to activate PTP-1B. We also show a similarity in the way promastigotes and amastigotes inactivate the transcription factors (TFs) STAT-1alpha and AP-1, but we show differences in the modulation of NF-kappaB, with promastigotes cleaving the p65 subunit, generating a smaller p35 subunit, and amastigotes fully degrading the p65 subunit with no p35 production. Importantly, we show that the cysteine proteinase LmCPb plays a key role in the alteration of NF-kappaB, STAT-1alpha, and AP-1 by promastigote and amastigote infections, ultimately leading to the inability of these TFs to translocate to the nucleus in response to gamma interferon (IFN-gamma) stimulation and thus contributing to the ability of both parasite forms to effectively block IFN-gamma-mediated nitric oxide (NO) production in Mphis.
Collapse
|
95
|
Delineation of diverse macrophage activation programs in response to intracellular parasites and cytokines. PLoS Negl Trop Dis 2010; 4:e648. [PMID: 20361029 PMCID: PMC2846935 DOI: 10.1371/journal.pntd.0000648] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 02/11/2010] [Indexed: 12/29/2022] Open
Abstract
Background The ability to reside and proliferate in macrophages is characteristic of several infectious agents that are of major importance to public health, including the intracellular parasites Trypanosoma cruzi (the etiological agent of Chagas disease) and Leishmania species (etiological agents of Kala-Azar and cutaneous leishmaniasis). Although recent studies have elucidated some of the ways macrophages respond to these pathogens, the relationships between activation programs elicited by these pathogens and the macrophage activation programs elicited by bacterial pathogens and cytokines have not been delineated. Methodology/Principal Findings To provide a global perspective on the relationships between macrophage activation programs and to understand how certain pathogens circumvent them, we used transcriptional profiling by genome-wide microarray analysis to compare the responses of mouse macrophages following exposure to the intracellular parasites T. cruzi and Leishmania mexicana, the bacterial product lipopolysaccharide (LPS), and the cytokines IFNG, TNF, IFNB, IL-4, IL-10, and IL-17. We found that LPS induced a classical activation state that resembled macrophage stimulation by the Th1 cytokines IFNG and TNF. However, infection by the protozoan pathogen L. mexicana produced so few transcriptional changes that the infected macrophages were almost indistinguishable from uninfected cells. T. cruzi activated macrophages produced a transcriptional signature characterized by the induction of interferon-stimulated genes by 24 h post-infection. Despite this delayed IFN response by T. cruzi, the transcriptional response of macrophages infected by the kinetoplastid pathogens more closely resembled the transcriptional response of macrophages stimulated by the cytokines IL-4, IL-10, and IL-17 than macrophages stimulated by Th1 cytokines. Conclusions/Significance This study provides global gene expression data for a diverse set of biologically significant pathogens and cytokines and identifies the relationships between macrophage activation states induced by these stimuli. By comparing macrophage activation programs to pathogens and cytokines under identical experimental conditions, we provide new insights into how macrophage responses to kinetoplastids correlate with the overall range of macrophage activation states. Macrophages are a type of immune cell that engulf and digest microorganisms. Despite their role in protecting the host from infection, many pathogens have developed ways to hijack the macrophage and use the cell for their own survival and proliferation. This includes the parasites Trypanosoma cruzi and Leishmania mexicana. In order to gain further understanding of how these pathogens interact with the host macrophage, we compared macrophages that have been infected with these parasites to macrophages that have been stimulated in a number of different ways. Macrophages can be activated by a wide variety of stimuli, including common motifs found on pathogens (known as pathogen associated molecular patterns or PAMPs) and cytokines secreted by other immune cells. In this study, we have delineated the relationships between the macrophage activation programs elicited by a number of cytokines and PAMPs. Furthermore, we have placed the macrophage responses to T. cruzi and L. mexicana into the context of these activation programs, providing a better understanding of the interactions between these pathogens and macrophages.
Collapse
|
96
|
Lapara NJ, Kelly BL. Suppression of LPS-induced inflammatory responses in macrophages infected with Leishmania. JOURNAL OF INFLAMMATION-LONDON 2010; 7:8. [PMID: 20205812 PMCID: PMC2824668 DOI: 10.1186/1476-9255-7-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 02/02/2010] [Indexed: 07/01/2024]
Abstract
Background Chronic inflammation activated by macrophage innate pathogen recognition receptors such as TLR4 can lead to a range of inflammatory diseases, including atherosclerosis, Crohn's disease, arthritis and cancer. Unlike many microbes, the kinetoplastid protozoan pathogen Leishmania has been shown to avoid and even actively suppress host inflammatory cytokine responses, such as LPS-induced IL-12 production. The nature and scope of Leishmania-mediated inflammatory cytokine suppression, however, is not well characterized. Advancing our knowledge of such microbe-mediated cytokine suppression may provide new avenues for therapeutic intervention in inflammatory disease. Methods We explored the kinetics of a range of cytokine and chemokine responses in primary murine macrophages stimulated with LPS in the presence versus absence of two clinically distinct species of Leishmania using sensitive multiplex cytokine analyses. To confirm that these effects were parasite-specific, we compared the effects of Leishmania uptake on LPS-induced cytokine expression with uptake of inert latex beads. Results Whilst Leishmania uptake alone did not induce significant levels of any cytokine analysed in this study, Leishmania uptake in the presence of LPS caused parasite-specific suppression of certain LPS-induced pro-inflammatory cytokines, including IL-12, IL-17 and IL-6. Interestingly, L. amazonensis was generally more suppressive than L. major. We also found that other LPS-induced proinflammatory cytokines, such as IL-1α, TNF-α and the chemokines MIP-1α and MCP-1 and also the anti-inflammatory cytokine IL-10, were augmented during Leishmania uptake, in a parasite-specific manner. Conclusions During uptake by macrophages, Leishmania evades the activation of a broad range of cytokines and chemokines. Further, in the presence of a strong inflammatory stimulus, Leishmania suppresses certain proinflammatory cytokine responses in a parasite-specific manner, however it augments the production of other proinflammatory cytokines. Our findings highlight the complexity of inflammatory cytokine signalling regulation in the context of the macrophage and Leishmania interaction and confirm the utility of the Leishmania/macrophage infection model as an experimental system for further studies of inflammatory regulation. Such studies may advance the development of therapies against inflammatory disease.
Collapse
Affiliation(s)
- Nicholas J Lapara
- Department of Microbiology Immunology and Parasitology, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA.
| | | |
Collapse
|
97
|
Leng J, Butcher BA, Denkers EY. Dysregulation of macrophage signal transduction by Toxoplasma gondii: past progress and recent advances. Parasite Immunol 2010; 31:717-28. [PMID: 19891610 DOI: 10.1111/j.1365-3024.2009.01122.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The opportunistic protozoan parasite Toxoplasma gondii is well known as a strong inducer of cell-mediated immunity, largely as a result of proinflammatory cytokine induction during in vivo infection. Yet, during intracellular infection the parasite suppresses signal transduction pathways leading to these proinflammatory responses. The opposing responses are likely to reflect the parasite's need to stimulate immunity allowing host survival and parasite persistence, and at the same time avoiding excessive responses that could result in parasite elimination and host immunopathology. This Review summarizes past and present investigations into the effects of Toxoplasma on host cell signal transduction. These studies reveal insight into the profound suppression of proinflammatory cytokine responses that occurs when the parasite infects macrophages and other cells of innate immunity.
Collapse
Affiliation(s)
- J Leng
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401, USA
| | | | | |
Collapse
|
98
|
Bird PI, Trapani JA, Villadangos JA. Endolysosomal proteases and their inhibitors in immunity. Nat Rev Immunol 2009; 9:871-82. [PMID: 19935806 DOI: 10.1038/nri2671] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The cellular endolysosomal compartment is dynamic, complex and incompletely understood. Its organelles and constituents vary between different cell types, but endolysosomal proteases are key components of this compartment in all cells. In immune cells, these proteases function in pathogen recognition and elimination, signal processing and cell homeostasis, and they are regulated by dedicated inhibitors. Pathogens can produce analogous proteases to subvert the host immune response. The balance in activity between a protease and its inhibitor can tune the immune response or cause damage as a result of mislocalized proteolysis. In this Review, we highlight recent developments in this area and emphasize the importance of studying the role of endolysosomal proteases, and their natural inhibitors, in the initiation and regulation of immune responses.
Collapse
Affiliation(s)
- Phillip I Bird
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| | | | | |
Collapse
|
99
|
Calegari-Silva TC, Pereira RM, De-Melo LDB, Saraiva EM, Soares DC, Bellio M, Lopes UG. NF-κB-mediated repression of iNOS expression in Leishmania amazonensis macrophage infection. Immunol Lett 2009; 127:19-26. [DOI: 10.1016/j.imlet.2009.08.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 08/11/2009] [Accepted: 08/18/2009] [Indexed: 11/17/2022]
|
100
|
Pereira RMS, Dias Teixeira KL, Barreto‐de‐Souza V, Calegari‐Silva TC, De‐Melo LDB, Soares DC, Bou‐Habib DC, Silva AM, Saraiva EM, Lopes UG. Novel role for the double‐stranded RNA‐activated protein kinase PKR: modulation of macrophage infection by the protozoan parasite
Leishmania. FASEB J 2009; 24:617-26. [DOI: 10.1096/fj.09-140053] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Renata M. S. Pereira
- Laboratório de Parasitologia MolecularInstituto de Biofísica Carlos Chagas FilhoCentro de Ciências da SaudeBrazil
| | - Karina Luiza Dias Teixeira
- Laboratório de Parasitologia MolecularInstituto de Biofísica Carlos Chagas FilhoCentro de Ciências da SaudeBrazil
| | - Victor Barreto‐de‐Souza
- Laboratório de Pesquisas sobre o TimoInstituto Oswaldo CruzFundação Oswaldo CruzRio de JaneiroRio de JaneiroBrazil
| | | | - Luiz D. B. De‐Melo
- Laboratório de Parasitologia MolecularInstituto de Biofísica Carlos Chagas FilhoCentro de Ciências da SaudeBrazil
| | - Deivid C. Soares
- Laboratório de Imunobiologia de LeishmaniosesInstituto de Microbiologia Paulo GóesUniversidade Federal do Rio JaneiroRio de JaneiroRio de JaneiroBrazil
| | - Dumith C. Bou‐Habib
- Laboratório de Pesquisas sobre o TimoInstituto Oswaldo CruzFundação Oswaldo CruzRio de JaneiroRio de JaneiroBrazil
| | - Aristóbolo M. Silva
- Departamento de MorfologiaInstituto de Ciências BiológicasUniversidade Federal do Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Elvira M. Saraiva
- Laboratório de Imunobiologia de LeishmaniosesInstituto de Microbiologia Paulo GóesUniversidade Federal do Rio JaneiroRio de JaneiroRio de JaneiroBrazil
| | - Ulisses G. Lopes
- Laboratório de Parasitologia MolecularInstituto de Biofísica Carlos Chagas FilhoCentro de Ciências da SaudeBrazil
| |
Collapse
|