51
|
Song H, Hwang D, Song B, Kim J, Park J, Lee M, Choi J, Noh J. Methanolic extracts of Capparis ecuadorica iltis inhibit the inflammatory response in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_464_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
52
|
Nascimento Da Conceicao V, Sun Y, Zboril EK, De la Chapa JJ, Singh BB. Loss of Ca 2+ entry via Orai-TRPC1 induces ER stress, initiating immune activation in macrophages. J Cell Sci 2019; 133:jcs237610. [PMID: 31722977 PMCID: PMC10682644 DOI: 10.1242/jcs.237610] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022] Open
Abstract
Activation of cellular stresses is associated with inflammation; however, the mechanisms are not well identified. Here, we provide evidence that loss of Ca2+ influx induces endoplasmic reticulum (ER) stress in primary macrophages and in murine macrophage cell line Raw 264.7, in which the unfolded protein response is initiated to modulate cytokine production, thereby activating the immune response. Stressors that initiate the ER stress response block store-dependent Ca2+ entry in macrophages prior to the activation of the unfolded protein response. The endogenous Ca2+ entry channel is dependent on the Orai1-TRPC1-STIM1 complex, and the presence of ER stressors decreased expression of TRPC1, Orai1 and STIM1. Additionally, blocking Ca2+ entry with SKF96365 also induced ER stress, promoted cytokine production, activation of autophagy, increased caspase activation and induced apoptosis. Furthermore, ER stress inducers inhibited cell cycle progression, promoted the inflammatory M1 phenotype, and increased phagocytosis. Mechanistically, restoration of Orai1-STIM1 expression inhibited the ER stress-mediated loss of Ca2+ entry that prevents ER stress and inhibits cytokine production, and thus induced cell survival. These results suggest an unequivocal role of Ca2+ entry in modulating ER stress and in the induction of inflammation.
Collapse
Affiliation(s)
| | - Yuyang Sun
- Department of Periodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Emily K Zboril
- Department of Periodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Jorge J De la Chapa
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Brij B Singh
- Department of Periodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
53
|
Duvigneau JC, Luís A, Gorman AM, Samali A, Kaltenecker D, Moriggl R, Kozlov AV. Crosstalk between inflammatory mediators and endoplasmic reticulum stress in liver diseases. Cytokine 2019; 124:154577. [DOI: 10.1016/j.cyto.2018.10.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
|
54
|
Starzonek J, Roscher K, Blüher M, Blaue D, Schedlbauer C, Hirz M, Raila J, Vervuert I. Effects of a blend of green tea and curcuma extract supplementation on lipopolysaccharide-induced inflammation in horses and ponies. PeerJ 2019; 7:e8053. [PMID: 31741800 PMCID: PMC6857679 DOI: 10.7717/peerj.8053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022] Open
Abstract
Background In horses and ponies numerous medical conditions are known to be linked with inflammation in different tissues, especially in the liver. Besides affecting other metabolic pathways such as the expression of certain interleukins (IL), inflammation is associated with stress of the endoplasmic reticulum (ER). In particular, ER stress leads to adaptive stress response and can be measured by several markers of inflammatory and stress signalling pathways, like nuclear factor κB (NF-kB). Objectives To investigate lipopolysaccharide (LPS)-induced inflammatory reactions and their modulation in horses and ponies by feeding a polyphenol-rich supplement consisting of green tea and curcuma. Methods In a cross-over study, 11 animals were allocated to either a placebo or a supplement group and supplemented with 10 g of a blend of green tea and curcuma extract (GCE) or a placebo (calcium carbonate) once daily. After 21 days of supplementation, all animals underwent a LPS challenge to induce moderate systemic inflammation. Blood samples and liver biopsies were taken at standardized time points: 24 hours before and 12 hours after LPS challenge. Inflammatory blood parameters such as serum amyloid A (SAA), haptoglobin and retinol binding protein 4 (RBP4) were measured in serum. Hepatic mRNA levels of selected markers of inflammation such as haptoglobin, tumor necrosis factor α (TNF-α), IL-1β, IL-6, cluster of differentiation 68 (CD68), fibroblast growth factor 21 (FGF-21), NF-κB, activating transcription factor 4 (ATF4) were quantified by RT-qPCR. In addition, liver biopsies were examined histologically for inflammatory alterations. Results Blood markers of acute inflammatory response increased after LPS challenge. In the liver, the proinflammatory cytokine IL-1β showed significantly lower mRNA levels after LPS challenge in the supplemented group (P = 0.04) compared to the placebo group. Levels of the hepatic CD68 mRNA increased significantly in the placebo group (P = 0.04). There were no significant differences between supplemented and placebo groups concerning other markers of inflammation and markers of ER stress within the liver. The number of hepatic macrophages were not different after LPS challenge in both feeding groups. Conclusion LPS was able to induce inflammation but seemed less suitable to induce ER stress in the horses and ponies. The polyphenol-rich supplement showed some potential to reduce inflammatory responses. Nevertheless, the supplementation did not exert an overall anti-inflammatory effect in horses and ponies.
Collapse
Affiliation(s)
- Janine Starzonek
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Leipzig University, Leipzig, Saxony, Germany
| | - Katja Roscher
- Equine Clinic, Internal Medicine, Justus-Liebig-University Giessen, Giessen, Hesse, Germany
| | - Matthias Blüher
- Division of Endocrinology and Nephrology, Department of Medicine, Leipzig University, Leipzig, Saxony, Germany
| | - Dominique Blaue
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Leipzig University, Leipzig, Saxony, Germany
| | - Carola Schedlbauer
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Leipzig University, Leipzig, Saxony, Germany
| | - Manuela Hirz
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Hesse, Germany
| | - Jens Raila
- Institute of Nutritional Science, University of Potsdam, Nuthetal Bergholz-Rehbrücke, Brandenburg, Germany
| | - Ingrid Vervuert
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Leipzig University, Leipzig, Saxony, Germany
| |
Collapse
|
55
|
Fu Y, Jin Y, Zhao Y, Shan A, Fang H, Shen J, Zhou C, Yu H, Zhou YF, Wang X, Wang J, Li R, Wang R, Zhang J. Zearalenone induces apoptosis in bovine mammary epithelial cells by activating endoplasmic reticulum stress. J Dairy Sci 2019; 102:10543-10553. [DOI: 10.3168/jds.2018-16216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/24/2019] [Indexed: 01/17/2023]
|
56
|
Zhao H, Chen Q, Huang H, Suen KC, Alam A, Cui J, Ciechanowicz S, Ning J, Lu K, Takata M, Gu J, Ma D. Osteopontin mediates necroptosis in lung injury after transplantation of ischaemic renal allografts in rats. Br J Anaesth 2019; 123:519-530. [DOI: 10.1016/j.bja.2019.05.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 11/15/2022] Open
|
57
|
Lei L, Ge J, Zhao H, Wang X, Yang L. Role of endoplasmic reticulum stress in lipopolysaccharide-inhibited mouse granulosa cell estradiol production. J Reprod Dev 2019; 65:459-465. [PMID: 31406023 PMCID: PMC6815742 DOI: 10.1262/jrd.2019-052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The decrease in the level of estradiol (E2) in granulosa cells caused by lipopolysaccharide (LPS) is one of the major causes of infertility underlying postpartum uterine
infections; the precise molecular mechanism of which remains elusive. This study investigated the role of endoplasmic reticulum (ER) stress in LPS-induced E2 decrease in mouse
granulosa cells. Our results showed that LPS increased the pro-inflammatory cytokines [(interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α)], activated ER stress marker
protein expression [(glucose-regulated protein 78 (GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP)], and decreased cytochrome P450 family 19 subfamily A member 1
(Cyp19a1) expression and E2 production. Moreover, inhibition of ER stress by 4-phenylbutyrate (4-PBA) attenuated thapsigargin-(TG, ER stress agonist) or LPS-induced reduction of
Cyp19a1 and E2, pro-inflammatory cytokines expression (IL-1β, IL-6, IL-8, and TNF-α), and the expression of CHOP and GRP78. Additionally, inhibition of toll-like receptor 4 (TLR4)
by resatorvid (TAK-242) reversed the inhibitory effects of LPS on Cyp19a1 expression and E2 production, activation of GRP78 and CHOP, and expression of IL-1β, IL-6, IL-8, and
TNF-α. In summary, our study suggests that ER stress is involved in LPS-inhibited E2 production in mouse granulosa cells.
Collapse
Affiliation(s)
- Lanjie Lei
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.,Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Junbang Ge
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hui Zhao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.,Beijing Key Laboratory of New Technique in Agricultural Application, Beijing University of Agriculture, Beijing 102206, China
| | - Lei Yang
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, China
| |
Collapse
|
58
|
Heme, Heme Oxygenase, and Endoplasmic Reticulum Stress-A New Insight into the Pathophysiology of Vascular Diseases. Int J Mol Sci 2019; 20:ijms20153675. [PMID: 31357546 PMCID: PMC6695876 DOI: 10.3390/ijms20153675] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
The prevalence of vascular disorders continues to rise worldwide. Parallel with that, new pathophysiological pathways have been discovered, providing possible remedies for prevention and therapy in vascular diseases. Growing evidence suggests that endoplasmic reticulum (ER) stress is involved in a number of vasculopathies, including atherosclerosis, vascular brain events, and diabetes. Heme, which is released from hemoglobin or other heme proteins, triggers various pathophysiological consequence, including heme stress as well as ER stress. The potentially toxic free heme is converted by heme oxygenases (HOs) into carbon monoxide (CO), iron, and biliverdin (BV), the latter of which is reduced to bilirubin (BR). Redox-active iron is oxidized and stored by ferritin, an iron sequestering protein which exhibits ferroxidase activity. In recent years, CO, BV, and BR have been shown to control cellular processes such as inflammation, apoptosis, and antioxidant defense. This review covers our current knowledge about how heme induced endoplasmic reticulum stress (HIERS) participates in the pathogenesis of vascular disorders and highlights recent discoveries in the molecular mechanisms of HO-mediated cytoprotection in heme stress and ER stress, as well as crosstalk between ER stress and HO-1. Furthermore, we focus on the translational potential of HIERS and heme oxygenase-1 (HO-1) in atherosclerosis, diabetes mellitus, and brain hemorrhage.
Collapse
|
59
|
Timberlake Ii M, Roy B, Dwivedi Y. A Novel Animal Model for Studying Depression Featuring the Induction of the Unfolded Protein Response in Hippocampus. Mol Neurobiol 2019; 56:8524-8536. [PMID: 31267370 DOI: 10.1007/s12035-019-01687-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023]
Abstract
Depression is the leading cause of disability worldwide with global distribution of 322 million people suffering from the disease. While much is understood about depression, the underlying pathophysiology is yet to be fully characterized. Recently, the unfolded protein response (UPR) has been shown to be involved in regulating key aspects like inflammation, cell death, and behavioral depression. The UPR is an evolutionarily conserved ancient response system that reacts to the stressful environmental impact on a cell; the net effect of stress to a cell is that the quality of protein folding is diminished. The UPR responds by repairing and removing misfolded proteins and, if necessary, initiates apoptosis. Here, we demonstrate that the UPR is not only involved in depression, but that its activation causes a depressive phenotype. The hippocampi of rats were directly infused with 500 ng of tunicamycin (TM), an agent that initiates the UPR by blocking N-terminal glycosylation. Three to 8 days post-surgery, the rats showed depressive behavior in escape latency, forced swim despair, sucrose preference anhedonia, and also physiological signs of depression like decreased weight. Further, these behavioral changes were associated with enhanced expression of key UPR genes and proteins in the hippocampus. We propose that this model will make an excellent tool for studying depression and for understanding pathways that are affected by the UPR which directly causes depressive behavior.
Collapse
Affiliation(s)
- Matthew Timberlake Ii
- Department of Psychiatry and Behavioral Neurobiology, SC711 Sparks Center, University of Alabama at Birmingham, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, SC711 Sparks Center, University of Alabama at Birmingham, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, SC711 Sparks Center, University of Alabama at Birmingham, 1720 7th Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
60
|
Iida J, Ishii S, Nakajima Y, Sessler DI, Teramae H, Kageyama K, Maeda S, Anada N, Shibasaki M, Sawa T, Nakayama Y. Hyperglycaemia augments lipopolysaccharide-induced reduction in rat and human macrophage phagocytosis via the endoplasmic stress-C/EBP homologous protein pathway. Br J Anaesth 2019; 123:51-59. [PMID: 31084986 DOI: 10.1016/j.bja.2019.03.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Macrophage phagocytosis constitutes an essential part of the host defence against microbes and the resolution of inflammation. Hyperglycaemia during sepsis is reported to reduce macrophage function, and thus, potentiate inflammatory deterioration. We investigated whether high-glucose concentrations augment lipopolysaccharide-induced reduction in macrophage phagocytosis via the endoplasmic stress-C/EBP homologous protein (CHOP) pathway using animal and laboratory investigations. METHODS Peritoneal macrophages of artificially ventilated male Wistar rats, divided into four groups based on target blood glucose concentrations achieved by glucose administration with or without lipopolysaccharide, were obtained after 24 h. Human macrophages were also cultured in normal or high glucose with or without lipopolysaccharide exposure for 72 h. Changes in the phagocytic activity, intranuclear CHOP expression, and intracellular Akt phosphorylation status of macrophages were evaluated. These changes were also evaluated in human macrophages after genetic knock-down of CHOP by specific siRNA transfection or resolvin D2 treatment. RESULTS Lipopolysaccharide impaired phagocytosis, increased intranuclear expression of CHOP, and inhibited Akt phosphorylation in both rat peritoneal and human macrophages. Hyperglycaemic glucose concentrations augmented these changes. Genetic knock-down of CHOP restored phagocytic ability and Akt phosphorylation in human macrophages. Furthermore, resolvin D2 co-incubation restored the inhibited phagocytosis and Akt phosphorylation along with the inhibition of intranuclear CHOP expression in human macrophages. CONCLUSIONS These findings imply that controlling endoplasmic reticulum stress might provide new strategies for restoring reduced macrophage phagocytosis in sepsis-induced hyperglycaemia.
Collapse
Affiliation(s)
- J Iida
- Department of Anesthesiology and Critical Care, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - S Ishii
- Department of Anesthesiology and Critical Care, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Y Nakajima
- Department of Anesthesiology and Critical Care, Kansai Medical University, Osaka, Japan.
| | - D I Sessler
- Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - H Teramae
- Faculty of Teacher Education, Shumei University, Chiba, Japan
| | - K Kageyama
- Department of Anesthesiology and Critical Care, Kansai Medical University, Osaka, Japan
| | - S Maeda
- Department of Anesthesiology and Critical Care, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - N Anada
- Department of Anesthesiology and Critical Care, Kansai Medical University, Osaka, Japan
| | - M Shibasaki
- Department of Anesthesiology and Critical Care, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - T Sawa
- Department of Anesthesiology and Critical Care, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Y Nakayama
- Department of Anesthesiology and Critical Care, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
61
|
Doycheva D, Kaur H, Tang J, Zhang JH. The characteristics of the ancient cell death suppressor, TMBIM6, and its related signaling pathways after endoplasmic reticulum stress. J Neurosci Res 2019; 98:77-86. [PMID: 31044452 DOI: 10.1002/jnr.24434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 03/27/2019] [Accepted: 04/10/2019] [Indexed: 12/27/2022]
Abstract
Activation of the unfolded protein response in combination with generation of reactive oxygen species, from cytochrome P450 members and NADPH-P450 reductases, are two major consequences of Endoplasmic Reticulum (ER) stress that cause oxidative damage and cell death. Herein, we reviewed the role of Bax Inhibitor-1 (BI-1), an evolutionarily conserved protein encoded by the Transmembrane Bax inhibitor Motif Containing 6 gene, in protection from ER stress. As BI-1 has multimodal properties that can target a wide array of pathophysiological consequences after injury, our main objective was to explore BI-1's protective role in ER stress and its potential signaling pathways.
Collapse
Affiliation(s)
- Desislava Doycheva
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - Harpreet Kaur
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California.,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, California.,Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, California.,Department of Neurology, School of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
62
|
Klymenko O, Huehn M, Wilhelm J, Wasnick R, Shalashova I, Ruppert C, Henneke I, Hezel S, Guenther K, Mahavadi P, Samakovlis C, Seeger W, Guenther A, Korfei M. Regulation and role of the ER stress transcription factor CHOP in alveolar epithelial type-II cells. J Mol Med (Berl) 2019; 97:973-990. [PMID: 31025089 PMCID: PMC6581940 DOI: 10.1007/s00109-019-01787-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 01/27/2023]
Abstract
Abstract Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by type-II alveolar epithelial cell (AECII) injury and fibroblast hyperproliferation. Severe AECII endoplasmic reticulum (ER) stress is thought to underlie IPF, but is yet incompletely understood. We studied the regulation of C/EBP homologous protein (CHOP), a proapoptotic ER-stress-related transcription factor (TF) in AECII-like cells. Interestingly, single or combined overexpression of the active ER stress transducers activating transcription factor-4 (Atf4) and activating transcription factor-6 (p50Atf6) or spliced x-box-binding protein-1 (sXbp1) in MLE12 cells did not result in a substantial Chop induction, as compared to the ER stress inducer thapsigargin. Employing reporter gene assays of distinct CHOP promoter fragments, we could identify that, next to the conventional amino acid (AARE) and ER stress response elements (ERSE) within the CHOP promoter, activator protein-1 (AP-1) and c-Ets-1 TF binding sites are necessary for CHOP induction. Serial deletion and mutation analyses revealed that both AP-1 and c-Ets-1 motifs act in concert to induce CHOP expression. In agreement, CHOP promoter activity was greatly enhanced upon combined versus single overexpression of AP-1 and c-Ets-1. Moreover, combined overexpression of AP-1 and c-Ets-1 in MLE12 cells alone in the absence of any other ER stress inducer was sufficient to induce Chop protein expression. Further, AP-1 and c-Ets-1 were upregulated in AECII under ER stress conditions and in human IPF. Finally, Chop overexpression in vitro resulted in AECII apoptosis, lung fibroblast proliferation, and collagen-I production. We propose that CHOP activation by AP-1 and c-Ets-1 plays a key role in AECII maladaptive ER stress responses and consecutive fibrosis, offering new therapeutic prospects in IPF. Key messages Overexpression of active ER stress sensors Atf4, Atf6, and Xbp1 does not induce Chop. AP-1 and c-Ets-1 TFs are necessary for induction of the ER stress factor Chop. AP-1 and c-Ets-1 alone induce Chop expression in the absence of any ER stress inducers. AP-1 and c-Ets-1 are induced in AECII under ER stress conditions and in human IPF. Chop expression alone triggers AECII apoptosis and consecutive profibrotic responses.
Electronic supplementary material The online version of this article (10.1007/s00109-019-01787-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oleksiy Klymenko
- Department of Internal Medicine, Justus-Liebig-University Giessen, Klinikstrasse 36, 35392, Giessen, Germany
- German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), 35392, Giessen, Germany
| | - Martin Huehn
- Department of Internal Medicine, Justus-Liebig-University Giessen, Klinikstrasse 36, 35392, Giessen, Germany
- German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), 35392, Giessen, Germany
| | - Jochen Wilhelm
- Department of Internal Medicine, Justus-Liebig-University Giessen, Klinikstrasse 36, 35392, Giessen, Germany
- German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), 35392, Giessen, Germany
| | - Roxana Wasnick
- Department of Internal Medicine, Justus-Liebig-University Giessen, Klinikstrasse 36, 35392, Giessen, Germany
- German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), 35392, Giessen, Germany
| | - Irina Shalashova
- Department of Internal Medicine, Justus-Liebig-University Giessen, Klinikstrasse 36, 35392, Giessen, Germany
- German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), 35392, Giessen, Germany
| | - Clemens Ruppert
- Department of Internal Medicine, Justus-Liebig-University Giessen, Klinikstrasse 36, 35392, Giessen, Germany
- German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), 35392, Giessen, Germany
- Excellence Cluster Cardiopulmonary System (ECCPS), 35392, Giessen, Germany
| | - Ingrid Henneke
- Department of Internal Medicine, Justus-Liebig-University Giessen, Klinikstrasse 36, 35392, Giessen, Germany
- German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), 35392, Giessen, Germany
| | - Stefanie Hezel
- Department of Internal Medicine, Justus-Liebig-University Giessen, Klinikstrasse 36, 35392, Giessen, Germany
- German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), 35392, Giessen, Germany
| | - Katharina Guenther
- Department of Internal Medicine, Justus-Liebig-University Giessen, Klinikstrasse 36, 35392, Giessen, Germany
- German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), 35392, Giessen, Germany
| | - Poornima Mahavadi
- Department of Internal Medicine, Justus-Liebig-University Giessen, Klinikstrasse 36, 35392, Giessen, Germany
- German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), 35392, Giessen, Germany
| | - Christos Samakovlis
- Department of Internal Medicine, Justus-Liebig-University Giessen, Klinikstrasse 36, 35392, Giessen, Germany
- German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), 35392, Giessen, Germany
- Excellence Cluster Cardiopulmonary System (ECCPS), 35392, Giessen, Germany
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Werner Seeger
- Department of Internal Medicine, Justus-Liebig-University Giessen, Klinikstrasse 36, 35392, Giessen, Germany
- German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), 35392, Giessen, Germany
- Excellence Cluster Cardiopulmonary System (ECCPS), 35392, Giessen, Germany
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Andreas Guenther
- Department of Internal Medicine, Justus-Liebig-University Giessen, Klinikstrasse 36, 35392, Giessen, Germany.
- German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), 35392, Giessen, Germany.
- Excellence Cluster Cardiopulmonary System (ECCPS), 35392, Giessen, Germany.
- European IPF Network and European IPF Registry, Giessen, Germany.
- Agaplesion Lung Clinic Waldhof-Elgershausen, 35753, Greifenstein, Germany.
| | - Martina Korfei
- Department of Internal Medicine, Justus-Liebig-University Giessen, Klinikstrasse 36, 35392, Giessen, Germany
- German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), 35392, Giessen, Germany
| |
Collapse
|
63
|
Linking unfolded protein response to inflammation and depression: potential pathologic and therapeutic implications. Mol Psychiatry 2019; 24:987-994. [PMID: 30214045 PMCID: PMC6416085 DOI: 10.1038/s41380-018-0241-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/26/2018] [Accepted: 08/16/2018] [Indexed: 11/21/2022]
Abstract
Depression is a devastating mental disorder that affects millions of people worldwide. Inflammation has been shown to be a key factor involved in the underlying pathophysiology of depression and has been shown in a substantial proportion of cases of depression. Changes attributed with morphological deformities and immunomodulation in susceptible regions of the depressed brain raised the possibility of altered cellular homeostasis transduced by the intracellular stress response. How emotional stressors can lead to an inflamed brain that directly affects physiology and activity is yet to be fully understood. The unfolded protein response (UPR) has been shown to be active in both models of depression as well as in postmortem brain of depressed individuals. The UPR is the cellular response to stress which results in misfolded proteins. Interestingly, UPR activation is directly linked to both inflammatory cytokine production and Toll-like receptor (TLR) expression. The TLRs are part of the innate immune response which typically reacts to "classic invasions" such as bacteria or viruses as well as trauma. TLRs have also been shown to be upregulated in depression, thus solidifying the connection between inflammation and depression. In this review, we aim to tie the UPR-TLR response and depression, and describe the implications of such an association. We also propose future directions for their role in treatment for depression.
Collapse
|
64
|
McEneaney LJ, Tee AR. Finding a cure for tuberous sclerosis complex: From genetics through to targeted drug therapies. ADVANCES IN GENETICS 2018; 103:91-118. [PMID: 30904097 DOI: 10.1016/bs.adgen.2018.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tuberous sclerosis complex (TSC) is a rare, autosomal dominant genetic condition caused by a mutation in either the TSC1 or TSC2 gene. Phenotypically, this leads to aberrant cell growth and the formation of benign tumors called hamartomas in multiple organs. Understanding the mechanisms of pathology that are caused through the presence of disease causing mutations is a real hurdle for many rare genetic disorders; a limiting factor that restricts knowledge of the disease and any hope of a future cure. Through the discovery of the TSC1 and TSC2 genes and the signaling pathways responsible for the pathology of TSC, a new drug target called mechanistic target of rapamycin complex 1 (mTORC1) was discovered. Rapamycin, an mTORC1 inhibitor, is now the only pharmacological therapy approved for the treatment of TSC. This chapter summarizes the success story of TSC and explores the future possibilities of finding a cure.
Collapse
Affiliation(s)
- Lauren J McEneaney
- Division of Cancer and Genetics, Cardiff University, Cardiff, United Kingdom
| | - Andrew R Tee
- Division of Cancer and Genetics, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
65
|
Abstract
Sepsis was known to ancient Greeks since the time of great physician Hippocrates (460-377 BC) without exact information regarding its pathogenesis. With time and medical advances, it is now considered as a condition associated with organ dysfunction occurring in the presence of systemic infection as a result of dysregulation of the immune response. Still with this advancement, we are struggling for the development of target-based therapeutic approach for the management of sepsis. The advancement in understanding the immune system and its working has led to novel discoveries in the last 50 years, including different pattern recognition receptors. Inflammasomes are also part of these novel discoveries in the field of immunology which are <20 years old in terms of their first identification. They serve as important cytosolic pattern recognition receptors required for recognizing cytosolic pathogens, and their pathogen-associated molecular patterns play an important role in the pathogenesis of sepsis. The activation of both canonical and non-canonical inflammasome signaling pathways is involved in mounting a proinflammatory immune response via regulating the generation of IL-1β, IL-18, IL-33 cytokines and pyroptosis. In addition to pathogens and their pathogen-associated molecular patterns, death/damage-associated molecular patterns and other proinflammatory molecules involved in the pathogenesis of sepsis affect inflammasomes and vice versa. Thus, the present review is mainly focused on the inflammasomes, their role in the regulation of immune response associated with sepsis, and their targeting as a novel therapeutic approach.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Australia,
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia,
| |
Collapse
|
66
|
Virgolini MJ, Feliziani C, Cambiasso MJ, Lopez PH, Bollo M. Neurite atrophy and apoptosis mediated by PERK signaling after accumulation of GM2-ganglioside. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:225-239. [PMID: 30389374 DOI: 10.1016/j.bbamcr.2018.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/01/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022]
Abstract
GM2-gangliosidosis, a subgroup of lysosomal storage disorders, is caused by deficiency of hexosaminidase activity, and comprises the closely related Tay-Sachs and Sandhoff diseases. The enzyme deficiency prevents normal metabolization of ganglioside GM2, usually resulting in progressive neurodegenerative disease. The molecular mechanisms whereby GM2 accumulation in neurons triggers neurodegeneration remain unclear. In vitro experiments, using microsomes from Sandhoff mouse model brain, showed that increase of GM2 content negatively modulates sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) (Pelled et al., 2003). Furthermore, Ca2+ depletion in endoplasmic reticulum (ER) triggers Unfolded Protein Response (UPR), which tends to restore homeostasis in the ER; however, if cellular damage persists, an apoptotic response is initiated. We found that ER GM2 accumulation in cultured neurons induces luminal Ca2+ depletion, which in turn activates PERK (protein kinase RNA [PKR]-like ER kinase), one of three UPR sensors. PERK signaling displayed biphasic activation; i.e., early upregulation of cytoprotective calcineurin (CN) and, under prolonged ER stress, enhanced expression of pro-apoptotic transcription factor C/EBP homologous protein (CHOP). Moreover, GM2 accumulation in neuronal cells induced neurite atrophy and apoptosis. Both processes were effectively modulated by treatment with the selective PERK inhibitor GSK2606414, by CN knockdown, and by CHOP knockdown. Overall, our findings demonstrate the essential role of PERK signaling pathway contributing to neurodegeneration in a model of GM2-gangliosidosis.
Collapse
Affiliation(s)
- María José Virgolini
- Instituto de Investigación Médica M y M Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina; Universidad Nacional de Villa María, Córdoba, Argentina
| | - Constanza Feliziani
- Instituto de Investigación Médica M y M Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Julia Cambiasso
- Instituto de Investigación Médica M y M Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo H Lopez
- Instituto de Investigación Médica M y M Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Bollo
- Instituto de Investigación Médica M y M Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
67
|
Liu C, Fu Q, Mu R, Wang F, Zhou C, Zhang L, Yu B, Zhang Y, Fang T, Tian F. Dexmedetomidine alleviates cerebral ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress dependent apoptosis through the PERK-CHOP-Caspase-11 pathway. Brain Res 2018; 1701:246-254. [PMID: 30201260 DOI: 10.1016/j.brainres.2018.09.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/14/2018] [Accepted: 09/06/2018] [Indexed: 01/07/2023]
Abstract
Dexmedetomidine (Dex) has the neuroprotective effect on cerebral ischemia-reperfusion injury (CIRI). But the mechanism is not yet clear. In this study, we established a model of middle cerebral artery occlusion (MCAO) and treated primary cortical neurons with oxygen glucose deprivation (OGD), followed by Dex treatment. Neurological protection of Dex was then assessed by neurological deficit score, brain edema, TTC staining, TUNEL assay, Western blot analysis, immunohistochemistry, and RT-PCR. The results showed that Dex significantly reduced the neurological deficit score, brain edema and cerebral infarction area due to CIRI. After Dex treatment, the expression levels of ER stress-related apoptosis pathway proteins (GRP78, p-PERK, CHOP and Cleaved-caspase-3) were significantly decreased and the apoptosis of brain cells was also significantly reduced. Immunohistochemistry showed that expression and nuclear localization of CHOP decreased significantly after the application of Dex. The downstream apoptotic protein caspase-11 mediated by PERK-CHOP was also markedly inhibited by Dex. In conclusion, our results suggested that Dex reduced ER stress-induced apoptosis after CIRI. Its protective mechanism may be related to PERK-CHOP-Caspase-11 dependent signaling pathway.
Collapse
Affiliation(s)
- Chong Liu
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Qiang Fu
- Department of Critical Care Medicine, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China.
| | - Rong Mu
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Fang Wang
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Chunjing Zhou
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Li Zhang
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Baojin Yu
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Yang Zhang
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Tao Fang
- Central Laboratory, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Fengshi Tian
- Department of Cardiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China.
| |
Collapse
|
68
|
Burman A, Kropski JA, Calvi CL, Serezani AP, Pascoalino BD, Han W, Sherrill T, Gleaves L, Lawson WE, Young LR, Blackwell TS, Tanjore H. Localized hypoxia links ER stress to lung fibrosis through induction of C/EBP homologous protein. JCI Insight 2018; 3:99543. [PMID: 30135303 PMCID: PMC6141182 DOI: 10.1172/jci.insight.99543] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/05/2018] [Indexed: 02/06/2023] Open
Abstract
ER stress in type II alveolar epithelial cells (AECs) is common in idiopathic pulmonary fibrosis (IPF), but the contribution of ER stress to lung fibrosis is poorly understood. We found that mice deficient in C/EBP homologous protein (CHOP), an ER stress-regulated transcription factor, were protected from lung fibrosis and AEC apoptosis in 3 separate models where substantial ER stress was identified. In mice treated with repetitive intratracheal bleomycin, we identified localized hypoxia in type II AECs as a potential mechanism explaining ER stress. To test the role of hypoxia in lung fibrosis, we treated mice with bleomycin, followed by exposure to 14% O2, which exacerbated ER stress and lung fibrosis. Under these experimental conditions, CHOP-/- mice, but not mice with epithelial HIF (HIF1/HIF2) deletion, were protected from AEC apoptosis and fibrosis. In vitro studies revealed that CHOP regulates hypoxia-induced apoptosis in AECs via the inositol-requiring enzyme 1α (IRE1α) and the PKR-like ER kinase (PERK) pathways. In human IPF lungs, CHOP and hypoxia markers were both upregulated in type II AECs, supporting a conclusion that localized hypoxia results in ER stress-induced CHOP expression, thereby augmenting type II AEC apoptosis and potentiating lung fibrosis.
Collapse
Affiliation(s)
- Ankita Burman
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jonathan A. Kropski
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Carla L. Calvi
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Ana P. Serezani
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Bruno D. Pascoalino
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Wei Han
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Taylor Sherrill
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Linda Gleaves
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - William E. Lawson
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Lisa R. Young
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Pediatrics, Division of Pulmonary Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Timothy S. Blackwell
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Harikrishna Tanjore
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
69
|
Krupkova O, Sadowska A, Kameda T, Hitzl W, Hausmann ON, Klasen J, Wuertz-Kozak K. p38 MAPK Facilitates Crosstalk Between Endoplasmic Reticulum Stress and IL-6 Release in the Intervertebral Disc. Front Immunol 2018; 9:1706. [PMID: 30174670 PMCID: PMC6107791 DOI: 10.3389/fimmu.2018.01706] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/10/2018] [Indexed: 11/24/2022] Open
Abstract
Degenerative disc disease is associated with increased expression of pro-inflammatory cytokines in the intervertebral disc (IVD). However, it is not completely clear how inflammation arises in the IVD and which cellular compartments are involved in this process. Recently, the endoplasmic reticulum (ER) has emerged as a possible modulator of inflammation in age-related disorders. In addition, ER stress has been associated with the microenvironment of degenerated IVDs. Therefore, the aim of this study was to analyze the effects of ER stress on inflammatory responses in degenerated human IVDs and associated molecular mechanisms. Gene expression of ER stress marker GRP78 and pro-inflammatory cytokines IL-6, IL-8, IL-1β, and TNF-α was analyzed in human surgical IVD samples (n = 51, Pfirrmann grade 2-5). The expression of GRP78 positively correlated with the degeneration grade in lumbar IVDs and IL-6, but not with IL-1β and TNF-α. Another set of human surgical IVD samples (n = 25) was used to prepare primary cell cultures. ER stress inducer thapsigargin (Tg, 100 and 500 nM) activated gene and protein expression of IL-6 and induced phosphorylation of p38 MAPK. Both inhibition of p38 MAPK by SB203580 (10 µM) and knockdown of ER stress effector CCAAT-enhancer-binding protein homologous protein (CHOP) reduced gene and protein expression of IL-6 in Tg-treated cells. Furthermore, the effects of an inflammatory microenvironment on ER stress were tested. TNF-α (5 and 10 ng/mL) did not activate ER stress, while IL-1β (5 and 10 ng/mL) activated gene and protein expression of GRP78, but did not influence [Ca2+]i flux and expression of CHOP, indicating that pro-inflammatory cytokines alone may not induce ER stress in vivo. This study showed that IL-6 release in the IVD can be initiated following ER stress and that ER stress mediates IL-6 release through p38 MAPK and CHOP. Therapeutic targeting of ER stress response may reduce the consequences of the harsh microenvironment in degenerated IVD.
Collapse
Affiliation(s)
- Olga Krupkova
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | - Takuya Kameda
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Fukushima Medical University, Fukushima, Japan
| | - Wolfgang Hitzl
- Biostatistics, Research Office, Paracelsus Medical University, Salzburg, Austria
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Salzburg, Austria
| | | | | | - Karin Wuertz-Kozak
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Academic Teaching Hospital, Spine Research Institute, Paracelsus Medical University, Salzburg, Austria
- Spine Center, Schön Klinic Munich Harlaching, Munich, Germany
- Department of Health Sciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
70
|
Li C. The Role of Endoplasmic Reticulum Stress in the Development of Fibrosis in Crohn’s Disease. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2018; 3:33-41. [DOI: 10.14218/erhm.2018.00003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
71
|
Anti-Inflammatory Effects of Angelica sinensis (Oliv.) Diels Water Extract on RAW 264.7 Induced with Lipopolysaccharide. Nutrients 2018; 10:nu10050647. [PMID: 29883374 PMCID: PMC5986526 DOI: 10.3390/nu10050647] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/13/2018] [Accepted: 05/16/2018] [Indexed: 01/30/2023] Open
Abstract
The dry root of Angelica sinensis (Oliv.) Diels, also known as “female ginseng”, is a popular herbal drug amongst women, used to treat a variety of health issues and cardiovascular diseases. The aim of this study is to evaluate the detailed molecular mechanism for anti-inflammatory effects of Angelica sinensis root water extract (ASW). The anti-inflammatory effect of ASW on lipopolysaccharide (LPS)-induced RAW 264.7 mouse macrophages was evaluated by the tetrazolium-based colorimetric assay (MTT), Griess reagent assay, multiplex cytokine assay, real time reverse transcription polymerase chain reaction (RT-PCR), and Fluo-4 calcium assay. ASW restored cell viability in RAW 264.7 at concentrations of up to 200 µg/mL. ASW showed notable anti-inflammatory effects. ASW exhibited IC50 = 954.3, 387.3, 191.7, 317.8, 1267.0, 347.0, 110.1, 573.6, 1171.0, 732.6, 980.8, 125.0, and 257.0 µg/mL for interleukin (IL)-6, tumor necrosis factor (TNF)-α, monocyte chemotactic activating factor (MCP)-1, regulated on activation, normal T cell expressed and secreted (RANTES), granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), vascular endothelial growth factor (VEGF), lipopolysaccharide-induced CXC chemokine (LIX), macrophage inflammatory protein (MIP)-1α, MIP-1β, MIP-2, IL-10, and intracellular calcium, respectively. Additionally, ASW inhibited the LPS-induced production of nitric oxide and the LPS-induced mRNA expression of CHOP (GADD153), Janus kinase 2 (JAK2), signal transducers and activators of transcription 1 (STAT1), first apoptosis signal receptor (FAS), and c-Fos, NOS2, and PTGS2 (COX2) in RAW 264.7 significantly (p < 0.05). Data suggest that ASW exerts an anti-inflammatory effect on LPS-induced RAW 264.7 via NO-bursting/calcium-mediated JAK-STAT pathway.
Collapse
|
72
|
Zhou Y, Zhou X, Zhou W, Pang Q, Wang Z. The protective effect of dexmedetomidine in a rat ex vivo lung model of ischemia-reperfusion injury. Acta Cir Bras 2018; 33:1-13. [PMID: 29412228 DOI: 10.1590/s0102-865020180010000001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To investigate the effect of dexmedetomidine (Dex) in a rat ex vivo lung model of ischemia-reperfusion injury. METHODS An IL-2 ex vivo lung perfusion system was used to establish a rat ex vivo lung model of ischemia-reperfusion injury. Drugs were added to the perfusion solution for reperfusion. Lung injury was assessed by histopathological changes, airway pressure (Res), lung compliance (Compl), perfusion flow (Flow), pulmonary venous oxygen partial pressure (PaO2), and lung wet/dry (W/D) weight ratio. The levels of superoxide dismutase (SOD), malondialdehyde (MDA), 78 kDa glucose-regulated protein (GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP) were measured, respectively. RESULTS The introduction of Dex attenuated the post-ischemia-reperfusion lung damage and MDA level, improved lung histology, W/D ratio, lung injury scores and SOD activity. Decreased mRNA and protein levels of GRP78 and CHOP compared with the IR group were observed after Dex treatment. The effect of Dex was dosage-dependence and a high dose of Dex (10 nM) was shown to confer the strongest protective effect against lung damage (P<0.05). Yohimbine, an α2 receptor antagonist, significantly reversed the protective effect of Dex in lung tissues (P<0.05). CONCLUSION Dex reduced ischemia-reperfusion injury in rat ex vivo lungs.
Collapse
Affiliation(s)
- Yan Zhou
- MD, Attending physician, Department of Anesthesiology, Affiliated Wuxi People's Hospital, Nanjing Medical University, China. Acquisiton, analysis and interpretaton of data; manuscript preparation
| | - Xinqiao Zhou
- MD, Resident, Department of Anesthesiology, Affiliated Wuxi People's Hospital, Nanjing Medical University, China. Technical procedures, acquisition of data
| | - Wenjuan Zhou
- MD, Resident, Department of Anesthesiology, Affiliated Wuxi People's Hospital, Nanjing Medical University, China. Technical procedures
| | - Qingfeng Pang
- IVPhD, Full Professor, Department of Basic Medicine, Wuxi Medical School, Jiangnan University, China. Technical procedures
| | - Zhiping Wang
- PhD, Full Professor, Department of Anesthesiology, Affiliated Wuxi People's Hospital, Nanjing Medical University, China. Conception and design of the study, manuscript preparation, final approval
| |
Collapse
|
73
|
Arya SB, Kumar G, Kaur H, Kaur A, Tuli A. ARL11 regulates lipopolysaccharide-stimulated macrophage activation by promoting mitogen-activated protein kinase (MAPK) signaling. J Biol Chem 2018; 293:9892-9909. [PMID: 29618517 PMCID: PMC6016484 DOI: 10.1074/jbc.ra117.000727] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/20/2018] [Indexed: 12/13/2022] Open
Abstract
ADP-ribosylation factor-like GTPase 11 (ARL11) is a cancer-predisposing gene that has remained functionally uncharacterized to date. In this study, we report that ARL11 is endogenously expressed in mouse and human macrophages and regulates their activation in response to lipopolysaccharide (LPS) stimulation. Accordingly, depletion of ARL11 impaired both LPS-stimulated pro-inflammatory cytokine production by macrophages and their ability to control intracellular replication of Salmonella. LPS-stimulated activation of extracellular signal–regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) was substantially compromised in Arl11-silenced macrophages. In contrast, increased expression of ARL11 led to constitutive ERK1/2 phosphorylation, resulting in macrophage exhaustion. Finally, we found that ARL11 forms a complex with phospho-ERK in macrophages within minutes of LPS stimulation. Taken together, our findings establish ARL11 as a novel regulator of ERK signaling in macrophages, required for macrophage activation and immune function.
Collapse
Affiliation(s)
- Subhash B Arya
- From the Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India
| | - Gaurav Kumar
- From the Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India
| | - Harmeet Kaur
- From the Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India
| | - Amandeep Kaur
- From the Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India
| | - Amit Tuli
- From the Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India
| |
Collapse
|
74
|
Perry BD, Rahnert JA, Xie Y, Zheng B, Woodworth-Hobbs ME, Price SR. Palmitate-induced ER stress and inhibition of protein synthesis in cultured myotubes does not require Toll-like receptor 4. PLoS One 2018; 13:e0191313. [PMID: 29329354 PMCID: PMC5766250 DOI: 10.1371/journal.pone.0191313] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/01/2018] [Indexed: 12/13/2022] Open
Abstract
Saturated fatty acids, such as palmitate, are elevated in metabolically dysfunctional conditions like type 2 diabetes mellitus. Palmitate has been shown to impair insulin sensitivity and suppress protein synthesis while upregulating proteolytic systems in skeletal muscle. Increased sarco/endoplasmic reticulum (ER) stress and subsequent activation of the unfolded protein response may contribute to the palmitate-induced impairment of muscle protein synthesis. In some cell types, ER stress occurs through activation of the Toll-like receptor 4 (TLR4). Given the link between ER stress and suppression of protein synthesis, we investigated whether palmitate induces markers of ER stress and protein synthesis by activating TLR4 in cultured mouse C2C12 myotubes. Myotubes were treated with vehicle, a TLR4-specific ligand (lipopolysaccharides), palmitate, or a combination of palmitate plus a TLR4-specific inhibitor (TAK-242). Inflammatory indicators of TLR4 activation (IL-6 and TNFα) and markers of ER stress were measured, and protein synthesis was assessed using puromycin incorporation. Palmitate substantially increased the levels of IL-6, TNF-α, CHOP, XBP1s, and ATF 4 mRNAs and augmented the levels of CHOP, XBP1s, phospho-PERK and phospho-eIF2α proteins. The TLR4 antagonist attenuated both acute palmitate and LPS-induced increases in IL-6 and TNFα, but did not reduce ER stress signaling with either 6 h or 24 h palmitate treatment. Similarly, treating myotubes with palmitate for 6 h caused a 43% decline in protein synthesis consistent with an increase in phospho-eIF2α, and the TLR4 antagonist did not alter these responses. These results suggest that palmitate does not induce ER stress through TLR4 in muscle, and that palmitate impairs protein synthesis in skeletal muscle in part by induction of ER stress.
Collapse
Affiliation(s)
- Ben D. Perry
- Department of Medicine, Renal Division, Emory University, Atlanta, GA, United States of America
| | - Jill A. Rahnert
- Department of Medicine, Renal Division, Emory University, Atlanta, GA, United States of America
| | - Yang Xie
- Department of Medicine, Renal Division, Emory University, Atlanta, GA, United States of America
| | - Bin Zheng
- Department of Medicine, Renal Division, Emory University, Atlanta, GA, United States of America
| | - Myra E. Woodworth-Hobbs
- Department of Medicine, Renal Division, Emory University, Atlanta, GA, United States of America
- Center for the Study of Human Health, Emory College of Arts and Sciences, Emory University, Atlanta, GA, United States of America
| | - S. Russ Price
- Department of Medicine, Renal Division, Emory University, Atlanta, GA, United States of America
- Atlanta VA Medical Center, Decatur, GA, United States of America
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America
- * E-mail:
| |
Collapse
|
75
|
Liu SH, Wu CT, Huang KH, Wang CC, Guan SS, Chen LP, Chiang CK. C/EBP homologous protein (CHOP) deficiency ameliorates renal fibrosis in unilateral ureteral obstructive kidney disease. Oncotarget 2017; 7:21900-12. [PMID: 26942460 PMCID: PMC5008332 DOI: 10.18632/oncotarget.7870] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/23/2016] [Indexed: 12/21/2022] Open
Abstract
Renal tubulointerstitial fibrosis is an important pathogenic feature in chronic kidney disease and end-stage renal disease, regardless of the initiating insults. A recent study has shown that CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) is involved in acute ischemia/reperfusion-related acute kidney injury through oxidative stress induction. However, the influence of CHOP on chronic kidney disease-correlated renal fibrosis remains unclear. Here, we investigated the role of CHOP in unilateral ureteral obstruction (UUO)-induced experimental chronic tubulointerstital fibrosis. The CHOP knockout and wild type mice with or without UUO were used. The results showed that the increased expressions of renal fibrosis markers collagen I, fibronectin, α-smooth muscle actin, and plasminogen activator inhibitor-1 in the kidneys of UUO-treated wild type mice were dramatically attenuated in the kidneys of UUO-treated CHOP knockout mice. CHOP deficiency could also ameliorate lipid peroxidation and endogenous antioxidant enzymes depletion, tubular apoptosis, and inflammatory cells infiltration in the UUO kidneys. These results suggest that CHOP deficiency not only attenuates apoptotic death and oxidative stress in experimental renal fibrosis, but also reduces local inflammation, leading to diminish UUO-induced renal fibrosis. Our findings support that CHOP may be an important signaling molecule in the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, College of Medicine, National Taiwan University & Hospital, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Cheng-Tien Wu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-How Huang
- Department of Urology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Chia Wang
- Department of Pediatrics, College of Medicine, National Taiwan University & Hospital, Taipei, Taiwan
| | - Siao-Syun Guan
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Li-Ping Chen
- Department of Dentistry, Taipei Chang Gang Memorial Hospital, Chang Gang University, Taipei, Taiwan
| | - Chih-Kang Chiang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
76
|
Rao Z, Sun J, Pan X, Chen Z, Sun H, Zhang P, Gao M, Ding Z, Liu C. Hyperglycemia Aggravates Hepatic Ischemia and Reperfusion Injury by Inhibiting Liver-Resident Macrophage M2 Polarization via C/EBP Homologous Protein-Mediated Endoplasmic Reticulum Stress. Front Immunol 2017; 8:1299. [PMID: 29081777 PMCID: PMC5645540 DOI: 10.3389/fimmu.2017.01299] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/27/2017] [Indexed: 12/13/2022] Open
Abstract
Aggravated liver ischemia and reperfusion (IR) injury has been observed in hyperglycemic hosts, but its underlying mechanism remains undefined. Liver-resident macrophages (Kupffer cells, KCs) and endoplasmic reticulum (ER) stress play crucial roles in the pathogenesis of liver IR injury. In this study, we evaluated the role of ER stress in regulating KC activation and liver IR injury in a streptozotocin-induced hyperglycemic/diabetic mouse model. Compared to the control group (CON group), hyperglycemic mice exhibited a significant increase in liver injury and intrahepatic inflammation following IR. KCs obtained from hyperglycemic mice secreted higher levels of the pro-inflammatory factors TNF-α and IL-6, while they secreted significantly lower levels of the anti-inflammatory factor IL-10. Furthermore, enhanced ER stress was revealed by increased C/EBP homologous protein (CHOP) activation in both IR-stressed livers and KCs from hyperglycemic mice. Specific CHOP knockdown in KCs by siRNA resulted in a slight decrease in TNF-α and IL-6 secretion but dramatically enhanced anti-inflammatory IL-10 secretion in the hyperglycemic group, while no significant changes in cytokine production were observed in the CON group. We also analyzed the role of hyperglycemia in macrophage M1/M2 polarization. Interestingly, we found that hyperglycemia inhibited IL-10-secreting M2-like macrophage polarization, as revealed by decreased Arg1 and Mrc1 gene induction accompanied by a decrease in STAT3 and STAT6 signaling pathway activation. CHOP knockdown restored Arg1 and Mrc1 gene induction, STAT3 and STAT6 activation, and most importantly, IL-10 secretion in hyperglycemic KCs. Finally, in vivo CHOP knockdown in KCs enhanced intrahepatic anti-inflammatory IL-10 gene induction and protected the liver against IR injury in hyperglycemic mice but had no significant effects in control mice. Our results demonstrate that hyperglycemia induces hyper-inflammatory activation of KCs during liver IR injury. Thus, hyperglycemia-induced CHOP over-activation inhibits IL-10-secreting M2-like macrophage polarization by liver-resident macrophages, thereby leading to excessive inflammation and the exacerbation of liver IR injury in diabetic/hyperglycemic hosts. This study provides novel mechanistic insight into macrophage inflammatory activation under hyperglycemic conditions during liver IR.
Collapse
Affiliation(s)
- Zhuqing Rao
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jie Sun
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xiongxiong Pan
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Ziyang Chen
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Heliang Sun
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Panpan Zhang
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Mei Gao
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Zhengnian Ding
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Cunming Liu
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
77
|
Jiang Q, Chen S, Ren W, Liu G, Yao K, Wu G, Yin Y. Escherichia coli aggravates endoplasmic reticulum stress and triggers CHOP-dependent apoptosis in weaned pigs. Amino Acids 2017; 49:2073-2082. [PMID: 28929337 DOI: 10.1007/s00726-017-2492-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/11/2017] [Indexed: 01/10/2023]
Abstract
Intestinal cells can sense the presence of pathogens and trigger many important signaling pathways to maintain tissue homeostasis and normal function. Escherichia coli and lipopolysaccharides (LPS) are the main pathogenic factors of intestinal disease in pigs. However, the roles of endoplasmic reticulum stress (ERS) and its mediated apoptosis in intestinal malfunction induced by E. coli or LPS remain unclear. In the present study, we aimed to evaluate whether ERS could be activated by E. coli fed to piglets and whether the underlying mechanisms of this disease process could be exploited. Eighteen weaned pigs (21 days old) were randomly assigned to one of two treatment groups (n = 9 per group). After pre-feeding for 1 week, the diets of the piglets in one group were supplemented with E. coli (W25 K, 109 cells kg-1 diet) for 7 days. At the end of the experiment, all piglets were slaughtered to collect jejunum and ileum samples. Western blotting and immunofluorescence experiments were used to determine the expression levels and histological locations of ERS and its downstream signaling proteins. The intestinal porcine epithelial cell line J2 (IPEC-J2) was used as in vitro model to investigate the possible mechanism. The results showed that E. coli supplementation in the diet increased the GRP78 expression in the jejunum and ileum, especially in the jejunal epithelium and ileac germinal center, and elevated the expression levels of CHOP (in both the jejunum and ileum) and caspase-11 (in the ileum), indicating that ERS and CHOP-caspase-11 dependent apoptosis were activated in the porcine small intestine. Moreover, as demonstrated by in vitro experiments, the CHOP inhibitor 4-phenylbutyrate alleviated the damage to IPEC-J2 cells induced by LPS derived from E. coli. Taken together, these data strongly suggest that ERS can be triggered in the small intestine by dietary supplementation with E. coli and that CHOP-caspase-11 dependent apoptosis may play a key role in maintaining normal homeostasis of the intestine in response to pathogenic factors.
Collapse
Affiliation(s)
- Qian Jiang
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, Hunan, China.,University of the Chinese Academy of Sciences, Beijing, 10008, China
| | - Shuai Chen
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, Hunan, China.,University of the Chinese Academy of Sciences, Beijing, 10008, China
| | - Wenkai Ren
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, Hunan, China.,University of the Chinese Academy of Sciences, Beijing, 10008, China
| | - Gang Liu
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, Hunan, China.
| | - Kang Yao
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, Hunan, China. .,Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Collaborative Innovation Center of Animal Production Safety, Changsha, 410128, China. .,College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Yulong Yin
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, Hunan, China.,Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Collaborative Innovation Center of Animal Production Safety, Changsha, 410128, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
78
|
Abstract
Numerous environmental, physiological, and pathological insults disrupt protein-folding homeostasis in the endoplasmic reticulum (ER), referred to as ER stress. Eukaryotic cells evolved a set of intracellular signaling pathways, collectively termed the unfolded protein response (UPR), to maintain a productive ER protein-folding environment through reprogramming gene transcription and mRNA translation. The UPR is largely dependent on transcription factors (TFs) that modulate expression of genes involved in many physiological and pathological conditions, including development, metabolism, inflammation, neurodegenerative diseases, and cancer. Here we summarize the current knowledge about these mechanisms, their impact on physiological/pathological processes, and potential therapeutic applications.
Collapse
Affiliation(s)
- Jaeseok Han
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si, Choongchungnam-do 31151, Republic of Korea
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92307 USA
| |
Collapse
|
79
|
Peroxisome proliferator-activated receptor alpha mediates C/EBP homologous protein to protect mice from acute liver failure. Inflamm Res 2017; 66:813-822. [PMID: 28600667 DOI: 10.1007/s00011-017-1061-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 04/17/2017] [Accepted: 06/02/2017] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Peroxisome proliferator-activated receptor α (PPARα) activation has been reported to ameliorate liver injury in cases of acute liver failure (ALF). However, its intrinsic protective molecular mechanisms remain largely undetermined. C/EBP homologous protein (CHOP) is an important mediator of lipopolysaccharide (LPS)-induced inflammation. The aim of the present study was to test the hypothesis that PPARα activation alleviates liver inflammation to protect mice from acute liver failure (ALF) mediated by CHOP. METHODS In a murine model induced by D-galactosamine (D-GalN, 700 mg/kg) and LPS (10 μg/kg), Wy-14643 (6 mg/kg) was administered to activate PPARα. The mice of different groups were killed 6 h after D-GalN/LPS injection, and the liver and blood were collected for analysis. To find out whether PPARα activation protects the liver from injury due to inflammation by regulating CHOP, we used expression plasmid to increase CHOP expression and demonstrated how PPARα mediated CHOP to regulate inflammation in vivo and in vitro. RESULTS The expression of PPARα was downregulated and the expression of CHOP was upregulated with the development of D-GalN/LPS-induced liver injury. The protective molecular mechanisms of PPARα activation were dependent on the expression of CHOP. Indeed, (1) PPARα activation decreased the expression of CHOP; on the other hand, PPARα knockdown increased the expression of CHOP in vivo; (2) the depressed liver inflammation by PPARα activation was due to the downregulation of CHOP expression, because overexpression of CHOP by transfect plasmid reversed liver protection and increased liver inflammation again; (3) in vitro, PPARα inhibition by siRNA treatment increased the expression of proinflammatory cytokines, and CHOP siRNA co-transfection reversed the expression of proinflammatory cytokines. CONCLUSIONS Here, we demonstrated that PPARα activation contributes to liver protection and decreases liver inflammation in ALF, particularly through regulating CHOP. Our findings may provide a rationale for targeting PPARα as a potential therapeutic strategy to ameliorate ALF.
Collapse
|
80
|
Valderrama C, Clark A, Urano F, Unanue ER, Carrero JA. Listeria monocytogenes induces an interferon-enhanced activation of the integrated stress response that is detrimental for resolution of infection in mice. Eur J Immunol 2017; 47:830-840. [PMID: 28267207 PMCID: PMC5450196 DOI: 10.1002/eji.201646856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/31/2017] [Accepted: 02/28/2017] [Indexed: 01/26/2023]
Abstract
Type I interferons (IFNs) induce a detrimental response during Listeria monocytogenes (L. monocytogenes) infection. We were interested in identifying mechanisms linking IFN signaling to negative host responses against L. monocytogenes infection. Herein, we found that infection of myeloid cells with L. monocytogenes led to a coordinated induction of type I IFNs and activation of the integrated stress response (ISR). Infected cells did not induce Xbp1 splicing or BiP upregulation, indicating that the unfolded protein response was not triggered. CHOP (Ddit3) gene expression was upregulated during the ISR activation induced by L. monocytogenes. Myeloid cells deficient in either type I IFN signaling or PKR activation had less upregulation of CHOP following infection. CHOP‐deficient mice showed lower expression of innate immune cytokines and were more resistant than wild‐type counterparts following L. monocytogenes infection. These findings indicate that L. monocytogenes infection induces type I IFNs, which activate the ISR through PKR, which contributes to a detrimental outcome in the infected host.
Collapse
Affiliation(s)
- Carolina Valderrama
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Microbiology, PhD Biomedical Sciences Program, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Amy Clark
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Fumihiko Urano
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Emil R Unanue
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Javier A Carrero
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
81
|
Obacz J, Avril T, Le Reste PJ, Urra H, Quillien V, Hetz C, Chevet E. Endoplasmic reticulum proteostasis in glioblastoma—From molecular mechanisms to therapeutic perspectives. Sci Signal 2017; 10:10/470/eaal2323. [DOI: 10.1126/scisignal.aal2323] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
82
|
Zhu S, Liu H, Sha H, Qi L, Gao DS, Zhang W. PERK and XBP1 differentially regulate CXCL10 and CCL2 production. Exp Eye Res 2017; 155:1-14. [PMID: 28065589 DOI: 10.1016/j.exer.2017.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/11/2016] [Accepted: 01/04/2017] [Indexed: 02/04/2023]
Abstract
Inflammation plays a key role in the pathogenesis of many retinal degenerative diseases related with photoreceptor dysfunction/degeneration. However the involvement of photoreceptor cells in inflammatory reactions is largely unknown as they are not considered as inflammatory cells. In this study, we assessed whether photoreceptor cells can produce CCL2 and CXCL10, two important players in inflammation during endoplasmic reticulum (ER) stress. After photoreceptor 661 W cells were treated with ER stress inducer thapsigargin (TG), induction of ER stress increased CXCL10 and CCL2 expression at both mRNA and protein levels, which was significantly blocked by an ER stress blocker 4-phenylbutyrate. ER stress contains three pathways: PERK, ATF6 and IRE1α. Knockdown of PERK attenuated TG-induced CXCL10 and CCL2 mRNA expression, associated with significant decreases in phosphorylation of NF-κB RelA and STAT3. In contrast to PERK, knockdown of XBP1, which is activated by IRE1α-mediated splicing, robustly enhanced TG-induced CXCL10 and CCL2 expression and phosphorylation of NF-κB RelA and STAT3. Blockade of NF-κB or STAT3 markedly diminished TG-induced CXCL10 and CCL2 expression. The specific roles of PERK and XBP1 in CXCL10 and CCL2 expression were further investigated by treating photoreceptor cells with advanced glycation end products (AGE) and high glucose (HG), two of the major contributors to diabetic complications. Similarly, AGE and HG induced CXCL10 and CCL2 expression in which PERK was a positive regulator while XBP1 was a negative regulator. These studies suggest that photoreceptors may be involved in retinal inflammation by expressing chemokines CXCL10 and CCL2. PERK and IRE1α/XBP1 in the unfolded protein response differentially regulate the expression of CXCL10 and CCL2 likely through modulation of ER stress-induced NF-κB RelA and STAT3 activation.
Collapse
Affiliation(s)
- Shuang Zhu
- Research Center for Neurology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Ophthalmology and Visual Sciences, The University of Texas Medical Branch, Galveston, TX, USA
| | - Hua Liu
- Center for Biomedical Engineering, The University of Texas Medical Branch, Galveston, TX, USA
| | - Haibo Sha
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, USA
| | - Dian-Shuai Gao
- Research Center for Neurology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, The University of Texas Medical Branch, Galveston, TX, USA; Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
83
|
Kim MH, Aydemir TB, Cousins RJ. Dietary Zinc Regulates Apoptosis through the Phosphorylated Eukaryotic Initiation Factor 2α/Activating Transcription Factor-4/C/EBP-Homologous Protein Pathway during Pharmacologically Induced Endoplasmic Reticulum Stress in Livers of Mice. J Nutr 2016; 146:2180-2186. [PMID: 27605406 PMCID: PMC5086795 DOI: 10.3945/jn.116.237495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/11/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Several in vitro studies have shown that zinc deficiency could induce endoplasmic reticulum (ER) stress, resulting in activation of the unfolded protein response. OBJECTIVE We aimed to determine whether consumption of a zinc-deficient diet (ZnD) triggers ER stress and to understand the impact of dietary zinc intake on ER stress-induced apoptosis using a mouse model. METHODS Young adult (8-16 wk of age) male mice of strain C57BL/6 were fed either a ZnD (<1 mg/kg diet), or a zinc-adequate diet (ZnA; 30 mg/kg diet). After 2 wk, liver, pancreas, and serum samples were collected and analyzed for indexes of ER stress. In another experiment, mice were fed either a ZnD, a ZnA, or a zinc-supplementation diet (ZnS; 180 mg/kg diet). After 2 wk, vehicle or tunicamycin (TM; 2 mg/kg body weight) was administered to mice to model ER stress. Liver and serum were analyzed for indexes of ER stress to evaluate the effects of zinc status. RESULTS Mice fed a ZnD did not activate the apoptotic and ER stress markers in the liver or pancreas. During the TM challenge, mice fed a ZnD showed greater C/EBP-homologous protein expression in the liver (3.8-fold, P < 0.01) than did ZnA-fed mice. TM-treated mice fed a ZnD also had greater terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling-positive cells in the liver (2.2-fold, P < 0.05), greater hepatic triglyceride accumulation (1.5-fold, P < 0.05), greater serum alanine aminotransferase activity (1.6-fold, P < 0.05), and greater protein-tyrosine phosphatase 1B activity (1.5-fold, P < 0.05), respectively, than did those fed a ZnA. No significant differences were observed in these parameters between mice fed ZnAs and ZnSs. CONCLUSIONS Consumption of a ZnD per se is not a critical factor for induction of ER stress in mice; however, once ER stress is triggered, adequate dietary zinc intake is required for suppressing apoptotic cell death and further insults in the liver of mice.
Collapse
Affiliation(s)
| | | | - Robert J Cousins
- Food Science and Human Nutrition, and Center for Nutritional Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL
| |
Collapse
|
84
|
Jiang ZQ, Ma YX, Li MH, Zhan XQ, Zhang X, Wang MY. 5-Hydroxymethylfurfural protects against ER stress-induced apoptosis in GalN/TNF-α-injured L02 hepatocytes through regulating the PERK-eIF2α signaling pathway. Chin J Nat Med 2016; 13:896-905. [PMID: 26721708 DOI: 10.1016/s1875-5364(15)30095-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Indexed: 01/12/2023]
Abstract
5-Hydroxymethylfurfural (5-HMF), a water-soluble compound extracted from wine-processed Fructus corni, is a novel hepatic protectant for treating acute liver injury. The present study was designed to investigate the protective effect of 5-HMF in human L02 hepatocytes injured by D-galactosamine (GalN) and tumor necrosis factor-α (TNF-α) in vitro and to explore the underlying mechanisms of action. Our results showed that 5-HMF caused significant increase in the viability of L02 cells injured by GalN/TNF-α, in accordance with a dose-dependent decrease in apoptotic cell death confirmed by morphological and flow cytometric analyses. Based on immunofluorescence and Western blot assays, we found that GalN/TNF-α induced ER stress in the cells, as indicated by the disturbance of intracellular Ca(2+) concentration, the activation of protein kinase RNA (PKR)-like ER kinase (PERK), phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α), and expression of ATF4 and CHOP proteins, which was reversed by 5-HMF pre-treatment in a dose-dependent manner. The anti-apoptotic effect of 5-HMF was further evidenced by balancing the expression of Bcl-2 family members. In addition, the knockdown of PERK suppressed the expression of phospho-PERK, phospho-eIF2α, ATF4, and CHOP, resulting in a significant decrease in cell apoptosis after the treatment with GalN/TNF-α. 5-HMF could enhance the effects of PERK knockdown, protecting the cells against the GalN/TNF-α insult. In conclusion, these findings demonstrate that 5-HMF can effectively protect GalN/TNF-α-injured L02 hepatocytes against ER stress-induced apoptosis through the regulation of the PERK-eIF2α signaling pathway, suggesting that it is a possible candidate for liver disease therapy.
Collapse
Affiliation(s)
- Ze-Qun Jiang
- Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing 210023, China
| | - Yan-Xia Ma
- Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing 210023, China
| | - Mu-Han Li
- Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing 210023, China
| | - Xiu-Qin Zhan
- Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing 210023, China
| | - Xu Zhang
- Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing 210023, China.
| | - Ming-Yan Wang
- Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing 210023, China
| |
Collapse
|
85
|
Motokawa I, Endo M, Terada K, Horiguchi H, Miyata K, Kadomatsu T, Morinaga J, Sugizaki T, Ito T, Araki K, Morioka MS, Manabe I, Samukawa T, Watanabe M, Inoue H, Oike Y. Interstitial pneumonia induced by bleomycin treatment is exacerbated in Angptl2-deficient mice. Am J Physiol Lung Cell Mol Physiol 2016; 311:L704-L713. [PMID: 27542805 DOI: 10.1152/ajplung.00005.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 08/12/2016] [Indexed: 11/22/2022] Open
Abstract
Angiopoietin-like protein 2 (ANGPTL2) is a chronic inflammatory mediator that, when deregulated, is associated with various pathologies. However, little is known about its activity in lung. To assess a possible lung function, we generated a rabbit monoclonal antibody that specifically recognizes mouse ANGPTL2 and then evaluated protein expression in mouse lung tissue. We observed abundant ANGPTL2 expression in both alveolar epithelial type I and type II cells and in resident alveolar macrophages under normal conditions. To assess ANGPTL2 function, we compared lung phenotypes in Angptl2 knockout (KO) and wild-type mice but observed no overt changes. We then generated a bleomycin-induced interstitial pneumonia model using wild-type and Angptl2 KO mice. Bleomycin-treated wild-type mice showed specifically upregulated ANGPTL2 expression in areas of severe fibrosing interstitial pneumonia, while Angptl2 KO mice developed more severe lung fibrosis than did comparably treated wild-type mice. Lung fibrosis seen following bone marrow transplant was comparable in wild-type or Angptl2 KO mice treated with bleomycin, suggesting that Angptl2 loss in myeloid cells does not underlie fibrotic phenotypes. We conclude that Angptl2 deficiency in lung epithelial cells and resident alveolar macrophages causes severe lung fibrosis seen following bleomycin treatment, suggesting that ANGPTL2 derived from these cell types plays a protective role against fibrosis in lung.
Collapse
Affiliation(s)
- Ikuyo Motokawa
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Motoyoshi Endo
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan;
| | - Kazutoyo Terada
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taichi Sugizaki
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Developmental and Analysis, Kumamoto University, Kumamoto, Japan
| | - Masaki Suimye Morioka
- Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Manabe
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and
| | - Takuya Samukawa
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masaki Watanabe
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
86
|
Meyerovich K, Ortis F, Allagnat F, Cardozo AK. Endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. J Mol Endocrinol 2016; 57:R1-R17. [PMID: 27067637 DOI: 10.1530/jme-15-0306] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 04/11/2016] [Indexed: 12/13/2022]
Abstract
Insulin-secreting pancreatic β-cells are extremely dependent on their endoplasmic reticulum (ER) to cope with the oscillatory requirement of secreted insulin to maintain normoglycemia. Insulin translation and folding rely greatly on the unfolded protein response (UPR), an array of three main signaling pathways designed to maintain ER homeostasis and limit ER stress. However, prolonged or excessive UPR activation triggers alternative molecular pathways that can lead to β-cell dysfunction and apoptosis. An increasing number of studies suggest a role of these pro-apoptotic UPR pathways in the downfall of β-cells observed in diabetic patients. Particularly, the past few years highlighted a cross talk between the UPR and inflammation in the context of both type 1 (T1D) and type 2 diabetes (T2D). In this article, we describe the recent advances in research regarding the interplay between ER stress, the UPR, and inflammation in the context of β-cell apoptosis leading to diabetes.
Collapse
Affiliation(s)
- Kira Meyerovich
- ULB Center for Diabetes ResearchUniversité Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fernanda Ortis
- Department of Cell and Developmental BiologyUniversidade de São Paulo, São Paulo, Brazil
| | - Florent Allagnat
- Department of Vascular SurgeryCentre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Alessandra K Cardozo
- ULB Center for Diabetes ResearchUniversité Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
87
|
Ando T, Komatsu T, Naiki Y, Takahashi K, Yokochi T, Watanabe D, Koide N. GSK2656157, a PERK inhibitor, reduced LPS-induced IL-1β production through inhibiting Caspase 1 activation in macrophage-like J774.1 cells. Immunopharmacol Immunotoxicol 2016; 38:298-302. [PMID: 27251848 DOI: 10.1080/08923973.2016.1192191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
IL-1β is one of the inflammatory cytokines and is cleaved from pro-IL-1β proteolytically by activated Caspase 1. For the activation of Caspase 1, inflammasome was formed by two signals, what is called, priming and triggering signals. In this study, it was found that mouse macrophage J774.1 cells, when treated by single large amount of lipopolysaccharide (LPS), produced a significant amount of IL-1β. On the other hand, IL-1β production was not detected when treated by a single, small amount of LPS. Then, focusing on endoplasmic reticulum (ER) stress response among stress responses induced by a large amount of LPS, when GSK2656157, a PERK inhibitor, was used for inhibition of ER stress, GSK2656157 reduced IL-1β production dose-dependently. Next, when Thapsigargin, an ER stress reagent, was added with LPS, IL-1β production increased more than by LPS alone. Thus, these results suggested that ER stress was involved in LPS-induced IL-1β production. When the activation of Caspase 1 was examined by fluorescence activated cell sorter analysis, it was found that GSK2656157 inhibited LPS-induced Caspase 1 activation. Further, it was confirmed that GSK2656157 did not affect LPS-induced TNF-α production and activation of NF-κB and specifically inhibited the PERK/eIF-2α pathway. Therefore, it was found that GSK2656157 specifically inhibited ER stress induced by large amount of LPS and reduced LPS-induced IL-1β production through inhibition of Caspase 1 activation.
Collapse
Affiliation(s)
- Takashi Ando
- a Department of Dermatology , Aichi Medical University School of Medicine , Nagakute , Japan
| | - Takayuki Komatsu
- b Department of Microbiology and Immunology , Aichi Medical University School of Medicine , Nagakute , Japan
| | - Yoshikazu Naiki
- b Department of Microbiology and Immunology , Aichi Medical University School of Medicine , Nagakute , Japan
| | - Kazuko Takahashi
- b Department of Microbiology and Immunology , Aichi Medical University School of Medicine , Nagakute , Japan
| | - Takashi Yokochi
- b Department of Microbiology and Immunology , Aichi Medical University School of Medicine , Nagakute , Japan
| | - Daisuke Watanabe
- a Department of Dermatology , Aichi Medical University School of Medicine , Nagakute , Japan
| | - Naoki Koide
- b Department of Microbiology and Immunology , Aichi Medical University School of Medicine , Nagakute , Japan
| |
Collapse
|
88
|
Wang Y, Gong J, Zeng H, Liu R, Jin B, Chen L, Wang Q. Lipopolysaccharide Activates the Unfolded Protein Response in Human Periodontal Ligament Fibroblasts. J Periodontol 2016; 87:e75-81. [DOI: 10.1902/jop.2015.150413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
89
|
Zeeshan HMA, Lee GH, Kim HR, Chae HJ. Endoplasmic Reticulum Stress and Associated ROS. Int J Mol Sci 2016; 17:327. [PMID: 26950115 PMCID: PMC4813189 DOI: 10.3390/ijms17030327] [Citation(s) in RCA: 624] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/21/2016] [Accepted: 02/24/2016] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is a fascinating network of tubules through which secretory and transmembrane proteins enter unfolded and exit as either folded or misfolded proteins, after which they are directed either toward other organelles or to degradation, respectively. The ER redox environment dictates the fate of entering proteins, and the level of redox signaling mediators modulates the level of reactive oxygen species (ROS). Accumulating evidence suggests the interrelation of ER stress and ROS with redox signaling mediators such as protein disulfide isomerase (PDI)-endoplasmic reticulum oxidoreductin (ERO)-1, glutathione (GSH)/glutathione disuphide (GSSG), NADPH oxidase 4 (Nox4), NADPH-P450 reductase (NPR), and calcium. Here, we reviewed persistent ER stress and protein misfolding-initiated ROS cascades and their significant roles in the pathogenesis of multiple human disorders, including neurodegenerative diseases, diabetes mellitus, atherosclerosis, inflammation, ischemia, and kidney and liver diseases.
Collapse
Affiliation(s)
- Hafiz Maher Ali Zeeshan
- Department of Pharmacology and New Drug Development Institute, School of Medicine, Chonbuk National University, Jeonju, Chonbuk 561-180, Korea.
| | - Geum Hwa Lee
- Department of Pharmacology and New Drug Development Institute, School of Medicine, Chonbuk National University, Jeonju, Chonbuk 561-180, Korea.
| | - Hyung-Ryong Kim
- Department of Dental Pharmacology and Wonkwang Biomaterial Implant Research Institute, School of Dentistry, Wonkwang University, Iksan, Chonbuk 570-749, Korea.
| | - Han-Jung Chae
- Department of Pharmacology and New Drug Development Institute, School of Medicine, Chonbuk National University, Jeonju, Chonbuk 561-180, Korea.
| |
Collapse
|
90
|
Hasnain SZ, Prins JB, McGuckin MA. Oxidative and endoplasmic reticulum stress in β-cell dysfunction in diabetes. J Mol Endocrinol 2016; 56:R33-54. [PMID: 26576641 DOI: 10.1530/jme-15-0232] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2015] [Indexed: 12/12/2022]
Abstract
The inability of pancreatic β-cells to make sufficient insulin to control blood sugar is a central feature of the aetiology of most forms of diabetes. In this review we focus on the deleterious effects of oxidative stress and endoplasmic reticulum (ER) stress on β-cell insulin biosynthesis and secretion and on inflammatory signalling and apoptosis with a particular emphasis on type 2 diabetes (T2D). We argue that oxidative stress and ER stress are closely entwined phenomena fundamentally involved in β-cell dysfunction by direct effects on insulin biosynthesis and due to consequences of the ER stress-induced unfolded protein response. We summarise evidence that, although these phenomenon can be driven by intrinsic β-cell defects in rare forms of diabetes, in T2D β-cell stress is driven by a range of local environmental factors including increased drivers of insulin biosynthesis, glucolipotoxicity and inflammatory cytokines. We describe our recent findings that a range of inflammatory cytokines contribute to β-cell stress in diabetes and our discovery that interleukin 22 protects β-cells from oxidative stress regardless of the environmental triggers and can correct much of diabetes pathophysiology in animal models. Finally we summarise evidence that β-cell dysfunction is reversible in T2D and discuss therapeutic opportunities for relieving oxidative and ER stress and restoring glycaemic control.
Collapse
Affiliation(s)
- Sumaira Z Hasnain
- ImmunityInfection and Inflammation Program, Mater Research Institute, Translational Research Institute, University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, AustraliaMetabolic Diseases ProgramMater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, Australia
| | - Johannes B Prins
- ImmunityInfection and Inflammation Program, Mater Research Institute, Translational Research Institute, University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, AustraliaMetabolic Diseases ProgramMater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, Australia
| | - Michael A McGuckin
- ImmunityInfection and Inflammation Program, Mater Research Institute, Translational Research Institute, University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, AustraliaMetabolic Diseases ProgramMater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, Australia
| |
Collapse
|
91
|
The kinase activity of PKR represses inflammasome activity. Cell Res 2016; 26:367-79. [PMID: 26794869 DOI: 10.1038/cr.2016.11] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/24/2015] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
The protein kinase R (PKR) functions in the antiviral response by controlling protein translation and inflammatory cell signaling pathways. We generated a transgenic, knock-in mouse in which the endogenous PKR is expressed with a point mutation that ablates its kinase activity. This novel animal allows us to probe the kinase-dependent and -independent functions of PKR. We used this animal together with a previously generated transgenic mouse that is ablated for PKR expression to determine the role of PKR in regulating the activity of the cryopyrin inflammasome. Our data demonstrate that, in contradiction to earlier reports, PKR represses cryopyrin inflammasome activity. We demonstrate that this control is mediated through the established function of PKR to inhibit protein translation of constituents of the inflammasome to prevent initial priming during innate immune signaling. These findings identify an important role for PKR to dampen inflammation during the innate immune response and caution against the previously proposed therapeutic strategy to inhibit PKR to treat inflammation.
Collapse
|
92
|
Timberlake MA, Dwivedi Y. Altered Expression of Endoplasmic Reticulum Stress Associated Genes in Hippocampus of Learned Helpless Rats: Relevance to Depression Pathophysiology. Front Pharmacol 2016; 6:319. [PMID: 26793110 PMCID: PMC4709448 DOI: 10.3389/fphar.2015.00319] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/22/2015] [Indexed: 01/30/2023] Open
Abstract
The unfolded protein response (UPR) is an evolutionarily conserved defensive mechanism that is used by cells to correct misfolded proteins that accumulate in the endoplasmic reticulum. These proteins are misfolded as a result of physical stress on a cell and initiate a host of downstream effects that govern processes ranging from inflammation to apoptosis. To examine whether UPR system plays a role in depression, we examined the expression of genes that are part of the three different pathways for UPR activation, namely GRP78, GRP94, ATF6, XBP-1, ATF4, and CHOP using an animal model system that distinguishes vulnerability (learned helpless, LH) from resistance (non-learned helpless, NLH) to develop depression. Rats were exposed to inescapable shock on days 1 and 7 and were tested for escape latency on day 14. Rats not given shock but tested for escape latency were used as tested control (TC). Plasma corticosterone (CORT) levels were measured. Expression levels of various UPR associated genes were determined in hippocampus using qPCR. We found that the CORT level was higher in LH rats compared with TC and NLH rats. Expression of GRP78, GRP94, ATF6, and XBP-1 were significantly upregulated in LH rats compared with TC or NLH rats, whereas NLH rats did not show such changes. Expression levels of ATF4 and CHOP showed trends toward upregulation but were not significantly altered in LH or NLH group. Our data show strong evidence of altered UPR system in depressed rats, which could be associated with development of depressive behavior.
Collapse
Affiliation(s)
- Matthew A Timberlake
- Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham School of Medicine, Birmingham AL, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham School of Medicine, Birmingham AL, USA
| |
Collapse
|
93
|
Yue ZS, Zeng LR, Quan RF, Tang YH, Zheng WJ, Qu G, Xu CD, Zhu FB, Huang ZM. 4‑Phenylbutyrate protects rat skin flaps against ischemia‑reperfusion injury and apoptosis by inhibiting endoplasmic reticulum stress. Mol Med Rep 2015; 13:1227-33. [PMID: 26648447 PMCID: PMC4732847 DOI: 10.3892/mmr.2015.4636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 11/18/2015] [Indexed: 01/07/2023] Open
Abstract
4-phenylbutyrate (4-PBA) is a low molecular weight fatty acid, which has been demonstrated to regulate endoplasmic reticulum (ER) stress. ER stress-induced cell apoptosis has an important role in skin flap ischemia; however, a pharmacological approach for treating ischemia-induced ER dysfunction has yet to be reported. In the present study, the effects of 4-PBA-induced ER stress inhibition on ischemia-reperfusion injury were investigated in the skin flap of rats, and transcriptional regulation was examined. 4-PBA attenuated ischemia-reperfusion injury and inhibited cell apoptosis in the skin flap. Furthermore, 4-PBA reversed the increased expression levels of two ER stress markers: CCAAT/enhancer-binding protein-homologous protein and glucose-regulated protein 78. These results suggested that 4-PBA was able to protect rat skin flaps against ischemia-reperfusion injury and apoptosis by inhibiting ER stress marker expression and ER stress-mediated apoptosis. The beneficial effects of 4-PBA may prove useful in the treatment of skin flap ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zhen-Shuang Yue
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311201, P.R. China
| | - Lin-Ru Zeng
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311201, P.R. China
| | - Ren-Fu Quan
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311201, P.R. China
| | - Yang-Hua Tang
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311201, P.R. China
| | - Wen-Jie Zheng
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311201, P.R. China
| | - Gang Qu
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311201, P.R. China
| | - Can-Da Xu
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311201, P.R. China
| | - Fang-Bing Zhu
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311201, P.R. China
| | - Zhong-Ming Huang
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311201, P.R. China
| |
Collapse
|
94
|
Chen BL, Sheu ML, Tsai KS, Lan KC, Guan SS, Wu CT, Chen LP, Hung KY, Huang JW, Chiang CK, Liu SH. CCAAT-Enhancer-Binding Protein Homologous Protein Deficiency Attenuates Oxidative Stress and Renal Ischemia-Reperfusion Injury. Antioxid Redox Signal 2015; 23:1233-45. [PMID: 25178318 DOI: 10.1089/ars.2013.5768] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Renal ischemia-reperfusion (I/R) is a major cause of acute renal failure. The mechanisms of I/R injury include endoplasmic reticulum (ER) stress, inflammatory responses, hypoxia, and generation of reactive oxygen species (ROS). CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) is involved in the ER stress signaling pathways. CHOP is a transcription factor and a major mediator of ER stress-induced apoptosis. However, the role of CHOP in renal I/R injury is still undefined. Here, we investigated whether CHOP could regulate I/R-induced renal injury using CHOP-knockout mice and cultured renal tubular cells as models. RESULTS In CHOP-knockout mice, loss of renal function induced by I/R was prevented. Renal proximal tubule damage was induced by I/R in wild-type mice; however, the degree of alteration was significantly less in CHOP-knockout mice. CHOP deficiency also decreased the I/R-induced activation of caspase-3 and -8, apoptosis, and lipid peroxidation, whereas the activity of endogenous antioxidants increased. In an in vitro I/R model, small interfering RNA targeting CHOP significantly reversed increases in H2O2 formation, inflammatory signals, and apoptotic signals, while enhancing the activity of endogenous antioxidants in renal tubular cells. INNOVATION To the best of our knowledge, this is the first study which demonstrates that CHOP deficiency attenuates oxidative stress and I/R-induced acute renal injury both in vitro and in vivo. CONCLUSION These findings suggest that CHOP regulates not only apoptosis-related signaling but also ROS formation and inflammation in renal tubular cells during I/R. CHOP may play an important role in the pathophysiology of I/R-induced renal injury.
Collapse
Affiliation(s)
- Bo Lin Chen
- 1 Institute of Toxicology, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Meei Ling Sheu
- 2 Institute of Biomedical Sciences, National Chung Hsing University , Taichung, Taiwan
| | - Keh Sung Tsai
- 3 Department of Laboratory Medicine, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Kuo Cheng Lan
- 4 Department of Emergency Medicine, National Defense Medical Center, Tri-Service General Hospital , Taipei, Taiwan
| | - Siao Syun Guan
- 1 Institute of Toxicology, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Cheng Tien Wu
- 1 Institute of Toxicology, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Li Ping Chen
- 5 Department of Dentistry, Taipei Chang Gang Memorial Hospital, Chang Gang University , Taipei, Taiwan
| | - Kuan Yu Hung
- 6 Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine , Taipei, Taiwan
| | - Jenq Wen Huang
- 6 Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine , Taipei, Taiwan
| | - Chih Kang Chiang
- 1 Institute of Toxicology, College of Medicine, National Taiwan University , Taipei, Taiwan .,7 Department of Integrated Diagnostics and Therapeutics, College of Medicine and Hospital, National Taiwan University , Taipei, Taiwan
| | - Shing Hwa Liu
- 1 Institute of Toxicology, College of Medicine, National Taiwan University , Taipei, Taiwan .,8 Department of Medical Research, China Medical University Hospital, China Medical University , Taichung, Taiwan .,9 Department of Pediatrics, National Taiwan University Hospital , Taipei, Taiwan
| |
Collapse
|
95
|
Klein BY, Tamir H, Hirschberg DL, Ludwig RJ, Glickstein SB, Myers MM, Welch MG. Oxytocin opposes effects of bacterial endotoxin on ER-stress signaling in Caco2BB gut cells. Biochim Biophys Acta Gen Subj 2015; 1860:402-11. [PMID: 26520666 DOI: 10.1016/j.bbagen.2015.10.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 10/02/2015] [Accepted: 10/27/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND The neuropeptide neuromodulator and hormone oxytocin (OT) activates signaling pathways involved in mRNA translation in response to endoplasmic reticulum stress and reduces inflammation associated with experimental colitis in rats. The anti-inflammatory effects of OT may serve a vital role in the development, survival and function of newborn-type enterocytes during microbial gut colonization, which coincides with the milk suckling period when OT receptor expression peaks in the gut. Furthermore, mice deficient in the OT receptor have abnormal gut structure and function, underscoring OT's developmental importance. METHODS We tested the effect of OT upon lipopolysaccharide (LPS)-induced markers of the inflammatory response in Caco2BB gut cells in vitro using automated immunocapillary electrophoresis. RESULTS We demonstrate that OT suppresses NF-κB signaling and presumably inflammatory transcriptional programs, which are unleashed by LPS through the modulation of IκB. We show that OT counteracts LPS-elicited silencing of the unfolded protein response, a pathway limiting endoplasmic reticulum stress by suppressing protein translation. OT selectively activates dsRNA-activated kinase (PKR), X-box binding protein 1 (XBP1), immunoglobulin binding protein (BiP), A20 (TNFα-induced protein 3) and inositol requiring enzyme 1a (IRE1a). OT inactivates eukaryotic translation initiation factor 2a (eIF2a) without significant activation of protein kinase RNA-like endoplasmic reticulum kinase (PERK). CONCLUSIONS Mild, preemptive stimulation of endoplasmic reticulum stress sensors by OT may precondition newborn enterocytes to resist apoptosis associated with inflammation and may support their differentiation and development by modulating cellular metabolism. GENERAL SIGNIFICANCE OT may protect enterocytes and other cell types, such as neurons, from stress-related complications during postnatal development.
Collapse
Affiliation(s)
- Benjamin Y Klein
- Division of Developmental Neuroscience, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY 10032, USA.
| | - Hadassah Tamir
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA
| | - David L Hirschberg
- Center for Infection and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Robert J Ludwig
- Division of Developmental Neuroscience, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY 10032, USA
| | | | - Michael M Myers
- Division of Developmental Neuroscience, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY 10032, USA; Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA; Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Martha G Welch
- Division of Developmental Neuroscience, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA; Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
96
|
Effects of 4-nonylphenol on oxidant/antioxidant balance system inducing hepatic steatosis in male rat. Toxicol Rep 2015; 2:1423-1433. [PMID: 28962484 PMCID: PMC5598540 DOI: 10.1016/j.toxrep.2015.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/04/2015] [Accepted: 10/12/2015] [Indexed: 12/30/2022] Open
Abstract
Intraperitoneal administration of 4-NP induces hepatic steatosis in male Sprague-Dawley rats. Hepatocytes apoptosis is highly implicated in the occurrence and development of NAFLD. Hepatic mitochondrial disturbance promotes deleterious consequences, such as OS and accumulation of triglycerides (steatosis).
An emerging literature suggests that early life exposure to 4-nonylphenol (4-NP), a widespread endocrine disrupting chemical, may increase the risk of metabolic syndrome. In this study, we investigated the hypothesis that intraperitoneal administration of 4-NP induces hepatic steatosis in rat. 24 male Sprague-Dawley rats were administered with 4-NP (0, 2, 10 and 50 mg/kg b.wt) in corn oil for 30 days. Liver histology, biochemical analysis and gene expression profiling were examined. After treatment, abnormal liver morphology and function were observed in the 4-NP-treated rat, and significant changes in gene expression an indicator of hepatic steatosis and apoptosis were observed compared with controls. Up-regulated genes involved in apoptosis, hepatotoxity and oxidative stress, increased ROS and decrease of antioxidant enzyme were observed in the 4-NP exposed rat. Extensive fatty accumulation in liver section and elevated serum GOT, GPT, LDH and γ-GT were also observed. Incidence and severity of liver steatosis was scored and taken into consideration (steatosis, ballooning and lobular inflammation). Hepatocytes apoptosis could promote NAFLD progression; Fas/FasL, TNF-α and Caspase-9 mRNA activation were important contributing factors to hepatic steatosis. These findings provide the first evidence that 4-NP affects the gene expression related to liver hepatotoxicity, which is correlated with hepatic steatosis.
Collapse
Key Words
- 4-NP, 4-nonylphenol
- 4-Nonylphenol
- 4-Nonylphenol (PubChem CID: 1752)
- APNEIs, alkylphenol polyethoxylates
- AhR, aril hydrocarbon receptor
- Apoptosis
- Aprotinin (PubChem CID: 22833874)
- Bouin's fluid (PubChem CID: 124013)
- Collagenase (PubChem CID: 5046512)
- Cyt c, cytochrome c
- Diamninobenzidine Tetrahydrochloride (PubChem CID: 23892)
- FAO, fatty acid oxidation
- FFA, free fatty acid
- GOT, glutamic-oxalacetic transaminase
- GPT, glutamate pyruvate transaminase
- Genes
- HSC, hepatic stellate cell
- Hematoxylin Eosin (PubChem CID: 86598188)
- Hepatic steatosis
- Hydrogen peroxide (PubChem CID: 784)
- IR, insulin resistance
- LDH, lactate dehydrogenase
- Liver
- Malondialdehyde (PubChem CID: 10964)
- NAFLD, nonalcoholic fatty liver disease
- NASH, non-alcoholic hepatic steatosis
- Nitrotetrazolium Blue chloride (PubChem CID: 9281)
- OS, oxidative stress
- Oxidative stress
- PPAR, peroxisome proliferation-activated receptor
- Phenylmethylsulfonyl fluoride (PubChem CID: 4784)
- ROS, reactive oxygen species
- Sodium chloride (PubChem CID: 5234)
- Superoxide (PubChem CID: 5359597)
- TAG, triacylglycerol
- Thiobarbituric Acid (PubChem CID: 2723628)
- Trizol (PubChem CID: 378478)
- Tromethamine (Tris) (PubChem CID: 6503)
- Xylene (PubChem CID: 6850715)
- γ-GT, gamma glutamyltransferase
Collapse
|
97
|
Endoplasmic Reticulum Stress Cooperates in Zearalenone-Induced Cell Death of RAW 264.7 Macrophages. Int J Mol Sci 2015; 16:19780-95. [PMID: 26307968 PMCID: PMC4581325 DOI: 10.3390/ijms160819780] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 11/17/2022] Open
Abstract
Zearalenone (ZEA) is a fungal mycotoxin that causes cell apoptosis and necrosis. However, little is known about the molecular mechanisms of ZEA toxicity. The objective of this study was to explore the effects of ZEA on the proliferation and apoptosis of RAW 264.7 macrophages and to uncover the signaling pathway underlying the cytotoxicity of ZEA in RAW 264.7 macrophages. This study demonstrates that the endoplasmic reticulum (ER) stress pathway cooperated in ZEA-induced cell death of the RAW 264.7 macrophages. Our results show that ZEA treatment reduced the viability of RAW 264.7 macrophages in a dose- and time-dependent manner as shown by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay (MTT) and flow cytometry assay. Western blots analysis revealed that ZEA increased the expression of glucose-regulated protein 78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP), two ER stress-related marker genes. Furthermore, treating the cells with the ER stress inhibitors 4-phenylbutyrate (4-PBA) or knocking down CHOP, using lentivirus encoded short hairpin interfering RNAs (shRNAs), significantly diminished the ZEA-induced increases in GRP78 and CHOP, and cell death. In summary, our results suggest that ZEA induces the apoptosis and necrosis of RAW 264.7 macrophages in a dose- and time-dependent manner via the ER stress pathway in which the activation of CHOP plays a critical role.
Collapse
|
98
|
Yang C, Gao W, Yang X, Wang H, Du J, Zhong H, Zhou L, Zhou J, Zhang Y, Jiang J. CRH knockout inhibits the murine innate immune responses in association with endoplasmic reticulum stress after thermal injury. Surgery 2015; 158:255-65. [DOI: 10.1016/j.surg.2015.01.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 12/18/2014] [Accepted: 01/29/2015] [Indexed: 01/07/2023]
|
99
|
Nam DH, Han JH, Lee TJ, Shishido T, Lim JH, Kim GY, Woo CH. CHOP deficiency prevents methylglyoxal-induced myocyte apoptosis and cardiac dysfunction. J Mol Cell Cardiol 2015; 85:168-77. [PMID: 26027784 DOI: 10.1016/j.yjmcc.2015.05.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 05/05/2015] [Accepted: 05/22/2015] [Indexed: 12/23/2022]
Abstract
Epidemiological studies indicate that methylglyoxal (MGO) plasma levels are closely linked to diabetes and the exacerbation of diabetic cardiovascular complications. Recently, it was established that endoplasmic reticulum (ER) stress importantly contributes to the pathogenesis of diabetes and its cardiovascular complications. The objective of this study was to explore the mechanism by which diabetes instigates cardiomyocyte apoptosis and cardiac dysfunction via MGO-mediated myocyte apoptosis. Intriguingly, the MGO activated unfolded protein response pathway accompanying apoptotic events, such as cleavages of PARP-1 and caspase-3. In addition, Western blot analysis revealed that MGO-induced myocyte apoptosis was inhibited by depletion of CHOP with siRNA against Ddit3, the gene name for rat CHOP. To investigate the physiologic roles of CHOP in vivo, glucose tolerance and cardiac dysfunction were assessed in CHOP-deficient mice. No significant difference was observed between CHOP KO and littermate naïve controls in terms of the MGO-induced impairment of glucose tolerance. In contrast, myocyte apoptosis, inflammation, and cardiac dysfunction were significantly diminished in CHOP KO compared with littermate naïve controls. These results showed that CHOP is the key signal for myocyte apoptosis and cardiac dysfunction induced by MGO. These findings suggest a therapeutic potential of CHOP inhibition in the management of diabetic cardiovascular complications including diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Dae-Hwan Nam
- Department of Pharmacology, Yeungnam University College of Medicine, 317-1 Daemyung-dong, Daegu, Republic of Korea
| | - Jung-Hwa Han
- Department of Pharmacology, Yeungnam University College of Medicine, 317-1 Daemyung-dong, Daegu, Republic of Korea
| | - Tae-Jin Lee
- Department of Anatomy, Yeungnam University College of Medicine, 317-1 Daemyung-dong, Daegu, Republic of Korea
| | - Tetsuro Shishido
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Jae Hyang Lim
- Department of Microbiology, Ewha Womans University School of Medicine, 911-1 Mok-dong, Seoul, Republic of Korea
| | - Geun-Young Kim
- Division of Cardiovascular and Rare Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Chang-Hoon Woo
- Department of Pharmacology, Yeungnam University College of Medicine, 317-1 Daemyung-dong, Daegu, Republic of Korea.
| |
Collapse
|
100
|
Tanaka Y, Ishitsuka Y, Hayasaka M, Yamada Y, Miyata K, Endo M, Kondo Y, Moriuchi H, Irikura M, Tanaka KI, Mizushima T, Oike Y, Irie T. The exacerbating roles of CCAAT/enhancer-binding protein homologous protein (CHOP) in the development of bleomycin-induced pulmonary fibrosis and the preventive effects of tauroursodeoxycholic acid (TUDCA) against pulmonary fibrosis in mice. Pharmacol Res 2015; 99:52-62. [PMID: 26005208 DOI: 10.1016/j.phrs.2015.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 04/30/2015] [Accepted: 05/14/2015] [Indexed: 12/16/2022]
Abstract
The purpose of this study was to evaluate the role of CCAAT/enhancer-binding protein homologous protein (CHOP), an important transcription factor that regulates the inflammatory reaction during the endoplasmic reticulum (ER) stress response, in the development of pulmonary fibrosis induced by bleomycin (BLM) in mice. An intratracheal injection of BLM transiently increased the expression of CHOP mRNA and protein in an early phase (days 1 and 3) in mice lungs. BLM-induced pulmonary fibrosis was significantly attenuated in Chop gene deficient (Chop KO) mice, compared with wild-type (WT) mice. Furthermore, the inflammatory reactions evaluated by protein concentration, the total number of leucocytes and neutrophils in the bronchoalveolar lavage fluid (BALF), the mRNA expression of interleukin 1b and caspase 11, and the apoptotic cell death were suppressed in Chop KO mice compared with those in WT mice. In addition, administration of tauroursodeoxycholic acid (TUDCA), a pharmacological agent that can inhibit CHOP expression, inhibited the BLM-induced pulmonary fibrosis and inflammation, and the increase in Chop mRNA expression in WT mice in a dose-dependent manner. These results suggest that the ER stress-induced transcription factor, CHOP, at least in part, plays an important role in the development of BLM-induced pulmonary fibrosis in mice, and that the inhibition of CHOP expression by a pharmacological agent, such as TUDCA, may be a promising strategy for the prevention of pulmonary fibrosis.
Collapse
Affiliation(s)
- Yuta Tanaka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Marina Hayasaka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yusei Yamada
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Motoyoshi Endo
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yuki Kondo
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hiroshi Moriuchi
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Science, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Mitsuru Irikura
- Laboratory of Evidence-Based Pharmacotherapy, College of Pharmaceutical Sciences, Daiichi University, 22-1 Tamagawa-Cho, Minami-Ku, Fukuoka 815-8511, Japan
| | - Ken-ichiro Tanaka
- Department of Analytical Chemistry, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Tohru Mizushima
- Department of Analytical Chemistry, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Tetsumi Irie
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Center for Clinical Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|