51
|
Batool N, Sarfraz RM, Mahmood A, Zaman M, Zafar N, Salawi A, Almoshari Y, Alshamrani M. Orally Administered, Biodegradable and Biocompatible Hydroxypropyl–β–Cyclodextrin Grafted Poly (Methacrylic Acid) Hydrogel for pH Sensitive Sustained Anticancer Drug Delivery. Gels 2022; 8:gels8030190. [PMID: 35323303 PMCID: PMC8953841 DOI: 10.3390/gels8030190] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
In the current study, a pH sensitive intelligent hydroxypropyl–β–cyclodextrin-based polymeric network (HP-β-CD-g-MAA) was developed through a solution polymerization technique for site specific delivery of cytarabine in the colonic region. Prepared hydrogel formulations were characterized through cytarabine loading (%), ingredient’s compatibility, structural evaluation, thermal integrity, swelling pattern, release behavior and toxicological profiling in rabbits. Moreover, the pharmacokinetic profile of cytarabine was also determined in rabbits. New polymer formation was evident from FTIR findings. The percentage loaded into the hydrogels was in the range of 37.17–79.3%. Optimum swelling ratio of 44.56 was obtained at pH 7.4. Cytarabine release was persistent and in a controlled manner up to 24 h. In vitro degradation of hydrogels was more pronounced at intestinal pH as compared to acidic pH. Toxicity studies proved absence of any ocular, skin and oral toxicity, thus proving biocompatibility of the fabricated network. Hydrogels exhibited longer plasma half-life (8.75 h) and AUC (45.35 μg.h/mL) with respect to oral cytarabine solution. Thus, the developed hydrogel networks proved to be excellent and biocompatible cargo for prolonged and site-specific delivery of cytarabine in the management of colon cancer.
Collapse
Affiliation(s)
- Nighat Batool
- Faculty of Pharmacy, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | - Rai Muhammad Sarfraz
- Faculty of Pharmacy, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
- Correspondence: (R.M.S.); (A.M.); Tel.: +92-3338976189 (R.M.S.); +92-3451052514 (A.M.)
| | - Asif Mahmood
- Department of Pharmaceutics, Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan;
- Correspondence: (R.M.S.); (A.M.); Tel.: +92-3338976189 (R.M.S.); +92-3451052514 (A.M.)
| | - Muhammad Zaman
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan;
| | - Nadiah Zafar
- Department of Pharmaceutics, Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan;
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.S.); (Y.A.); (M.A.)
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.S.); (Y.A.); (M.A.)
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.S.); (Y.A.); (M.A.)
| |
Collapse
|
52
|
Shoukat H, Pervaiz F, Khan M, Rehman S, Akram F, Abid U, Noreen S, Nadeem M, Qaiser R, Ahmad R, Farooq I. Development of β-cyclodextrin/polyvinypyrrolidone-co-poly (2-acrylamide-2-methylpropane sulphonic acid) hybrid nanogels as nano-drug delivery carriers to enhance the solubility of Rosuvastatin: An in vitro and in vivo evaluation. PLoS One 2022; 17:e0263026. [PMID: 35061861 PMCID: PMC8782392 DOI: 10.1371/journal.pone.0263026] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
The present study is aimed at enhancing the solubility of rosuvastatin (RST) by designing betacyclodextrin/polyvinypyrrolidone-co-poly (2-acrylamide-2-methylpropane sulphonic acid) crosslinked hydrophilic nanogels in the presence of crosslinker methylene bisacrylamide through free-radical polymerization method. Various formulations were fabricated by blending different amounts of betacyclodextrin, polyvinylpyrrolidone, 2-acrylamide-2-methylpropane sulphonic acid, and methylene bisacrylamide. The developed chemically crosslinked nanogels were characterized by FTIR, SEM, PXRD, TGA, DSC, sol-gel analysis, zeta size, micromeritics properties, drug loading percentage, swelling, solubility, and release studies. The FTIR spectrum depicts the leading peaks of resultant functional groups of blended constituents while a fluffy and porous structure was observed through SEM images. Remarkable reduction in crystallinity of RST in developed nanogels revealed by PXRD. TGA and DSC demonstrate the good thermal stability of nanogels. The size analysis depicts the particle size of the developed nanogels in the range of 178.5 ±3.14 nm. Drug loading percentage, swelling, solubility, and release studies revealed high drug loading, solubilization, swelling, and drug release patterns at 6.8 pH paralleled to 1.2 pH. In vivo experiments on developed nanogels in comparison to marketed brands were examined and better results regarding pharmacokinetic parameters were observed. The compatibility and non-toxicity of fabricated nanogels to biological systems was supported by a toxicity study that was conducted on rabbits. Efficient fabrication, excellent physicochemical properties, improved dissolution, high solubilization, and nontoxic nanogels might be a capable approach for the oral administration of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Hina Shoukat
- Faculty of pharmacy, Department of Pharmaceutics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fahad Pervaiz
- Faculty of pharmacy, Department of Pharmaceutics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mehran Khan
- Faculty of pharmacy, Department of Pharmaceutics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sadia Rehman
- Faculty of pharmacy, Department of Pharmaceutics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Faizan Akram
- Faculty of pharmacy, Department of Pharmaceutics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Usman Abid
- Department of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Sobia Noreen
- Faculty of pharmacy, Department of Pharmaceutics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Rubina Qaiser
- Faculty of pharmacy, Department of Pharmaceutics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Rizwan Ahmad
- Faculty of pharmacy, Department of Pharmaceutics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Irshad Farooq
- Faculty of pharmacy, Department of Pharmaceutics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
53
|
Rizvi SSB, Akhtar N, Minhas MU, Mahmood A, Khan KU. Synthesis and Characterization of Carboxymethyl Chitosan Nanosponges with Cyclodextrin Blends for Drug Solubility Improvement. Gels 2022; 8:55. [PMID: 35049590 PMCID: PMC8775084 DOI: 10.3390/gels8010055] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to enhance the solubility and release characteristics of docetaxel by synthesizing highly porous and stimuli responsive nanosponges, a nano-version of hydrogels with the additional qualities of both hydrogels and nano-systems. Nanosponges were prepared by the free radical polymerization technique and characterized by their solubilization efficiency, swelling studies, sol-gel studies, percentage entrapment efficiency, drug loading, FTIR, PXRD, TGA, DSC, SEM, zeta sizer and in vitro dissolution studies. In vivo toxicity study was conducted to assess the safety of the oral administration of prepared nanosponges. FTIR, TGA and DSC studies confirmed the successful grafting of components into the stable nano-polymeric network. A porous and sponge-like structure was visualized through SEM images. The particle size of the optimized formulation was observed in the range of 195 ± 3 nm. The fabricated nanosponges noticeably enhanced the drug loading and solubilization efficiency of docetaxel in aqueous media. The drug release of fabricated nanosponges was significantly higher at pH 6.8 as compared to pH 1.2 and 4.5. An acute oral toxicity study endorsed the safety of the system. Due to an efficient preparation technique, as well as its enhanced solubility, excellent physicochemical properties, improved dissolution and non-toxic nature, nanosponges could be an efficient and a promising approach for the oral delivery of poorly soluble drugs.
Collapse
Affiliation(s)
- Syeda Sadia Batool Rizvi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (S.S.B.R.); (N.A.)
| | - Naveed Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (S.S.B.R.); (N.A.)
| | - Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, University Road, Sargodha 40100, Punjab, Pakistan
| | - Arshad Mahmood
- College of Pharmacy, Al Ain University, Abu Dhabi Campus, Abu Dhabi 112612, United Arab Emirates;
| | | |
Collapse
|
54
|
Sun J, Hong H, Zhu N, Han L, Suo Q. Effect of preparation methods on tosufloxacin tosylate/ hydroxypropyl-β-cyclodextrin inclusion complex. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e18650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Jianfei Sun
- Inner Mongolia University of Technology, China; Inner Mongolia Engineering Research Center for CO Capture and Utilization, China
| | - Hailong Hong
- Inner Mongolia University of Technology, China; Inner Mongolia Engineering Research Center for CO Capture and Utilization, China
| | - Ning Zhu
- Inner Mongolia University of Technology, China; Inner Mongolia Engineering Research Center for CO Capture and Utilization, China
| | - Limin Han
- Inner Mongolia University of Technology, China
| | | |
Collapse
|
55
|
Supramolecular ternary inclusion complexes of Irbesartan with hydroxypropyl-beta-cyclodextrin. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
56
|
Shelley H, Annaji M, Smith FT, Babu RJ. Difluprednate-Hydroxypropyl- β-Cyclodextrin-Based Ophthalmic Solution for Improved Delivery in a Porcine Eye Model. J Ocul Pharmacol Ther 2021; 38:92-101. [PMID: 34665027 DOI: 10.1089/jop.2021.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Purpose: Difluprednate (DFP) is an approved corticosteroid, available as an ophthalmic emulsion (Durezol®), used to treat pain and inflammation of the eye following ocular surgeries. This study utilized hydroxypropyl-β-cyclodextrin (HPBCD)-based DFP ophthalmic solution for improved ocular delivery. Methods: The DFP-HPBCD complex formation was studied in the liquid and solid states. Phase solubility, molecular docking studies, differential scanning calorimetry, and Fourier transform infrared spectroscopy suggested inclusion complexation of DFP and HPBCD. Results: DFP-HPBCD-based eye drops (solution) provided 16 and 26 times higher transcorneal permeation when compared to the suspension (no HPBCD, control) and Durezol, respectively (P < 0.001). In addition, ocular drug distribution studies conducted in continuously perfused whole porcine eyes showed DFP permeated into all of the ocular tissues in significantly higher amounts than Durezol. Conclusions: The solution-based eye drops in this study is iso-osmotic, safe, and more permeable in porcine eyes compared to Durezol.
Collapse
Affiliation(s)
- Haley Shelley
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Manjusha Annaji
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Forrest T Smith
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
57
|
Desai D, Shende P. Monodispersed cyclodextrin-based nanocomplex of neuropeptide Y for targeting MCF-7 cells using a central composite design. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
58
|
Lachowicz M, Stańczak A, Kołodziejczyk M. Characteristic of Cyclodextrins: Their Role and Use in the Pharmaceutical Technology. Curr Drug Targets 2021; 21:1495-1510. [PMID: 32538725 DOI: 10.2174/1389450121666200615150039] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/24/2020] [Accepted: 05/20/2020] [Indexed: 02/05/2023]
Abstract
About 40% of newly-discovered entities are poorly soluble in water, and this may be an obstacle in the creation of new drugs. To address this problem, the present review article examines the structure and properties of cyclodextrins and the formation and potential uses of drug - cyclodextrin inclusion complexes. Cyclodextrins are cyclic oligosaccharides containing six or more D-(+)- glucopyranose units linked by α-1,4-glycosidic bonds, which are characterized by a favourable toxicological profile, low local toxicity and low mucous and eye irritability; they are virtually non-toxic when administered orally. They can be incorporated in the formulation of new drugs in their natural form (α-, β-, γ-cyclodextrin) or as chemically-modified derivatives. They may also be used as an excipient in drugs delivered by oral, ocular, dermal, nasal and rectal routes, as described in the present paper. Cyclodextrins are promising compounds with many beneficial properties, and their use may be increasingly profitable for pharmaceutical scientists.
Collapse
Affiliation(s)
- Malwina Lachowicz
- Department of Technology of Drug Form, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Andrzej Stańczak
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Michał Kołodziejczyk
- Department of Technology of Drug Form, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
59
|
Grybinik S, Bosakova Z. An overview of chiral separations of pharmaceutically active substances by HPLC (2018-2020). MONATSHEFTE FUR CHEMIE 2021; 152:1033-1043. [PMID: 34456367 PMCID: PMC8382579 DOI: 10.1007/s00706-021-02832-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/01/2021] [Indexed: 02/07/2023]
Abstract
This review provides a brief survey of chiral separation of pharmaceutically active substances published over the last 3 years (2018-2020). Chiral separation of drugs is an important area of research. The control of enantiomeric purity and determination of individual enantiomeric drug molecules is a necessity especially for clinical, analytical, and regulatory purposes. Among chromatographic resolution methods, high-performance liquid chromatography based on chiral stationary phases remains the most popular and effective method used for chiral separation of various drugs. In this review, attention is paid to several classes of chiral stationary phases that have been the most frequently used for drug enantioseparation during this period. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Sofiya Grybinik
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Zuzana Bosakova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
60
|
Mohandoss S, Palanisamy S, You S, Shim JJ, Rok Lee Y. Ultrasonication-assisted host–guest inclusion complexes of β-cyclodextrins and 5-hydroxytryptophan: Enhancement of water solubility, thermal stability, and in vitro anticancer activity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
61
|
Abstract
Introduction: Prion diseases are a class of rare and fatal neurodegenerative diseases for which no cure is currently available. They are characterized by conformational conversion of cellular prion protein (PrPC) into the disease-associated 'scrapie' isoform (PrPSc). Under an etiological point of view, prion diseases can be divided into acquired, genetic, and idiopathic form, the latter of which are the most frequent.Areas covered: Therapeutic approaches targeting prion diseases are based on the use of chemical and nature-based compounds, targeting either PrPC or PrPSc or other putative player in pathogenic mechanism. Other proposed anti-prion treatments include passive and active immunization strategies, peptides, aptamers, and PrPC-directed RNA interference techniques. The treatment efficacy has been mainly assessed in cell lines or animal models of the disease testing their ability to reduce prion accumulation.Expert opinion: The assessed strategies focussing on the identification of an efficient anti-prion therapy faced various issues, which go from permeation of the blood brain barrier to immunological tolerance of the host. Indeed, the use of combinatory approaches, which could boost a synergistic anti-prion effect and lower the potential side effects of single treatments and may represent an extreme powerful and feasible way to tackle prion disease.
Collapse
Affiliation(s)
- Marco Zattoni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| |
Collapse
|
62
|
Annaji M, Poudel I, Boddu SHS, Arnold RD, Tiwari AK, Babu RJ. Resveratrol-loaded nanomedicines for cancer applications. Cancer Rep (Hoboken) 2021; 4:e1353. [PMID: 33655717 PMCID: PMC8222557 DOI: 10.1002/cnr2.1353] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Resveratrol (3, 5, 4' -trihydroxystilbene), a natural polyphenol and phytoalexin, has drawn considerable attention in the past decade due to its wide variety of therapeutic activities such as anticancer, anti-inflammatory, and antioxidant properties. However, its poor water solubility, low chemical stability, and short biological half-life limit its clinical utility. RECENT FINDINGS Nanoparticles overcome the limitations associated with conventional chemotherapeutic drugs, such as limited availability of drugs to the tumor tissues, high systemic exposures, and consequent toxicity to healthy tissues. This review focuses on the physicochemical properties of resveratrol, the therapeutic potential of resveratrol nano-formulations, and the anticancer activity of resveratrol encapsulated nanoparticles on various malignancies such as skin, breast, prostate, colon, liver, ovarian, and lung cancers (focusing on both in vitro and in vivo studies). CONCLUSIONS Nanotechnology approaches have been extensively utilized to achieve higher solubility, improved oral bioavailability, enhanced stability, and controlled release of resveratrol. The resveratrol nanoparticles have markedly enhanced its anticancer activity both in vitro and in vivo, thus considering it as a potential strategy to fight various cancers.
Collapse
Affiliation(s)
- Manjusha Annaji
- Department of Drug Discovery and DevelopmentAuburn UniversityAuburnAlabamaUSA
| | - Ishwor Poudel
- Department of Drug Discovery and DevelopmentAuburn UniversityAuburnAlabamaUSA
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health SciencesAjman UniversityAjmanUnited Arab Emirates
| | - Robert D. Arnold
- Department of Drug Discovery and DevelopmentAuburn UniversityAuburnAlabamaUSA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical SciencesUniversity of ToledoToledoOhioUSA
| | - R. Jayachandra Babu
- Department of Drug Discovery and DevelopmentAuburn UniversityAuburnAlabamaUSA
| |
Collapse
|
63
|
Borandeh S, Hosseinbeigi H, Abolmaali SS, Monajati M, Tamaddon AM. Steric stabilization of β-cyclodextrin functionalized graphene oxide by host-guest chemistry: A versatile supramolecule for dual-stimuli responsive cellular delivery of doxorubicin. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102536] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
64
|
Gieroba B, Kalisz G, Sroka-Bartnicka A, Płazińska A, Płaziński W, Starek M, Dąbrowska M. Molecular Structure of Cefuroxime Axetil Complexes with α-, β-, γ-, and 2-Hydroxypropyl-β-Cyclodextrins: Molecular Simulations and Raman Spectroscopic and Imaging Studies. Int J Mol Sci 2021; 22:ijms22105238. [PMID: 34063471 PMCID: PMC8156438 DOI: 10.3390/ijms22105238] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 11/16/2022] Open
Abstract
The formation of cefuroxime axetil+cyclodextrin (CA+CD) complexes increases the aqueous solubility of CA, improves its physico-chemical properties, and facilitates a biomembrane-mediated drug delivery process. In CD-based tablet formulations, it is crucial to investigate the molecular details of complexes in final pharmaceutical preparation. In this study, Raman spectroscopy and mapping were applied for the detection and identification of chemical groups involved in α-, β-, γ-, and 2-hydroxypropyl-β-CD (2-HP- β-CD)+CA complexation process. The experimental studies have been complemented by molecular dynamics-based investigations, providing additional molecular details of CA+CD interactions. It has been demonstrated that CA forms the guest–host type inclusion complexes with all studied CDs; however, the nature of the interactions is slightly different. It seems that both α- and β-CD interact with furanyl and methoxy moieties of CA, γ-CD forms a more diverse pattern of interactions with CA, which are not observed in other CDs, whereas 2HP-β-CD binds CA with the contribution of hydrogen bonding. Apart from supporting this interpretation of the experimental data, molecular dynamics simulations allowed for ordering the CA+CD binding affinities. The obtained results proved that the molecular details of the host–guest complexation can be successfully predicted from the combination of Raman spectroscopy and molecular modeling.
Collapse
Affiliation(s)
- Barbara Gieroba
- Department of Biopharmacy, Medical University of Lublin, ul. Chodzki 4a, 20-093 Lublin, Poland; (G.K.); (A.S.-B.); (A.P.)
- Correspondence: (B.G.); (W.P.)
| | - Grzegorz Kalisz
- Department of Biopharmacy, Medical University of Lublin, ul. Chodzki 4a, 20-093 Lublin, Poland; (G.K.); (A.S.-B.); (A.P.)
| | - Anna Sroka-Bartnicka
- Department of Biopharmacy, Medical University of Lublin, ul. Chodzki 4a, 20-093 Lublin, Poland; (G.K.); (A.S.-B.); (A.P.)
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland
| | - Anita Płazińska
- Department of Biopharmacy, Medical University of Lublin, ul. Chodzki 4a, 20-093 Lublin, Poland; (G.K.); (A.S.-B.); (A.P.)
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, ul. Niezapominajek 8, 30-239 Krakow, Poland
- Correspondence: (B.G.); (W.P.)
| | - Małgorzata Starek
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland; (M.S.); (M.D.)
| | - Monika Dąbrowska
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland; (M.S.); (M.D.)
| |
Collapse
|
65
|
Hossen T, Sahu K. Contrasting pKa shift and fluorescence modulation of 6-cyano-2-naphthol within α- and β-cyclodextrin. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
66
|
Important Roles of Oligo- and Polysaccharides against SARS-CoV-2: Recent Advances. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083512] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-initiated outbreak of COVID-19 has spread rapidly around the world, posing a huge threat to public health. Natural oligo- and polysaccharides with low toxicity, good sustainability, high biocompatibility, respectable safety, immune regulation, and antiviral activity can be employed as promising candidates for the prevention and inhibition of viral infections, especially COVID-19. Glycosaminoglycans, marine polysaccharides, terrestrial plant polysaccharides, and some others have exhibited potential antiviral activity against pathogenic viruses, in the format of polysaccharide-centered vaccine adjuvants, nano-based structures, drug conveyance platforms, etc. In this review, significant recent advancements pertaining to the antiviral applications of oligo- and polysaccharides against SARS-CoV-2 are highlighted, including important challenges and future perspectives.
Collapse
|
67
|
Menghiu G, Ostafe V, Prodanović R, Fischer R, Ostafe R. A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A. Int J Mol Sci 2021; 22:ijms22063041. [PMID: 33809788 PMCID: PMC8002391 DOI: 10.3390/ijms22063041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
Chitinases catalyze the degradation of chitin, a polymer of N-acetylglucosamine found in crustacean shells, insect cuticles, and fungal cell walls. There is great interest in the development of improved chitinases to address the environmental burden of chitin waste from the food processing industry as well as the potential medical, agricultural, and industrial uses of partially deacetylated chitin (chitosan) and its products (chito-oligosaccharides). The depolymerization of chitin can be achieved using chemical and physical treatments, but an enzymatic process would be more environmentally friendly and more sustainable. However, chitinases are slow-acting enzymes, limiting their biotechnological exploitation, although this can be overcome by molecular evolution approaches to enhance the features required for specific applications. The two main goals of this study were the development of a high-throughput screening system for chitinase activity (which could be extrapolated to other hydrolytic enzymes), and the deployment of this new method to select improved chitinase variants. We therefore cloned and expressed the Bacillus licheniformis DSM8785 chitinase A (chiA) gene in Escherichia coli BL21 (DE3) cells and generated a mutant library by error-prone PCR. We then developed a screening method based on fluorescence-activated cell sorting (FACS) using the model substrate 4-methylumbelliferyl β-d-N,N′,N″-triacetyl chitotrioside to identify improved enzymes. We prevented cross-talk between emulsion compartments caused by the hydrophobicity of 4-methylumbelliferone, the fluorescent product of the enzymatic reaction, by incorporating cyclodextrins into the aqueous phases. We also addressed the toxicity of long-term chiA expression in E. coli by limiting the reaction time. We identified 12 mutants containing 2–8 mutations per gene resulting in up to twofold higher activity than wild-type ChiA.
Collapse
Affiliation(s)
- Gheorghita Menghiu
- Institute for Biology VII, Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (G.M.); (R.F.)
- Advanced Environmental Research Laboratories, Department of Biology–Chemistry, West University of Timisoara, Oituz 4, 300086 Timisoara, Romania;
| | - Vasile Ostafe
- Advanced Environmental Research Laboratories, Department of Biology–Chemistry, West University of Timisoara, Oituz 4, 300086 Timisoara, Romania;
| | - Radivoje Prodanović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia;
| | - Rainer Fischer
- Institute for Biology VII, Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (G.M.); (R.F.)
- Departments of Biological Sciences and Chemistry, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
| | - Raluca Ostafe
- Institute for Biology VII, Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (G.M.); (R.F.)
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Molecular Evolution, Protein Engineering and Production, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
- Correspondence: ; Tel.: +1-317-765-496-4012
| |
Collapse
|
68
|
Ghiciuc CM, Shleghm MR, Vasile C, Tantaru G, Creteanu A, Ochiuz L. Study on Acute Toxicity of Amiodarone New Complexes With Cyclodextrin. Front Pharmacol 2021; 12:640705. [PMID: 33897429 PMCID: PMC8058604 DOI: 10.3389/fphar.2021.640705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/17/2021] [Indexed: 02/05/2023] Open
Abstract
Amiodarone low solubility and high permeability is the limiting step for its bioavailability, therefore new formulations are needed to improve the solubility of amiodarone either to increase its oral bioavailability or to reduce its toxic effects. Complexation of amiodarone with cyclodextrin results in improved dissolution rate, solubility, and allows for a more controlled drug release. We characterized the acute toxicity of a new amiodarone 2-hydroxypropyl-β-cyclodextrin complex (AMD/HP-β-CD) as powdered form and as a matrix based on Kollidon® and chitosan, administered intraperitoneally in laboratory animals. There were developed two formulations of matrix: one containing only pure AMD as a control sample (Fc) and one containing the inclusion complex with the optimal solubility (F). AMD was equitoxic with HP-β-CD after intraperitoneal administration (289.4 mg/kg for AMD and 298.3 mg/kg for AMD/HP-β-CD), with corresponding histopathological changes. The matrix based formulations presented higher LD50 values for acute toxicity, of 347.5 mg/kg for Fc and 455.6 mg/kg for F10, conducting to the idea of a safer administration because KOL and CHT matrix modified the solubility and controlled the AMD release. The LD50 is 1.5 higher for AMD/HP-β-CD included in a KOL and CHT based matrix compared to the pure AMD, administered intraperitoneally.
Collapse
Affiliation(s)
- Cristina Mihaela Ghiciuc
- Department of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Maytham Razaq Shleghm
- Department of “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Cornelia Vasile
- Physical Chemistry of Polymers Department, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Gladiola Tantaru
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Andreea Creteanu
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Lacramioara Ochiuz
- Department of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
69
|
Abstract
Biocontamination of medical devices and implants is a growing issue that causes medical complications and increased expenses. In the fight against biocontamination, developing synthetic surfaces, which reduce the adhesion of microbes and provide biocidal activity or combinatory effects, has emerged as a major global strategy. Advances in nanotechnology and biological sciences have made it possible to design smart surfaces for decreasing infections. Nevertheless, the clinical performance of these surfaces is highly depending on the choice of material. This review focuses on the antimicrobial surfaces with functional material coatings, such as cationic polymers, metal coatings and antifouling micro-/nanostructures. One of the highlights of the review is providing insights into the virus-inactivating surface development, which might particularly be useful for controlling the currently confronted pandemic coronavirus disease 2019 (COVID-19). The nanotechnology-based strategies presented here might be beneficial to produce materials that reduce or prevent the transmission of airborne viral droplets, once applied to biomedical devices and protective equipment of medical workers. Overall, this review compiles existing studies in this broad field by focusing on the recent related developments, draws attention to the possible activity mechanisms, discusses the key challenges and provides future recommendations for developing new, efficient antimicrobial and antiviral surface coatings.
Collapse
|
70
|
Main Applications of Cyclodextrins in the Food Industry as the Compounds of Choice to Form Host-Guest Complexes. Int J Mol Sci 2021; 22:ijms22031339. [PMID: 33572788 PMCID: PMC7866268 DOI: 10.3390/ijms22031339] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 11/16/2022] Open
Abstract
Cyclodextrins (CDs) are cyclic oligomers broadly used in food manufacturing as food additives for different purposes, e.g., to improve sensorial qualities, shelf life, and sequestration of components. In this review, the latest advancements of their applications along with the characteristics of the uses of the different CDs (α, β, γ and their derivatives) were reviewed. Their beneficial effects can be achieved by mixing small amounts of CDs with the target material to be stabilized. Essentially, they have the capacity to form stable inclusion complexes with sensitive lipophilic nutrients and constituents of flavor and taste. Their toxicity has been also studied, showing that CDs are innocuous in oral administration. A review of the current legislation was also carried out, showing a general trend towards a wider acceptance of CDs as food additives. Suitable and cost-effective procedures for the manufacture of CDs have progressed, and nowadays it is possible to obtain realistic prices and used them in foods. Therefore, CDs have a promising future due to consumer demand for healthy and functional products.
Collapse
|
71
|
A Valid Warning or Clinical Lore: an Evaluation of Safety Outcomes of Remdesivir in Patients with Impaired Renal Function from a Multicenter Matched Cohort. Antimicrob Agents Chemother 2021; 65:AAC.02290-20. [PMID: 33229428 PMCID: PMC7849020 DOI: 10.1128/aac.02290-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022] Open
Abstract
Per prescribing guidance, remdesivir is not recommended for SARS-CoV-2 in patients with renal disease given the absence of safety data in this patient population. This study was a multicenter, retrospective chart review of hospitalized patients with SARS-CoV-2 who received remdesivir. Per prescribing guidance, remdesivir is not recommended for SARS-CoV-2 in patients with renal disease given the absence of safety data in this patient population. This study was a multicenter, retrospective chart review of hospitalized patients with SARS-CoV-2 who received remdesivir. Safety outcomes were compared between patients with an estimated creatinine clearance (eCrCl) of <30 ml/min and an eCrCl of ≥30 ml/min. The primary endpoint was acute kidney injury (AKI) at the end of treatment (EOT). Of 359 patients who received remdesivir, 347 met inclusion criteria. Patients with an eCrCl of <30 ml/min were older {median, 80 years (interquartile range [IQR], 63.8 to 89) versus 62 (IQR, 54 to 74); P < 0.001}, were more likely to be on vasopressors on the day of remdesivir administration (30% versus 12.7%; P = 0.003), and were more likely to be mechanically ventilated during remdesivir therapy (27.5% versus 12.4%; P = 0.01) than those with an eCrCl of ≥30 ml/min. Despite these confounders, there was no significant difference in the frequency of EOT AKI (5% versus 2.3%; P = 0.283) or early discontinuation due to abnormal liver function tests (LFTs) (0% versus 3.9%; P = 0.374). Of the 5% of patients who developed EOT AKI on remdesivir with an eCrCl <30 ml/min, no cases were attributable to remdesivir administration per the treating physician. Comparable safety outcomes were observed when 1:1 nearest neighbor matching was applied to account for baseline confounders. In conclusion, remdesivir administration was not significantly associated with increased EOT AKI in patients with an eCrCl of <30 ml/min compared to patients with an eCrCl of ≥30 ml/min.
Collapse
|
72
|
Verza BS, van den Beucken JJJP, Brandt JV, Jafelicci Junior M, Barão VAR, Piazza RD, Tagit O, Spolidorio DMP, Vergani CE, de Avila ED. A long-term controlled drug-delivery with anionic beta cyclodextrin complex in layer-by-layer coating for percutaneous implants devices. Carbohydr Polym 2021; 257:117604. [PMID: 33541637 DOI: 10.1016/j.carbpol.2020.117604] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023]
Abstract
This study demonstrated a drug-delivery system with anionic beta cyclodextrin (β-CD) complexes to retain tetracycline (TC) and control its release from multilayers of poly(acrylic acid) (PAA) and poly(l-lysine) (PLL) in a ten double layers ([PAA/PLL]10) coating onto titanium. The drug-delivery capacity of the multilayer system was proven by controlled drug release over 15 days and sustained released over 30 days. Qualitative images confirmed TC retention within the layer-by-layer (LbL) over 30 days of incubation. Antibacterial activity of TC/anionic β-CD released from the LbL was established against Staphylococcus aureus species. Remarkably, [PAA/PLL]10/TC/anionic β-CD antibacterial effect was sustained even after 30 days of incubation. The non-cytotoxic effect of the multilayer system revealed normal human gingival fibroblast growth. It is expected that this novel approach and the chemical concept to improve drug incorporation into the multilayer system will open up possibilities to make the drug release system more applicable to implantable percutaneous devices.
Collapse
Affiliation(s)
- Beatriz S Verza
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Humaita, 1680 Araraquara, São Paulo, Brazil.
| | | | - João V Brandt
- Department of Physical Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo 14801-970, Brazil.
| | - Miguel Jafelicci Junior
- Department of Physical Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo 14801-970, Brazil.
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil.
| | - Rodolfo D Piazza
- Department of Physical Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo 14801-970, Brazil.
| | - Oya Tagit
- Department of Tumor Immunology, Radboudumc and Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid, 28 Nijmegen, the Netherlands.
| | - Denise M P Spolidorio
- Department of Physiology and Pathology, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo 14801-903, Brazil.
| | - Carlos Eduardo Vergani
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Humaita, 1680 Araraquara, São Paulo, Brazil.
| | - Erica D de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Humaita, 1680 Araraquara, São Paulo, Brazil.
| |
Collapse
|
73
|
Improving the solubility of an antifungal thiazolyl hydrazone derivative by cyclodextrin complexation. Eur J Pharm Sci 2021; 156:105575. [DOI: 10.1016/j.ejps.2020.105575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 09/07/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022]
|
74
|
Badshah SF, Akhtar N, Minhas MU, Khan KU, Khan S, Abdullah O, Naeem A. Porous and highly responsive cross-linked β-cyclodextrin based nanomatrices for improvement in drug dissolution and absorption. Life Sci 2020; 267:118931. [PMID: 33359243 DOI: 10.1016/j.lfs.2020.118931] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Abstract
AIMS Aim of the study was to enhance the solubility of Chlorthalidone by developing beta-cyclodextrin cross-linked hydrophilic nanomatrices. MAIN METHODS Nine different formulations were fabricated by free radical polymerization technique. All formulations were characterized through different studies. FTIR spectroscopy of unloaded and loaded nanomatrices was processed to determine compatibility of constituents and that of the drug with the system. Surface morphology of the nanomatrices was studied by SEM. The size of the optimized formulation was determined by zeta sizer. Swelling, in-vitro release and solubility studies were carried out in different media and results of in-vitro release profiles of nanomatrices and commercially available tablet of Chlorthalidone were compared. For determination of biocompatibility, toxicity studies were proclaimed in rabbits. KEY FINDINGS Main peaks of corresponding functional groups of individual constituents and that of drug were depicted in FTIR spectra of unloaded and loaded nanomatrices. Porous and fluffy structure was visualized through SEM images. Particle size of the optimized formulation was in the range of 175 ± 5.27 nm. Percent loading of optimized formulation showed the best result. Comparing the in-vitro drug release profiles of nanomatrices and commercially available tablet, the results of the synthesized nanomatrices were quite satisfactory. Solubility profiles were also high as compared to the drug alone. Moreover, toxicity studies confirmed that nanomatrices were biocompatible and no sign of any toxic effect was found. SIGNIFICANCE We concluded that our developed nanomatrices had successfully enhanced the solubility of Chlorthalidone and can also be used for other poorly aqueous soluble drugs.
Collapse
Affiliation(s)
- Syed Faisal Badshah
- Faculty of Pharmacy and Alternative Medicine, the Islamia University of Bahawalpur, Punjab, Pakistan
| | - Naveed Akhtar
- Faculty of Pharmacy and Alternative Medicine, the Islamia University of Bahawalpur, Punjab, Pakistan
| | - Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, University Road Sargodha City, Punjab, Pakistan.
| | - Kifayat Ullah Khan
- Faculty of Pharmacy and Alternative Medicine, the Islamia University of Bahawalpur, Punjab, Pakistan
| | - Samiullah Khan
- Department of Pharmacy, The University of Lahore, Gujrat Campus, Pakistan
| | - Orva Abdullah
- Hamdard Institute of Pharmaceutical Sciences, Hamdard University, Islamabad, Pakistan
| | - Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| |
Collapse
|
75
|
Pontillo ARN, Konstanteli E, Bairaktari MM, Detsi A. Encapsulation of the Natural Product Tyrosol in Carbohydrate Nanosystems and Study of Their Binding with ctDNA. Polymers (Basel) 2020; 13:polym13010087. [PMID: 33379388 PMCID: PMC7794917 DOI: 10.3390/polym13010087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022] Open
Abstract
Tyrosol, a natural product present in olive oil and white wine, possesses a wide range of bioactivity. The aim of this study was to optimize the preparation of nanosystems encapsulating tyrosol in carbohydrate matrices and the investigation of their ability to bind with DNA. The first encapsulation matrix of choice was chitosan using the ionic gelation method. The second matrix was β-cyclodextrin (βCD) using the kneading method. Coating of the tyrosol-βCD ICs with chitosan resulted in a third nanosystem with very interesting properties. Optimal preparation parameters of each nanosystem were obtained through two three-factor, three-level Box-Behnken experimental designs and statistical analysis of the results. Thereafter, the nanoparticles were evaluated for their physical and thermal characteristics using several techniques (DLS, NMR, FT-IR, DSC, TGA). The study was completed with the investigation of the impact of the encapsulation on the ability of tyrosol to bind to calf thymus DNA. The results revealed that tyrosol and all the studied systems bind to the minor groove of ctDNA. Tyrosol interacts with ctDNA via hydrogen bond formation, as predicted via molecular modeling studies and corroborated by the experiments. The tyrosol-chitosan nanosystem does not show any binding to ctDNA whereas the βCD inclusion complex shows analogous interaction with that of free tyrosol.
Collapse
Affiliation(s)
- Antonella Rozaria Nefeli Pontillo
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, 15780 Zografou, Greece; (A.R.N.P.); (E.K.); (M.M.B.)
| | - Evangelia Konstanteli
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, 15780 Zografou, Greece; (A.R.N.P.); (E.K.); (M.M.B.)
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Maria M. Bairaktari
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, 15780 Zografou, Greece; (A.R.N.P.); (E.K.); (M.M.B.)
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, 15780 Zografou, Greece; (A.R.N.P.); (E.K.); (M.M.B.)
- Correspondence:
| |
Collapse
|
76
|
Dos Santos PH, Mesquita T, Miguel-Dos-Santos R, de Almeida GKM, de Sá LA, Dos Passos Menezes P, de Souza Araujo AA, Lauton-Santos S. Inclusion complex with β-cyclodextrin is a key determining factor for the cardioprotection induced by usnic acid. Chem Biol Interact 2020; 332:109297. [PMID: 33096055 DOI: 10.1016/j.cbi.2020.109297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022]
Abstract
Ischemia-reperfusion (I/R) injury causes oxidative stress, leading to severe cardiac dysfunction. Thus, biologically active compounds with antioxidant properties may be viewed as a promising therapeutic strategy against oxidative-related cardiac disorders. Usnic acid (UA), a natural antioxidant, was complexed with β-cyclodextrin (βCD) to improve its bioavailability. Wistar male rats were orally treated with the free form of UA (50 mg/kg) or the inclusion complex UA/βCD (50 mg/kg) for seven consecutive days. Afterward, hearts were subjected to I/R injury, and the cardiac contractility, rhythmicity, infarct size, and antioxidant enzyme activities were evaluated. Here, we show that neither UA nor UA/βCD treatments developed signs of toxicity. After I/R injury, animals treated with UA/βCD showed improved post-ischemic cardiac functional recovery while the release of cell injury biomarkers decreased. Following reduced cardiac damage, a lower incidence of ventricular arrhythmias and smaller myocardial infarct size were associated with reduced lipid peroxidation, along with preserved activity of antioxidant enzymes compared to untreated rats. Surprisingly, uncomplexed UA did not protect hearts against IR injury. Altogether, our results indicate that the inclusion complex UA/βCD is a critical determining factor responsible for the cardioprotection action of UA, suggesting the involvement of an antioxidant-dependent mechanisms. Moreover, our findings support that UA/βCD is a structurally engineered compound with active cardioprotective properties.
Collapse
Affiliation(s)
- Péligris Henrique Dos Santos
- Department of Physiology, Biological Sciences and Health Center, Federal University of Sergipe, São Cristóvão, Brazil
| | - Thassio Mesquita
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, United States.
| | - Rodrigo Miguel-Dos-Santos
- Department of Physiology, Biological Sciences and Health Center, Federal University of Sergipe, São Cristóvão, Brazil; Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, St. Olav's Hospital, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Grace Kelly Melo de Almeida
- Department of Physiology, Biological Sciences and Health Center, Federal University of Sergipe, São Cristóvão, Brazil
| | - Lucas Andrade de Sá
- Department of Physiology, Biological Sciences and Health Center, Federal University of Sergipe, São Cristóvão, Brazil
| | - Paula Dos Passos Menezes
- Department of Pharmacy, Biological Sciences and Health Center, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Sandra Lauton-Santos
- Department of Physiology, Biological Sciences and Health Center, Federal University of Sergipe, São Cristóvão, Brazil.
| |
Collapse
|
77
|
Essa ML, El-Kemary MA, Ebrahem Saied EM, Leporatti S, Nemany Hanafy NA. Nano targeted Therapies Made of Lipids and Polymers have Promising Strategy for the Treatment of Lung Cancer. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5397. [PMID: 33261031 PMCID: PMC7730637 DOI: 10.3390/ma13235397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
The introduction of nanoparticles made of polymers, protein, and lipids as drug delivery systems has led to significant progress in modern medicine. Since the application of nanoparticles in medicine involves the use of biodegradable, nanosized materials to deliver a certain amount of chemotherapeutic agents into a tumor site, this leads to the accumulation of these nanoencapsulated agents in the right region. This strategy minimizes the stress and toxicity generated by chemotherapeutic agents on healthy cells. Therefore, encapsulating chemotherapeutic agents have less cytotoxicity than non-encapsulation ones. The purpose of this review is to address how nanoparticles made of polymers and lipids can successfully be delivered into lung cancer tumors. Lung cancer types and their anatomies are first introduced to provide an overview of the general lung cancer structure. Then, the rationale and strategy applied for the use of nanoparticle biotechnology in cancer therapies are discussed, focusing on pulmonary drug delivery systems made from liposomes, lipid nanoparticles, and polymeric nanoparticles. Many nanoparticles fabricated in the shape of liposomes, lipid nanoparticles, and polymeric nanoparticles are summarized in our review, with a focus on the encapsulated chemotherapeutic molecules, ligand-receptor attachments, and their targets. Afterwards, we highlight the nanoparticles that have demonstrated promising results and have been delivered into clinical trials. Recent clinical trials that were done for successful nanoparticles are summarized in our review.
Collapse
Affiliation(s)
- Marwa Labib Essa
- Group of Nanomedicine, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, KafrElSheikh 33516, Egypt; (M.L.E.); (M.A.E.-K.)
| | - Maged Abdeltawab El-Kemary
- Group of Nanomedicine, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, KafrElSheikh 33516, Egypt; (M.L.E.); (M.A.E.-K.)
- Pharos University, Alexandria 21648, Egypt
| | | | - Stefano Leporatti
- CNR NANOTEC-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy;
| | - Nemany Abdelhamid Nemany Hanafy
- Group of Nanomedicine, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, KafrElSheikh 33516, Egypt; (M.L.E.); (M.A.E.-K.)
| |
Collapse
|
78
|
Abstract
Pharmacologic management of atrial fibrillation (AF) is a pressing problem. This arrhythmia afflicts >5 million individuals in the United States and prevalence is estimated to rise to 12 million by 2050. Although the pill-in-the-pocket regimen for self-administered AF cardioversion introduced over a decade ago has proven useful, significant drawbacks exist. Among these are the relatively long latency of effects in the range of hours along with potential for hypotension and other adverse effects. This experience prompted development of a new strategy for increasing plasma concentrations of antiarrhythmic drugs rapidly and for a limited time, namely, pulmonary delivery. In preclinical studies in Yorkshire pigs, intratracheal administration of flecainide was shown to cause a rapid, reproducible increase in plasma drug levels. Moreover, pulmonary delivery of flecainide converted AF to normal sinus rhythm by prolonging atrial depolarization, which slows intra-atrial conduction and seems to be directly correlated with efficacy in converting AF. The rapid rise in plasma flecainide levels optimizes its anti-AF effects while minimizing adverse influences on ventricular depolarization and contractility. A more concentrated and soluble formulation of flecainide using a novel cyclodextrin complex excipient reduced net drug delivery for AF conversion when compared to the acetate formulation. Inhalation of the beta-adrenergic blocking agent metoprolol slows ventricular rate and can also terminate AF. In human subjects, oral inhalation of flecainide acetate with a hand-held, breath-actuated nebulizer results in signature prolongation of the QRS complex without serious adverse events. Thus, pulmonary delivery is a promising advance in pharmacologic approach to management of AF.
Collapse
|
79
|
|
80
|
Holkar A, Ghodke S, Bangde P, Dandekar P, Jain R. Fluorescence-Based Detection of Cholesterol Using Inclusion Complex of Hydroxypropyl-β-Cyclodextrin and l-Tryptophan as the Fluorescence Probe. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09503-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
81
|
Comparative DFT study of inclusion complexes of thymidine-carborane conjugate with β-cyclodextrin and heptakis(2,6-O-dimethyl)-β-cyclodextrin in water. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
82
|
|
83
|
Ashwin BCMA, Shanmugavelan P, Muthu Mareeswaran P. Electrochemical aspects of cyclodextrin, calixarene and cucurbituril inclusion complexes. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-01028-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
84
|
Periasamy R. A systematic review on the significant roles of cyclodextrins in the construction of supramolecular systems and their potential usage in various fields. J Carbohydr Chem 2020. [DOI: 10.1080/07328303.2020.1792919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- R. Periasamy
- Department of Chemistry, Annamalai University, Annamalainagar, India
| |
Collapse
|
85
|
Akram M, Ansari F, Qais FA, Kabir-ud-Din. Binding of cationic Cm-E2O-Cm gemini surfactants with human serum albumin and the role of β-cyclodextrin. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
86
|
Radaic A, Martins-de-Souza D. The state of the art of nanopsychiatry for schizophrenia diagnostics and treatment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102222. [DOI: 10.1016/j.nano.2020.102222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/18/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023]
|
87
|
Wang X, Parvathaneni V, Shukla SK, Kanabar DD, Muth A, Gupta V. Cyclodextrin Complexation for Enhanced Stability and Non-invasive Pulmonary Delivery of Resveratrol-Applications in Non-small Cell Lung Cancer Treatment. AAPS PharmSciTech 2020; 21:183. [PMID: 32632576 DOI: 10.1208/s12249-020-01724-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022] Open
Abstract
Pulmonary drug delivery is a noninvasive therapeutic approach that offers many advantages including localized drug delivery and higher patient compliance. As with all formulations, the low aqueous solubility of a drug often poses a challenge in the formulation development. Thus, strategies such as cyclodextrin (CD) complexation have been utilized to overcome this challenge. Resveratrol (RES), a natural stilbene, has shown abundant anti-cancer properties. Due to many drawbacks of conventional chemotherapeutics, RES has been proposed as an emerging alternative with promising pharmacological effects. However, RES has limited therapeutic applications due to low water solubility, chemical stability, and bioavailability. This study was aimed at developing an inhalable therapy that would increase the aqueous solubility and stability of RES by complexation with sulfobutylether-β-cyclodextrin (SBECD). Phase solubility profiles indicated an optimal stoichiometric inclusion complex at 1:1 (SBECD:RES) ratio for formulation considerations. Physiochemical characterizations were performed to analyze CD-RES. Stability studies at pH 7.4 and in plasma indicated significant improvement in RES stability after complexation, with a much longer half-life. The mass median aerodynamic diameter (MMAD) of CD-RES was 2.6 ± 0.7 μm and fine particle fraction (FPF) of 83.4 ± 3.0% are suitable for pulmonary delivery and efficient deposition. Lung cancer was selected as the respiratory model disease, owing to its high relevance as the major cause of cancer deaths worldwide. Cell viability studies in 5 non-small-cell-lung-cancer (NSCLC) cell lines suggest CD-RES retained significant cytotoxic potential of RES. Taken together, CD-RES proves to be a promising inhalation treatment for NSCLC.
Collapse
|
88
|
Lin EY, Chen YS, Li YS, Chen SR, Lee CH, Huang MH, Chuang HM, Harn HJ, Yang HH, Lin SZ, Tai DF, Chiou TW. Liposome Consolidated with Cyclodextrin Provides Prolonged Drug Retention Resulting in Increased Drug Bioavailability in Brain. Int J Mol Sci 2020; 21:ijms21124408. [PMID: 32575820 PMCID: PMC7352271 DOI: 10.3390/ijms21124408] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Although butylidenephthalide (BP) is an efficient anticancer drug, its poor bioavailability renders it ineffective for treating drug-resistant brain tumors. However, this problem is overcome through the use of noninvasive delivery systems, including intranasal administration. Herein, the bioavailability, drug stability, and encapsulation efficiency (EE, up to 95%) of BP were improved by using cyclodextrin-encapsulated BP in liposomal formulations (CDD1). The physical properties and EE of the CDD1 system were investigated via dynamic light scattering, transmission electron microscopy, UV–Vis spectroscopy, and nuclear magnetic resonance spectroscopy. The cytotoxicity was examined via MTT assay, and the cellular uptake was observed using fluorescence microscopy. The CDD1 system persisted for over 8 h in tumor cells, which was a considerable improvement in the retention of the BP-containing cyclodextrin or the BP-containing liposomes, thereby indicating a higher BP content in CDD1. Nanoscale CDD1 formulations were administered intranasally to nude mice that had been intracranially implanted with temozolomide-resistant glioblastoma multiforme cells, resulting in increased median survival time. Liquid chromatography–mass spectrometry revealed that drug biodistribution via intranasal delivery increased the accumulation of BP 10-fold compared to oral delivery methods. Therefore, BP/cyclodextrin/liposomal formulations have potential clinical applications for treating drug-resistant brain tumors.
Collapse
Affiliation(s)
- En-Yi Lin
- Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shou-Feng, Hualien 974301, Taiwan; (E.-Y.L.); (Y.-S.L.); (S.-R.C.); (C.-H.L.)
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shou-Feng, Hualien 974301, Taiwan
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (Y.-S.C.); (M.-H.H.); (H.-M.C.); (H.-J.H.); (S.-Z.L.)
| | - Yu-Shuan Chen
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (Y.-S.C.); (M.-H.H.); (H.-M.C.); (H.-J.H.); (S.-Z.L.)
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan;
| | - Yuan-Sheng Li
- Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shou-Feng, Hualien 974301, Taiwan; (E.-Y.L.); (Y.-S.L.); (S.-R.C.); (C.-H.L.)
| | - Syuan-Rong Chen
- Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shou-Feng, Hualien 974301, Taiwan; (E.-Y.L.); (Y.-S.L.); (S.-R.C.); (C.-H.L.)
| | - Chia-Hung Lee
- Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shou-Feng, Hualien 974301, Taiwan; (E.-Y.L.); (Y.-S.L.); (S.-R.C.); (C.-H.L.)
| | - Mao-Hsuan Huang
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (Y.-S.C.); (M.-H.H.); (H.-M.C.); (H.-J.H.); (S.-Z.L.)
- Department of Stem Cell Applied Technology, Gwo Xi Stem Cell Applied Technology, Hsinchu 30261, Taiwan
| | - Hong-Meng Chuang
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (Y.-S.C.); (M.-H.H.); (H.-M.C.); (H.-J.H.); (S.-Z.L.)
- Laboratory of Translational Medicine Office, Development Center for Biotechnology, Taipei 115, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (Y.-S.C.); (M.-H.H.); (H.-M.C.); (H.-J.H.); (S.-Z.L.)
- Department of Pathology, Hualien Tzu Chi Hospital, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Hsueh-Hui Yang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan;
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (Y.-S.C.); (M.-H.H.); (H.-M.C.); (H.-J.H.); (S.-Z.L.)
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Dar-Fu Tai
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shou-Feng, Hualien 974301, Taiwan
- Correspondence: (D.-F.T.); (T.-W.C.); Tel.: +886-3-890-3579 (D.-F.T.); +886-3-890-3638 (T.-W.C.); Fax: +886-3-890-0162 (D.-F.T.); +886-3-890-0398 (T.-W.C.)
| | - Tzyy-Wen Chiou
- Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shou-Feng, Hualien 974301, Taiwan; (E.-Y.L.); (Y.-S.L.); (S.-R.C.); (C.-H.L.)
- Correspondence: (D.-F.T.); (T.-W.C.); Tel.: +886-3-890-3579 (D.-F.T.); +886-3-890-3638 (T.-W.C.); Fax: +886-3-890-0162 (D.-F.T.); +886-3-890-0398 (T.-W.C.)
| |
Collapse
|
89
|
Salman Ul Islam, Ahmed MB, Mazhar Ul-Islam, Shehzad A, Lee YS. Switching from Conventional to Nano-natural Phytochemicals to Prevent and Treat Cancers: Special Emphasis on Resveratrol. Curr Pharm Des 2020; 25:3620-3632. [PMID: 31605574 DOI: 10.2174/1381612825666191009161018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/01/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Natural phytochemicals and their derivatives have been used in medicine since prehistoric times. Natural phytochemicals have potential uses against various disorders, including cancers. However, due to low bioavailability, their success in clinical trials has not been reproduced. Nanotechnology has played a vital role in providing new directions for diagnosis, prevention, and treatment of different disorders, and of cancer in particular. Nanotechnology has demonstrated the capability to deliver conventional natural products with poor solubility or a short half-life to target specific sites in the body and regulate the release of drugs. Among the natural products, the phytoalexin resveratrol has demonstrated therapeutic effects, including antioxidant, antiinflammatory, and anti-proliferative effects, as well as the potential to inhibit the initiation and promotion of cancer. However, low water solubility and extensive first-pass metabolism lead to poor bioavailability of resveratrol, hindering its potential. Conventional dosage forms of resveratrol, such as tablets, capsules, dry powder, and injections, have met with limited success. Nanoformulations are now being investigated to improve the pharmacokinetic characteristics, as well as to enhance the bioavailability and targetability of resveratrol. OBJECTIVES This review details the therapeutic effectiveness, mode of action, and pharmacokinetic limitations of resveratrol, as well as discusses the successes and challenges of resveratrol nanoformulations. Modern nanotechnology techniques to enhance the encapsulation of resveratrol within nanoparticles and thereby enhance its therapeutic effects are emphasized. CONCLUSION To date, no resveratrol-based nanosystems are in clinical use, and this review would provide a new direction for further investigations on innovative nanodevices that could consolidate the anticancer potential of resveratrol.
Collapse
Affiliation(s)
- Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Muhammad B Ahmed
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, Oman
| | - Adeeb Shehzad
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Young S Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
90
|
Electrospun Resveratrol-Loaded Polyvinylpyrrolidone/Cyclodextrin Nanofibers and Their Biomedical Applications. Pharmaceutics 2020; 12:pharmaceutics12060552. [PMID: 32545836 PMCID: PMC7357065 DOI: 10.3390/pharmaceutics12060552] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/19/2022] Open
Abstract
Resveratrol is a naturally occurring polyphenol compound which has been shown to possess antioxidant and anti-inflammatory properties. However, its pharmaceutical applications are limited by its poor water solubility. In this study, we used electrospinning technology to synthesize nanofibers of polyvinylpyrrolidone (PVP) and hydroxypropyl-β-cyclodextrin (HPBCD) loaded with resveratrol. We used X-ray diffractometry to analyze crystalline structure, Fourier transform infrared spectroscopy to determine intermolecular hydrogen bonding, antioxidant assays to measure antioxidant activity, and Franz diffusion cells to evaluate skin penetration. Our results showed that the aqueous solubility of resveratrol nanofibers was greatly improved (by more than 20,000-fold) compared to the pure compound. Analysis of physicochemical properties demonstrated that following nanofiber formation, resveratrol was converted from a crystalline to amorphous structure, and resveratrol formed new intermolecular bonds with PVP and HPBCD. Moreover, resveratrol nanofibers showed good antioxidant activity. In addition, the skin penetration ability of resveratrol in the nanofiber formulation was greater than that of pure resveratrol. Furthermore, resveratrol nanofibers suppressed particulate matter (PM)-induced expression of inflammatory proteins (COX-2 and MMP-9) in HaCaT keratinocytes. Therefore, resveratrol-loaded nanofibers can effectively improve the solubility and physicochemical properties of resveratrol, and may have potential applications as an antioxidant and anti-inflammatory formulation for topical skin application.
Collapse
|
91
|
Pircalabioru GG, Chifiriuc MC. Nanoparticulate drug-delivery systems for fighting microbial biofilms: from bench to bedside. Future Microbiol 2020; 15:679-698. [PMID: 32495694 DOI: 10.2217/fmb-2019-0251] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biofilms are highly tolerant to antimicrobial agents and adverse environmental conditions being important reservoirs for chronic and hard-to-treat infections. Nanomaterials exhibit microbiostatic/microbicidal/antipathogenic properties and can be also used for the delivery of antibiofilm agents. However, few of the many promising leads offered by nanotechnology reach clinical studies and eventually, become available to clinicians. The aim of this paper was to review the progress and challenges in the development of nanotechnology-based antibiofilm drug-delivery systems. The main identified challenges are: most papers report only in vitro studies of the activity of different nanoformulations; lack of standardization in the methodological approaches; insufficient collaboration between material science specialists and clinicians; paucity of in vivo studies to test efficiency and safety.
Collapse
Affiliation(s)
- Gratiela G Pircalabioru
- University of Bucharest, Faculty of Biology, Research Institute of The University of Bucharest (ICUB), Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- University of Bucharest, Faculty of Biology, Research Institute of The University of Bucharest (ICUB), Bucharest, Romania
| |
Collapse
|
92
|
Santos AC, Costa D, Ferreira L, Guerra C, Pereira-Silva M, Pereira I, Peixoto D, Ferreira NR, Veiga F. Cyclodextrin-based delivery systems for in vivo-tested anticancer therapies. Drug Deliv Transl Res 2020; 11:49-71. [PMID: 32441011 DOI: 10.1007/s13346-020-00778-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyclodextrins (CDs) are naturally occurring macromolecules widely used as excipients on pharmaceutical formulations, evidencing a large spectrum of applications in the pharmaceutical industry. Their unique ability to act as molecular containers by entrapping a wide range of guest molecules in their internal cavity makes them a remarkable excipient to improve drug apparent solubility, stability, and bioavailability, and a valuable tool for the assembly of new drug delivery systems. These features are especially useful when it comes to chemotherapy, as most of the anticancer drugs present both low permeability and reduced water solubility. Therefore, guest-host inclusion complexes offer several potential advantages not only regarding the improvement of pharmaceutical formulations characteristics but also considering the reduction of drug toxic side effects. The combination of CDs with additional technologies and materials constitutes a potential strategy towards the development of advanced and multifunctional CD-based delivery systems. Paclitaxel, curcumin, camptothecin, doxorubicin, and cisplatin are among the most studied molecules with anticancer activities and have been successfully incorporated in such nanosystems. Exciting results using CDs and CD-based delivery systems have been obtained so far, paving the way towards the attainment of intelligent delivery systems to possibly address cancer therapeutics' unmet needs. In this review, a comprehensive exposition concerning in vivo-tested CD and CD-based delivery systems for anticancer therapy is undertaken. Additionally, the authors address the multivalent functionalities of CD-based delivery systems, namely the incorporation of active target ligands, stimuli-responsiveness components, surface functionalization, or further associations with other delivery systems, aiming at improved in vivo anticancer therapies. Graphical abstract.
Collapse
Affiliation(s)
- Ana Cláudia Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal.
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal.
| | - Diana Costa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal
| | - Laura Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal
| | - Catarina Guerra
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal
| | - Irina Pereira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal
| | - Nuno R Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal
| |
Collapse
|
93
|
Najafi M, Frey MW. Electrospun Nanofibers for Chemical Separation. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E982. [PMID: 32455530 PMCID: PMC7279547 DOI: 10.3390/nano10050982] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 12/02/2022]
Abstract
The separation and purification of specific chemicals from a mixture have become necessities for many environments, including agriculture, food science, and pharmaceutical and biomedical industries. Electrospun nanofiber membranes are promising materials for the separation of various species such as particles, biomolecules, dyes, and metals from liquids because of the combined properties of a large specific surface, light weight, high porosity, good connectivity, and tunable wettability. This paper reviews the recent progress in the design and fabrication of electrospun nanofibers for chemical separation. Different capture mechanisms including electrostatic, affinity, covalent bonding, chelation, and magnetic adsorption are explained and their distinct characteristics are highlighted. Finally, the challenges and future aspects of nanofibers for membrane applications are discussed.
Collapse
Affiliation(s)
- Mesbah Najafi
- Department of Fiber Science & Apparel Design, Cornell University, Ithaca, NY 14853, USA;
| | | |
Collapse
|
94
|
Carrouel F, Conte MP, Fisher J, Gonçalves LS, Dussart C, Llodra JC, Bourgeois D. COVID-19: A Recommendation to Examine the Effect of Mouthrinses with β-Cyclodextrin Combined with Citrox in Preventing Infection and Progression. J Clin Med 2020; 9:jcm9041126. [PMID: 32326426 PMCID: PMC7230644 DOI: 10.3390/jcm9041126] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/13/2020] [Indexed: 12/30/2022] Open
Abstract
Considered to be a major portal of entry for infectious agents, the oral cavity is directly associated with the evolutionary process of SARS-CoV-2 in its inhalation of ambient particles in the air and in expectorations. Some new generations of mouth rinses currently on the market have ingredients that could contribute to lower the SARS-CoV-2 viral load, and thus facilitate the fight against oral transmission. If chlorhexidine, a usual component of mouth rinse, is not efficient to kill SARS-CoV-2, the use of a mouth rinses and/or with local nasal applications that contain β-cyclodextrins combined with flavonoids agents, such as Citrox, could provide valuable adjunctive treatment to reduce the viral load of saliva and nasopharyngeal microbiota, including potential SARS-CoV-2 carriage. We urge national agencies and authorities to start clinical trials to evaluate the preventive effects of βCD-Citrox therapeutic oral biofilm rinses in reducing the viral load of the infection and possibly disease progression.
Collapse
Affiliation(s)
- Florence Carrouel
- University Lyon 1, Laboratory “Health Systemic Process”, EA4129, 69008 Lyon, France;
- Correspondence: ; Tel.: +33-4-78-78-57-44
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
| | - Julian Fisher
- THEnet, Training for Health Equity Network, New York, NY 10023, USA;
| | | | - Claude Dussart
- Lyon Public Hospices, Central Pharmacy, EA4129, 69002 Lyon, France;
| | - Juan Carlos Llodra
- Department of Preventive and Community Dentistry, University of Granada, 18010 Granada, Spain;
| | - Denis Bourgeois
- University Lyon 1, Laboratory “Health Systemic Process”, EA4129, 69008 Lyon, France;
| |
Collapse
|
95
|
|
96
|
Andreadelis I, Chatziathanasiadou ΜV, Ntountaniotis D, Valsami G, Papaemmanouil C, Christodoulou E, Mitropoulou G, Kourkoutas Y, Tzakos AG, Mavromoustakos T. Charting the structural and thermodynamic determinants in phenolic acid natural product - cyclodextrin encapsulations. J Biomol Struct Dyn 2020; 39:2642-2658. [PMID: 32249691 DOI: 10.1080/07391102.2020.1751716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cyclodextrins are pliable platforms that have served to optimize the pharmaceutic profile of numerous compounds and to enhance the stability of natural food additives. Caffeic and rosmarinic acid are natural products with proven health benefits, though their full therapeutic potential has not been exploited. To enhance their pharmaceutic profile, we developed cyclodextrin-based formulates and unveiled their thermodynamic and structural principles. The complexes' stoichiometry was determined by ESI-MS. Solid-state and liquid NMR spectroscopy revealed the interactions and the topographical location of the caffeic and rosmarinic acid inside the cyclodextrin cavity. The theoretically analyzed HP-β-CD's degree of substitution (DS) of caffeic and rosmarinic acids can explain the intensities obtained by 2D NOESY experiments. The thermodynamics and the affinity of the complexes were evaluated through isothermal titration calorimetry. In addition, the rosmarinic and caffeic acids as, also, their complexes showed considerable antimicrobial activity against common food spoilage and pathogenic bacteria. The generated data could provide the basis to understand the structural and thermodynamic determinants implicated in natural products - CD recognition and to develop platforms for the optimization of their pharmaceutical and stability profiles in order to be utilized as safe and stable natural antimicrobial food additives.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ioannis Andreadelis
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Μaria V Chatziathanasiadou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| | | | - Georgia Valsami
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Greece
| | - Christina Papaemmanouil
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| | - Eirini Christodoulou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Greece
| | - Gregoria Mitropoulou
- Laboratory of Applied Microbiology & Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology & Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Andreas G Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
97
|
Daghrery A, Aytac Z, Dubey N, Mei L, Schwendeman A, Bottino MC. Electrospinning of dexamethasone/cyclodextrin inclusion complex polymer fibers for dental pulp therapy. Colloids Surf B Biointerfaces 2020; 191:111011. [PMID: 32334136 DOI: 10.1016/j.colsurfb.2020.111011] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/06/2020] [Accepted: 04/01/2020] [Indexed: 11/26/2022]
Abstract
Beta-cyclodextrin (β-CD) is an oligosaccharide commonly used to improve the aqueous solubility of lipophilic drugs (e.g., dexamethasone, DEX). Here we present the development of a drug delivery system to provide sustained release of DEX by β-CD-inclusion complex (IC) to amplify the mineralization capacity of stem cells from human-extracted deciduous teeth (SHEDs) as a potential direct pulp capping strategy. First, IC of DEX (DEX-CD-IC) was synthesized with β-CD. To confirm DEX-CD-IC complex formation, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses were performed. XRD data indicated that IC formation was achieved due to formation of a new crystalline structure, whereas FTIR revealed the presence of the IC from the shifting of the peaks of each component in DEX-CD-IC. Then, electrospun poly(lactic-co-glycolic acid, PLGA) fibers (PLGA/DEX-CD-IC) were processed by varying the concentration of DEX-CD-IC (5%, 10 %, and 15 %). The release of DEX from fibers was determined by ultraperformance liquid chromatography for 28 days. Thanks to the solubility enhancement of DEX by IC, electrospun PLGA/DEX-CD-IC fibers released DEX in a more sustained fashion compared to PLGA/DEX fibers. No deleterious effect was found in terms of SHEDs' proliferation when cultured with or on electrospun fibers, regardless of the IC presence. Importantly, a more pronounced odontogenic differentiation was stimulated by electrospun fibers loaded with the lowest DEX-CD-IC concentration (5%), as a result of the sustained DEX release. In sum, PLGA/DEX-CD-IC fibers have great potential in vital dental pulp therapy, owing to its sustained DEX release, cytocompatibility, and odontogenic differentiation capacity.
Collapse
Affiliation(s)
- Arwa Daghrery
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, United States; Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan, 45142, Kingdom of Saudi Arabia
| | - Zeynep Aytac
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, United States
| | - Nileshkumar Dubey
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, United States
| | - Ling Mei
- Department of Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, United States.
| |
Collapse
|
98
|
Pereva S, Nikolova V, Sarafska T, Angelova S, Spassov T, Dudev T. Inclusion complexes of ibuprofen and β-cyclodextrin: Supramolecular structure and stability. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
99
|
Tibbetts I, Kostakis GE. Recent Bio-Advances in Metal-Organic Frameworks. Molecules 2020; 25:E1291. [PMID: 32178399 PMCID: PMC7144006 DOI: 10.3390/molecules25061291] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
Metal-organic frameworks (MOFs) have found uses in adsorption, catalysis, gas storage and other industrial applications. Metal Biomolecule Frameworks (bioMOFs) represent an overlap between inorganic, material and medicinal sciences, utilising the porous frameworks for biologically relevant purposes. This review details advances in bioMOFs, looking at the synthesis, properties and applications of both bioinspired materials and MOFs used for bioapplications, such as drug delivery, imaging and catalysis, with a focus on examples from the last five years.
Collapse
Affiliation(s)
| | - George E. Kostakis
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK;
| |
Collapse
|
100
|
Maldonado-Carmona N, Ouk TS, Calvete MJF, Pereira MM, Villandier N, Leroy-Lhez S. Conjugating biomaterials with photosensitizers: advances and perspectives for photodynamic antimicrobial chemotherapy. Photochem Photobiol Sci 2020; 19:445-461. [PMID: 32104827 DOI: 10.1039/c9pp00398c] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antimicrobial resistance is threatening to overshadow last century's medical advances. Previously eradicated infectious diseases are now resurgent as multi-drug resistant strains, leading to expensive, toxic and, in some cases, ineffective antimicrobial treatments. Given this outlook, researchers are willing to investigate novel antimicrobial treatments that may be able to deal with antimicrobial resistance, namely photodynamic therapy (PDT). PDT relies on the generation of toxic reactive oxygen species (ROS) in the presence of light and a photosensitizer (PS) molecule. PDT has been known for almost a century, but most of its applications have been directed towards the treatment of cancer and topical diseases. Unlike classical antimicrobial chemotherapy treatments, photodynamic antimicrobial chemotherapy (PACT) has a non-target specific mechanism of action, based on the generation of ROS, working against cellular membranes, walls, proteins, lipids and nucleic acids. This non-specific mechanism diminishes the chances of bacteria developing resistance. However, PSs usually are large molecules, prone to aggregation, diminishing their efficiency. This review will report the development of materials obtained from natural sources, as delivery systems for photosensitizing molecules against microorganisms. The present work emphasizes on the biological results rather than on the synthesis routes to prepare the conjugates. Also, it discusses the current state of the art, providing our perspective on the field.
Collapse
|