51
|
Bandello F, Borrelli E, Trevisi M, Lattanzio R, Sacconi R, Querques G. Imaging Biomarkers of Mesopic and Dark-Adapted Macular Functions in Eyes With Treatment-Naïve Mild Diabetic Retinopathy. Am J Ophthalmol 2023; 253:56-64. [PMID: 37059317 DOI: 10.1016/j.ajo.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE To investigate the relationship between imaging biomarkers and mesopic and dark-adapted (ie, scotopic) functions in patients with treatment-naïve mild diabetic retinopathy (DR) and normal visual acuity. DESIGN Prospective cross-sectional study. METHODS In this study, 60 patients with treatment-naïve mild DR (Early Treatment of Diabetic Retinopathy Study levels 20-35) and 30 healthy control subjects underwent microperimetry, structural optical coherence tomography (OCT), and OCT angiography (OCTA). RESULTS The foveal mesopic (22.4 ± 4.5 dB and 25.8 ± 2.0 dB, P = .005), parafoveal mesopic (23.2 ± 3.8 and 25.8 ± 1.9, P < .0001), and parafoveal dark-adapted (21.1 ± 2.8 dB and 23.2 ± 1.9 dB, P = .003) sensitivities were reduced in DR eyes. For foveal mesopic sensitivity, the regression analysis showed a significant topographic association with choriocapillaris flow deficits percentage (CC FD%; β = -0.234, P = .046) and ellipsoid zone (EZ) normalized reflectivity (β = 0.282, P = .048). Parafoveal mesopic sensitivity was significantly topographically associated with inner retinal thickness (β = 0.253, P = .035), deep capillary plexus (DCP) vessel length density (VLD; β = 0.542, P = .016), CC FD% (β = -0.312, P = .032), and EZ normalized reflectivity (β = 0.328, P = .031). Similarly, parafoveal dark-adapted sensitivity was topographically associated with inner retinal thickness (β = 0.453, P = .021), DCP VLD (β = 0.370, P = .030), CC FD% (β = -0.282, P = .048), and EZ normalized reflectivity (β = 0.295, P = .042). CONCLUSIONS In treatment-naïve mild DR eyes, both rod and cone functions are affected and they are associated with both DCP and CC flow impairment, which suggests that a macular hypoperfusion at these levels might implicate a reduction in photoreceptor function. Normalized EZ reflectivity may be a valuable structural biomarker for assessing photoreceptor function in DR. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
Affiliation(s)
- Francesco Bandello
- From the Vita-Salute San Raffaele University Milan and the IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Enrico Borrelli
- From the Vita-Salute San Raffaele University Milan and the IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Trevisi
- From the Vita-Salute San Raffaele University Milan and the IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rosangela Lattanzio
- From the Vita-Salute San Raffaele University Milan and the IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Riccardo Sacconi
- From the Vita-Salute San Raffaele University Milan and the IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Querques
- From the Vita-Salute San Raffaele University Milan and the IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
52
|
Zammit A, Coquet J, Hah J, el Hajouji O, Asch SM, Carroll I, Curtin CM, Hernandez-Boussard T. Postoperative opioid prescribing patients with diabetes: Opportunities for personalized pain management. PLoS One 2023; 18:e0287697. [PMID: 37616195 PMCID: PMC10449216 DOI: 10.1371/journal.pone.0287697] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/12/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Opioids are commonly prescribed for postoperative pain, but may lead to prolonged use and addiction. Diabetes impairs nerve function, complicates pain management, and makes opioid prescribing particularly challenging. METHODS This retrospective observational study included a cohort of postoperative patients from a multisite academic health system to assess the relationship between diabetes, pain, and prolonged opioid use (POU), 2008-2019. POU was defined as a new opioid prescription 3-6 months after discharge. The odds that a patient had POU was assessed using multivariate logistic regression controlling for patient factors (e.g., demographic and clinical factors, as well as prior pain and opiate use). FINDINGS A total of 43,654 patients were included, 12.4% with diabetes. Patients with diabetes had higher preoperative pain scores (2.1 vs 1.9, p<0.001) and lower opioid naïve rates (58.7% vs 68.6%, p<0.001). Following surgery, patients with diabetes had higher rates of POU (17.7% vs 12.7%, p<0.001) despite receiving similar opioid prescriptions at discharge. Patients with Type I diabetes were more likely to have POU compared to other patients (Odds Ratio [OR]: 2.22; 95% Confidence Interval [CI]:1.69-2.90 and OR:1.44, CI: 1.33-1.56, respectively). INTERPRETATION In conclusion, surgical patients with diabetes are at increased risk for POU even after controlling for likely covariates, yet they receive similar postoperative opiate therapy. The results suggest a more tailored approach to diabetic postoperative pain management is warranted.
Collapse
Affiliation(s)
- Alban Zammit
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Institute for Computational & Mathematical Engineering, Stanford University, Stanford, California, United States of America
| | - Jean Coquet
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jennifer Hah
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Oualid el Hajouji
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Institute for Computational & Mathematical Engineering, Stanford University, Stanford, California, United States of America
| | - Steven M. Asch
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- US Department of Veterans Affairs, Palo Alto Healthcare System, Palo Alto, California, United States of America
| | - Ian Carroll
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Catherine M. Curtin
- Department of Surgery, VA Palo Alto Health Care System, Menlo Park, California, United States of America
- Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Biomedical Data Science, Stanford University, Stanford, California, United States of America
| | - Tina Hernandez-Boussard
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Biomedical Data Science, Stanford University, Stanford, California, United States of America
| |
Collapse
|
53
|
Grbić E, Globočnik Petrovič M, Cilenšek I, Petrovič D. SLC22A3 rs2048327 Polymorphism Is Associated with Diabetic Retinopathy in Caucasians with Type 2 Diabetes Mellitus. Biomedicines 2023; 11:2303. [PMID: 37626799 PMCID: PMC10452275 DOI: 10.3390/biomedicines11082303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The Solute Carrier Family 22 Member 3 (SLC22A3) is a high-capacity, low-affinity transporter for the neurotransmitters norepinephrine, epinephrine, dopamine, serotonin, and histamine. SLC22A3 plays important roles in interorgan and interorganism small-molecule communication, and also regulates local and overall homeostasis in the body. Our aim was to investigate the association between the rs2048327 gene polymorphism and diabetic retinopathy (DR) in Slovenian patients with type 2 diabetes mellitus (T2DM). We also investigated SLC22A3 expression in the fibrovascular membranes (FVMs) of patients with proliferative DR (PDR). Our study involved 1555 unrelated Caucasians with T2DM with a defined ophthalmologic status: 577 of them with DR as the study group, and 978 without DR as the control group. The investigated polymorphisms were genotyped using the KASPar genotyping assay. The expression of SLC22A3 (organic cation transporter 3-OCT3) was examined via immunohistochemistry in human FVM from 16 patients with PDR. The C allele and CC genotype frequencies of the rs2048327 polymorphism were significantly higher in the study group compared to the controls. The logistic regression analysis showed that the carriers of the CC genotype in the recessive genetic models of this polymorphism have a 1.531-fold increase (95% CI 1.083-2.161) in the risk of developing DR. Patients with the C allele of rs2048327 compared to the homozygotes for the wild type T allele exhibited a higher density of SLC22A3 (OCT3)-positive cells (10.5 ± 4.5/mm2 vs. 6.1 ± 2.7/mm2, respectively; p < 0.001). We showed the association of the rs2048327 SLC22A3 gene polymorphism with DR in a Slovenian cohort with type 2 diabetes mellitus, indicating its possible role as a genetic risk factor for the development of this diabetic complication.
Collapse
Affiliation(s)
- Emin Grbić
- Department of Physiology, Faculty of Medicine, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina;
| | | | - Ines Cilenšek
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Danijel Petrovič
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
54
|
Rajendrakumar AL, Hapca SM, Nair ATN, Huang Y, Chourasia MK, Kwan RSY, Nangia C, Siddiqui MK, Vijayaraghavan P, Matthew SZ, Leese GP, Mohan V, Pearson ER, Doney ASF, Palmer CNA. Competing risks analysis for neutrophil to lymphocyte ratio as a predictor of diabetic retinopathy incidence in the Scottish population. BMC Med 2023; 21:304. [PMID: 37563596 PMCID: PMC10413718 DOI: 10.1186/s12916-023-02976-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a major sight-threatening microvascular complication in individuals with diabetes. Systemic inflammation combined with oxidative stress is thought to capture most of the complexities involved in the pathology of diabetic retinopathy. A high level of neutrophil-lymphocyte ratio (NLR) is an indicator of abnormal immune system activity. Current estimates of the association of NLR with diabetes and its complications are almost entirely derived from cross-sectional studies, suggesting that the nature of the reported association may be more diagnostic than prognostic. Therefore, in the present study, we examined the utility of NLR as a biomarker to predict the incidence of DR in the Scottish population. METHODS The incidence of DR was defined as the time to the first diagnosis of R1 or above grade in the Scottish retinopathy grading scheme from type 2 diabetes diagnosis. The effect of NLR and its interactions were explored using a competing risks survival model adjusting for other risk factors and accounting for deaths. The Fine and Gray subdistribution hazard model (FGR) was used to predict the effect of NLR on the incidence of DR. RESULTS We analysed data from 23,531 individuals with complete covariate information. At 10 years, 8416 (35.8%) had developed DR and 2989 (12.7%) were lost to competing events (death) without developing DR and 12,126 individuals did not have DR. The median (interquartile range) level of NLR was 2.04 (1.5 to 2.7). The optimal NLR cut-off value to predict retinopathy incidence was 3.04. After accounting for competing risks at 10 years, the cumulative incidence of DR and deaths without DR were 50.7% and 21.9%, respectively. NLR was associated with incident DR in both Cause-specific hazard (CSH = 1.63; 95% CI: 1.28-2.07) and FGR models the subdistribution hazard (sHR = 2.24; 95% CI: 1.70-2.94). Both age and HbA1c were found to modulate the association between NLR and the risk of DR. CONCLUSIONS The current study suggests that NLR has a promising potential to predict DR incidence in the Scottish population, especially in individuals less than 65 years and in those with well-controlled glycaemic status.
Collapse
Affiliation(s)
- Aravind Lathika Rajendrakumar
- Division of Population Health and Genomics, Ninewells Hospital, University of Dundee, Dundee, UK
- Biodemography of Aging Research Unit, Duke University, Durham, NC, 27708-0408, USA
| | - Simona M Hapca
- Division of Population Health and Genomics, Ninewells Hospital, University of Dundee, Dundee, UK
- Division of Computing Science and Mathematics, University of Stirling, Stirling, FK9 4LA, Scotland
| | | | - Yu Huang
- Division of Population Health and Genomics, Ninewells Hospital, University of Dundee, Dundee, UK
| | - Mehul Kumar Chourasia
- Division of Population Health and Genomics, Ninewells Hospital, University of Dundee, Dundee, UK
- IQVIA, 3 Forbury Place, 23 Forbury Road, Reading, RG1 3JH, UK
| | - Ryan Shun-Yuen Kwan
- Division of Population Health and Genomics, Ninewells Hospital, University of Dundee, Dundee, UK
- Beatson Institute for Cancer Research, Glasgow, UK
| | - Charvi Nangia
- Division of Population Health and Genomics, Ninewells Hospital, University of Dundee, Dundee, UK
| | - Moneeza K Siddiqui
- Division of Population Health and Genomics, Ninewells Hospital, University of Dundee, Dundee, UK
- Wolfson Institute of Population Health, Queen Mary University of London, London, E1 4NS, UK
| | | | | | - Graham P Leese
- Department of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | | | - Ewan R Pearson
- Division of Population Health and Genomics, Ninewells Hospital, University of Dundee, Dundee, UK
| | - Alexander S F Doney
- Division of Population Health and Genomics, Ninewells Hospital, University of Dundee, Dundee, UK
| | - Colin N A Palmer
- Division of Population Health and Genomics, Ninewells Hospital, University of Dundee, Dundee, UK.
| |
Collapse
|
55
|
Duong RT, Cai X, Ambati NR, Shildkrot YE. Clinical Outcomes of 27-Gauge Pars Plana Vitrectomy for Diabetic Tractional Retinal Detachment Repair. JOURNAL OF VITREORETINAL DISEASES 2023; 7:281-289. [PMID: 37927313 PMCID: PMC10621701 DOI: 10.1177/24741264231169145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Purpose: To analyze the clinical outcomes of 27-gauge pars plana vitrectomy (PPV) repair of diabetic tractional retinal detachment (TRD) of various severities. Methods: This retrospective case series examined the outcomes of 27-gauge PPV to repair diabetic TRD from 2016 to 2020. The effect of medical and ophthalmologic history parameters and baseline detachment characteristics on visual acuity (VA) and retinal reattachment was analyzed. A grading system was established to stage the severity of the baseline vitreoretinal traction or detachment and compare the visual and anatomic outcomes between stages. Results: The study comprised 79 eyes (79 patients). The overall redetachment rate was 10.1% (8/79). The proportion of eyes with severe visual impairment (worse than 20/200) decreased from 81.0% (64/79) preoperatively to 56.9% (37/65) 6 months postoperatively (P < .001). Worse preoperative logMAR VA was associated with greater odds of redetachment (P = .017) and worse postoperative VA (P < .001). Insulin dependence was associated with better VA at 6 months (P = .017). A shorter known duration of diabetes (P = .026) and evidence of neovascularization of the iris (NVI) or angle (P = .004) were associated with worse visual outcomes. Eyes with detachment involving the posterior pole extending beyond the equator had worse VA at 6 months (P = .048). Conclusions: The primary reattachment rate after 27-gauge PPV was 89.9%. There was significant VA improvement, with a roughly 40% reduction in the number of eyes with severe visual impairment by the final follow-up. Insulin dependence, duration of diabetes, presence of NVI before surgery, and baseline posterior pole detachment extending beyond the equator were predictors of visual outcomes.
Collapse
Affiliation(s)
- Ryan T. Duong
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA
| | - Xiaoyu Cai
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA
| | - Naveen R. Ambati
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
56
|
Huda NU, Salam AA, Alghamdi NS, Zeb J, Akram MU. Proliferative Diabetic Retinopathy Diagnosis Using Varying-Scales Filter Banks and Double-Layered Thresholding. Diagnostics (Basel) 2023; 13:2231. [PMID: 37443625 DOI: 10.3390/diagnostics13132231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 07/15/2023] Open
Abstract
Diabetic retinopathy is one of the abnormalities of the retina in which a diabetic patient suffers from severe vision loss due to an affected retina. Proliferative diabetic retinopathy (PDR) is the final and most critical stage of diabetic retinopathy. Abnormal and fragile blood vessels start to grow on the surface of the retina at this stage. It causes retinal detachment, which may lead to complete blindness in severe cases. In this paper, a novel method is proposed for the detection and grading of neovascularization. The proposed system first performs pre-processing on input retinal images to enhance the vascular pattern, followed by blood vessel segmentation and optic disc localization. Then various features are tested on the candidate regions with different thresholds. In this way, positive and negative advanced diabetic retinopathy cases are separated. Optic disc coordinates are applied for the grading of neovascularization as NVD or NVE. The proposed algorithm improves the quality of automated diagnostic systems by eliminating normal blood vessels and exudates that might cause hindrances in accurate disease detection, thus resulting in more accurate detection of abnormal blood vessels. The evaluation of the proposed system has been carried out using performance parameters such as sensitivity, specificity, accuracy, and positive predictive value (PPV) on a publicly available standard retinal image database and one of the locally available databases. The proposed algorithm gives an accuracy of 98.5% and PPV of 99.8% on MESSIDOR and an accuracy of 96.5% and PPV of 100% on the local database.
Collapse
Affiliation(s)
- Noor Ul Huda
- Center for Advanced Studies in Telecommunications (CAST), COMSATS Institute of Information Technology, Islamabad 45550, Pakistan
| | - Anum Abdul Salam
- Computer and Software Engineering Department, College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Islamabad 24090, Pakistan
| | - Norah Saleh Alghamdi
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Jahan Zeb
- Computer and Software Engineering Department, College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Islamabad 24090, Pakistan
| | - Muhammad Usman Akram
- Computer and Software Engineering Department, College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Islamabad 24090, Pakistan
| |
Collapse
|
57
|
Lee J, Hu Z, Wang YA, Nath D, Liang W, Cui Y, Ma JX, Duerfeldt AS. Design, Synthesis, and Structure-Activity Relationships of Biaryl Anilines as Subtype-Selective PPAR-alpha Agonists. ACS Med Chem Lett 2023; 14:766-776. [PMID: 37312852 PMCID: PMC10258832 DOI: 10.1021/acsmedchemlett.3c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/16/2023] [Indexed: 06/15/2023] Open
Abstract
The role of peroxisome proliferator-activated receptor alpha (PPARα) in retinal biology is clarifying, and evidence demonstrates that novel PPARα agonists hold promising therapeutic utility for diseases like diabetic retinopathy and age-related macular degeneration. Herein, we disclose the design and initial structure-activity relationships for a new biaryl aniline PPARα agonistic chemotype. Notably, this series exhibits subtype selectivity for PPARα over other isoforms, a phenomenon postulated to be due to the unique benzoic acid headgroup. This biphenyl aniline series is sensitive to B-ring functionalization but allows isosteric replacement, and provides an opportunity for C-ring extension. From this series, 3g, 6j, and 6d were identified as leads with <90 nM potency in a cell-based luciferase assay cell and exhibited efficacy in various disease-relevant cell contexts, thereby setting the stage for further characterization in more advanced in vitro and in vivo models.
Collapse
Affiliation(s)
- Julia
J. Lee
- Department
of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ziwei Hu
- Department
of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yuhong Anna Wang
- Department
of Physiology, University of Oklahoma Health
Sciences Center, Oklahoma
City, Oklahoma 73104, United States
| | - Dinesh Nath
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United
States
| | - Wentao Liang
- Department
of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Yi Cui
- Department
of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, United States
- Department
of Ophthalmology, Fujian Medical University
Union Hospital, Fujian 350001, China
| | - Jian-Xing Ma
- Department
of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Adam S. Duerfeldt
- Department
of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
58
|
Lepre CC, Russo M, Trotta MC, Petrillo F, D'Agostino FA, Gaudino G, D'Amico G, Campitiello MR, Crisci E, Nicoletti M, Gesualdo C, Simonelli F, D'Amico M, Hermenean A, Rossi S. Inhibition of Galectins and the P2X7 Purinergic Receptor as a Therapeutic Approach in the Neurovascular Inflammation of Diabetic Retinopathy. Int J Mol Sci 2023; 24:ijms24119721. [PMID: 37298672 DOI: 10.3390/ijms24119721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Diabetic retinopathy (DR) is the most frequent microvascular retinal complication of diabetic patients, contributing to loss of vision. Recently, retinal neuroinflammation and neurodegeneration have emerged as key players in DR progression, and therefore, this review examines the neuroinflammatory molecular basis of DR. We focus on four important aspects of retinal neuroinflammation: (i) the exacerbation of endoplasmic reticulum (ER) stress; (ii) the activation of the NLRP3 inflammasome; (iii) the role of galectins; and (iv) the activation of purinergic 2X7 receptor (P2X7R). Moreover, this review proposes the selective inhibition of galectins and the P2X7R as a potential pharmacological approach to prevent the progression of DR.
Collapse
Affiliation(s)
- Caterina Claudia Lepre
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 310144 Arad, Romania
| | - Marina Russo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Francesco Petrillo
- Ph.D. Course in Translational Medicine, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Fabiana Anna D'Agostino
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Gennaro Gaudino
- School of Anesthesia and Intensive Care, University of Foggia, 71122 Foggia, Italy
| | | | - Maria Rosaria Campitiello
- Department of Obstetrics and Gynecology and Physiopathology of Human Reproduction, ASL Salerno, 84124 Salerno, Italy
| | - Erminia Crisci
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maddalena Nicoletti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Carlo Gesualdo
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Francesca Simonelli
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Michele D'Amico
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anca Hermenean
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 310144 Arad, Romania
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
59
|
Sadikan MZ, Abdul Nasir NA, Bakar NS, Iezhitsa I, Agarwal R. Tocotrienol-rich fraction reduces retinal inflammation and angiogenesis in rats with streptozotocin-induced diabetes. BMC Complement Med Ther 2023; 23:179. [PMID: 37268913 DOI: 10.1186/s12906-023-04005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/20/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is the second commonest microvascular complication of diabetes mellitus. It is characterized by chronic inflammation and angiogenesis. Palm oil-derived tocotrienol-rich fraction (TRF), a substance with anti-inflammatory and anti-angiogenic properties, may provide protection against DR development. Therefore, in this study, we investigated the effect of TRF on retinal vascular and morphological changes in diabetic rats. The effects of TRF on the retinal expression of inflammatory and angiogenic markers were also studied in the streptozotocin (STZ)-induced diabetic rats. METHODS Male Sprague Dawley rats weighing 200-250 g were grouped into normal rats (N) and diabetic rats. Diabetes was induced by intraperitoneal injection of streptozotocin (55 mg/kg body weight) whereas N similarly received citrate buffer. STZ-injected rats with blood glucose of more than 20 mmol/L were considered diabetic and were divided into vehicle-treated (DV) and TRF-treated (DT) groups. N and DV received vehicle, whereas DT received TRF (100 mg/kg body weight) via oral gavage once daily for 12 weeks. Fundus images were captured at week 0 (baseline), week 6 and week 12 post-STZ induction to estimate vascular diameters. At the end of experimental period, rats were euthanized, and retinal tissues were collected for morphometric analysis and measurement of NFκB, phospho-NFκB (Ser536), HIF-1α using immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA). Retinal inflammatory and angiogenic cytokines expression were measured by ELISA and real-time quantitative PCR. RESULTS TRF preserved the retinal layer thickness (GCL, IPL, INL and OR; p < 0.05) and retinal venous diameter (p < 0.001). TRF also lowered the retinal NFκB activation (p < 0.05) as well as expressions of IL-1β, IL-6, TNF-α, IFN-γ, iNOS and MCP-1 (p < 0.05) compared to vehicle-treated diabetic rats. Moreover, TRF also reduced retinal expression of VEGF (p < 0.001), IGF-1 (p < 0.001) and HIF-1α (p < 0.05) compared to vehicle-treated rats with diabetes. CONCLUSION Oral TRF provided protection against retinal inflammation and angiogenesis in rats with STZ-induced diabetes by suppressing the expression of the markers of retinal inflammation and angiogenesis.
Collapse
Affiliation(s)
- Muhammad Zulfiqah Sadikan
- Department of Pharmacology, Faculty of Medicine, Manipal University College Malaysia (MUCM), Bukit Baru, 75150, Melaka, Malaysia
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Nurul Alimah Abdul Nasir
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia.
| | - Nor Salmah Bakar
- Department of Pathology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Igor Iezhitsa
- School of Medicine, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Pavshikh Bortsov sq. 1, Volgograd, 400131, Russia
| | - Renu Agarwal
- School of Medicine, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
60
|
Adel H, Fawzy O, Mahmoud E, Mohammed NS, Khidr EG. Inactive matrix Gla protein in relation to diabetic retinopathy in type 2 diabetes. J Diabetes Metab Disord 2023; 22:603-610. [PMID: 37255818 PMCID: PMC10225436 DOI: 10.1007/s40200-022-01180-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/26/2022] [Indexed: 06/01/2023]
Abstract
Background and Aims The contribution of inactive Matrix Gla protein (MGP) to ectopic vascular calcification associated with type 2 diabetes mellitus (T2DM) is well recognized. However, its role in diabetic microvascular complications remains unknown. The study aim was to identify any association between inactive MGP and diabetic retinopathy (DR). Its relation to insulin resistance was also explored. Methods The study included 90 participants, 65 Type 2 diabetic patients (25 without DR and 40 with DR) and 25 healthy controls. Serum inactive MGP was measured using ELISA. HOMA-IR was also assessed. Results Inactive MGP was significantly higher in both diabetic groups compared to controls (P < 0.001), as well as in Type 2 diabetic patients with retinopathy compared to Type 2 diabetes without retinopathy (P = 0.002). Inactive MGP was positively correlated with HbA1c, HOMA-IR, LDL-C and triglycerides (P < 0.001), and negatively correlated with HDL-C (P = 0.008) and eGFR (P < 0.001). Logistic Regression Analysis showed that inactive MGP was one of the most associated factors with DR. Conclusions Inactive MGP was found to be related to DR, insulin resistance and other dysmetabolic risk factors. These findings highlight that inactive MGP may be a significant contributor to the pathogenesis, evolution, and progression of DR.
Collapse
Affiliation(s)
- Hend Adel
- Department of Endocrinology and Metabolism, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Olfat Fawzy
- Department of Endocrinology and Metabolism, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Eman Mahmoud
- Department of Endocrinology and Metabolism, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Nesma Sayed Mohammed
- Department of Ophthalmology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Emad Gamil Khidr
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy for Boys, Al-Azhar University, Nasr City, 13465 Cairo Egypt
| |
Collapse
|
61
|
Lin CL, Wu KC. Development of revised ResNet-50 for diabetic retinopathy detection. BMC Bioinformatics 2023; 24:157. [PMID: 37076790 PMCID: PMC10114328 DOI: 10.1186/s12859-023-05293-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/15/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) produces bleeding, exudation, and new blood vessel formation conditions. DR can damage the retinal blood vessels and cause vision loss or even blindness. If DR is detected early, ophthalmologists can use lasers to create tiny burns around the retinal tears to inhibit bleeding and prevent the formation of new blood vessels, in order to prevent deterioration of the disease. The rapid improvement of deep learning has made image recognition an effective technology; it can avoid misjudgments caused by different doctors' evaluations and help doctors to predict the condition quickly. The aim of this paper is to adopt visualization and preprocessing in the ResNet-50 model to improve module calibration, to enable the model to predict DR accurately. RESULTS This study compared the performance of the proposed method with other common CNNs models (Xception, AlexNet, VggNet-s, VggNet-16 and ResNet-50). In examining said models, the results alluded to an over-fitting phenomenon, and the outcome of the work demonstrates that the performance of the revised ResNet-50 (Train accuracy: 0.8395 and Test accuracy: 0.7432) is better than other common CNNs (that is, the revised structure of ResNet-50 could avoid the overfitting problem, decease the loss value, and reduce the fluctuation problem). CONCLUSIONS This study proposed two approaches to designing the DR grading system: a standard operation procedure (SOP) for preprocessing the fundus image, and a revised structure of ResNet-50, including an adaptive learning rating to adjust the weight of layers, regularization and change the structure of ResNet-50, which was selected for its suitable features. It is worth noting that the purpose of this study was not to design the most accurate DR screening network, but to demonstrate the effect of the SOP of DR and the visualization of the revised ResNet-50 model. The results provided an insight to revise the structure of CNNs using the visualization tool.
Collapse
Affiliation(s)
- Chun-Ling Lin
- Department of Electrical Engineering, Ming Chi University of Technology, No. 84, Gongzhuan Rd., Taishan Dist., New Taipei City, 243, Taiwan.
| | - Kun-Chi Wu
- Department of Electrical Engineering, Ming Chi University of Technology, No. 84, Gongzhuan Rd., Taishan Dist., New Taipei City, 243, Taiwan
| |
Collapse
|
62
|
Dadzie AK, Le D, Abtahi M, Ebrahimi B, Son T, Lim JI, Yao X. Normalized Blood Flow Index in Optical Coherence Tomography Angiography Provides a Sensitive Biomarker of Early Diabetic Retinopathy. Transl Vis Sci Technol 2023; 12:3. [PMID: 37017960 PMCID: PMC10082385 DOI: 10.1167/tvst.12.4.3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/09/2023] [Indexed: 04/06/2023] Open
Abstract
Purpose To evaluate the sensitivity of normalized blood flow index (NBFI) for detecting early diabetic retinopathy (DR). Methods Optical coherence tomography angiography (OCTA) images of healthy controls, diabetic patients without DR (NoDR), and patients with mild nonproliferative DR (NPDR) were analyzed in this study. The OCTA images were centered on the fovea and covered a 6 mm × 6 mm area. Enface projections of the superficial vascular plexus (SVP) and the deep capillary plexus (DCP) were obtained for the quantitative OCTA feature analysis. Three quantitative OCTA features were examined: blood vessel density (BVD), blood flow flux (BFF), and NBFI. Each feature was calculated from both the SVP and DCP and their sensitivities to distinguish the three cohorts of the study were evaluated. Results The only quantitative feature capable of distinguishing all three cohorts was NBFI in the DCP image. Comparative study revealed that both BVD and BFF were able to distinguish the controls and NoDR from mild NPDR. However, neither BVD nor BFF was sensitive enough to separate NoDR from the healthy controls. Conclusions The NBFI has been demonstrated as a sensitive biomarker of early DR, revealing retinal blood flow abnormality better than traditional BVD and BFF. The NBFI in the DCP was verified as the most sensitive biomarker, supporting that diabetes affects the DCP earlier than SVP in DR. Translational Relevance NBFI provides a robust biomarker for quantitative analysis of DR-caused blood flow abnormalities, promising early detection and objective classification of DR.
Collapse
Affiliation(s)
- Albert K. Dadzie
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - David Le
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Mansour Abtahi
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Behrouz Ebrahimi
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Taeyoon Son
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Jennifer I. Lim
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Xincheng Yao
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
63
|
Hu B, Ma JX, Duerfeldt AS. The cGAS-STING pathway in diabetic retinopathy and age-related macular degeneration. Future Med Chem 2023; 15:717-729. [PMID: 37166075 PMCID: PMC10194038 DOI: 10.4155/fmc-2022-0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/28/2023] [Indexed: 05/12/2023] Open
Abstract
Diabetic retinopathy and age-related macular degeneration are common retinal diseases with shared pathophysiology, including oxidative stress-induced inflammation. Cellular mechanisms responsible for converting oxidative stress into retinal damage are ill-defined but have begun to clarify. One common outcome of retinal oxidative stress is mitochondrial damage and subsequent release of mitochondrial DNA into the cytosol. This leads to activation of the cGAS-STING pathway, resulting in interferon release and disease-amplifying inflammation. This review summarizes the evolving link between aberrant cGAS-STING signaling and inflammation in common retinal diseases and provides prospective for targeting this system in diabetic retinopathy and age-related macular degeneration. Further defining the roles of this system in the retina is expected to reveal new disease pathology and novel therapeutic approaches.
Collapse
Affiliation(s)
- Bo Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA
| | - Adam S Duerfeldt
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA
| |
Collapse
|
64
|
Ansari-Mohseni N, Ghorani-Azam A, Mohajeri SA. Therapeutic effects of herbal medicines in different types of retinopathies: A systematic review. AVICENNA JOURNAL OF PHYTOMEDICINE 2023; 13:118-142. [PMID: 37333471 PMCID: PMC10274316 DOI: 10.22038/ajp.2022.62423.2977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/13/2022] [Indexed: 06/20/2023]
Abstract
Objective Retinopathy is an ocular manifestation of systemic diseases such as diabetes and vascular diseases. Herbal drugs have been considered as an effective therapeutic option with minimal side effects for the treatment of retinopathy by reducing the symptoms and improving visual acuity. The purpose of this systematic review was to collect studies on the effectiveness of medicinal plants in the treatment or prevention of retinopathy. Materials and Methods A systematic literature search was performed in PubMed, Scopus, Google Scholar, and other databases in April 2021 using "herbal products" and "Retinopathy" with all their equivalent and similar terms. For this purpose, human clinical trials with the English language were included and articles with subject irrelevancy were excluded from further evaluation. Results Overall, 30 articles with 2324 patients were studied for possible effects of herbal therapy on retinopathy. From 30 included articles, different herbal products had been evaluated. Out of 30 selected articles, 11 articles were for the treatment of age-related macular degeneration (AMD), 14 articles covered patients with diabetic retinopathy, and the other five studies were for other retinal disorders. The outcomes in majority of the studies include changes in visual acuity (VA), fundus performance, best-corrected visual acuity (BCVA), central macular thickness (CMT), focal electroretinogram (fERG), supplements and adjuvant medications appeared to be more beneficial in patients with AMD and diabetic maculopathy. Conclusion Herbal therapy can be considered as a potential candidate in the adjuvant and complementary therapies of retinopathy. However, further studies are required to verify such efficiency.
Collapse
Affiliation(s)
- Negin Ansari-Mohseni
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Equal first author
| | - Adel Ghorani-Azam
- Department of Forensic Medicine and Toxicology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Equal first author
| | - Seyed Ahmad Mohajeri
- Pharmacetical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
65
|
Paul S, Kim C, Soliman MK, Sobol W, Echegaray JJ, Kurup S. Can the Future be Bright with Advances in Diabetic Eye Care? Endocrinol Metab Clin North Am 2023; 52:89-99. [PMID: 36754499 DOI: 10.1016/j.ecl.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The prevalence of diabetic retinopathy is steadily increasing as the population of patients with diabetes grows. In the past decade, the development of anti-VEGF agents has dramatically changed the treatment landscape for diabetic retinopathy and diabetic macular edema (DME). Newer agents in development aim to reduce the treatment burden of diabetic retinopathy.
Collapse
Affiliation(s)
- Samantha Paul
- University Hospitals Eye Institute/Department of Ophthalmology and Visual Sciences, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | - Christian Kim
- University Hospitals Eye Institute/Department of Ophthalmology and Visual Sciences, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | - Mohamed Kamel Soliman
- Department of Ophthalmology, Assiut University Hospitals, Al Walideyah Al Qebleyah, Asyut 2, Assiut Governorate 2074020, Egypt; Case Western Reserve University, Vitreoretinal Diseases & Surgery, Ocular Immunology & Uveitis, Department of Ophthalmology, University Hospitals, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | - Warren Sobol
- University Hospitals Eye Institute/Department of Ophthalmology and Visual Sciences, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106, USA; Case Western Reserve University, Vitreoretinal Diseases & Surgery, Ocular Immunology & Uveitis, Department of Ophthalmology, University Hospitals, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | - Jose J Echegaray
- University Hospitals Eye Institute/Department of Ophthalmology and Visual Sciences, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106, USA; Case Western Reserve University, Vitreoretinal Diseases & Surgery, Ocular Immunology & Uveitis, Department of Ophthalmology, University Hospitals, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | - Shree Kurup
- University Hospitals Eye Institute/Department of Ophthalmology and Visual Sciences, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106, USA; Case Western Reserve University, Vitreoretinal Diseases & Surgery, Ocular Immunology & Uveitis, Department of Ophthalmology, University Hospitals, 11100 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
66
|
Experimental Models to Study Epithelial-Mesenchymal Transition in Proliferative Vitreoretinopathy. Int J Mol Sci 2023; 24:ijms24054509. [PMID: 36901938 PMCID: PMC10003383 DOI: 10.3390/ijms24054509] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Proliferative vitreoretinal diseases (PVDs) encompass proliferative vitreoretinopathy (PVR), epiretinal membranes, and proliferative diabetic retinopathy. These vision-threatening diseases are characterized by the development of proliferative membranes above, within and/or below the retina following epithelial-mesenchymal transition (EMT) of the retinal pigment epithelium (RPE) and/or endothelial-mesenchymal transition of endothelial cells. As surgical peeling of PVD membranes remains the sole therapeutic option for patients, development of in vitro and in vivo models has become essential to better understand PVD pathogenesis and identify potential therapeutic targets. The in vitro models range from immortalized cell lines to human pluripotent stem-cell-derived RPE and primary cells subjected to various treatments to induce EMT and mimic PVD. In vivo PVR animal models using rabbit, mouse, rat, and swine have mainly been obtained through surgical means to mimic ocular trauma and retinal detachment, and through intravitreal injection of cells or enzymes to induce EMT and investigate cell proliferation and invasion. This review offers a comprehensive overview of the usefulness, advantages, and limitations of the current models available to investigate EMT in PVD.
Collapse
|
67
|
Mitochondrial Open Reading Frame of the 12S rRNA Type-c: Potential Therapeutic Candidate in Retinal Diseases. Antioxidants (Basel) 2023; 12:antiox12020518. [PMID: 36830076 PMCID: PMC9952431 DOI: 10.3390/antiox12020518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Mitochondrial open reading frame of the 12S rRNA type-c (MOTS-c) is the most unearthed peptide encoded by mitochondrial DNA (mtDNA). It is an important regulator of the nuclear genome during times of stress because it promotes an adaptive stress response to maintain cellular homeostasis. Identifying MOTS-c specific binding partners may aid in deciphering the complex web of mitochondrial and nuclear-encoded signals. Mitochondrial damage and dysfunction have been linked to aging and the accelerated cell death associated with many types of retinal degenerations. Furthermore, research on MOTS-c ability to revive oxidatively stressed RPE cells has revealed a significant protective role for the molecule. Evidence suggests that senescent cells play a role in the development of age-related retinal disorders. This review examines the links between MOTS-c, mitochondria, and age-related diseases of the retina. Moreover, the untapped potential of MOTS-c as a treatment for glaucoma, diabetic retinopathy, and age-related macular degeneration is reviewed.
Collapse
|
68
|
Ahsanuddin S, Rios HA, Otero-Marquez O, Macanian J, Zhou D, Rich C, Rosen RB. Flavoprotein fluorescence elevation is a marker of mitochondrial oxidative stress in patients with retinal disease. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1110501. [PMID: 38983095 PMCID: PMC11182218 DOI: 10.3389/fopht.2023.1110501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/27/2023] [Indexed: 07/11/2024]
Abstract
Purpose Recent studies of glaucoma, age-related macular degeneration, and diabetic retinopathy have demonstrated that flavoprotein fluorescence (FPF) can be utilized non-invasively as an indicator of mitochondrial oxidative stress in the retina. However, a comprehensive assessment of the validity and reliability of FPF in differentiating between healthy and diseased eyes across multiple disease states is lacking. Here, we evaluate the sensitivity and specificity of FPF in discriminating between healthy and diseased eyes in four leading causes of visual impairment worldwide, one of which has not been previously evaluated using FPF. We also evaluate the association between FPF and visual acuity. Methods A total of 88 eyes [21 eyes of 21 unaffected controls, 20 eyes from 20 retinal vein occlusion (RVO) patients, 20 eyes from 20 diabetic retinopathy (DR) patients, 17 eyes from 17 chronic exudative age-related macular degeneration (exudative AMD) patients, and 10 eyes from 10 central serous retinopathy (CSR) patients] were included in the present cross-sectional observational study. Eyes were imaged non-invasively using a specially configured fundus camera OcuMet Beacon® (OcuSciences, Ann Arbor, MI). The macula was illuminated using a narrow bandwidth blue light (455 - 470 nm) and fluorescence was recorded using a narrow notch filter to match the peak emission of flavoproteins from 520 to 540 nm. AUROC analysis was used to determine the sensitivity of FPF in discriminating between diseased eyes and healthy eyes. Nonparametric Kruskal-Wallis Tests with post-hoc Mann Whitney U tests with the Holm-Bonferroni correction were performed to assess differences in FPF intensity, FPF heterogeneity, and best corrected visual acuity (BCVA) between the five groups. Spearman rank correlation coefficients were calculated to assess the relationship between FPF and BCVA. Results AUROC analysis indicated that FPF intensity is highly sensitive for detecting disease, particularly for exudative AMD subjects (0.989; 95% CI = 0.963 - 1.000, p=3.0 x 107). A significant difference was detected between the FPF intensity, FPF heterogeneity, and BCVA in all four disease states compared to unaffected controls (Kruskal-Wallis Tests, p = 1.06 x 10-8, p = 0.002, p = 5.54 x 10-8, respectively). Compared to healthy controls, FPF intensity values were significantly higher in RVO, DR, exudative AMD, and CSR (p < 0.001, p < 0.001, p < 0.001, and p = 0.001, respectively). Spearman rank correlation coefficient between FPF intensity and BCVA was ρ = 0.595 (p = 9.62 x 10-10). Conclusions Despite variations in structural retinal findings, FPF was found to be highly sensitive for detecting retinal disease. Significant FPF elevation were seen in all four disease states, with the exudative AMD patients exhibiting the highest FPF values compared to DR, CSR, and RVO subjects. This is consistent with the hypothesis that there is elevated oxidative stress in all of these conditions as previously demonstrated by blood studies. FPF intensity is moderately correlated with the late-in disease-marker BCVA, which suggests that the degree of FPF elevation can be used as a metabolic indicator of disease severity.
Collapse
Affiliation(s)
- Sofia Ahsanuddin
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, United States
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Hernan A. Rios
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, United States
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Oscar Otero-Marquez
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, United States
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jason Macanian
- Department of Medical Education, New York Medical College, Valhalla, NY, United States
| | - Davis Zhou
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, United States
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Collin Rich
- OcuSciences Inc., Ann Arbor, MI, United States
| | - Richard B. Rosen
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, United States
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
69
|
Lee AJ, Moon CH, Lee YJ, Jeon HY, Park WS, Ha KS. Systemic C-peptide supplementation ameliorates retinal neurodegeneration by inhibiting VEGF-induced pathological events in diabetes. FASEB J 2023; 37:e22763. [PMID: 36625326 DOI: 10.1096/fj.202201390rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023]
Abstract
Diabetic retinopathy (DR) is caused by retinal vascular dysfunction and neurodegeneration. Intraocular delivery of C-peptide has been shown to be beneficial against hyperglycemia-induced microvascular leakage in the retina of diabetes; however, the effect of C-peptide on diabetes-induced retinal neurodegeneration remains unknown. Moreover, extraocular C-peptide replacement therapy against DR to avoid various adverse effects caused by intravitreal injections has not been studied. Here, we demonstrate that systemic C-peptide supplementation using osmotic pumps or biopolymer-conjugated C-peptide hydrogels ameliorates neurodegeneration by inhibiting vascular endothelial growth factor-induced pathological events, but not hyperglycemia-induced vascular endothelial growth factor expression, in the retinas of diabetic mice. C-peptide inhibited hyperglycemia-induced activation of macroglial and microglial cells, downregulation of glutamate aspartate transporter 1 expression, neuronal apoptosis, and histopathological changes by a mechanism involving reactive oxygen species generation in the retinas of diabetic mice, but transglutaminase 2, which is involved in retinal vascular leakage, is not associated with these pathological events. Overall, our findings suggest that systemic C-peptide supplementation alleviates hyperglycemia-induced retinal neurodegeneration by inhibiting a pathological mechanism, involving reactive oxygen species, but not transglutaminase 2, in diabetes.
Collapse
Affiliation(s)
- Ah-Jun Lee
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Chan-Hee Moon
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Yeon-Ju Lee
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hye-Yoon Jeon
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| |
Collapse
|
70
|
Akgun-Unal N, Ozyildirim S, Unal O, Gulbahce-Mutlu E, Mogulkoc R, Baltaci AK. The effects of resveratrol and melatonin on biochemical and molecular parameters in diabetic old female rat hearts. Exp Gerontol 2023; 172:112043. [PMID: 36494013 DOI: 10.1016/j.exger.2022.112043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The roles of melatonin and resveratrol-enhanced activation of SIRT1 (silent information regulator 1), GLUT4 (glucose transporter type 4), and PGC-1α (peroxisome proliferator-activated receptor gamma coactivator 1-alpha) in mediating the protective effects on the heart in aged female rats with streptozotocin-induced diabetes were investigated. 16-month-old 48 Wistar female rats were separated into 8 groups with equal numbers. Group 1: Control, Group 2: Resveratrol Control, Group 3: Melatonin Control, Group 4: Resveratrol and Melatonin Control, Group 5: Diabetes, Group 6: Diabetes Resveratrol, Group 7: Diabetes Melatonin, Group 8: Diabetes Resveratrol and Melatonin. A single dose of 40 mg/kg intraperitoneal streptozotocin was injected into the rats of Groups 5, 6, 7, and 8 to induce experimental diabetes. Blood glucose levels were measured from the tail veins of the animals six days after the injections, using a diagnostic glucose kit. Rats with a blood glucose levels ≥300 mg/dl were considered diabetic. 5 mg/kg/day of resveratrol (intraperitoneal) and melatonin (subcutaneous) were administered for four weeks. At the end of the applications, SIRT1, GLUT4, PGC-1α gene expression as well as MDA and GSH levels in the heart tissues were determined by the PCR method from heart tissue samples taken under general anesthesia. The findings of our study show that suppressed antioxidant activity and decreased GLUT4, SIRT1, and PGC-1α gene expression in heart tissue can be reversed by the combination of resveratrol, melatonin, and resveratrol + melatonin in a diabetic aged female rat model. Resveratrol and melatonin supplementation may have a protective effect on cardiac functions in the diabetic aged female rat model.
Collapse
Affiliation(s)
- Nilufer Akgun-Unal
- Department of Biophysics, Medicine Faculty, Ondokuz Mayis University, Samsun, Turkey.
| | - Serhan Ozyildirim
- Department of Cardiology, Institution of Cardiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Omer Unal
- Department of Physiology, Medical Faculty, Kirikkale University, Kirikkale, Turkey
| | - Elif Gulbahce-Mutlu
- Department of Medical Biology, Medical Faculty, KTO Karatay University, Konya, Turkey
| | - Rasim Mogulkoc
- Department of Physiology, Medical Faculty, Selcuk University, Konya, Turkey
| | | |
Collapse
|
71
|
Gandhi GR, Hillary VE, Antony PJ, Zhong LLD, Yogesh D, Krishnakumar NM, Ceasar SA, Gan RY. A systematic review on anti-diabetic plant essential oil compounds: Dietary sources, effects, molecular mechanisms, and safety. Crit Rev Food Sci Nutr 2023; 64:6526-6545. [PMID: 36708221 DOI: 10.1080/10408398.2023.2170320] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a multifaceted metabolic syndrome defined through the dysfunction of pancreatic β-cells driven by a confluence of genetic and environmental elements. Insulin resistance, mediated by interleukins and other inflammatory elements, is one of the key factors contributing to the progression of T2DM. Many essential oils derived from dietary plants are beneficial against various chronic diseases. We reviewed the anti-diabetic properties of dietary plant-derived essential oil compounds, with a focus on their molecular mechanisms by modulating specific signaling pathways and other critical inflammatory mediators involved in insulin resistance. High-quality literature published in the last 12 years, from 2010 to 2022, was collected from the Scopus, Web of Science, PubMed, and Embase databases using the search terms "dietary plants," "essential oils," "anti-diabetic," "insulin resistance," "antihyperglycemic," "T2DM," "anti-diabetic essential oils," and anti-diabetic mechanism." According to the results, the essential oil compounds, including cinnamaldehyde, carvacrol, zingerone, sclareol, zerumbone, myrtenol, thujone, geraniol, citral, eugenol, thymoquinone, thymol, citronellol, α-terpineol, and linalool have been demonstrated to contain strong anti-diabetic effects via modulating various signal transduction pathways linked to glucose metabolism. Additionally, in diabetes-related animal models, they can also considerably reduce the expression of TNF-α, IL-1β, IL-4, IL-6, iNOS, and COX-2. The main signaling molecules regulated by these compounds include AMPK, GLUT4, Caspase-3, PPARγ, PPARα, NF-κB, p-IκBα, MyD88, MCP-1, SREBP-1c, AGEs, RAGE, VEGF, Nrf2/HO-1, and SIRT-1. They can also significantly inhibit the generation of TBARS and MDA, reduce oxidative stress, increase insulin levels, adiponectin, and glycoprotein enzymes, boost antioxidant enzymes like SOD, CAT, and GPx, as well as reduce glutathione and vital glycolytic enzymes. Besides, they can significantly lower the levels of liver enzymes and lipid profile markers. Moreover, most essential oil compounds are generally safe based on animal studies. In conclusion, dietary plant-derived essential oil compounds have potential anti-diabetic effects by influencing different signaling pathways and molecular targets linked to glucose metabolism, and should be safe and beneficial against diabetes and related complications.
Collapse
Affiliation(s)
- Gopalsamy Rajiv Gandhi
- Division of Phytochemistry and Drug-Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kochi, India
| | - Varghese Edwin Hillary
- Division of Phytochemistry and Drug-Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kochi, India
| | | | - Linda L D Zhong
- Biomedical Sciences and Chinese Medicine, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Devarajan Yogesh
- Department of Biochemistry, University of Madras, Chennai, India
| | | | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi, India
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
72
|
Chen P, Li J, Li Z, Yu D, Ma N, Xia Z, Meng X, Liu X. 18F-FP-CIT dopamine transporter PET findings in the striatum and retina of type 1 diabetic rats. Ann Nucl Med 2023; 37:219-226. [PMID: 36609801 DOI: 10.1007/s12149-022-01818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023]
Abstract
PURPOSE Noninvasive methods used in clinic to accurately detect DA neuron loss in diabetic brain injury and diabetic retinopathy have not been reported up to now. 18F-FP-CIT is a promising dopamine transporter (DAT) targeted probe. Our study first applies 18F-FP-CIT PET imaging to assess DA neuron loss in the striatum and retina of T1DM rat model. METHODS T1DM rat model was induced by a single intraperitoneal injection of streptozotocin (STZ) (65 mg kg-1, ip). 18F-FP-CIT uptake in the striatum and retina was evaluated at 4 weeks, 8 weeks and 12 weeks after STZ injection. The mean standardized uptake value (SUVmean) and the maximum standardized uptake value (SUVmax) were analyzed. Western blot was performed to confirm the DAT protein levels in the striatum and retina. RESULTS PET/CT results showed that the SUV of 18F-FP-CIT was significantly reduced in the diabetic striatum and retina compared with the normal one from 4-week to 12-week (p < 0.0001). Western blots showed that DAT was significantly lower in the diabetic striatum and retina compared to the normal one for all three time points (p < 0.05). The results from Western blots confirmed the findings in PET imaging studies. CONCLUSIONS DA neuron loss in the striatum and retina of T1DM rat model can be non-invasively detected with PET imaging using 18F-FP-CIT targeting DAT. 18F-FP-CIT PET imaging may be a useful tool used in clinic for DR and diabetic brain injury diagnosis in future. The expression level of DAT in striatum and retina may act as a new biomarker for DR and diabetic brain injury diagnosis.
Collapse
Affiliation(s)
- Ping Chen
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, China
- Drug Clinical Trial Institution, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Nuclear Medicine, Pudong Hospital, Fudan University, Shanghai, China
| | - Jun Li
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhan Li
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Duxia Yu
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ning Ma
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zian Xia
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xianglei Meng
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xingdang Liu
- Department of Nuclear Medicine, Pudong Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
73
|
Alkharfy KM, Ahmad A, Siddiquei MM, Ghulam M, El-Asrar AA. Thymoquinone Attenuates Retinal Expression of Mediators and Markers of Neurodegeneration in a Diabetic Animal Model. Curr Mol Pharmacol 2023; 16:188-196. [PMID: 35049444 DOI: 10.2174/1874467215666220113105300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/07/2021] [Accepted: 10/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a slow eye disease that affects the retina due to a long-standing uncontrolled diabetes mellitus. Hyperglycemia-induced oxidative stress can lead to neuronal damage leading to DR. OBJECTIVE The aim of the current investigation is to assess the protective effects of thymoquinone (TQ) as a potential compound for the treatment and/or prevention of neurovascular complications of diabetes, including DR. METHODS Diabetes was induced in rats by the administration of streptozotocin (55 mg/kg intraperitoneally, i.p.). Subsequently, diabetic rats were treated with either TQ (2 mg/kg i.p.) or vehicle on alternate days for three weeks. A healthy control group was also run in parallel. At the end of the treatment period, animals were euthanized, and the retinas were collected and analyzed for the expression levels of brain-derived neurotrophic factor (BDNF), tyrosine hydroxylase (TH), nerve growth factor receptor (NGFR), and caspase-3 using Western blotting techniques in the retina of diabetic rats and compared with the normal control rats. In addition, dichlorofluorescein (DCF) levels in the retina were assessed as a marker of reactive oxygen species (ROS), and blood-retinal barrier breakdown (BRB) was examined for vascular permeability. The systemic effects of TQ treatments on glycemic control, kidney and liver functions were also assessed in all groups. RESULTS Diabetic animals treated with TQ showed improvements in the liver and kidney functions compared with control diabetic rats. Normalization in the levels of neuroprotective factors, including BDNF, TH, and NGFR, was observed in the retina of diabetic rats treated with TQ. In addition, TQ ameliorated the levels of apoptosis regulatory protein caspase-3 in the retina of diabetic rats and reduced disruption of the blood-retinal barrier, possibly through a reduction in reactive oxygen species (ROS) generation. CONCLUSION These findings suggest that TQ harbors a significant potential to limit the neurodegeneration and retinal damage that can be provoked by hyperglycemia in vivo.
Collapse
Affiliation(s)
- Khalid M Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Mairaj Siddiquei
- Department of Ophthalmology, College of Medicine, King Abdul Aziz Hospital, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Ghulam
- Department of Ophthalmology, College of Medicine, King Abdul Aziz Hospital, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Abdul Aziz Hospital, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
74
|
Wu W, Lei H. Genome Editing Inhibits Retinal Angiogenesis in a Mouse Model of Oxygen-Induced Retinopathy. Methods Mol Biol 2023; 2678:207-217. [PMID: 37326717 DOI: 10.1007/978-1-0716-3255-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This protocol describes a novel approach harnessing the technology of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9-based gene editing for treating retinal angiogenesis. In this system, adeno-associated virus (AAV)-mediated CRISPR/Cas9 was employed to edit the genome of vascular endothelial growth factor receptor (VEGFR)2 in retinal vascular endothelial cells in a mouse model of oxygen-induced retinopathy. The results showed that genome editing of VEGFR2 suppressed pathological retinal angiogenesis. This mouse model mimics a critical aspect of abnormal retinal angiogenesis in patients with neovascular diabetic retinopathy and retinopathy of prematurity, indicating genome editing has high potential for treating angiogenesis-associated retinopathies.
Collapse
Affiliation(s)
- Wenyi Wu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Department of Ophthalmology, Hunan Key Laboratory of Ophthalmology, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hetian Lei
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China.
- Department of Ophthalmology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
75
|
Bayazidi MG, Rahbarghazi R, Rezabakhsh A, Rezaie J, Hassanpour M, Ahmadi M. Type 2 diabetes mellitus induced autophagic response within pulmonary tissue in the rat model. BIOIMPACTS : BI 2023; 13:43-50. [PMID: 36817001 PMCID: PMC9923816 DOI: 10.34172/bi.2022.22183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 11/06/2022]
Abstract
Introduction: The current experiment aimed to address the impact of type 2 diabetes mellitus on autophagy status in the rat pulmonary tissue. Methods: In this study, 20 male Wistar rats were randomly allocated into two groups as follows: control and diabetic groups. To induce type 2 diabetes mellitus, rats received a combination of streptozotocin (STZ) and a high-fat diet. After confirmation of diabetic condition, rats were maintained for 8 weeks and euthanized for further analyses. The pathological changes were assessed using H&E staining. We also measured transforming growth factor-β (TGF-β), bronchoalveolar lavage fluid (BALF), and tumor necrosis factor-α (TNF-α) in the lungs using ELISA and real-time PCR analyses, respectively. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels were monitored in diabetic lungs to assess oxidative status. We also measured the expression of becline-1, LC3, and P62 to show autophagic response under diabetic conditions. Using immunofluorescence staining, protein levels of LC3 was also monitored. Results: H&E staining showed pathological changes in diabetic rats coincided with the increase of TNF-α (~1.4-fold) and TGF-β (~1.3-fold) compared to those in the normal rats (P<0.05). The levels of MDA (5.6 ± 0.4 versus 6.4 ± 0.27 nM/mg protein) were increased while SOD (4.2 ± 0.28 versus 3.8 ± 0.13 U/mL) activity decreased in the diabetic rats (P<0.05). Real-time polymerase chain reaction (PCR) analysis showed the up-regulation of Becline-1 (~1.35-fold) and LC3 (~2-fold) and down-regulation of P62 (~0.8-fold) (P<0.05), showing incomplete autophagic flux. We noted the increase of LC3+ cells in diabetic condition compared to that in the control samples. Conclusion: The prolonged diabetic condition could inhibit the normal activity of autophagy flux, thereby increasing pathological outcomes.
Collapse
Affiliation(s)
- Mohammad Ghader Bayazidi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mehdi Hassanpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Corresponding author: Mahdi Ahmadi,
| |
Collapse
|
76
|
Cai C, Meng C, He S, Gu C, Lhamo T, Draga D, Luo D, Qiu Q. DNA methylation in diabetic retinopathy: pathogenetic role and potential therapeutic targets. Cell Biosci 2022; 12:186. [DOI: 10.1186/s13578-022-00927-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Abstract
Background
Diabetic retinopathy (DR), a specific neuron-vascular complication of diabetes, is a major cause of vision loss among middle-aged people worldwide, and the number of DR patients will increase with the increasing incidence of diabetes. At present, it is limited in difficult detection in the early stages, limited treatment and unsatisfactory treatment effects in the advanced stages.
Main body
The pathogenesis of DR is complicated and involves epigenetic modifications, oxidative stress, inflammation and neovascularization. These factors influence each other and jointly promote the development of DR. DNA methylation is the most studied epigenetic modification, which has been a key role in the regulation of gene expression and the occurrence and development of DR. Thus, this review investigates the relationship between DNA methylation and other complex pathological processes in the development of DR. From the perspective of DNA methylation, this review provides basic insights into potential biomarkers for diagnosis, preventable risk factors, and novel targets for treatment.
Conclusion
DNA methylation plays an indispensable role in DR and may serve as a prospective biomarker of this blinding disease in its relatively early stages. In combination with inhibitors of DNA methyltransferases can be a potential approach to delay or even prevent patients from getting advanced stages of DR.
Collapse
|
77
|
Qin Y, Wu J, Xiao W, Wang K, Huang A, Liu B, Yu J, Li C, Yu F, Ren Z. Machine Learning Models for Data-Driven Prediction of Diabetes by Lifestyle Type. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192215027. [PMID: 36429751 PMCID: PMC9690067 DOI: 10.3390/ijerph192215027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 06/01/2023]
Abstract
The prevalence of diabetes has been increasing in recent years, and previous research has found that machine-learning models are good diabetes prediction tools. The purpose of this study was to compare the efficacy of five different machine-learning models for diabetes prediction using lifestyle data from the National Health and Nutrition Examination Survey (NHANES) database. The 1999-2020 NHANES database yielded data on 17,833 individuals data based on demographic characteristics and lifestyle-related variables. To screen training data for machine models, the Akaike Information Criterion (AIC) forward propagation algorithm was utilized. For predicting diabetes, five machine-learning models (CATBoost, XGBoost, Random Forest (RF), Logistic Regression (LR), and Support Vector Machine (SVM)) were developed. Model performance was evaluated using accuracy, sensitivity, specificity, precision, F1 score, and receiver operating characteristic (ROC) curve. Among the five machine-learning models, the dietary intake levels of energy, carbohydrate, and fat, contributed the most to the prediction of diabetes patients. In terms of model performance, CATBoost ranks higher than RF, LG, XGBoost, and SVM. The best-performing machine-learning model among the five is CATBoost, which achieves an accuracy of 82.1% and an AUC of 0.83. Machine-learning models based on NHANES data can assist medical institutions in identifying diabetes patients.
Collapse
Affiliation(s)
- Yifan Qin
- College of Physical Education, Shenzhen University, Shenzhen 518000, China
| | - Jinlong Wu
- College of Physical Education, Southwest University, Chongqing 400715, China
| | - Wen Xiao
- College of Physical Education, Shenzhen University, Shenzhen 518000, China
| | - Kun Wang
- Physical Education College, Yanching Institute of Technology, Langfang 065201, China
| | - Anbing Huang
- College of Physical Education, Shenzhen University, Shenzhen 518000, China
| | - Bowen Liu
- College of Physical Education, Shenzhen University, Shenzhen 518000, China
| | - Jingxuan Yu
- College of Physical Education, Shenzhen University, Shenzhen 518000, China
| | - Chuhao Li
- College of Physical Education, Shenzhen University, Shenzhen 518000, China
| | - Fengyu Yu
- College of Physical Education, Shenzhen University, Shenzhen 518000, China
| | - Zhanbing Ren
- College of Physical Education, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
78
|
Şimşek S, İşlek A. Diagnostic and predictive value of resistive / pulsatility indices of ophthalmic artery and common carotid artery for the development of diabetic retinopathy. Acta Radiol 2022; 64:1966-1973. [PMID: 36377226 DOI: 10.1177/02841851221137766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Ophthalmic artery resistive index (OA RI) was a controversial parameter to show hemodynamic changes due to diabetic retinopathy (DRP). Purpose To investigate the diagnostic and predictive value of resistive and pulsatility index (RI and PI, respectively) of OA and common carotid artery (CCA) for the development of DRP. Material and Methods A total of 60 patients with diabetes mellitus (DM) type 2 (study group) and 30 healthy participants (control group) were evaluated between January and June 2021 by Doppler ultrasonography (DUS). RI and PI values were compared between groups with a Student’s t-test. Cutoff value, sensitivity, and specificity were calculated for the significant variables with receiver operating characteristic (ROC) analysis. Results In total, there were 20 (22.2%) patients with DM without DRP (DMwoRP), 20 (22.2%) patients in the non-proliferative diabetic retinopathy group (NPDRP), and 20 (22.2%) patients in the proliferative diabetic retinopathy group (PDRP). The mean of CCA RI and OA RI in the PDRP group was significantly higher than in the other three groups ( P < 0.001). The mean of CCA RI and OA RI was significantly higher in the PDRP group than in the NPDRP group, and in the NPDRP group compared to the DMwoRP group. CCA RI and OA RI showed a significantly high correlation (r = 0.849; P < 0.001). Sensitivity was 95% and specificity was 100% for the diagnosis of PDRP for the 0.82 cutoff value of OA RI (AUR = 0.999, 95% confidence interval for AUC = 0.997–0.1000; P < 0.001). Conclusion The OA RI accurately reflects DRP-induced orbital blood flow changes and is a predictive index for DRP prognosis.
Collapse
Affiliation(s)
- Sadullah Şimşek
- Department of Radiology, Dicle University, Diyarbakır, Turkey
| | - Akif İşlek
- Otolaryngology-Head & Neck Surgery Clinic, Acıbadem Eskişehir Hospital, Eskişehir, Turkey
| |
Collapse
|
79
|
A New Pharmacological Vitreolysis through the Supplement of Mixed Fruit Enzymes for Patients with Ocular Floaters or Vitreous Hemorrhage-Induced Floaters. J Clin Med 2022; 11:jcm11226710. [PMID: 36431188 PMCID: PMC9695351 DOI: 10.3390/jcm11226710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose: Ocular floaters caused by vitreous degeneration or blood clots may interfere with various visual functions. Our study investigated the pharmacologic effects of oral supplementation of mixed fruit enzymes (MFEs) for treating spontaneous symptomatic vitreous opacities (SVOs) and those secondary to vitreous hemorrhage (VH). Methods: 224 patients with monocular symptomatic vitreous opacities (SVOs) were recruited between September and December 2017 and received oral supplementation of MFEs (190 mg bromelain, 95 mg papain, and 95 mg ficin) for 3 months in a double-blind clinical trial. Participants were divided according to the etiology of the SVOs, spontaneous (experiment 1) versus VH (experiment 2), and then randomly assigned into four treatments groups: one group received oral vitamin C, as a placebo; and the other 3 groups received 1 capsule per day (low dose), 2 capsules per day (middle dose), or 3 capsules per day (high dose) of MFEs. The number of SVOs was determined at baseline and then 1, 2, and 3 months after initiating treatment. Further, in cases secondary to VH, the changes in corrected distance visual acuity (CDVA) were assessed after 3 months. Second, we compared the free radical scavenging capabilities of each substance: vitamin C, bromelain, papain, ficin, and MFEs (combination of bromelain, papain, and ficin) by DDPH assay. Finally, SVOs-related symptoms and satisfaction with the treatments were evaluated at the last follow-up visit Results: In experiment 1, the disappearance rate of SVOs was 55%, 62.5%, and 70% after taking 1, 2, and 3 capsules daily, respectively (total p < 0.001), in a dose-dependent manner. In experiment 2, the disappearance rate of VH-induced SVOs was 18%, 25%, and 56% (p < 0.001) after 1, 2, and 3 capsules of the supplement daily, respectively. Additionally, the patients’ vision elevated from 0.63LogMAR to 0.19LogMAR (p = 0.008). Conclusions: A pharmacological approach using a high dose of oral supplementation with MFEs (bromelain, papain, and ficin) was effective in reducing vitreous opacities, even after intraocular hemorrhage. Furthermore, pharmacologic vitreolysis with MFEs supplementation showed high patient satisfaction, and also improved CDVA in patients with vitreous hemorrhage-induced floaters
Collapse
|
80
|
Hassan D, Gill HM, Happe M, Bhatwadekar AD, Hajrasouliha AR, Janga SC. Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy. Front Med (Lausanne) 2022; 9:1050436. [PMID: 36425113 PMCID: PMC9681494 DOI: 10.3389/fmed.2022.1050436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Diabetic retinopathy (DR) is a late microvascular complication of Diabetes Mellitus (DM) that could lead to permanent blindness in patients, without early detection. Although adequate management of DM via regular eye examination can preserve vision in in 98% of the DR cases, DR screening and diagnoses based on clinical lesion features devised by expert clinicians; are costly, time-consuming and not sufficiently accurate. This raises the requirements for Artificial Intelligent (AI) systems which can accurately detect DR automatically and thus preventing DR before affecting vision. Hence, such systems can help clinician experts in certain cases and aid ophthalmologists in rapid diagnoses. To address such requirements, several approaches have been proposed in the literature that use Machine Learning (ML) and Deep Learning (DL) techniques to develop such systems. However, these approaches ignore the highly valuable clinical lesion features that could contribute significantly to the accurate detection of DR. Therefore, in this study we introduce a framework called DR-detector that employs the Extreme Gradient Boosting (XGBoost) ML model trained via the combination of the features extracted by the pretrained convolutional neural networks commonly known as transfer learning (TL) models and the clinical retinal lesion features for accurate detection of DR. The retinal lesion features are extracted via image segmentation technique using the UNET DL model and captures exudates (EXs), microaneurysms (MAs), and hemorrhages (HEMs) that are relevant lesions for DR detection. The feature combination approach implemented in DR-detector has been applied to two common TL models in the literature namely VGG-16 and ResNet-50. We trained the DR-detector model using a training dataset comprising of 1,840 color fundus images collected from e-ophtha, retinal lesions and APTOS 2019 Kaggle datasets of which 920 images are healthy. To validate the DR-detector model, we test the model on external dataset that consists of 81 healthy images collected from High-Resolution Fundus (HRF) dataset and MESSIDOR-2 datasets and 81 images with DR signs collected from Indian Diabetic Retinopathy Image Dataset (IDRID) dataset annotated for DR by expert. The experimental results show that the DR-detector model achieves a testing accuracy of 100% in detecting DR after training it with the combination of ResNet-50 and lesion features and 99.38% accuracy after training it with the combination of VGG-16 and lesion features. More importantly, the results also show a higher contribution of specific lesion features toward the performance of the DR-detector model. For instance, using only the hemorrhages feature to train the model, our model achieves an accuracy of 99.38 in detecting DR, which is higher than the accuracy when training the model with the combination of all lesion features (89%) and equal to the accuracy when training the model with the combination of all lesions and VGG-16 features together. This highlights the possibility of using only the clinical features, such as lesions that are clinically interpretable, to build the next generation of robust artificial intelligence (AI) systems with great clinical interpretability for DR detection. The code of the DR-detector framework is available on GitHub at https://github.com/Janga-Lab/DR-detector and can be readily employed for detecting DR from retinal image datasets.
Collapse
Affiliation(s)
- Doaa Hassan
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, Indianapolis, IN, United States
- Computers and Systems Department, National Telecommunication Institute, Cairo, Egypt
| | - Hunter Mathias Gill
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, Indianapolis, IN, United States
| | - Michael Happe
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ashay D. Bhatwadekar
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Amir R. Hajrasouliha
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sarath Chandra Janga
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Medical Research and Library Building, Indianapolis, IN, United States
- Centre for Computational Biology and Bioinformatics, Indiana University School of Medicine, 5021 Health Information and Translational Sciences (HITS), Indianapolis, IN, United States
- *Correspondence: Sarath Chandra Janga
| |
Collapse
|
81
|
Zhang H, Chen N. Adropin as an indicator of T2DM and its complications. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
82
|
Hybrid nanostructured gadolinium oxide-collagen-dextran polymeric hydrogel for corneal repair and regeneration. Int J Biol Macromol 2022; 224:1423-1438. [DOI: 10.1016/j.ijbiomac.2022.10.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
|
83
|
Toutounchian S, Ahmadbeigi N, Mansouri V. Retinal and Choroidal Neovascularization Antivascular Endothelial Growth Factor Treatments: The Role of Gene Therapy. J Ocul Pharmacol Ther 2022; 38:529-548. [PMID: 36125411 DOI: 10.1089/jop.2022.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neovascularization in ocular vessels causes a major disease burden. The most common causes of choroidal neovascularization (CNV) are age-related macular degeneration and diabetic retinopathy, which are the leading causes of irreversible vision loss in the adult population. Vascular endothelial growth factor (VEGF) is critical for the formation of new vessels and is the main regulator in ocular angiogenesis and vascular permeability through its receptors. Laser therapy and antiangiogenic factors have been used for CNV treatment. Bevacizumab, ranibizumab, and aflibercept are commonly used anti-VEGF agents; however, high costs and the need for frequent intraocular injections are major drawbacks of anti-VEGF drugs. Gene therapy, given the potency of one-time treatment and no need for frequent injections offers the real possibility of such a lasting treatment, with fewer adverse effects and higher patient quality of life. Herein, we reviewed the role of gene therapy in the CNV treatment. In addition, we discuss the advantages and challenges of current treatments compared with gene therapy.
Collapse
Affiliation(s)
- Samaneh Toutounchian
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
84
|
Antioxidant and anti-apoptotic effects of tocotrienol-rich fraction against streptozotocin-induced diabetic retinopathy in rats. Biomed Pharmacother 2022; 153:113533. [DOI: 10.1016/j.biopha.2022.113533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
|
85
|
Chong V, Nguyen QD, Sepah Y, Giani A, Pearce E. HORNBILL: a phase I/IIa trial examining the safety, tolerability and early response of BI 764524 in patients with diabetic retinopathy and diabetic macular ischaemia-rationale, study design and protocol. Trials 2022; 23:669. [PMID: 35978329 PMCID: PMC9386971 DOI: 10.1186/s13063-022-06527-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background Diabetic macular ischaemia (DMI) is a complication of diabetic retinopathy that leads to irreversible vision loss. DMI is characterised by reduced retinal vessel density and enlargement of the foveal avascular zone (FAZ). Despite its clinical burden, there is no formal consensus on the definition of DMI, and no approved treatment. Semaphorin 3A (Sema3A) is an axonal guidance molecule that blocks revascularisation of the ischaemic retina. Sema3A modulation is therefore a promising mechanism of action for the treatment of ischaemic eye diseases. BI 764524 is an intravitreal anti-Sema3A ischaemia modulator agent. Methods HORNBILL (NCT04424290) is a phase I/IIa trial comprising a non-randomised, open-label, single rising dose (SRD) part and a randomised, masked, sham-controlled multiple dose (MD) part to investigate the safety, tolerability and early biological response of ischaemia modulator BI 764524 in adults (≥18 years) with DMI. DMI will be defined using optical coherence tomography angiography (OCTA) as either any degree of disruption in the retinal vascularity (SRD) or a FAZ of ≥0.5 mm2 (MD). Subjects in the SRD part will receive 0.5, 1.0 or 2.5 mg of BI 764524; the maximum tolerated dose will then be used in the MD part. A minimum of 12 subjects will be enrolled into the SRD part; planned enrollment is 30 for the MD part. The primary endpoint of the SRD part is the number of subjects with dose-limiting adverse events (AEs) until day 8. The primary endpoint of the MD part is the number of subjects with drug-related AEs from baseline to end of study, and secondary endpoints include change from baseline in the size of the FAZ, best-corrected visual acuity and central retinal thickness. Discussion DMI is a poorly defined condition with no treatment options. HORNBILL is the first clinical trial to assess a treatment for DMI and to use OCTA as a means to define and examine DMI. The OCTA data generated in this trial could form the basis of formal diagnostic criteria for DMI. Furthermore, the novel mechanism of action (Sema3A modulation) explored in this trial has the potential to revolutionise the treatment landscape for patients with DMI. Trial registration ClinicalTrials.govNCT04424290; EudraCT 2019-004432-28. Registered on 9 June 2020 Supplementary Information The online version contains supplementary material available at 10.1186/s13063-022-06527-y.
Collapse
Affiliation(s)
- Victor Chong
- UCL Institute of Ophthalmology, University College London, London, UK.
| | - Quan Dong Nguyen
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Yasir Sepah
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Andrea Giani
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | | |
Collapse
|
86
|
Avram VF, Merce AP, Hâncu IM, Bătrân AD, Kennedy G, Rosca MG, Muntean DM. Impairment of Mitochondrial Respiration in Metabolic Diseases: An Overview. Int J Mol Sci 2022; 23:8852. [PMID: 36012137 PMCID: PMC9408127 DOI: 10.3390/ijms23168852] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial dysfunction has emerged as a central pathomechanism in the setting of obesity and diabetes mellitus, linking these intertwined pathologies that share insulin resistance as a common denominator. High-resolution respirometry (HRR) is a state-of-the-art research method currently used to study mitochondrial respiration and its impairment in health and disease. Tissue samples, cells or isolated mitochondria are exposed to various substrate-uncoupler-inhibitor-titration protocols, which allows the measurement and calculation of several parameters of mitochondrial respiration. In this review, we discuss the alterations of mitochondrial bioenergetics in the main dysfunctional organs that contribute to the development of the obese and diabetic phenotypes in both animal models and human subjects. Herein we review data regarding the impairment of oxidative phosphorylation as integrated mitochondrial function assessed by means of HRR. We acknowledge the critical role of this method in determining the alterations in oxidative phosphorylation occurring in the early stages of metabolic pathologies. We conclude that there is a mutual two-way relationship between mitochondrial dysfunction and insulin insensitivity that characterizes these diseases.
Collapse
Affiliation(s)
- Vlad Florian Avram
- Department VII Internal Medicine—Diabetes, Nutrition and Metabolic Diseases, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Adrian Petru Merce
- Doctoral School Medicine—Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Iasmina Maria Hâncu
- Doctoral School Medicine—Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Alina Doruța Bătrân
- Doctoral School Medicine—Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Gabrielle Kennedy
- Department of Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48858, USA
| | - Mariana Georgeta Rosca
- Department of Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48858, USA
| | - Danina Mirela Muntean
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Department III Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| |
Collapse
|
87
|
Roto A, Farah R, Al-Imam M, Q Al-Sabbagh M, Abu-Yaghi N. Prevalence, characteristics and risk factors of diabetic retinopathy in type 2 diabetes mellitus patients in Jordan: a cross-sectional study. J Int Med Res 2022; 50:3000605221115156. [PMID: 35938493 PMCID: PMC9364199 DOI: 10.1177/03000605221115156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives To measure the prevalence of diabetic retinopathy in patients with type 2
diabetes, to define their characteristics, and identify the associated risk
factors. Methods We performed a cross sectional study of 1316 adult patients with type 2
diabetes mellitus who attended an ophthalmology clinic. Demographic,
clinical, and laboratory data were analyzed. Diabetic retinopathy (DR) was
diagnosed using a complete ophthalmic evaluation, including a fundic
examination. Two regression models were constructed to identify the risk
factors associated with DR and the parameters associated with the stage of
retinopathy. Results Men accounted for 774 (58.8%) of the participants. The prevalence of DR was
28.2% (371 participants). DR was significantly more common in participants
who were ≥60 years old, were women, had had diabetes for >10 years, were
taking insulin, were not taking metformin, had a body mass index
>30 kg/m2, were current smokers, or had a history of
hypertension. Advanced stages of DR were more common in participants in the
later stages of nephropathy and with albuminuria. Conclusions Poor glycemic control, smoking, and advanced diabetic kidney disease are most
closely associated with retinopathy. Further longitudinal studies are
necessary to identify the mechanisms underlying these relationships and to
guide community-based interventions.
Collapse
Affiliation(s)
- Allaa Roto
- Department of Special Surgery, Ophthalmology Division, School of Medicine, The University of Jordan, Amman, Jordan
| | - Randa Farah
- Department of Internal Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Mahmood Al-Imam
- Department of Special Surgery, Ophthalmology Division, School of Medicine, The University of Jordan, Amman, Jordan
| | - Mohammed Q Al-Sabbagh
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Nakhleh Abu-Yaghi
- Department of Special Surgery, Ophthalmology Division, School of Medicine, The University of Jordan, Amman, Jordan
| |
Collapse
|
88
|
Khan R, Saha SK, Frost S, Kanagasingam Y, Raman R. The Longitudinal Assessment of Vascular Parameters of the Retina and Their Correlations with Systemic Characteristics in Type 2 Diabetes-A Pilot Study. Vision (Basel) 2022; 6:vision6030045. [PMID: 35893762 PMCID: PMC9326718 DOI: 10.3390/vision6030045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the study was to assess various retinal vessel parameters of diabetes mellitus (DM) patients and their correlations with systemic factors in type 2 DM. A retrospective exploratory study in which 21 pairs of baseline and follow-up images of patients affected by DM were randomly chosen from the Sankara Nethralaya−Diabetic Retinopathy Study (SN DREAMS) I and II datasets. Patients’ fundus was photographed, and the diagnosis was made based on Klein classification. Vessel thickness parameters were generated using a web-based retinal vascular analysis platform called VASP. The thickness changes between the baseline and follow-up images were computed and normalized with the actual thicknesses of baseline images. The majority of parameters showed 10~20% changes over time. Vessel width in zone C for the second vein was significantly reduced from baseline to follow-up, which showed positive correlations with systolic blood pressure and serum high-density lipoproteins. Fractal dimension for all vessels in zones B and C and fractal dimension for vein in zones A, B and C showed a minimal increase from baseline to follow-up, which had a linear relationship with diastolic pressure, mean arterial pressure, serum triglycerides (p < 0.05). Lacunarity for all vessels and veins in zones A, B and C showed a minimal decrease from baseline to follow-up which had a negative correlation with pulse pressure and positive correlation with serum triglycerides (p < 0.05). The vessel widths for the first and second arteries significantly increased from baseline to follow-up and had an association with high-density lipoproteins, glycated haemoglobin A1C, serum low-density lipoproteins and total serum cholesterol. The central reflex intensity ratio for the second artery was significantly decreased from baseline to follow-up, and positive correlations were noted with serum triglyceride, serum low-density lipoproteins and total serum cholesterol. The coefficients for branches in zones B and C artery and the junctional exponent deviation for the artery in zone A decreased from baseline to follow-up showed positive correlations with serum triglycerides, serum low-density lipoproteins and total serum cholesterol. Identifying early microvascular changes in diabetic patients will allow for earlier intervention, improve visual outcomes and prevent vision loss.
Collapse
Affiliation(s)
- Rehana Khan
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai 600006, Tamil Nadu, India;
| | - Sajib K Saha
- Australian e-Health Research Centre, The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Kensington, WA 6151, Australia; (S.K.S.); (S.F.)
| | - Shaun Frost
- Australian e-Health Research Centre, The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Kensington, WA 6151, Australia; (S.K.S.); (S.F.)
| | - Yogesan Kanagasingam
- Digital Health and Telemedicine, The University of Notre Dame, Fremantle, WA 6160, Australia;
| | - Rajiv Raman
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai 600006, Tamil Nadu, India;
- Correspondence: ; Tel.: +91-44-28271616
| |
Collapse
|
89
|
Rajendran S, Seetharaman S, Vetrivel U, Kuppan K. Integrative study of gene expression datasets in retinal samples of Diabetic Retinopathy. Exp Eye Res 2022; 223:109194. [PMID: 35868364 DOI: 10.1016/j.exer.2022.109194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/19/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
Diabetic Retinopathy is prevalent among patients with uncontrolled hyperglycemia resulting in vision loss. Despite numerous challenges to create a link among these conditions, the characterization of pathological neovascularization causing retinal damage due to the prognosis of early non-proliferative diabetic retinopathy to late proliferative diabetic retinopathy needs deep understanding. In this study, meta-analysis-based integration of gene expression datasets for the fibrovascular membrane of PDR and neural retina of NPDR were compared, to investigate the differentially expressed genes involved in retinal angiogenesis. Human samples with gene expression profiling of the same experiment type and platform with sufficient information for analysis were included in the study. The studies from cell lines and non-human studies, human samples that include serum, cornea, lens, and/or other ocular tissues or fluids, and studies that lack basic information for analysis were excluded. The microarray datasets available in the Gene Expression Omnibus database of the early and late stages in DR were screened to find common gene expression profiles. Using the INMEX bioinformatics tool, significantly upregulated and downregulated genes in the neural retina of Non-Proliferative Diabetic Retinopathy and fibrovascular membrane of Proliferative Diabetic Retinopathy were compared and studied by the combine effect size method. Using the STRING database PPI network, 50 upregulated and 50 downregulated genes were used to find the key candidate genes involved in retinal disease/degeneration in eye/retinal tissues. In the extensive gene expression meta-analysis performed using INMEX bioinformatics tool, overall, 7935 differentially expressed genes were identified and the respective heatmap was created by using the visualization tools of INVEX. STRING database PPI network identified Retinol Binding Protein 3, Neural Retina Leucine Zipper, S-Antigen Visual Arrestin, Peripherin 2, and Aryl Hydrocarbon Receptor Interacting Protein Like-1 to be the most highly ranked hub genes. The newly discovered potential genes related to retinal angiogenesis causing FVM formation in DR may provide insight into the cellular pathogenesis of NPDR to PDR.
Collapse
Affiliation(s)
- Sharmila Rajendran
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Shanmuganathan Seetharaman
- Department of Pharmaceutics, Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Umashankar Vetrivel
- Scientist E, Indian Council of Medical Research (ICMR), National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, India
| | - Kaviarasan Kuppan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
| |
Collapse
|
90
|
Casey-Power S, Ryan R, Behl G, McLoughlin P, Byrne ME, Fitzhenry L. Hyaluronic Acid: Its Versatile Use in Ocular Drug Delivery with a Specific Focus on Hyaluronic Acid-Based Polyelectrolyte Complexes. Pharmaceutics 2022; 14:pharmaceutics14071479. [PMID: 35890371 PMCID: PMC9323903 DOI: 10.3390/pharmaceutics14071479] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 12/12/2022] Open
Abstract
Extensive research is currently being conducted into novel ocular drug delivery systems (ODDS) that are capable of surpassing the limitations associated with conventional intraocular anterior and posterior segment treatments. Nanoformulations, including those synthesised from the natural, hydrophilic glycosaminoglycan, hyaluronic acid (HA), have gained significant traction due to their enhanced intraocular permeation, longer retention times, high physiological stability, inherent biocompatibility, and biodegradability. However, conventional nanoformulation preparation methods often require large volumes of organic solvent, chemical cross-linkers, and surfactants, which can pose significant toxicity risks. We present a comprehensive, critical review of the use of HA in the field of ophthalmology and ocular drug delivery, with a discussion of the physicochemical and biological properties of HA that render it a suitable excipient for drug delivery to both the anterior and posterior segments of the eye. The pivotal focus of this review is a discussion of the formation of HA-based nanoparticles via polyelectrolyte complexation, a mild method of preparation driven primarily by electrostatic interaction between opposing polyelectrolytes. To the best of our knowledge, despite the growing number of publications centred around the development of HA-based polyelectrolyte complexes (HA-PECs) for ocular drug delivery, no review articles have been published in this area. This review aims to bridge the identified gap in the literature by (1) reviewing recent advances in the area of HA-PECs for anterior and posterior ODD, (2) describing the mechanism and thermodynamics of polyelectrolyte complexation, and (3) critically evaluating the intrinsic and extrinsic formulation parameters that must be considered when designing HA-PECs for ocular application.
Collapse
Affiliation(s)
- Saoirse Casey-Power
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland; (R.R.); (G.B.); (P.M.); (L.F.)
- Correspondence:
| | - Richie Ryan
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland; (R.R.); (G.B.); (P.M.); (L.F.)
| | - Gautam Behl
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland; (R.R.); (G.B.); (P.M.); (L.F.)
| | - Peter McLoughlin
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland; (R.R.); (G.B.); (P.M.); (L.F.)
| | - Mark E. Byrne
- Biomimetic & Biohybrid Materials, Biomedical Devices & Drug Delivery Laboratories, Department of Biomedical Engineering, Henry M. Rowan College of Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA;
- Department of Chemical Engineering, Henry M. Rowan College of Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA
| | - Laurence Fitzhenry
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Campus, South East Technological University, X91 K0EK Waterford, Ireland; (R.R.); (G.B.); (P.M.); (L.F.)
| |
Collapse
|
91
|
Obadă O, Pantalon AD, Rusu-Zota G, Hăisan A, Lupuşoru SI, Chiseliţă D. Choroidal Assessment in Patients with Type 2 Diabetes Mellitus and Non-Proliferative Diabetic Retinopathy by Swept-Source Ocular Coherence Tomography and Image Binarization. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58070918. [PMID: 35888637 PMCID: PMC9319764 DOI: 10.3390/medicina58070918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022]
Abstract
Background and Objectives: The aim of this study was to evaluate choroidal structure and vascularity indices in patients with non-proliferative diabetic retinopathy (NPDR). Materials and Methods: Sixty-three eyes from sixty-three patients were evaluated: 21 from healthy subjects, 20 with diabetes mellitus (DM) and no diabetic retinopathy (DR), and 22 with DM and non-proliferative diabetic retinopathy without diabetic macular edema (DME). Each patient underwent ocular examination, macular swept-source ocular coherence tomography (SS-OCT) imaging, glycemic control, and systemic high blood pressure (HBP) evaluation. Subfoveal choroidal thickness (SF-CT) was manually assessed on a line scan. Line scan OCT images were exported to ImageJ program. The areas under a 1.5, 3 and 6 mm horizontal line centered on the fovea were assessed by converting the OCT images to binary images, and total choroidal area (TCA), luminal area (LA), stromal area (SA), LA:SA ratio, and choroidal vascularity index (CVI) were evaluated. SF-CT and choroidal parameters were compared between groups, and correlations with ocular and systemic factors were analyzed. Results: SF-CT, TCA, LA, and SA were similar between groups. CVIs were significantly different between groups for all three studied areas (CVI-1.5: 66.21% vs. 66.06% vs. 63.74%, p = 0.003; CVI-3: 65.88% vs. 66.46% vs. 63.79%, p = 0.008; CVI-6: 64.79% vs. 65.40% vs. 63.61%, p = 0.032). NPDR patients had significantly lower CVIs compared to DM patients (p < 0.05). No association of choroidal parameters with glycemic control, DM duration and HBP was found significant (p < 0.05). Conclusions: Choroidal assessment by SS-OCT and image binarization in healthy subjects, subjects with DM without DR, and subjects with DM and NPDR indicated that CVI changes were identifiable and significant in early DR. The lack of association with ocular and systemic factors suggest that CVIs are reliable assessment parameters of choroidal vascular structure.
Collapse
Affiliation(s)
- Otilia Obadă
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universităţii Street, 700115 Iaşi, Romania;
- Department of Ophthalmology, “Saint Spiridon” Clinical Emergency Hospital, 1 Independenţei Street, 700111 Iaşi, Romania
- Correspondence: (O.O.); (A.D.P.)
| | - Anca Delia Pantalon
- Department of Ophthalmology, “Saint Spiridon” Clinical Emergency Hospital, 1 Independenţei Street, 700111 Iaşi, Romania
- Correspondence: (O.O.); (A.D.P.)
| | - Gabriela Rusu-Zota
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universităţii Street, 700115 Iaşi, Romania;
| | - Anca Hăisan
- Department of Emergency Medicine, “Grigore T. Popa” University of Medicine and Pharmacy,16 Universităţii Street, 700115 Iaşi, Romania;
| | - Smaranda Ioana Lupuşoru
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universităţii Street, 700115 Iaşi, Romania;
| | - Dorin Chiseliţă
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universităţii Street, 700115 Iaşi, Romania;
- Oftaprof Ophthalmology Clinic, 54 Stejar Street, 700327 Iaşi, Romania
| |
Collapse
|
92
|
Aqueous Humor Cytokines in Non-Proliferative Diabetic Retinopathy. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58070909. [PMID: 35888628 PMCID: PMC9324281 DOI: 10.3390/medicina58070909] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 01/01/2023]
Abstract
Background and Objectives: Cytokines are cell-signaling proteins whose identification may serve as inflammatory markers or early indicators for progressive disease. The aim of our study was to quantify several cytokines in aqueous humor (AH) and their correlations with biochemical parameters in diabetic eyes with non-proliferative diabetic retinopathy (NPDR). Materials and Methods: A total of 62 eyes from 62 patients were included in the study: 37 eyes from nondiabetic patients (group 1), 13 diabetic eyes with no retinopathy changes (group 2) and 12 diabetic eyes with early and moderate NPDR (group 3). AH samples were collected during uneventful cataract surgery. The cytokines IL-1β, IL-6, IL-8, IL-10, IL-12, IP-10, MCP-1, TNF-α and VEGF were quantified using multiplex bead-based immunoassay. Due to unreliable results, IL-1β, TNF-α, IL-10 and IL-12 were excluded. Concentrations were compared between groups. Biochemical parameters (fasting blood sugar, glycated hemoglobin, C-reactive protein) and the duration of diabetes were recorded. Results: VEGF levels were significantly different between groups (p = 0.001), while levels of IL-6, IL-8, IP-10 and MCP-1 were comparable across all groups (p > 0.05). IL-6 concentration correlated with VEGF in group 1 (rho = 0.651, p = 0.003) and group 3 (rho = 0.857, p = 0.007); no correlation could be proved between IL-6, IL-8, IP-10, MCP-1 or VEGF and biochemical parameters. Duration of diabetes was not correlated with the cytokine levels in groups 2 and 3. The receiver operating characteristic (ROC) curve revealed that VEGF concentrations could discriminate early and moderate NPDR from diabetes, with an area under the curve (AUC) of 0.897 (p = 0.001, 95% CI = 0.74−1.0). Conclusions: Diabetes mellitus induces significant intraocular changes in the VEGF expression in diabetic patients vs. normal subjects, even before proliferative complications appear. VEGF was increasingly expressed once the diabetes progressed from no retinopathy to early or moderate retinopathy.
Collapse
|
93
|
Goldberg RA, Hill L, Davis T, Stoilov I. Effect of less aggressive treatment on diabetic retinopathy severity scale scores: analyses of the RIDE and RISE open-label extension. BMJ Open Ophthalmol 2022; 7:bmjophth-2022-001007. [PMID: 36161830 PMCID: PMC9341173 DOI: 10.1136/bmjophth-2022-001007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To evaluate factors associated with Diabetic Retinopathy Severity Scale (DRSS) changes with less frequent ranibizumab after induction therapy. Methods and analysis Post hoc analyses of RIDE/RISE and their open-label extension (OLE). Analyses included patients with diabetic retinopathy (DR)/diabetic macular oedema who completed the OLE. Comparisons were made between patients with improved/maintained (≥0 step decrease from OLE baseline (month 36) to month 48) versus worsened (≥1 step increase) DRSS during the OLE. DRSS changes over 12 months were compared between patients randomised to ranibizumab at RIDE/RISE baseline who improved to DRSS score ≤43 at OLE baseline (induced) versus those randomised to sham with DRSS score ≤43 at RIDE/RISE baseline (native). Results From OLE baseline to month 48, 72% (263/367) of patients improved/maintained DRSS scores. These patients had similar mean best-corrected visual acuity at RIDE/RISE (56.4 letters) and OLE baseline (68.6 letters) versus patients with worsened scores (58.2 and 70.8 letters). Patients who improved/maintained DRSS scores had similar mean central foveal thickness at RIDE/RISE (492 µm) and OLE baseline (196 µm) versus patients with worsened scores (441 and 167 µm). Patients who improved/maintained DRSS scores received a significantly higher (p<0.0001) mean number of pro re nata (PRN) injections (4.4) between OLE baseline and month 48 versus those with worsened scores (2.3). Patients with more severe DR at baseline who achieved mild-to-moderate non-proliferative DR (NPDR) induced by monthly ranibizumab injections were significantly more likely to worsen (p<0.0001) than those with mild-to-moderate NPDR at baseline randomised to sham injections (1.0-step versus 0.1-step worsening). Conclusions Most patients improved/maintained DRSS scores with less-than-monthly PRN ranibizumab. Some minimum treatment/monitoring may be necessary to maintain improvements after induction therapy. Trial registration numbers NCT00473382/NCT00473330.
Collapse
Affiliation(s)
| | - Lauren Hill
- Genentech Inc, South San Francisco, California, USA
| | | | | |
Collapse
|
94
|
Yu FSX, Lee PSY, Yang L, Gao N, Zhang Y, Ljubimov AV, Yang E, Zhou Q, Xie L. The impact of sensory neuropathy and inflammation on epithelial wound healing in diabetic corneas. Prog Retin Eye Res 2022; 89:101039. [PMID: 34991965 PMCID: PMC9250553 DOI: 10.1016/j.preteyeres.2021.101039] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes, with several underlying pathophysiological mechanisms, some of which are still uncertain. The cornea is an avascular tissue and sensitive to hyperglycemia, resulting in several diabetic corneal complications including delayed epithelial wound healing, recurrent erosions, neuropathy, loss of sensitivity, and tear film changes. The manifestation of DPN in the cornea is referred to as diabetic neurotrophic keratopathy (DNK). Recent studies have revealed that disturbed epithelial-neural-immune cell interactions are a major cause of DNK. The epithelium is supplied by a dense network of sensory nerve endings and dendritic cell processes, and it secretes growth/neurotrophic factors and cytokines to nourish these neighboring cells. In turn, sensory nerve endings release neuropeptides to suppress inflammation and promote epithelial wound healing, while resident immune cells provide neurotrophic and growth factors to support neuronal and epithelial cells, respectively. Diabetes greatly perturbs these interdependencies, resulting in suppressed epithelial proliferation, sensory neuropathy, and a decreased density of dendritic cells. Clinically, this results in a markedly delayed wound healing and impaired sensory nerve regeneration in response to insult and injury. Current treatments for DPN and DNK largely focus on managing the severe complications of the disease. Cell-based therapies hold promise for providing more effective treatment for diabetic keratopathy and corneal ulcers.
Collapse
Affiliation(s)
- Fu-Shin X Yu
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Patrick S Y Lee
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Nan Gao
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yangyang Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Alexander V Ljubimov
- Departments of Biomedical Sciences and Neurosurgery, Cedars-Sinai Medical Center, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ellen Yang
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| |
Collapse
|
95
|
Zhang J, Zhang X, Zou Y, Han F. CPSF1 mediates retinal vascular dysfunction in diabetes mellitus via the MAPK/ERK pathway. Arch Physiol Biochem 2022; 128:708-715. [PMID: 32046510 DOI: 10.1080/13813455.2020.1722704] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study investigated the expression and underlying molecular mechanism of CPSF1 in diabetic retinopathy. Streptozotocin (STZ)-induced Sprague-Dawley (SD) rats were employed as a diabetic model, and high-glucose (HG)-induced human retinal vascular endothelial cells (HRVECs)were used as an in vitro experimental model to explore the effect of CPSF1. The results showed that CPSF1 was downregulated in diabetic retinopathy (DR) tissues and HRVECs under HG conditions. Adeno-associated viral CPSF1 attenuated histological abnormalities of retinas. CPSF1 regulates the apoptosis, migration, and vascularisation of HRVECs under HG conditions in vitro. CPSF1 mediates retinal vascular dysfunction by suppressing the phosphorylation mechanism in the mitogen-activated protein kinase/extracellular-signal-regulated kinase (MAPK/ERK) pathway in DR. In conclusion, CPSF1 may be associated with the development of DR, and upregulated CPSF1 alleviates apoptosis and migration via MAPK/ERK pathway.
Collapse
Affiliation(s)
- Jingyi Zhang
- The Second Department of Ophthalmology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xi Zhang
- The Second Department of Ophthalmology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yuanyuan Zou
- The Second Department of Ophthalmology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Fengmei Han
- The Second Department of Ophthalmology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
96
|
Tombolini B, Borrelli E, Sacconi R, Bandello F, Querques G. Diabetic macular ischemia. Acta Diabetol 2022; 59:751-759. [PMID: 35133500 DOI: 10.1007/s00592-021-01844-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022]
Abstract
AIM Since its relevance on diagnosis and prognosis of diabetic retinopathy (DR), this review will examine a multimodal imaging approach to detect diabetic macular ischemia (DMI). METHODS A PubMed engine search was carried out using the term "macular ischemia" paired with "diabetes," and "diabetic macular ischemia" paired to "fluorescein angiography," "ultra-wide field fluorescein angiography," "optical coherence tomography angiography," "octa," "2D octa," "ultra-wide field octa," "3D octa," "visual acuity." All studies published in English up to October 2021 irrespective of their publication status were reviewed, and relevant publications were included in this review. RESULTS Recently, new technologies have been proposed as an alternative to fluorescein angiography (FA), which is an actual diagnostic gold standard technique. Nowadays, optical coherence tomography angiography (OCTA) has emerged as the most promising and reliable procedure able to provide a qualitative and quantitative description of DMI. Newer three-dimensional (3D) OCTA approach will be discussed too. Moreover, we will discuss how OCTA might identify preclinical alterations before the onset of DR and allow prediction about the progression of disease. CONCLUSION OCTA has significantly expanded our knowledge on diabetic macular ischemia.
Collapse
Affiliation(s)
- Beatrice Tombolini
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Ophthalmology Unit, Division of Head and Neck, Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Enrico Borrelli
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Ophthalmology Unit, Division of Head and Neck, Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Riccardo Sacconi
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Ophthalmology Unit, Division of Head and Neck, Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Francesco Bandello
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Ophthalmology Unit, Division of Head and Neck, Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Giuseppe Querques
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy.
- Ophthalmology Unit, Division of Head and Neck, Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
97
|
Han T, Li W, Zhang H, Nie D. Involvement of long non-coding RNA ZNF503 antisense RNA 1 in diabetic retinopathy and its possible underlying mechanism. Bioengineered 2022; 13:14057-14065. [PMID: 35734878 PMCID: PMC9342252 DOI: 10.1080/21655979.2022.2062988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
ZNF503 antisense RNA 1 (ZNF503-AS1) is a newly identified long non-coding RNA (lncRNA) that regulates retinal pigment epithelium differentiation. To study its role in diabetic retinopathy, we performed RT-qPCR to measure plasma ZNF503-AS1 levels of 298 diabetic patients immediately after the diagnosis, during the follow-up, and at the end of follow-up. Plasma lncRNA ZNF503-AS1 expression in 96 healthy participants was also detected by RT-qPCR. Transforming growth factor beta 1 (TGF-β1) expression after ZNF503-AS1 overexpression was detected by Western blot. Cell proliferation and apoptosis were detected by cell proliferation and apoptosis assays, respectively. We found that ZNF503-AS1 was not differentially expressed in healthy participants and diabetic patients. High plasma lncRNA ZNF503-AS1 level was correlated with a high incidence of diabetic retinopathy. Plasma lncRNA ZNF503-AS1 level was higher in patients with diabetic retinopathy than in patients with other complications (p < 0.05). ZNF503-AS1 overexpression inhibited proliferation, promoted cell apoptosis, and upregulated TGF-β1 expression (p < 0.05). We concluded that ZNF503-AS1 might participate in diabetic retinopathy by activating TGF-β signaling.
Collapse
Affiliation(s)
- Ting Han
- Department of Nursing and Health, Nanfang College-Guangzhou, Guangzhou, Guangdong, China
| | - Wenrui Li
- Department of Nursing and Health, Nanfang College-Guangzhou, Guangzhou, Guangdong, China
| | - Hanrong Zhang
- Department of Nursing and Health, Nanfang College-Guangzhou, Guangzhou, Guangdong, China
| | - Daqing Nie
- Department of Rheumatism, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
98
|
High levels of FBS and HbA1c and their association with diabetic retinopathy: a study in the north of Iran. J Diabetes Metab Disord 2022; 21:399-406. [PMID: 35673440 PMCID: PMC9167345 DOI: 10.1007/s40200-022-00986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 01/20/2022] [Indexed: 10/18/2022]
Abstract
Background Diabetic retinopathy, which is a common complication of diabetes, is one of the most common reasons of blindness in adults. There are several potential risk factors for diabetic retinopathy such as hypertension (HTN), hyperlipidemia (HLP), high fasting blood sugar (FBS), and high Hemoglobin A1c (HbA1c). Yet, ethnicity is another factor which may contribute to diabetic retinopathy regardless of the potential risk factors mentioned. The aim of this study, therefore, is to find the risk factors associated with diabetic retinopathy in the north of Iran. Methods This was a retrospective cohort study including a total of 1,125 patients divided into three groups as follows: (i) patients with no diabetic retinopathy (NDR group; n = 398); (ii) patients with non-proliferative diabetic retinopathy (non-PDR group; n = 408); (iii) patients with proliferative diabetic retinopathy (PDR group; n = 319). The laboratory data were collected from patients for analysis. Results Diabetic patients with retinopathy had significantly higher levels of FBS compared with those without retinopathy (p = 0.001). Patients with PDR or non-PDR had higher levels of HbA1c compared with patients without retinopathy (p = 0.001). In contrast, no association was observed between HTN or HLP and diabetic retinopathy. On the other hand, duration of diabetes was another important factor affecting diabetic retinopathy. Conclusions Higher levels of FBS and HbA1c were observed in patients with diabetic retinopathy. Monitoring and controlling of FBS and HbA1c of diabetic patients could prevent the occurrence of diabetic retinopathy.
Collapse
|
99
|
Cho CH, Roh KH, Lim NY, Park SJ, Park S, Kim HW. Role of the JAK/STAT pathway in a streptozotocin-induced diabetic retinopathy mouse model. Graefes Arch Clin Exp Ophthalmol 2022; 260:3553-3563. [DOI: 10.1007/s00417-022-05694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/30/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022] Open
|
100
|
Xia Z, Yang C, Yang X, Wu S, Feng Z, Qu L, Chen X, Liu L, Ma Y. LncRNA MCM3AP-AS1 is downregulated in diabetic retinopathy and promotes cell apoptosis by regulating miR-211/SIRT1. Diabetol Metab Syndr 2022; 14:73. [PMID: 35570299 PMCID: PMC9107717 DOI: 10.1186/s13098-022-00836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
AIM This study aimed to investigate the role of lncRNA MCM3AP-AS1 in diabetic retinopathy (DR). METHODS Plasma MCM3AP-AS1 levels in DR patients (n = 80), T2DM patients (n = 80), and Controls (n = 80) were measured by qPCR and compared using ANOVA (one-way) and Tukey test. The expressions of lncRNA MCM3AP-AS1 and miR-211 in Human retinal pigment epithelial cells (hRPE) line ARPE-19 were detected by RT-qPCR. Western blot and annexin V-FITC staining were performed to investigate the role of MCM3AP-AS1/SIRT1 in ARPE-19 cell proliferation and apoptosis in vitro. RESULTS We observed that MCM3AP-AS1 was downregulated in DR patients 25 comparing to T2D patients without significantly complications. Bioinformatics analysis showed that MCM3AP-AS1 might bind miR-211. However, no significant correlation between these two factors was observed in DR patients. Consistently, overexpression of MCM3AP-AS1 and miR-211 failed to affect the expression of each other in hRPE. Interestingly, MCM3AP-AS1 overexpression upregulated SIRT1, a target of miR-211. Moreover, MCM3AP-AS1 was downregulated in DR patients compared to type 2 diabetic mellitus patients without significant complications. In RPEs, high glucose treatment downregulated MCM3AP-AS1. Cell apoptosis analysis showed that MCM3AP-AS1 and SIRT1 overexpression decreased the apoptotic rate of RPEs, and miR-211 overexpression reduced the effect of MCM3AP-AS1 and SIRT1 overexpression. CONCLUSION MCM3AP-AS1 is downregulated in DR and promotes cell apoptosis by regulating miR-211/SIRT1.
Collapse
Affiliation(s)
- Zhaoxia Xia
- Department of Ophthalmology, the Sixth Affiliated Hospital, Sun Yat-Sen University, No. Two Heng Road 26th, Tianhe District, Guangzhou, Guangdong, 510655, People's Republic of China.
| | - Chaoying Yang
- Department of Dermatology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Xiaoxi Yang
- Department of Ophthalmology, the Sixth Affiliated Hospital, Sun Yat-Sen University, No. Two Heng Road 26th, Tianhe District, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Shuduan Wu
- Department of Ophthalmology, the Sixth Affiliated Hospital, Sun Yat-Sen University, No. Two Heng Road 26th, Tianhe District, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Zhizhen Feng
- Department of Ophthalmology, the Sixth Affiliated Hospital, Sun Yat-Sen University, No. Two Heng Road 26th, Tianhe District, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Lei Qu
- Department of Ophthalmology, the Sixth Affiliated Hospital, Sun Yat-Sen University, No. Two Heng Road 26th, Tianhe District, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Xianghua Chen
- Department of Ophthalmology, the Sixth Affiliated Hospital, Sun Yat-Sen University, No. Two Heng Road 26th, Tianhe District, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Linyu Liu
- Department of Ophthalmology, the Sixth Affiliated Hospital, Sun Yat-Sen University, No. Two Heng Road 26th, Tianhe District, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Yanling Ma
- Department of Ophthalmology, the Sixth Affiliated Hospital, Sun Yat-Sen University, No. Two Heng Road 26th, Tianhe District, Guangzhou, Guangdong, 510655, People's Republic of China
| |
Collapse
|