51
|
Wonderlich ER, Caroline AL, McMillen CM, Walters AW, Reed DS, Barratt-Boyes SM, Hartman AL. Peripheral Blood Biomarkers of Disease Outcome in a Monkey Model of Rift Valley Fever Encephalitis. J Virol 2018; 92:e01662-17. [PMID: 29118127 PMCID: PMC5774883 DOI: 10.1128/jvi.01662-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/01/2017] [Indexed: 12/31/2022] Open
Abstract
Rift Valley Fever (RVF) is an emerging arboviral disease of livestock and humans. Although the disease is caused by a mosquito-borne virus, humans are infected through contact with, or inhalation of, virus-laden particles from contaminated animal carcasses. Some individuals infected with RVF virus (RVFV) develop meningoencephalitis, resulting in morbidity and mortality. Little is known about the pathogenic mechanisms that lead to neurologic sequelae, and thus, animal models that represent human disease are needed. African green monkeys (AGM) exposed to aerosols containing RVFV develop a reproducibly lethal neurological disease that resembles human illness. To understand the disease process and identify biomarkers of lethality, two groups of 5 AGM were infected by inhalation with either a lethal or a sublethal dose of RVFV. Divergence between lethal and sublethal infections occurred as early as 2 days postinfection (dpi), at which point CD8+ T cells from lethally infected AGM expressed activated caspase-3 and simultaneously failed to increase levels of major histocompatibility complex (MHC) class II molecules, in contrast to surviving animals. At 4 dpi, lethally infected animals failed to demonstrate proliferation of total CD4+ and CD8+ T cells, in contrast to survivors. These marked changes in peripheral blood cells occur much earlier than more-established indicators of severe RVF disease, such as granulocytosis and fever. In addition, an early proinflammatory (gamma interferon [IFN-γ], interleukin 6 [IL-6], IL-8, monocyte chemoattractant protein 1 [MCP-1]) and antiviral (IFN-α) response was seen in survivors, while very late cytokine expression was found in animals with lethal infections. By characterizing immunological markers of lethal disease, this study furthers our understanding of RVF pathogenesis and will allow the testing of therapeutics and vaccines in the AGM model.IMPORTANCE Rift Valley Fever (RVF) is an important emerging viral disease for which we lack both an effective human vaccine and treatment. Encephalitis and neurological disease resulting from RVF lead to death or significant long-term disability for infected people. African green monkeys (AGM) develop lethal neurological disease when infected with RVF virus by inhalation. Here we report the similarities in disease course between infected AGM and humans. For the first time, we examine the peripheral immune response during the course of infection in AGM and show that there are very early differences in the immune response between animals that survive infection and those that succumb. We conclude that AGM are a novel and suitable monkey model for studying the neuropathogenesis of RVF and for testing vaccines and therapeutics against this emerging viral pathogen.
Collapse
Affiliation(s)
- Elizabeth R Wonderlich
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amy L Caroline
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cynthia M McMillen
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aaron W Walters
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Douglas S Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Simon M Barratt-Boyes
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amy L Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
52
|
Anti-Rift Valley fever virus activity in vitro, pre-clinical pharmacokinetics and oral bioavailability of benzavir-2, a broad-acting antiviral compound. Sci Rep 2018; 8:1925. [PMID: 29386590 PMCID: PMC5792431 DOI: 10.1038/s41598-018-20362-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/17/2018] [Indexed: 12/24/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne hemorrhagic fever virus affecting both humans and animals with severe morbidity and mortality and is classified as a potential bioterror agent due to the possible aerosol transmission. At present there is no human vaccine or antiviral therapy available. Thus, there is a great need to develop new antivirals for treatment of RVFV infections. Benzavir-2 was previously identified as potent inhibitor of human adenovirus, herpes simplex virus type 1, and type 2. Here we assess the anti-RVFV activity of benzavir-2 together with four structural analogs and determine pre-clinical pharmacokinetic parameters of benzavir-2. In vitro, benzavir-2 efficiently inhibited RVFV infection, viral RNA production and production of progeny viruses. In vitro, benzavir-2 displayed satisfactory solubility, good permeability and metabolic stability. In mice, benzavir-2 displayed oral bioavailability with adequate maximum serum concentration. Oral administration of benzavir-2 formulated in peanut butter pellets gave high systemic exposure without any observed toxicity in mice. To summarize, our data demonstrated potent anti-RVFV activity of benzavir-2 in vitro together with a promising pre-clinical pharmacokinetic profile. This data support further exploration of the antiviral activity of benzavir-2 in in vivo efficacy models that may lead to further drug development for human use.
Collapse
|
53
|
A diagnostic and epidemiologic investigation of acute febrile illness (AFI) in Kilombero, Tanzania. PLoS One 2017; 12:e0189712. [PMID: 29287070 PMCID: PMC5747442 DOI: 10.1371/journal.pone.0189712] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/30/2017] [Indexed: 12/20/2022] Open
Abstract
Introduction In low-resource settings, empiric case management of febrile illness is routine as a result of limited access to laboratory diagnostics. The use of comprehensive fever syndromic surveillance, with enhanced clinical microbiology, advanced diagnostics and more robust epidemiologic investigation, could enable healthcare providers to offer a differential diagnosis of fever syndrome and more appropriate care and treatment. Methods We conducted a year-long exploratory study of fever syndrome among patients ≥ 1 year if age, presenting to clinical settings with an axillary temperature of ≥37.5°C and symptomatic onset of ≤5 days. Blood and naso-pharyngeal/oral-pharyngeal (NP/OP) specimens were collected and analyzed, respectively, using AFI and respiratory TaqMan Array Cards (TAC) for multi-pathogen detection of 57 potential causative agents. Furthermore, we examined numerous epidemiologic correlates of febrile illness, and conducted demographic, clinical, and behavioral domain-specific multivariate regression to statistically establish associations with agent detection. Results From 15 September 2014–13 September 2015, 1007 febrile patients were enrolled, and 997 contributed an epidemiologic survey, including: 14% (n = 139) 1<5yrs, 19% (n = 186) 5-14yrs, and 67% (n = 672) ≥15yrs. AFI TAC and respiratory TAC were performed on 842 whole blood specimens and 385 NP/OP specimens, respectively. Of the 57 agents surveyed, Plasmodium was the most common agent detected. AFI TAC detected nucleic acid for one or more of seven microbial agents in 49% of AFI blood samples, including: Plasmodium (47%), Leptospira (3%), Bartonella (1%), Salmonella enterica (1%), Coxiella burnetii (1%), Rickettsia (1%), and West Nile virus (1%). Respiratory TAC detected nucleic acid for 24 different microbial agents, including 12 viruses and 12 bacteria. The most common agents detected among our surveyed population were: Haemophilus influenzae (67%), Streptococcus pneumoniae (55%), Moraxella catarrhalis (39%), Staphylococcus aureus (37%), Pseudomonas aeruginosa (36%), Human Rhinovirus (25%), influenza A (24%), Klebsiella pneumoniae (14%), Enterovirus (15%) and group A Streptococcus (12%). Our epidemiologic investigation demonstrated both age and symptomatic presentation to be associated with a number of detected agents, including, but not limited to, influenza A and Plasmodium. Linear regression of fully-adjusted mean cycle threshold (Ct) values for Plasmodium also identified statistically significant lower mean Ct values for older children (20.8), patients presenting with severe fever (21.1) and headache (21.5), as well as patients admitted for in-patient care and treatment (22.4). Conclusions This study is the first to employ two syndromic TaqMan Array Cards for the simultaneous survey of 57 different organisms to better characterize the type and prevalence of detected agents among febrile patients. Additionally, we provide an analysis of the association between adjusted mean Ct values for Plasmodium and key clinical and demographic variables, which may further inform clinical decision-making based upon intensity of infection, as observed across endemic settings of sub-Saharan Africa.
Collapse
|
54
|
Leta S, Beyene TJ, De Clercq EM, Amenu K, Kraemer MUG, Revie CW. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int J Infect Dis 2017; 67:25-35. [PMID: 29196275 DOI: 10.1016/j.ijid.2017.11.026] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES The objective of this study was to map the global risk of the major arboviral diseases transmitted by Aedes aegypti and Aedes albopictus by identifying areas where the diseases are reported, either through active transmission or travel-related outbreaks, as well as areas where the diseases are not currently reported but are nonetheless suitable for the vector. METHODS Data relating to five arboviral diseases (Zika, dengue fever, chikungunya, yellow fever, and Rift Valley fever (RVF)) were extracted from some of the largest contemporary databases and paired with data on the known distribution of their vectors, A. aegypti and A. albopictus. The disease occurrence data for the selected diseases were compiled from literature dating as far back as 1952 to as recent as 2017. The resulting datasets were aggregated at the country level, except in the case of the USA, where state-level data were used. Spatial analysis was used to process the data and to develop risk maps. RESULTS Out of the 250 countries/territories considered, 215 (86%) are potentially suitable for the survival and establishment of A. aegypti and/or A. albopictus. A. albopictus has suitability foci in 197 countries/territories, while there are 188 that are suitable for A. aegypti. There is considerable variation in the suitability range among countries/territories, but many of the tropical regions of the world provide high suitability over extensive areas. Globally, 146 (58.4%) countries/territories reported at least one arboviral disease, while 123 (49.2%) reported more than one of the above diseases. The overall numbers of countries/territories reporting autochthonous vector-borne occurrences of Zika, dengue, chikungunya, yellow fever, and RVF, were 85, 111, 106, 43, and 39, respectively. CONCLUSIONS With 215 countries/territories potentially suitable for the most important arboviral disease vectors and more than half of these reporting cases, arboviral diseases are indeed a global public health threat. The increasing proportion of reports that include multiple arboviral diseases highlights the expanding range of their common transmission vectors. The shared features of these arboviral diseases should motivate efforts to combine interventions against these diseases.
Collapse
Affiliation(s)
- Samson Leta
- Addis Ababa University, College of Veterinary Medicine, PO Box 34, Bishoftu, Ethiopia.
| | - Tariku Jibat Beyene
- Addis Ababa University, College of Veterinary Medicine, PO Box 34, Bishoftu, Ethiopia
| | - Eva M De Clercq
- Research Fellow FNRS, George Lemaître Institute for Earth and Climate Research, Université Catholique de Louvain, Place Louis Pasteur 3, 1348 Louvain-la-Neuve, Belgium
| | - Kebede Amenu
- Addis Ababa University, College of Veterinary Medicine, PO Box 34, Bishoftu, Ethiopia
| | - Moritz U G Kraemer
- Harvard Medical School, Boston, United States; Computational Epidemiology Lab, Boston Children's Hospital, Boston, United States; Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Crawford W Revie
- University of Prince Edward Island, Department of Health Management, Charlottetown, Canada
| |
Collapse
|
55
|
Current Status of Rift Valley Fever Vaccine Development. Vaccines (Basel) 2017; 5:vaccines5030029. [PMID: 28925970 PMCID: PMC5620560 DOI: 10.3390/vaccines5030029] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 01/08/2023] Open
Abstract
Rift Valley Fever (RVF) is a mosquito-borne zoonotic disease that presents a substantial threat to human and public health. It is caused by Rift Valley fever phlebovirus (RVFV), which belongs to the genus Phlebovirus and the family Phenuiviridae within the order Bunyavirales. The wide distribution of competent vectors in non-endemic areas coupled with global climate change poses a significant threat of the transboundary spread of RVFV. In the last decade, an improved understanding of the molecular biology of RVFV has facilitated significant progress in the development of novel vaccines, including DIVA (differentiating infected from vaccinated animals) vaccines. Despite these advances, there is no fully licensed vaccine for veterinary or human use available in non-endemic countries, whereas in endemic countries, there is no clear policy or practice of routine/strategic livestock vaccinations as a preventive or mitigating strategy against potential RVF disease outbreaks. The purpose of this review was to provide an update on the status of RVF vaccine development and provide perspectives on the best strategies for disease control. Herein, we argue that the routine or strategic vaccination of livestock could be the best control approach for preventing the outbreak and spread of future disease.
Collapse
|
56
|
Mweya CN, Mboera LEG, Kimera SI. Climate Influence on Emerging Risk Areas for Rift Valley Fever Epidemics in Tanzania. Am J Trop Med Hyg 2017; 97:109-114. [PMID: 28719317 DOI: 10.4269/ajtmh.16-0444] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rift Valley Fever (RVF) is a climate-related arboviral infection of animals and humans. Climate is thought to represent a threat toward emerging risk areas for RVF epidemics globally. The objective of this study was to evaluate influence of climate on distribution of suitable breeding habitats for Culex pipiens complex, potential mosquito vector responsible for transmission and distribution of disease epidemics risk areas in Tanzania. We used ecological niche models to estimate potential distribution of disease risk areas based on vectors and disease co-occurrence data approach. Climatic variables for the current and future scenarios were used as model inputs. Changes in mosquito vectors' habitat suitability in relation to disease risk areas were estimated. We used partial receiver operating characteristic and the area under the curves approach to evaluate model predictive performance and significance. Habitat suitability for Cx. pipiens complex indicated broad-scale potential for change and shift in the distribution of the vectors and disease for both 2020 and 2050 climatic scenarios. Risk areas indicated more intensification in the areas surrounding Lake Victoria and northeastern part of the country through 2050 climate scenario. Models show higher probability of emerging risk areas spreading toward the western parts of Tanzania from northeastern areas and decrease in the southern part of the country. Results presented here identified sites for consideration to guide surveillance and control interventions to reduce risk of RVF disease epidemics in Tanzania. A collaborative approach is recommended to develop and adapt climate-related disease control and prevention strategies.
Collapse
Affiliation(s)
- Clement N Mweya
- Tukuyu Research Centre, National Institute for Medical Research, Tukuyu, Tanzania
| | - Leonard E G Mboera
- Headquarters, National Institute for Medical Research, Dar es salaam, Tanzania
| | - Sharadhuli I Kimera
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
57
|
Grossi-Soyster EN, Banda T, Teng CY, Muchiri EM, Mungai PL, Mutuku FM, Gildengorin G, Kitron U, King CH, Desiree Labeaud A. Rift Valley Fever Seroprevalence in Coastal Kenya. Am J Trop Med Hyg 2017; 97:115-120. [PMID: 28719329 DOI: 10.4269/ajtmh.17-0104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Rift Valley fever virus (RVFV) causes severe disease in both animals and humans, resulting in significant economic and public health damages. The objective of this study was to measure RVFV seroprevalence in six coastal Kenyan villages between 2009 and 2011, and characterize individual-, household-, and community-level risk factors for prior RVFV exposure. Sera were tested for anti-RVFV IgG via enzyme-linked immunosorbent assay. Overall, 51 (1.8%; confidence interval [CI95] 1.3-2.3) of 2,871 samples were seropositive for RVFV. Seroprevalence differed significantly among villages, and was highest in Jego Village (18/300; 6.0%; CI95 3.6-9.3) and lowest in Magodzoni (0/248). Adults were more likely to be seropositive than children (P < 0.001). Seropositive subjects were less likely to own land or a motor vehicle (P < 0.01), suggesting exposure is associated with lower socioeconomic standing (P = 0.03). RVFV exposure appears to be low in coastal Kenya, although with some variability among villages.
Collapse
Affiliation(s)
| | - Tamara Banda
- Children's Hospital Oakland Research Institute, Oakland, California
| | - Crystal Y Teng
- Children's Hospital Oakland Research Institute, Oakland, California
| | - Eric M Muchiri
- Division of Vector Borne and Neglected Tropical Diseases, Ministry of Health, Msambweni, Kenya
| | - Peter L Mungai
- Division of Vector Borne and Neglected Tropical Diseases, Ministry of Health, Msambweni, Kenya
| | - Francis M Mutuku
- Department of Environmental studies, Emory University, Atlanta, Georgia.,Division of Vector Borne and Neglected Tropical Diseases, Ministry of Health, Msambweni, Kenya
| | | | - Uriel Kitron
- Department of Environmental studies, Emory University, Atlanta, Georgia
| | | | - A Desiree Labeaud
- Children's Hospital Oakland Research Institute, Oakland, California.,Stanford University School of Medicine, Stanford, California
| |
Collapse
|
58
|
Said A, Elmanzalawy M, Ma G, Damiani AM, Osterrieder N. An equine herpesvirus type 1 (EHV-1) vector expressing Rift Valley fever virus (RVFV) Gn and Gc induces neutralizing antibodies in sheep. Virol J 2017; 14:154. [PMID: 28807043 PMCID: PMC5556661 DOI: 10.1186/s12985-017-0811-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/21/2017] [Indexed: 11/10/2022] Open
Abstract
Rift Valley fever virus (RVFV) is an arthropod-borne bunyavirus that can cause serious and fatal disease in humans and animals. RVFV is a negative-sense RNA virus of the Phlebovirus genus in the Bunyaviridae family. The main envelope RVFV glycoproteins, Gn and Gc, are encoded on the M segment of RVFV and known inducers of protective immunity. In an attempt to develop a safe and efficacious RVF vaccine, we constructed and tested a vectored equine herpesvirus type 1 (EHV-1) vaccine that expresses RVFV Gn and Gc. The Gn and Gc genes were custom-synthesized after codon optimization and inserted into EHV-1 strain RacH genome. The rH_Gn-Gc recombinant virus grew in cultured cells with kinetics that were comparable to those of the parental virus and stably expressed Gn and Gc. Upon immunization of sheep, the natural host, neutralizing antibodies against RVFV were elicited by rH_Gn-Gc and protective titers reached to 1:320 at day 49 post immunization but not by parental EHV-1, indicating that EHV-1 is a promising vector alternative in the development of a safe marker RVFV vaccine.
Collapse
Affiliation(s)
- Abdelrahman Said
- Institut für Virologie, Zentrum für Infektionsmedizin - Robert von Ostertag-Haus, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany.,Parasitology and Animal Diseases Department, Veterinary Research Division, National Research Center, El Bouhouth St., Dokki, 12622, Cairo, Egypt
| | - Mona Elmanzalawy
- Rift Valley Fever department, Veterinary Serum Vaccine Research Institute, Cairo, Egypt
| | - Guanggang Ma
- Institut für Virologie, Zentrum für Infektionsmedizin - Robert von Ostertag-Haus, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Armando Mario Damiani
- Institut für Virologie, Zentrum für Infektionsmedizin - Robert von Ostertag-Haus, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany.,Instituto de Medicina y Biología Experimental de Cuyo, IMBECU-CONICET; Área de Química Biológica, Facultad de Ciencias Médicas, UNCuyo, Mendoza, Argentina
| | - Nikolaus Osterrieder
- Institut für Virologie, Zentrum für Infektionsmedizin - Robert von Ostertag-Haus, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany.
| |
Collapse
|
59
|
Cook EAJ, Grossi-Soyster EN, de Glanville WA, Thomas LF, Kariuki S, Bronsvoort BMDC, Wamae CN, LaBeaud AD, Fèvre EM. The sero-epidemiology of Rift Valley fever in people in the Lake Victoria Basin of western Kenya. PLoS Negl Trop Dis 2017; 11:e0005731. [PMID: 28686589 PMCID: PMC5517073 DOI: 10.1371/journal.pntd.0005731] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 07/19/2017] [Accepted: 06/20/2017] [Indexed: 12/25/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a zoonotic arbovirus affecting livestock and people. This study was conducted in western Kenya where RVFV outbreaks have not previously been reported. The aims were to document the seroprevalence and risk factors for RVFV antibodies in a community-based sample from western Kenya and compare this with slaughterhouse workers in the same region who are considered a high-risk group for RVFV exposure. The study was conducted in western Kenya between July 2010 and November 2012. Individuals were recruited from randomly selected homesteads and a census of slaughterhouses. Structured questionnaire tools were used to collect information on demographic data, health, and risk factors for zoonotic disease exposure. Indirect ELISA on serum samples determined seropositivity to RVFV. Risk factor analysis for RVFV seropositivity was conducted using multi-level logistic regression. A total of 1861 individuals were sampled in 384 homesteads. The seroprevalence of RVFV in the community was 0.8% (95% CI 0.5-1.3). The variables significantly associated with RVFV seropositivity in the community were increasing age (OR 1.2; 95% CI 1.1-1.4, p<0.001), and slaughtering cattle at the homestead (OR 3.3; 95% CI 1.0-10.5, p = 0.047). A total of 553 slaughterhouse workers were sampled in 84 ruminant slaughterhouses. The seroprevalence of RVFV in slaughterhouse workers was 2.5% (95% CI 1.5-4.2). Being the slaughterman, the person who cuts the animal's throat (OR 3.5; 95% CI 1.0-12.1, p = 0.047), was significantly associated with RVFV seropositivity. This study investigated and compared the epidemiology of RVFV between community members and slaughterhouse workers in western Kenya. The data demonstrate that slaughtering animals is a risk factor for RVFV seropositivity and that slaughterhouse workers are a high-risk group for RVFV seropositivity in this environment. These risk factors have been previously reported in other studies providing further evidence for RVFV circulation in western Kenya.
Collapse
Affiliation(s)
- Elizabeth Anne Jessie Cook
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- International Livestock Research Institute, Nairobi, Kenya
| | | | - William Anson de Glanville
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- International Livestock Research Institute, Nairobi, Kenya
| | - Lian Francesca Thomas
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- International Livestock Research Institute, Nairobi, Kenya
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Barend Mark de Clare Bronsvoort
- The Roslin Institute, University of Edinburgh, Roslin, United Kingdom
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, United Kingdom
| | | | - Angelle Desiree LaBeaud
- Department of Pediatrics, Stanford University School of Medicine, Stanford, United States of America
| | - Eric Maurice Fèvre
- International Livestock Research Institute, Nairobi, Kenya
- Institute of Infection and Global Health, University of Liverpool, Neston, United Kingdom
| |
Collapse
|
60
|
Abstract
Rift Valley fever (RVF) is a severe veterinary disease of livestock that also causes moderate to severe illness in people. The life cycle of RVF is complex and involves mosquitoes, livestock, people, and the environment. RVF virus is transmitted from either mosquitoes or farm animals to humans, but is generally not transmitted from person to person. People can develop different diseases after infection, including febrile illness, ocular disease, hemorrhagic fever, or encephalitis. There is a significant risk for emergence of RVF into new locations, which would affect human health and livestock industries.
Collapse
Affiliation(s)
- Amy Hartman
- Center for Vaccine Research, Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|
61
|
Rapid development of vaccines against emerging pathogens: The replication-deficient simian adenovirus platform technology. Vaccine 2017; 35:4461-4464. [PMID: 28576573 PMCID: PMC5571606 DOI: 10.1016/j.vaccine.2017.04.085] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/13/2017] [Accepted: 04/26/2017] [Indexed: 12/11/2022]
Abstract
Despite the fact that there had been multiple small outbreaks of Ebola Virus Disease, when a large outbreak occurred in 2014 there were no vaccines or drugs available for use. Clinical development of multiple candidate vaccines was then initiated in parallel with attempts to contain the outbreak but only one vaccine was eventually tested in a phase III trial. In order to be better prepared for future outbreaks of known human pathogens, platform technologies to accelerate vaccine development should be employed, allowing vaccine developers to take advantage of detailed knowledge of the vaccine platform and facilitating rapid progress to clinical trials and eventually to vaccine stockpiles. This review gives an example of one such vaccine platform, replication-deficient simian adenoviruses, and describes progress in human and livestock vaccine development for three outbreak pathogens, Ebola virus, Rift Valley Fever Virus and Middle East Respiratory Syndrome Coronavirus.
Collapse
|
62
|
Mutua EN, Bukachi SA, Bett BK, Estambale BA, Nyamongo IK. "We do not bury dead livestock like human beings": Community behaviors and risk of Rift Valley Fever virus infection in Baringo County, Kenya. PLoS Negl Trop Dis 2017; 11:e0005582. [PMID: 28542242 PMCID: PMC5460880 DOI: 10.1371/journal.pntd.0005582] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 06/06/2017] [Accepted: 04/19/2017] [Indexed: 11/19/2022] Open
Abstract
Background Rift Valley Fever (RVF), is a viral zoonotic disease transmitted by Aedes and Culex mosquitoes. In Kenya, its occurrence is associated with increased rains. In Baringo County, RVF was first reported in 2006–2007 resulting in 85 human cases and 5 human deaths, besides livestock losses and livelihood disruptions. This study sought to investigate the county’s current RVF risk status. Methodology and principal findings A cross-sectional study on the knowledge, attitudes and practices of RVF was conducted through a mixed methods approach utilizing a questionnaire survey (n = 560) and 26 focus group discussions (n = 231). Results indicate that study participants had little knowledge of RVF causes, its signs and symptoms and transmission mechanisms to humans and livestock. However, most of them indicated that a person could be infected with zoonotic diseases through consumption of meat (79.2%) and milk (73.7%) or contact with blood (40%) from sick animals. There was a statistically significant relationship between being male and milking sick animals, consumption of milk from sick animals, consuming raw or cooked blood, slaughtering sick livestock or dead animals for consumption (all at p≤0.001), and handling sick livestock with bare hands (p = 0.025) with more men than women engaging in the risky practices. Only a few respondents relied on trained personnel or local experts to inspect meat for safety of consumption every time they slaughtered an animal at home. Sick livestock were treated using conventional and herbal medicines often without consulting veterinary officers. Conclusions Communities in Baringo County engage in behaviour that may increase their risk to RVF infections during an outbreak. The authors recommend community education to improve their response during outbreaks. The study focuses on the knowledge and socio-cultural practices around Rift Valley Fever (RVF) in Baringo County. It is intended to identify means through which communities in Baringo County could be exposed to RVF in the event of an outbreak. Specifically, it addresses knowledge of RVF transmission routes, practices in handling and consumption of meat, milk and blood; livestock disease management and disposal of dead animals/aborted foetuses. The study found that community members engaged in practices that would expose them to RVF in the event of an outbreak. These practices include milking and consuming milk from sick animals; consuming meat from slaughtered sick animals and those that die from disease; rarely having animals that were slaughtered at home inspected by a veterinary officer or a local animal expert before consumption; using uncertified techniques to test meat for safety of consumption; and treating sick livestock with both conventional and herbal treatments without the guidance of veterinary personnel. Further, RVF infections are likely to follow a gendered pattern based on the division of labor in livestock production. Based on their results, the study authors recommend community education to increase RVF awareness.
Collapse
Affiliation(s)
- Edna N. Mutua
- Institute of Anthropology, Gender and African Studies, University of Nairobi, Nairobi, Kenya
- Animal and Human Health, International Livestock Research Institute, Nairobi, Kenya
- * E-mail:
| | - Salome A. Bukachi
- Institute of Anthropology, Gender and African Studies, University of Nairobi, Nairobi, Kenya
| | - Bernard K. Bett
- Animal and Human Health, International Livestock Research Institute, Nairobi, Kenya
| | - Benson A. Estambale
- Research, Innovation and Outreach, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Isaac K. Nyamongo
- Institute of Anthropology, Gender and African Studies, University of Nairobi, Nairobi, Kenya
- Cooperative Development, Research and Innovation, The Cooperative University of Kenya, Nairobi, Kenya
| |
Collapse
|
63
|
Bell TM, Espina V, Senina S, Woodson C, Brahms A, Carey B, Lin SC, Lundberg L, Pinkham C, Baer A, Mueller C, Chlipala EA, Sharman F, de la Fuente C, Liotta L, Kehn-Hall K. Rapamycin modulation of p70 S6 kinase signaling inhibits Rift Valley fever virus pathogenesis. Antiviral Res 2017; 143:162-175. [PMID: 28442428 DOI: 10.1016/j.antiviral.2017.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/13/2017] [Accepted: 04/21/2017] [Indexed: 01/24/2023]
Abstract
Despite over 60 years of research on antiviral drugs, very few are FDA approved to treat acute viral infections. Rift Valley fever virus (RVFV), an arthropod borne virus that causes hemorrhagic fever in severe cases, currently lacks effective treatments. Existing as obligate intracellular parasites, viruses have evolved to manipulate host cell signaling pathways to meet their replication needs. Specifically, translation modulation is often necessary for viruses to establish infection in their host. Here we demonstrated phosphorylation of p70 S6 kinase, S6 ribosomal protein, and eIF4G following RVFV infection in vitro through western blot analysis and in a mouse model of infection through reverse phase protein microarrays (RPPA). Inhibition of p70 S6 kinase through rapamycin treatment reduced viral titers in vitro and increased survival and mitigated clinical disease in RVFV challenged mice. Additionally, the phosphorylation of p70 S6 kinase was decreased following rapamycin treatment in vivo. Collectively these data demonstrate modulating p70 S6 kinase can be an effective antiviral strategy.
Collapse
Affiliation(s)
- Todd M Bell
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Svetlana Senina
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Caitlin Woodson
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Ashwini Brahms
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Brian Carey
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Shih-Chao Lin
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Lindsay Lundberg
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Chelsea Pinkham
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Alan Baer
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Claudius Mueller
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | | | - Faye Sharman
- Premier Laboratory, LLC, Boulder, CO, 80308, USA
| | - Cynthia de la Fuente
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA.
| |
Collapse
|
64
|
Cook EAJ, de Glanville WA, Thomas LF, Kariuki S, Bronsvoort BMDC, Fèvre EM. Working conditions and public health risks in slaughterhouses in western Kenya. BMC Public Health 2017; 17:14. [PMID: 28056885 PMCID: PMC5217581 DOI: 10.1186/s12889-016-3923-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 12/09/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inadequate facilities and hygiene at slaughterhouses can result in contamination of meat and occupational hazards to workers. The objectives of this study were to assess current conditions in slaughterhouses in western Kenya and the knowledge, and practices of the slaughterhouse workers toward hygiene and sanitation. METHODS Between February and October 2012 all consenting slaughterhouses in the study area were recruited. A standardised questionnaire relating to facilities and practices in the slaughterhouse was administered to the foreperson at each site. A second questionnaire was used to capture individual slaughterhouse workers' knowledge, practices and recent health events. RESULTS A total of 738 slaughterhouse workers from 142 slaughterhouses completed questionnaires. Many slaughterhouses had poor infrastructure, 65% (95% CI 63-67%) had a roof, cement floor and walls, 60% (95% CI 57-62%) had a toilet and 20% (95% CI 18-22%) had hand-washing facilities. The meat inspector visited 90% (95% CI 92-95%) of slaughterhouses but antemortem inspection was practiced at only 7% (95% CI 6-8%). Nine percent (95% CI 7-10%) of slaughterhouses slaughtered sick animals. Only half of workers wore personal protective clothing - 53% (95% CI 51-55%) wore protective coats and 49% (95% CI 46-51%) wore rubber boots. Knowledge of zoonotic disease was low with only 31% (95% CI 29-33%) of workers aware that disease could be transmitted from animals. CONCLUSIONS The current working conditions in slaughterhouses in western Kenya are not in line with the recommendations of the Meat Control Act of Kenya. Current facilities and practices may increase occupational exposure to disease or injury and contaminated meat may enter the consumer market. The findings of this study could enable the development of appropriate interventions to minimise public health risks. Initially, improvements need to be made to facilities and practices to improve worker safety and reduce the risk of food contamination. Simultaneously, training programmes should target workers and inspectors to improve awareness of the risks. In addition, education of health care workers should highlight the increased risks of injury and disease in slaughterhouse workers. Finally, enhanced surveillance, targeting slaughterhouse workers could be used to detect disease outbreaks. This "One Health" approach to disease surveillance is likely to benefit workers, producers and consumers.
Collapse
Affiliation(s)
- Elizabeth Anne Jessie Cook
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, West Mains Road, Edinburgh, EH9 3JT UK
- International Livestock Research Institute, Old Naivasha Road, PO Box 30709, 00100 Nairobi, Kenya
| | - William Anson de Glanville
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, West Mains Road, Edinburgh, EH9 3JT UK
- International Livestock Research Institute, Old Naivasha Road, PO Box 30709, 00100 Nairobi, Kenya
| | - Lian Francesca Thomas
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, West Mains Road, Edinburgh, EH9 3JT UK
- International Livestock Research Institute, Old Naivasha Road, PO Box 30709, 00100 Nairobi, Kenya
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, PO Box 19464–00200, Nairobi, Kenya
| | - Barend Mark de Clare Bronsvoort
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, EH25 9RG UK
- The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, EH25 9RG UK
| | - Eric Maurice Fèvre
- International Livestock Research Institute, Old Naivasha Road, PO Box 30709, 00100 Nairobi, Kenya
- Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE UK
| |
Collapse
|
65
|
Glancey MM, Anyamba A, Linthicum KJ. Epidemiologic and Environmental Risk Factors of Rift Valley Fever in Southern Africa from 2008 to 2011. Vector Borne Zoonotic Dis 2016; 15:502-11. [PMID: 26273812 PMCID: PMC4545538 DOI: 10.1089/vbz.2015.1774] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background: Rift Valley fever (RVF) outbreaks have been associated with periods of widespread and above-normal rainfall over several months. Knowledge on the environmental factors influencing disease transmission dynamics has provided the basis for developing models to predict RVF outbreaks in Africa. From 2008 to 2011, South Africa experienced the worst wave of RVF outbreaks in almost 40 years. We investigated rainfall-associated environmental factors in southern Africa preceding these outbreaks. Methods: RVF epizootic records obtained from the World Animal Health Information Database (WAHID), documenting livestock species affected, location, and time, were analyzed. Environmental variables including rainfall and satellite-derived normalized difference vegetation index (NDVI) data were collected and assessed in outbreak regions to understand the underlying drivers of the outbreaks. Results: The predominant domestic vertebrate species affected in 2008 and 2009 were cattle, when outbreaks were concentrated in the eastern provinces of South Africa. In 2010 and 2011, outbreaks occurred in the interior and southern provinces affecting over 16,000 sheep. The highest number of cases occurred between January and April but epidemics occurred in different regions every year, moving from the northeast of South Africa toward the southwest with each progressing year. The outbreaks showed a pattern of increased rainfall preceding epizootics ranging from 9 to 152 days; however, NDVI and rainfall were less correlated with the start of the outbreaks than has been observed in eastern Africa. Conclusions: Analyses of the multiyear RVF outbreaks of 2008 to 2011 in South Africa indicated that rainfall, NDVI, and other environmental and geographical factors, such as land use, drainage, and topography, play a role in disease emergence. Current and future investigations into these factors will be able to contribute to improving spatial accuracy of models to map risk areas, allowing adequate time for preparation and prevention before an outbreak occurs.
Collapse
Affiliation(s)
| | - Assaf Anyamba
- 2 NASA/Goddard Space Flight Center , Greenbelt, Maryland
| | - Kenneth J Linthicum
- 3 USDA Center for Medical , Agricultural & Veterinary Entomology, Gainesville, Florida
| |
Collapse
|
66
|
Sindato C, Stevens KB, Karimuribo ED, Mboera LEG, Paweska JT, Pfeiffer DU. Spatial Heterogeneity of Habitat Suitability for Rift Valley Fever Occurrence in Tanzania: An Ecological Niche Modelling Approach. PLoS Negl Trop Dis 2016; 10:e0005002. [PMID: 27654268 PMCID: PMC5031441 DOI: 10.1371/journal.pntd.0005002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/24/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Despite the long history of Rift Valley fever (RVF) in Tanzania, extent of its suitable habitat in the country remains unclear. In this study we investigated potential effects of temperature, precipitation, elevation, soil type, livestock density, rainfall pattern, proximity to wild animals, protected areas and forest on the habitat suitability for RVF occurrence in Tanzania. MATERIALS AND METHODS Presence-only records of 193 RVF outbreak locations from 1930 to 2007 together with potential predictor variables were used to model and map the suitable habitats for RVF occurrence using ecological niche modelling. Ground-truthing of the model outputs was conducted by comparing the levels of RVF virus specific antibodies in cattle, sheep and goats sampled from locations in Tanzania that presented different predicted habitat suitability values. PRINCIPAL FINDINGS Habitat suitability values for RVF occurrence were higher in the northern and central-eastern regions of Tanzania than the rest of the regions in the country. Soil type and precipitation of the wettest quarter contributed equally to habitat suitability (32.4% each), followed by livestock density (25.9%) and rainfall pattern (9.3%). Ground-truthing of model outputs revealed that the odds of an animal being seropositive for RVFV when sampled from areas predicted to be most suitable for RVF occurrence were twice the odds of an animal sampled from areas least suitable for RVF occurrence (95% CI: 1.43, 2.76, p < 0.001). CONCLUSION/SIGNIFICANCE The regions in the northern and central-eastern Tanzania were more suitable for RVF occurrence than the rest of the regions in the country. The modelled suitable habitat is characterised by impermeable soils, moderate precipitation in the wettest quarter, high livestock density and a bimodal rainfall pattern. The findings of this study should provide guidance for the design of appropriate RVF surveillance, prevention and control strategies which target areas with these characteristics.
Collapse
Affiliation(s)
- Calvin Sindato
- National Institute for Medical Research, Tabora, Tanzania
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
- Southern African Centre for Infectious Disease Surveillance, Morogoro, Tanzania
- * E-mail:
| | - Kim B. Stevens
- Veterinary Epidemiology, Economics & Public Health Group, Department of Production & Population Health, Royal Veterinary College, London, United Kingdom
| | - Esron D. Karimuribo
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
- Southern African Centre for Infectious Disease Surveillance, Morogoro, Tanzania
| | | | - Janusz T. Paweska
- Center for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, of the National Health Laboratory Service, Sandringham, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Dirk U. Pfeiffer
- Veterinary Epidemiology, Economics & Public Health Group, Department of Production & Population Health, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
67
|
Tran A, Trevennec C, Lutwama J, Sserugga J, Gély M, Pittiglio C, Pinto J, Chevalier V. Development and Assessment of a Geographic Knowledge-Based Model for Mapping Suitable Areas for Rift Valley Fever Transmission in Eastern Africa. PLoS Negl Trop Dis 2016; 10:e0004999. [PMID: 27631374 PMCID: PMC5025187 DOI: 10.1371/journal.pntd.0004999] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/22/2016] [Indexed: 11/18/2022] Open
Abstract
Rift Valley fever (RVF), a mosquito-borne disease affecting ruminants and humans, is one of the most important viral zoonoses in Africa. The objective of the present study was to develop a geographic knowledge-based method to map the areas suitable for RVF amplification and RVF spread in four East African countries, namely, Kenya, Tanzania, Uganda and Ethiopia, and to assess the predictive accuracy of the model using livestock outbreak data from Kenya and Tanzania. Risk factors and their relative importance regarding RVF amplification and spread were identified from a literature review. A numerical weight was calculated for each risk factor using an analytical hierarchy process. The corresponding geographic data were collected, standardized and combined based on a weighted linear combination to produce maps of the suitability for RVF transmission. The accuracy of the resulting maps was assessed using RVF outbreak locations in livestock reported in Kenya and Tanzania between 1998 and 2012 and the ROC curve analysis. Our results confirmed the capacity of the geographic information system-based multi-criteria evaluation method to synthesize available scientific knowledge and to accurately map (AUC = 0.786; 95% CI [0.730-0.842]) the spatial heterogeneity of RVF suitability in East Africa. This approach provides users with a straightforward and easy update of the maps according to data availability or the further development of scientific knowledge.
Collapse
Affiliation(s)
- Annelise Tran
- CIRAD, UPR AGIRs, Ste-Clotilde, Reunion Island
- CIRAD, UMR TETIS, Ste-Clotilde, Reunion Island
| | - Carlène Trevennec
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | | | - Joseph Sserugga
- Uganda Ministry of Agriculture, Animal Industry and Fisheries, Entebbe, Uganda
| | | | - Claudia Pittiglio
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Julio Pinto
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | | |
Collapse
|
68
|
Shraim MA, Eid R, Radad K, Saeed N. Ultrastructural pathology of human liver in Rift Valley fever. BMJ Case Rep 2016; 2016:bcr-2016-216054. [PMID: 27485877 DOI: 10.1136/bcr-2016-216054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Rift Valley fever (RVF) is a zoonotic disease that primarily affects ruminant animals and can also cause fatal disease in humans. In the current report, we present the ultrastructural changes in the liver of a man aged 60 years who died from RVF in the Aseer Central Hospital, Abha, Saudi Arabia. The main hepatic changes by transmission electron microscopy included the presence of 95-115 nm electron-dense particles consistent with RVF virions, nuclear condensation, vacuolar degeneration, lipid droplet accumulation and mitochondrial damage and dilation. There were also viral inclusion bodies with electron-dense aggregates, dilation of intercellular spaces, damage of sinusoidal microvilli with widening of space of Disse, dilation of bile canaliculi and increasing number of phagolysosomes.
Collapse
Affiliation(s)
- Mubarak Al Shraim
- Department of Pathology, College of Medicine, King Khalid University, Abbha, Saudi Arabia
| | - Refaat Eid
- Department of Pathology, College of Medicine, King Khalid University, Abbha, Saudi Arabia
| | - Khaled Radad
- Department of Pathology, College of Medicine, King Khalid University, Abbha, Saudi Arabia
| | - Noora Saeed
- Department of Pathology, Jawaharlal Nehru Medical College and Hospital, Aligarh, Uttar Pradesh, India
| |
Collapse
|
69
|
Bird BH, McElroy AK. Rift Valley fever virus: Unanswered questions. Antiviral Res 2016; 132:274-80. [PMID: 27400990 DOI: 10.1016/j.antiviral.2016.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/02/2016] [Accepted: 07/06/2016] [Indexed: 12/31/2022]
Abstract
This mosquito-borne pathogen of humans and animals respects no international or geographic boundaries. It is currently found in parts of Africa and the Arabian Peninsula where periodic outbreaks of severe and fatal disease occur, and threatens to spread into other geographic regions. In recent years, modern molecular techniques have led to many breakthroughs deepening our understanding of the mechanisms of RVFV virulence, phylogenetics, and the creation of several next-generation vaccine candidates. Despite tremendous progress in these areas, other challenges remain in RVF disease pathogenesis, the virus life-cycle, and outbreak response preparedness that deserve our attention. Here we discuss and highlight ten key knowledge gaps and challenges in RVFV research. Answers to these key questions may lead to the development of new effective therapeutics and enhanced control strategies for this serious human and veterinary health threat.
Collapse
Affiliation(s)
- Brian H Bird
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Anita K McElroy
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; Pediatric Infectious Disease, Emory University Atlanta, GA 30322, USA
| |
Collapse
|
70
|
MAMAK N, BİLGİLİ İ. RİFT VADİSİ HUMMASI. MEHMET AKIF ERSOY ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2016. [DOI: 10.24880/maeuvfd.260789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
71
|
Gudo ES, Pinto G, Weyer J, le Roux C, Mandlaze A, José AF, Muianga A, Paweska JT. Serological evidence of rift valley fever virus among acute febrile patients in Southern Mozambique during and after the 2013 heavy rainfall and flooding: implication for the management of febrile illness. Virol J 2016; 13:96. [PMID: 27278404 PMCID: PMC4898305 DOI: 10.1186/s12985-016-0542-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/18/2016] [Indexed: 11/30/2022] Open
Abstract
Background Rift Valley fever virus (RVFV) remains heavily neglected in humans in Mozambique, even though recent outbreaks were reported in neighboring countries in humans and several cases of RVFV in cattle were reported in several districts in Mozambique. Findings We conducted a cross sectional study during and after severe flooding that occurred in 2013 in Mozambique. Paired acute and convalescent serum samples were tested from febrile patients attending a primary health care unit in a suburban area of Maputo city for the presence of IgG and IgM antibodies against Rift Valley fever virus (RVFV) using enzyme-linked immunosorbent assay (ELISA). Seroconversion of IgG anti-RVFV was observed in 5 % (10/200) of convalescent patients and specific IgM anti-RVFV was detected in one acute patient (0.5 %; 1/200). All sera from acute patient tested negative by real time PCR. Conclusion In conclusion, our results suggest that RVF represent an important but neglected cause of febrile illness following periods of flooding in southern Mozambique.
Collapse
Affiliation(s)
- Eduardo Samo Gudo
- National Institute of Health, Ministry of Health, Av Eduardo Mondlane 1008, Ministry of Health Main Building, 2nd floor, PO Box 264, Maputo, Mozambique.
| | - Gabriela Pinto
- National Institute of Health, Ministry of Health, Av Eduardo Mondlane 1008, Ministry of Health Main Building, 2nd floor, PO Box 264, Maputo, Mozambique
| | - Jacqueline Weyer
- Centre for Emerging and Zoonotic Diseases, National Institute of Communicable Disease, of the National Health Laboratory Service, Sandringham, South Africa
| | - Chantel le Roux
- Centre for Emerging and Zoonotic Diseases, National Institute of Communicable Disease, of the National Health Laboratory Service, Sandringham, South Africa
| | - Arcildo Mandlaze
- National Institute of Health, Ministry of Health, Av Eduardo Mondlane 1008, Ministry of Health Main Building, 2nd floor, PO Box 264, Maputo, Mozambique
| | - Américo Feriano José
- National Institute of Health, Ministry of Health, Av Eduardo Mondlane 1008, Ministry of Health Main Building, 2nd floor, PO Box 264, Maputo, Mozambique
| | - Argentina Muianga
- National Institute of Health, Ministry of Health, Av Eduardo Mondlane 1008, Ministry of Health Main Building, 2nd floor, PO Box 264, Maputo, Mozambique
| | - Janusz Tadeusz Paweska
- Centre for Emerging and Zoonotic Diseases, National Institute of Communicable Disease, of the National Health Laboratory Service, Sandringham, South Africa.,Faculty of Health Sciences, School of Pathology, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
72
|
Mwangungulu SP, Sumaye RD, Limwagu AJ, Siria DJ, Kaindoa EW, Okumu FO. Crowdsourcing Vector Surveillance: Using Community Knowledge and Experiences to Predict Densities and Distribution of Outdoor-Biting Mosquitoes in Rural Tanzania. PLoS One 2016; 11:e0156388. [PMID: 27253869 PMCID: PMC4890851 DOI: 10.1371/journal.pone.0156388] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/15/2016] [Indexed: 01/12/2023] Open
Abstract
Lack of reliable techniques for large-scale monitoring of disease-transmitting mosquitoes is a major public health challenge, especially where advanced geo-information systems are not regularly applicable. We tested an innovative crowd-sourcing approach, which relies simply on knowledge and experiences of residents to rapidly predict areas where disease-transmitting mosquitoes are most abundant. Guided by community-based resource persons, we mapped boundaries and major physical features in three rural Tanzanian villages. We then selected 60 community members, taught them basic map-reading skills, and offered them gridded maps of their own villages (grid size: 200m×200m) so they could identify locations where they believed mosquitoes were most abundant, by ranking the grids from one (highest density) to five (lowest density). The ranks were interpolated in ArcGIS-10 (ESRI-USA) using inverse distance weighting (IDW) method, and re-classified to depict areas people believed had high, medium and low mosquito densities. Finally, we used odor-baited mosquito traps to compare and verify actual outdoor mosquito densities in the same areas. We repeated this process for 12 months, each time with a different group of 60 residents. All entomological surveys depicted similar geographical stratification of mosquito densities in areas classified by community members as having high, medium and low vector abundance. These similarities were observed when all mosquito species were combined, and also when only malaria vectors were considered. Of the 12,412 mosquitoes caught, 60.9% (7,555) were from areas considered by community members as having high mosquito densities, 28% (3,470) from medium density areas, and 11.2% (1,387) from low density areas. This study provides evidence that we can rely on community knowledge and experiences to identify areas where mosquitoes are most abundant or least abundant, even without entomological surveys. This crowd-sourcing method could be further refined and validated to improve community-based planning of mosquito control operations at low-cost.
Collapse
Affiliation(s)
- Stephen Peter Mwangungulu
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifakara, Tanzania
- School of Geospatial Science and Technology, Ardhi University, Dar es Salaam, Tanzania
| | - Robert David Sumaye
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifakara, Tanzania
- Institute of Tropical Medicine, Antwerp, Belgium
| | - Alex Julius Limwagu
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifakara, Tanzania
| | - Doreen Josen Siria
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifakara, Tanzania
| | - Emmanuel Wilson Kaindoa
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifakara, Tanzania
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Fredros Oketch Okumu
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifakara, Tanzania
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| |
Collapse
|
73
|
Potency of a thermostabilised chimpanzee adenovirus Rift Valley Fever vaccine in cattle. Vaccine 2016; 34:2296-8. [PMID: 27020712 PMCID: PMC4851241 DOI: 10.1016/j.vaccine.2016.03.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 01/08/2023]
Abstract
Development of safe and efficacious vaccines whose potency is unaffected by long-term storage at ambient temperature would obviate major vaccine deployment hurdles and limit wastage associated with breaks in the vaccine cold chain. Here, we evaluated the immunogenicity of a novel chimpanzee adenovirus vectored Rift Valley Fever vaccine (ChAdOx1-GnGc) in cattle, following its thermostabilisation by slow desiccation on glass fiber membranes in the non-reducing sugars trehalose and sucrose. Thermostabilised ChAdOx1-GnGc vaccine stored for 6 months at 25, 37 or 45 ° C elicited comparable Rift Valley Fever virus neutralising antibody titres to those elicited by the 'cold chain' vaccine (stored at -80 ° C throughout) at the same dose, and these were within the range associated with protection against Rift Valley Fever in cattle. The results support the use of sugar-membrane thermostabilised vaccines in target livestock species.
Collapse
|
74
|
Abstract
Rift Valley fever (RVF) is a zoonotic, mosquito-borne viral disease that affects human health and causes significant losses in the livestock industry. Recent outbreaks have led to severe human infections with high mortality rates. There are many challenges to applying effective preventive and control measures, including weak infrastructure of health facilities, lack of capacity and support systems for field logistics and communication, access to global expert organizations, and insufficient information on the epidemiological and reservoir status of the RVF virus. The health systems in East African countries are underdeveloped, with gaps in adaptability to new, more accurate and rapid techniques, and well-trained staff that affect their capacity to monitor and evaluate the disease. Surveillance and response systems are inadequate in providing accurate information in a timely manner for decision making to deal with the scope of interrupting the disease transmission by applying mass animal vaccination, and other preventive measures at the early stage of an outbreak. The historical vaccines are unsuitable for use in newborn and gestating livestock, and the recent ones require a booster and annual revaccination. Future live-attenuated RVF vaccines should possess lower safety concerns regardless of the physiologic state of the animal, and provide rapid and long-term immunity after a single dose of vaccination. In the absence of an effective vaccination program, prevention and control measures must be immediately undertaken after an alert is generated. These measures include enforcing and adapting standard protocols for animal trade and movement, extensive vector control, safe disposal of infected animals, and modification of human-animal contact behavior. Directing control efforts on farmers and workers who deal with, handle, or live close to livestock, and focusing on areas with populations at high risk of an epidemic are desirable. Consideration of prevention methods as a first-line strategy against RVF is practical owing to the absence of a human vaccine, particularly under the current high environmental risks and expanding global travel and animal trade. Universal platforms are needed to support coordinated efforts; alert and response operations; exchange of expertise; and disease detection, diagnosis, control, and prevention.
Collapse
Affiliation(s)
- Yousif E Himeidan
- Vector Control Unit, Africa Technical Research Centre, Vector Health International, Arusha, Tanzania
| |
Collapse
|
75
|
Chimpanzee Adenovirus Vaccine Provides Multispecies Protection against Rift Valley Fever. Sci Rep 2016; 6:20617. [PMID: 26847478 PMCID: PMC4742904 DOI: 10.1038/srep20617] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/08/2016] [Indexed: 02/07/2023] Open
Abstract
Rift Valley Fever virus (RVFV) causes recurrent outbreaks of acute life-threatening human and livestock illness in Africa and the Arabian Peninsula. No licensed vaccines are currently available for humans and those widely used in livestock have major safety concerns. A ‘One Health’ vaccine development approach, in which the same vaccine is co-developed for multiple susceptible species, is an attractive strategy for RVFV. Here, we utilized a replication-deficient chimpanzee adenovirus vaccine platform with an established human and livestock safety profile, ChAdOx1, to develop a vaccine for use against RVFV in both livestock and humans. We show that single-dose immunization with ChAdOx1-GnGc vaccine, encoding RVFV envelope glycoproteins, elicits high-titre RVFV-neutralizing antibody and provides solid protection against RVFV challenge in the most susceptible natural target species of the virus-sheep, goats and cattle. In addition we demonstrate induction of RVFV-neutralizing antibody by ChAdOx1-GnGc vaccination in dromedary camels, further illustrating the potency of replication-deficient chimpanzee adenovirus vaccine platforms. Thus, ChAdOx1-GnGc warrants evaluation in human clinical trials and could potentially address the unmet human and livestock vaccine needs.
Collapse
|
76
|
Neurotropic virus infections as the cause of immediate and delayed neuropathology. Acta Neuropathol 2016; 131:159-184. [PMID: 26659576 PMCID: PMC4713712 DOI: 10.1007/s00401-015-1511-3] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/24/2015] [Accepted: 11/17/2015] [Indexed: 12/30/2022]
Abstract
A wide range of viruses from different virus families in different geographical areas, may cause immediate or delayed neuropathological changes and neurological manifestations in humans and animals. Infection by neurotropic viruses as well as the resulting immune response can irreversibly disrupt the complex structural and functional architecture of the central nervous system, frequently leaving the patient or affected animal with a poor or fatal prognosis. Mechanisms that govern neuropathogenesis and immunopathogenesis of viral infections are highlighted, using examples of well-studied virus infections that are associated with these alterations in different populations throughout the world. A better understanding of the molecular, epidemiological and biological characteristics of these infections and in particular of mechanisms that underlie their clinical manifestations may be expected to provide tools for the development of more effective intervention strategies and treatment regimens.
Collapse
|
77
|
Munyua PM, Murithi RM, Ithondeka P, Hightower A, Thumbi SM, Anyangu SA, Kiplimo J, Bett B, Vrieling A, Breiman RF, Njenga MK. Predictive Factors and Risk Mapping for Rift Valley Fever Epidemics in Kenya. PLoS One 2016; 11:e0144570. [PMID: 26808021 PMCID: PMC4726791 DOI: 10.1371/journal.pone.0144570] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/22/2015] [Indexed: 11/24/2022] Open
Abstract
Background To-date, Rift Valley fever (RVF) outbreaks have occurred in 38 of the 69 administrative districts in Kenya. Using surveillance records collected between 1951 and 2007, we determined the risk of exposure and outcome of an RVF outbreak, examined the ecological and climatic factors associated with the outbreaks, and used these data to develop an RVF risk map for Kenya. Methods Exposure to RVF was evaluated as the proportion of the total outbreak years that each district was involved in prior epizootics, whereas risk of outcome was assessed as severity of observed disease in humans and animals for each district. A probability-impact weighted score (1 to 9) of the combined exposure and outcome risks was used to classify a district as high (score ≥ 5) or medium (score ≥2 - <5) risk, a classification that was subsequently subjected to expert group analysis for final risk level determination at the division levels (total = 391 divisions). Divisions that never reported RVF disease (score < 2) were classified as low risk. Using data from the 2006/07 RVF outbreak, the predictive risk factors for an RVF outbreak were identified. The predictive probabilities from the model were further used to develop an RVF risk map for Kenya. Results The final output was a RVF risk map that classified 101 of 391 divisions (26%) located in 21 districts as high risk, and 100 of 391 divisions (26%) located in 35 districts as medium risk and 190 divisions (48%) as low risk, including all 97 divisions in Nyanza and Western provinces. The risk of RVF was positively associated with Normalized Difference Vegetation Index (NDVI), low altitude below 1000m and high precipitation in areas with solonertz, luvisols and vertisols soil types (p <0.05). Conclusion RVF risk map serves as an important tool for developing and deploying prevention and control measures against the disease.
Collapse
Affiliation(s)
- Peninah M. Munyua
- Global Disease Detection Division, United States Centers for Disease Control and Prevention-Kenya, Nairobi, Kenya
| | - R. Mbabu Murithi
- Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Peter Ithondeka
- Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Allen Hightower
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Samuel M. Thumbi
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | | | - Jusper Kiplimo
- International Livestock Research Institute, Nairobi, Kenya
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| | - Anton Vrieling
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, The Netherlands
| | - Robert F. Breiman
- Global Disease Detection Division, United States Centers for Disease Control and Prevention-Kenya, Nairobi, Kenya
| | - M. Kariuki Njenga
- Global Disease Detection Division, United States Centers for Disease Control and Prevention-Kenya, Nairobi, Kenya
- * E-mail:
| |
Collapse
|
78
|
Apoptosis, autophagy and unfolded protein response pathways in Arbovirus replication and pathogenesis. Expert Rev Mol Med 2016; 18:e1. [PMID: 26781343 PMCID: PMC4836210 DOI: 10.1017/erm.2015.19] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Arboviruses are pathogens that widely affect the health of people in different communities around the world. Recently, a few successful approaches toward production of effective vaccines against some of these pathogens have been developed, but treatment and prevention of the resulting diseases remain a major health and research concern. The arbovirus infection and replication processes are complex, and many factors are involved in their regulation. Apoptosis, autophagy and the unfolded protein response (UPR) are three mechanisms that are involved in pathogenesis of many viruses. In this review, we focus on the importance of these pathways in the arbovirus replication and infection processes. We provide a brief introduction on how apoptosis, autophagy and the UPR are initiated and regulated, and then discuss the involvement of these pathways in regulation of arbovirus pathogenesis.
Collapse
|
79
|
Caroline AL, Kujawa MR, Oury TD, Reed DS, Hartman AL. Inflammatory Biomarkers Associated with Lethal Rift Valley Fever Encephalitis in the Lewis Rat Model. Front Microbiol 2016; 6:1509. [PMID: 26779164 PMCID: PMC4703790 DOI: 10.3389/fmicb.2015.01509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/14/2015] [Indexed: 11/13/2022] Open
Abstract
Rift Valley fever (RVF) is an emerging viral disease that causes significant human and veterinary illness in Africa and the Arabian Peninsula. Encephalitis is one of the severe complications arising from RVF virus (RVFV) infection of people, and the pathogenesis of this form of RVF is completely unknown. We use a novel reproducible encephalitic disease model in rats to identify biomarkers of lethal infection. Lewis rats were infected with RVFV strain ZH501 by aerosol exposure, then sacrificed daily to determine the course of infection and evaluation of clinical, virological, and immunological parameters. Weight loss, fever, and clinical signs occurred during the last 1-2 days prior to death. Prior to onset of clinical indications of disease, rats displayed marked granulocytosis and thrombocytopenia. In addition, high levels of inflammatory chemokines (MCP-1, MCS-F, Gro/KC, RANTES, and IL-1β) were detected first in serum (3-5 dpi) followed by brain (5-7 dpi). The results of this study are consistent with clinical data from human RVF patients and validate Lewis rats as an appropriate small animal model for RVF encephalitis. The biomarkers we identified here will be useful in future studies evaluating the efficacy of novel vaccines and therapeutics.
Collapse
Affiliation(s)
- Amy L Caroline
- Regional Biocontainment Laboratory, Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA, USA
| | - Michael R Kujawa
- Regional Biocontainment Laboratory, Center for Vaccine Research, University of Pittsburgh, PittsburghPA, USA; Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, PittsburghPA, USA
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA
| | - Douglas S Reed
- Regional Biocontainment Laboratory, Center for Vaccine Research, University of Pittsburgh, PittsburghPA, USA; Department of Immunology, University of Pittsburgh School of Medicine, PittsburghPA, USA
| | - Amy L Hartman
- Regional Biocontainment Laboratory, Center for Vaccine Research, University of Pittsburgh, PittsburghPA, USA; Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, PittsburghPA, USA
| |
Collapse
|
80
|
Wensman JJ, Lindahl J, Wachtmeister N, Torsson E, Gwakisa P, Kasanga C, Misinzo G. A study of Rift Valley fever virus in Morogoro and Arusha regions of Tanzania - serology and farmers' perceptions. Infect Ecol Epidemiol 2015; 5:30025. [PMID: 26584830 PMCID: PMC4653320 DOI: 10.3402/iee.v5.30025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 10/21/2015] [Accepted: 10/25/2015] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Rift Valley fever (RVF) is a zoonosis primarily affecting ruminants, resulting in epidemic abortions, fever, nasal and ocular discharges, haemorrhagic diarrhoea, and a high mortality rate among young animals. Rift Valley fever virus (RVFV) is an arthropod-borne RNA virus occurring in epizootic periods associated with heavy rainfall. The last outbreak of RVF in Tanzania was in 2006-2007, resulting in severe economic losses and impaired food security due to greater number of deaths of livestock. The aim of this study was to investigate the presence of antibodies against RVFV in sheep and goats in two different regions of Tanzania during an inter-epidemic period (IEP). In addition, the perception of important diseases among livestock keepers was assessed. MATERIAL AND METHODS A cross-sectional serological survey was conducted in three purposively selected districts in Arusha and Morogoro regions of Tanzania. Serum samples from 354 sheep and goats were analysed in a commercial RVFV competitive ELISA. At the sampling missions, a questionnaire was used to estimate the socio-economic impact of infectious diseases. RESULTS AND DISCUSSION In total, 8.2% of the analysed samples were seropositive to RVF, and most seropositive animals were younger than 7 years, indicating a continuous circulation of RVFV in the two regions. None of the livestock keepers mentioned RVF as an important livestock disease. CONCLUSIONS This study confirms that RVFV is circulating at low levels in small ruminants during IEPs. In spite of recurring RVF outbreaks in Tanzania, livestock keepers seem to have a low awareness of the disease, making them poorly prepared and thus more vulnerable to future RVF outbreaks.
Collapse
Affiliation(s)
- Jonas J Wensman
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Veterinary Microbiology and Parasitology, Sokoine University of Agriculture, Morogoro, Tanzania;
| | - Johanna Lindahl
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.,International Livestock Research Institute, Nairobi, Kenya
| | - Nica Wachtmeister
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Veterinary Microbiology and Parasitology, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Emeli Torsson
- Department of Veterinary Microbiology and Parasitology, Sokoine University of Agriculture, Morogoro, Tanzania.,Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Paul Gwakisa
- Department of Veterinary Microbiology and Parasitology, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Christopher Kasanga
- Department of Veterinary Microbiology and Parasitology, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Gerald Misinzo
- Department of Veterinary Microbiology and Parasitology, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
81
|
Jansen van Vuren P, Shalekoff S, Grobbelaar AA, Archer BN, Thomas J, Tiemessen CT, Paweska JT. Serum levels of inflammatory cytokines in Rift Valley fever patients are indicative of severe disease. Virol J 2015; 12:159. [PMID: 26437779 PMCID: PMC4595326 DOI: 10.1186/s12985-015-0392-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/23/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Rift Valley fever (RVF) is a mosquito-borne viral zoonosis affecting domestic and wild ruminants, camels and humans. Outbreaks of RVF are characterized by a sudden onset of abortions and high mortality amongst domestic ruminants. Humans develop disease ranging from a mild flu-like illness to more severe complications including hemorrhagic syndrome, ocular and neurological lesions and death. During the RVF outbreak in South Africa in 2010/11, a total of 278 human cases were laboratory confirmed, including 25 deaths. The role of the host inflammatory response to RVF pathogenesis is not completely understood. METHODS Virus load in serum from human fatal and non-fatal cases was determined by standard tissue culture infective dose 50 (TCID50) titration on Vero cells. Patient serum concentration of chemokines and cytokines involved in inflammatory responses (IL-8, RANTES, CXCL9, MCP-1, IP-10, IL-1β, IL-6, IL-10, TNF and IL-12p70) was determined using cytometric bead assays and flow cytometry. RESULTS Fatal cases had a 1-log10 higher TCID50/ml serum concentration of RVF virus (RVFV) than survivors (p < 0.05). There were no significant sequence differences between isolates recovered from fatal and non-fatal cases. Chemokines and pro- and anti-inflammatory cytokines were detected at significantly increased (IL-8, CXCL9, MCP-1, IP-10, IL-10) or decreased (RANTES) levels when comparing fatal cases to infected survivors and uninfected controls, or when comparing combined infected patients to uninfected controls. CONCLUSIONS The results suggest that regulation of the host inflammatory responses plays an important role in the outcome of RVFV infection in humans. Dysregulation of the inflammatory response contributes to a fatal outcome. The cytokines and chemokines identified in this study that correlate with fatal outcomes warrant further investigation as markers for disease severity.
Collapse
Affiliation(s)
- Petrus Jansen van Vuren
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases division of the National Health Laboratory Service, Sandringham, South Africa. .,Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa.
| | - Sharon Shalekoff
- Centre for HIV and STIs, National Institute for Communicable Diseases division of the National Health Laboratory Service, Sandringham, South Africa. .,Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.
| | - Antoinette A Grobbelaar
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases division of the National Health Laboratory Service, Sandringham, South Africa.
| | - Brett N Archer
- Outbreak Response Unit, Division of Public Health, Surveillance and Response, National Institute for Communicable Diseases division of the National Health Laboratory Service, Sandringham, South Africa.
| | - Juno Thomas
- Outbreak Response Unit, Division of Public Health, Surveillance and Response, National Institute for Communicable Diseases division of the National Health Laboratory Service, Sandringham, South Africa.
| | - Caroline T Tiemessen
- Centre for HIV and STIs, National Institute for Communicable Diseases division of the National Health Laboratory Service, Sandringham, South Africa. .,Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.
| | - Janusz T Paweska
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases division of the National Health Laboratory Service, Sandringham, South Africa. .,Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa. .,Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
82
|
Shabani SS, Ezekiel MJ, Mohamed M, Moshiro CS. Knowledge, attitudes and practices on Rift Valley fever among agro pastoral communities in Kongwa and Kilombero districts, Tanzania. BMC Infect Dis 2015; 15:363. [PMID: 26293478 PMCID: PMC4546207 DOI: 10.1186/s12879-015-1099-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 08/07/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rift valley fever (RVF) is a re-emerging viral vector-borne disease with rapid global socio-economic impact. A large RVF outbreak occurred in Tanzania in 2007 and affected more than half of the regions with high (47 %) case fatality rate. Little is known about RVF and its dynamics. A cross sectional study was conducted to assess the knowledge, attitudes and practices regarding RVF in Kongwa and Kilombero districts, Tanzania. METHODS We conducted a cross sectional survey among a randomly selected sample of individuals in 2011. We administered questionnaires to collect data on demographic characteristics, knowledge on symptoms, mode of transmission, prevention, attitudes and health seeking practices. RESULTS A total of 463 community members participated in this study. The mean (±SD) age was 39.8 ± 14.4 years and 238 (51.4 %) were female. Majority of respondents had heard of RVF. However, only 8.8 % knew that mosquitoes were transmitting vectors. Male respondents were more likely to have greater knowledge about RVF. A small proportion mentioned clinical signs and symptoms of RVF in animals while 73.7 % mentioned unhealthy practices related to handling and consumption of dead animals. Thorough boiling of milk and cooking of meat were commonly mentioned as preventive measures for RVF. Majority (74.6 %) sought care for febrile illness at health facilities. Few (24.3 %) reported the use of protective gears to handle dead/sick animal while 15.5 % were consuming dead animals. CONCLUSION Our study highlights the need to address the limited knowledge about RVF and promoting appropriate and timely health seeking practices. Rift valley fever outbreaks can be effectively managed with collaborative efforts of lay and professional communities with a shared perception that it poses a serious threat to public and animal health. The fact that this study was conducted in "high risk transmission areas" warrants further inquiry in other geographic regions with relatively low risk of RVF.
Collapse
Affiliation(s)
- Sasita S Shabani
- Health Department, Chunya District Council, Mbeya, Tanzania.
- Tanzania Field Epidemiology and Laboratory Training Programme, Dar es Salaam, Tanzania.
| | - Mangi J Ezekiel
- Department of Behavioural Sciences, Muhimbili University of Health and Allied Sciences, PO Box 65015, Dar es Salaam, Tanzania.
| | - Mohamed Mohamed
- Tanzania Field Epidemiology and Laboratory Training Programme, Dar es Salaam, Tanzania.
- Quality Assurance Department, Ministry of Health and Social Welfare, Dar es Salaam, Tanzania.
| | - Candida S Moshiro
- Department of Epidemiology and Biostatistics, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| |
Collapse
|
83
|
Nanyingi MO, Munyua P, Kiama SG, Muchemi GM, Thumbi SM, Bitek AO, Bett B, Muriithi RM, Njenga MK. A systematic review of Rift Valley Fever epidemiology 1931-2014. Infect Ecol Epidemiol 2015; 5:28024. [PMID: 26234531 PMCID: PMC4522434 DOI: 10.3402/iee.v5.28024] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/15/2015] [Accepted: 07/10/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Rift Valley Fever (RVF) is a mosquito-borne viral zoonosis that was first isolated and characterized in 1931 in Kenya. RVF outbreaks have resulted in significant losses through human illness and deaths, high livestock abortions and deaths. This report provides an overview on epidemiology of RVF including ecology, molecular diversity spatiotemporal analysis, and predictive risk modeling. METHODOLOGY Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we systematically searched for relevant RVF publications in repositories of the World Health Organization Library and Information Networks for Knowledge (WHOLIS), U.S Centers for Disease Control and Prevention (CDC), and Food and Agricultural Organization (FAO). Detailed searches were performed in Google Scholar, SpringerLink, and PubMed databases and included conference proceedings and books published from 1931 up to 31st January 2015. RESULTS AND DISCUSSION A total of 84 studies were included in this review; majority (50%) reported on common human and animal risk factors that included consumption of animal products, contact with infected animals and residing in low altitude areas associated with favorable climatic and ecological conditions for vector emergence. A total of 14 (16%) of the publications described RVF progressive spatial and temporal distribution and the use of risk modeling for timely prediction of imminent outbreaks. Using distribution maps, we illustrated the gradual spread and geographical extent of disease; we also estimated the disease burden using aggregate human mortalities and cumulative outbreak periods for endemic regions. CONCLUSION This review outlines common risk factors for RVF infections over wider geographical areas; it also emphasizes the role of spatial models in predicting RVF enzootics. It, therefore, explains RVF epidemiological status that may be used for design of targeted surveillance and control programs in endemic countries.
Collapse
Affiliation(s)
- Mark O Nanyingi
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Public Health, Pharmacology and Toxicology, University of Nairobi, Nairobi, Kenya
- Kenya Medical Research Institute, Nairobi, Kenya;
| | - Peninah Munyua
- Centers for Disease Control and Prevention, Nairobi, Kenya
| | - Stephen G Kiama
- Wangari Maathai Institute for Peace and Environmental Studies, University of Nairobi, Nairobi, Kenya
| | - Gerald M Muchemi
- Department of Public Health, Pharmacology and Toxicology, University of Nairobi, Nairobi, Kenya
| | - Samuel M Thumbi
- Kenya Medical Research Institute, Nairobi, Kenya
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - Austine O Bitek
- Zoonotic Disease Unit, Nairobi, Kenya
- Directorate of Veterinary Service, Nairobi, Kenya
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| | | | - M Kariuki Njenga
- Kenya Medical Research Institute, Nairobi, Kenya
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| |
Collapse
|
84
|
Njenga MK, Njagi L, Thumbi SM, Kahariri S, Githinji J, Omondi E, Baden A, Murithi M, Paweska J, Ithondeka PM, Ngeiywa KJ, Dungu B, Donadeu M, Munyua PM. Randomized controlled field trial to assess the immunogenicity and safety of rift valley fever clone 13 vaccine in livestock. PLoS Negl Trop Dis 2015; 9:e0003550. [PMID: 25756501 PMCID: PMC4355591 DOI: 10.1371/journal.pntd.0003550] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 01/20/2015] [Indexed: 11/23/2022] Open
Abstract
Background Although livestock vaccination is effective in preventing Rift Valley fever (RVF) epidemics, there are concerns about safety and effectiveness of the only commercially available RVF Smithburn vaccine. We conducted a randomized controlled field trial to evaluate the immunogenicity and safety of the new RVF Clone 13 vaccine, recently registered in South Africa. Methods In a blinded randomized controlled field trial, 404 animals (85 cattle, 168 sheep, and 151 goats) in three farms in Kenya were divided into three groups. Group A included males and non-pregnant females that were randomized and assigned to two groups; one vaccinated with RVF Clone 13 and the other given placebo. Groups B included animals in 1st half of pregnancy, and group C animals in 2nd half of pregnancy, which were also randomized and either vaccinated and given placebo. Animals were monitored for one year and virus antibodies titers assessed on days 14, 28, 56, 183 and 365. Results In vaccinated goats (N = 72), 72% developed anti-RVF virus IgM antibodies and 97% neutralizing IgG antibodies. In vaccinated sheep (N = 77), 84% developed IgM and 91% neutralizing IgG antibodies. Vaccinated cattle (N = 42) did not develop IgM antibodies but 67% developed neutralizing IgG antibodies. At day 14 post-vaccination, the odds of being seropositive for IgG in the vaccine group was 3.6 (95% CI, 1.5 – 9.2) in cattle, 90.0 (95% CI, 25.1 – 579.2) in goats, and 40.0 (95% CI, 16.5 – 110.5) in sheep. Abortion was observed in one vaccinated goat but histopathologic analysis did not indicate RVF virus infection. There was no evidence of teratogenicity in vaccinated or placebo animals. Conclusions The results suggest RVF Clone 13 vaccine is safe to use and has high (>90%) immunogenicity in sheep and goats but moderate (> 65%) immunogenicity in cattle. Although livestock vaccination is effective in preventing Rift Valley fever (RVF) outbreaks, there are concerns about safety and effectiveness of the only commercially available vaccine for the disease. Here, we conducted a field trial in Kenya to evaluate the safety and ability to induce protection for a new RVF vaccine, referred to as Clone 13, that was recently registered in South Africa. A total of 404 animals, consisting of cattle, sheep, and goats, were divided two groups and one group was vaccinated with Clone 13 vaccine while the other group was not vaccinated. The animals were followed for one year and analyzed for RVF antibody levels at days 14, 28, 56, 183, and 365 after vaccination. Between 91% and 97% of vaccinated sheep and goats develop antibodies to the vaccine, whereas only 67% of the vaccinated cattle developed antibodies. These finding indicate that the Clone 13 vaccine induces high levels of protective antibodies in sheep and goats and moderate levels in cattle. The vaccine was safe since none of vaccinated animals developed evidence of RVF disease including deformities in newborns, and only 1 out of 120 pregnant animals had an abortion that was not associated with the RVF disease.
Collapse
Affiliation(s)
- M. Kariuki Njenga
- Division of Global Health Protection, United States Centers for Disease Control and Prevention-Kenya, Nairobi, Kenya
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- * E-mail: ,
| | - Leonard Njagi
- Kenya Ministry of Agriculture Livestock and Fisheries, Nairobi, Kenya
| | - S. Mwangi Thumbi
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Samuel Kahariri
- Kenya Ministry of Agriculture Livestock and Fisheries, Nairobi, Kenya
| | - Jane Githinji
- Kenya Ministry of Agriculture Livestock and Fisheries, Nairobi, Kenya
| | - Eunice Omondi
- Kenya Ministry of Agriculture Livestock and Fisheries, Nairobi, Kenya
| | - Amy Baden
- Division of Global Health Protection, United States Centers for Disease Control and Prevention-Kenya, Nairobi, Kenya
| | - Mbabu Murithi
- Kenya Ministry of Agriculture Livestock and Fisheries, Nairobi, Kenya
| | - Janusz Paweska
- National Institute for Communicable Diseases, Pretoria, South Africa
| | | | - Kisa J. Ngeiywa
- Kenya Ministry of Agriculture Livestock and Fisheries, Nairobi, Kenya
| | - Baptiste Dungu
- Global Alliance for Livestock Veterinary Medicines, Edinburg, Scotland, United Kingdom
| | - Meritxell Donadeu
- Global Alliance for Livestock Veterinary Medicines, Edinburg, Scotland, United Kingdom
| | - Peninah M. Munyua
- Division of Global Health Protection, United States Centers for Disease Control and Prevention-Kenya, Nairobi, Kenya
| |
Collapse
|
85
|
Sumaye RD, Abatih EN, Thiry E, Amuri M, Berkvens D, Geubbels E. Inter-epidemic acquisition of Rift Valley fever virus in humans in Tanzania. PLoS Negl Trop Dis 2015; 9:e0003536. [PMID: 25723502 PMCID: PMC4344197 DOI: 10.1371/journal.pntd.0003536] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 01/13/2015] [Indexed: 11/26/2022] Open
Abstract
Background In East Africa, epidemics of Rift Valley fever (RVF) occur in cycles of 5–15 years following unusually high rainfall. RVF transmission during inter-epidemic periods (IEP) generally passes undetected in absence of surveillance in mammalian hosts and vectors. We studied IEP transmission of RVF and evaluated the demographic, behavioural, occupational and spatial determinants of past RVF infection. Methodology Between March and August 2012 we collected blood samples, and administered a risk factor questionnaire among 606 inhabitants of 6 villages in the seasonally inundated Kilombero Valley, Tanzania. ELISA tests were used to detect RVFV IgM and IgG antibodies in serum samples. Risk factors were examined by mixed effects logistic regression. Findings RVF virus IgM antibodies, indicating recent RVFV acquisition, were detected in 16 participants, representing 2.6% overall and in 22.5% of inhibition ELISA positives (n = 71). Four of 16 (25.0%) IgM positives and 11/71 (15.5%) of individuals with inhibition ELISA sero-positivity reported they had had no previous contact with host animals. Sero-positivity on inhibition ELISA was 11.7% (95% CI 9.2–14.5) and risk was elevated with age (odds ratio (OR) 1.03 per year; 95% CI 1.01–1.04), among milkers (OR 2.19; 95% CI 1.23–3.91), and individuals eating raw meat (OR 4.17; 95% CI 1.18–14.66). Households keeping livestock had a higher probability of having members with evidence of past infection (OR = 3.04, 95% CI = 1.42–6.48) than those that do not keep livestock. Conclusion There is inter-epidemic acquisition of RVFV in Kilombero Valley inhabitants. In the wake of declining malaria incidence, these findings underscore the need for clinicians to consider RVF in the differential diagnosis for febrile illnesses. Several types of direct contact with livestock are important risk factors for past infection with RVFV in this study’s population. However, at least part of RVFV transmission appears to have occurred through bites of infected mosquitoes. Rift Valley fever (RVF) is a disease of animals and people that is caused by the RVF virus. During epidemics, humans get RVF through direct contact with animals or through mosquito bites. In East Africa, epidemics occur every 5–15 years following unusually high rainfall. In between epidemics, the transmission of RVF might occur at low level. In an epidemic-free period, we measured whether people in the Kilombero Valley in Tanzania had evidence of past and recent RVF infection in their blood sample, and studied risk factors. Three per cent of people had been infected recently, and 12% had evidence of past infection, with increased risk with age, among milkers and among people eating raw meat. Some people with past or recent infection reported they had not had contact with animals. Households keeping livestock had more members with evidence of past infection. The findings show that people get infected with RVF in between epidemics, and that various types of contact with livestock are important risk factors. There is also evidence that some people get infected with RVFV by mosquitoes in the epidemic free period. Clinicians in the Kilombero Valley should consider RVF in the differential diagnosis of patients with fever.
Collapse
Affiliation(s)
- Robert David Sumaye
- Ifakara Health Institute, Ifakara, Tanzania
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
- * E-mail:
| | - Emmanuel Nji Abatih
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Etienne Thiry
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | | | - Dirk Berkvens
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | |
Collapse
|
86
|
Mweya CN, Kimera SI, Mellau LSB, Mboera LEG. Inter-epidemic abundance and distribution of potential mosquito vectors for Rift Valley fever virus in Ngorongoro district, Tanzania. Glob Health Action 2015; 8:25929. [PMID: 25613346 PMCID: PMC4303619 DOI: 10.3402/gha.v8.25929] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/05/2014] [Accepted: 12/21/2014] [Indexed: 11/29/2022] Open
Abstract
Background Rift Valley fever (RVF) is a mosquito-borne viral zoonosis that primarily affects ruminants but also has the capacity to infect humans. Objective To determine the abundance and distribution of mosquito vectors in relation to their potential role in the virus transmission and maintenance in disease epidemic areas of Ngorongoro district in northern Tanzania. Methods A cross-sectional entomological investigation was carried out before the suspected RVF outbreak in October 2012. Mosquitoes were sampled both outdoors and indoors using the Centre for Disease Control (CDC) light traps and Mosquito Magnets baited with attractants. Outdoor traps were placed in proximity with breeding sites and under canopy in banana plantations close to the sleeping places of animals. Results A total of 1,823 mosquitoes were collected, of which 87% (N=1,588) were Culex pipiens complex, 12% (N=226) Aedes aegypti, and 0.5% (N=9) Anopheles species. About two-thirds (67%; N=1,095) of C. pipiens complex and nearly 100% (N=225) of A. aegypti were trapped outdoors using Mosquito Magnets. All Anopheles species were trapped indoors using CDC light traps. There were variations in abundance of C. pipiens complex and A. aegypti among different ecological and vegetation habitats. Over three quarters (78%) of C. pipiens complex and most (85%) of the A. aegypti were trapped in banana and maize farms. Both C. pipiens complex and A. aegypti were more abundant in proximity with cattle and in semi-arid thorn bushes and lower Afro-montane. The highest number of mosquitoes was recorded in villages that were most affected during the RVF epidemic of 2007. Of the tested 150 pools of C. pipiens complex and 45 pools of A. aegypti, none was infected with RVF virus. Conclusions These results provide insights into unique habitat characterisation relating to mosquito abundances and distribution in RVF epidemic-prone areas of Ngorongoro district in northern Tanzania.
Collapse
Affiliation(s)
- Clement N Mweya
- Tukuyu Research Centre, National Institute for Medical Research, Tukuyu, Tanzania; Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania;
| | - Sharadhuli I Kimera
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Lesakit S B Mellau
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | | |
Collapse
|
87
|
Himeidan YE, Kweka EJ, Mahgoub MM, El Rayah EA, Ouma JO. Recent outbreaks of rift valley Fever in East Africa and the middle East. Front Public Health 2014; 2:169. [PMID: 25340047 PMCID: PMC4186272 DOI: 10.3389/fpubh.2014.00169] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/16/2014] [Indexed: 12/16/2022] Open
Abstract
Rift Valley fever (RVF) is an important neglected, emerging, mosquito-borne disease with severe negative impact on human and animal health. Mosquitoes in the Aedes genus have been considered as the reservoir, as well as vectors, since their transovarially infected eggs withstand desiccation and larvae hatch when in contact with water. However, different mosquito species serve as epizootic/epidemic vectors of RVF, creating a complex epidemiologic pattern in East Africa. The recent RVF outbreaks in Somalia (2006–2007), Kenya (2006–2007), Tanzania (2007), and Sudan (2007–2008) showed extension to districts, which were not involved before. These outbreaks also demonstrated the changing epidemiology of the disease from being originally associated with livestock, to a seemingly highly virulent form infecting humans and causing considerably high-fatality rates. The amount of rainfall is considered to be the main factor initiating RVF outbreaks. The interaction between rainfall and local environment, i.e., type of soil, livestock, and human determine the space-time clustering of RVF outbreaks. Contact with animals or their products was the most dominant risk factor to transfer the infection to humans. Uncontrolled movement of livestock during an outbreak is responsible for introducing RVF to new areas. For example, the virus that caused the Saudi Arabia outbreak in 2000 was found to be the same strain that caused the 1997–98 outbreaks in East Africa. A strategy that involves active surveillance with effective case management and diagnosis for humans and identifying target areas for animal vaccination, restriction on animal movements outside the affected areas, identifying breeding sites, and targeted intensive mosquito control programs has been shown to succeed in limiting the effect of RVF outbreak and curb the spread of the disease from the onset.
Collapse
Affiliation(s)
- Yousif E Himeidan
- Entomology Unit, Faculty of Agriculture and Natural Resources, University of Kassala , New Halfa , Sudan ; Africa Technical Research Centre, Vector Health International , Arusha , Tanzania
| | - Eliningaya J Kweka
- Division of Livestock and Human Diseases Vector Control, Tropical Pesticides Research Institute , Arusha , Tanzania ; Department of Medical Parasitology and Entomology, Catholic University of Health and Allied Sciences , Mwanza , Tanzania
| | - Mostafa M Mahgoub
- Blue Nile National Institute for Communicable Diseases, University of Gezira , Madani , Sudan
| | - El Amin El Rayah
- Department of Zoology, University of Khartoum , Khartoum , Sudan
| | - Johnson O Ouma
- Africa Technical Research Centre, Vector Health International , Arusha , Tanzania ; Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization , Kikuyu , Kenya
| |
Collapse
|
88
|
Kreher F, Tamietti C, Gommet C, Guillemot L, Ermonval M, Failloux AB, Panthier JJ, Bouloy M, Flamand M. The Rift Valley fever accessory proteins NSm and P78/NSm-GN are distinct determinants of virus propagation in vertebrate and invertebrate hosts. Emerg Microbes Infect 2014; 3:e71. [PMID: 26038497 PMCID: PMC4217093 DOI: 10.1038/emi.2014.71] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/05/2014] [Accepted: 08/10/2014] [Indexed: 02/05/2023]
Abstract
Rift Valley fever virus (RVFV) is an enzootic virus circulating in Africa that is transmitted to its vertebrate host by a mosquito vector and causes severe clinical manifestations in humans and ruminants. RVFV has a tripartite genome of negative or ambisense polarity. The M segment contains five in-frame AUG codons that are alternatively used for the synthesis of two major structural glycoproteins, GN and GC, and at least two accessory proteins, NSm, a 14-kDa cytosolic protein, and P78/NSm-GN, a 78-kDa glycoprotein. To determine the relative contribution of P78 and NSm to RVFV infectivity, AUG codons were knocked out to generate mutant viruses expressing various sets of the M-encoded proteins. We found that, in the absence of the second AUG codon used to express NSm, a 13-kDa protein corresponding to an N-terminally truncated form of NSm, named NSm′, was synthesized from AUG 3. None of the individual accessory proteins had any significant impact on RVFV virulence in mice. However, a mutant virus lacking both NSm and NSm′ was strongly attenuated in mice and grew to reduced titers in murine macrophages, a major target cell type of RVFV. In contrast, P78 was not associated with reduced viral virulence in mice, yet it appeared as a major determinant of virus dissemination in mosquitoes. This study demonstrates how related accessory proteins differentially contribute to RVFV propagation in mammalian and arthropod hosts.
Collapse
Affiliation(s)
- Felix Kreher
- Molecular Genetics of Bunyaviruses, Institut Pasteur , F-75015 Paris, France ; Structural Virology, Institut Pasteur , F-75015 Paris, France ; Univ Paris Diderot, Sorbonne Paris Cité , F-75205 Paris, France
| | - Carole Tamietti
- Molecular Genetics of Bunyaviruses, Institut Pasteur , F-75015 Paris, France ; Structural Virology, Institut Pasteur , F-75015 Paris, France
| | - Céline Gommet
- Mouse Functional Genetics, Institut Pasteur , F-75015 Paris, France ; CNRS URA 2578, Institut Pasteur , F-75015 Paris, France ; Central Animal Facilities, Institut Pasteur , F-75015 Paris, France
| | - Laurent Guillemot
- Mouse Functional Genetics, Institut Pasteur , F-75015 Paris, France ; CNRS URA 2578, Institut Pasteur , F-75015 Paris, France
| | - Myriam Ermonval
- Molecular Genetics of Bunyaviruses, Institut Pasteur , F-75015 Paris, France
| | | | - Jean-Jacques Panthier
- Mouse Functional Genetics, Institut Pasteur , F-75015 Paris, France ; CNRS URA 2578, Institut Pasteur , F-75015 Paris, France
| | - Michèle Bouloy
- Molecular Genetics of Bunyaviruses, Institut Pasteur , F-75015 Paris, France
| | - Marie Flamand
- Molecular Genetics of Bunyaviruses, Institut Pasteur , F-75015 Paris, France ; Structural Virology, Institut Pasteur , F-75015 Paris, France
| |
Collapse
|
89
|
Mbabu M, Njeru I, File S, Osoro E, Kiambi S, Bitek A, Ithondeka P, Kairu-Wanyoike S, Sharif S, Gogstad E, Gakuya F, Sandhaus K, Munyua P, Montgomery J, Breiman R, Rubin C, Njenga K. Establishing a One Health office in Kenya. Pan Afr Med J 2014; 19:106. [PMID: 25722779 PMCID: PMC4337352 DOI: 10.11604/pamj.2014.19.106.4588] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/08/2014] [Indexed: 11/16/2022] Open
Abstract
A One Health (OH) approach that integrates human,animal and environmental approaches to management of zoonotic diseases has gained momentum in the last decadeas part of a strategy to prevent and control emerging infectious diseases. However, there are few examples of howan OH approach can be established in a country. Kenya establishment of an OH office, referred to asthe Zoonotic Disease Unit (ZDU) in 2011. The ZDU bridges theanimal and human health sectors with a senior epidemiologist deployed from each ministry; and agoal of maintaining collaboration at the animal and human health interface towards better prevention and control of zoonoses. The country is adding an ecologist to the ZDU to ensure that environmental risks are adequately addressed in emerging disease control.
Collapse
Affiliation(s)
- Murithi Mbabu
- Ministry of Agriculture, Livestock and Fisheries Nairobi, Kenya
| | | | - Sarah File
- One Health Office, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Eric Osoro
- Zoonotic Disease Unit, Government of Kenya, Nairobi, Kenya
| | - Stella Kiambi
- Zoonotic Disease Unit, Government of Kenya, Nairobi, Kenya
| | - Austine Bitek
- Zoonotic Disease Unit, Government of Kenya, Nairobi, Kenya
| | - Peter Ithondeka
- Ministry of Agriculture, Livestock and Fisheries Nairobi, Kenya
| | | | | | - Eric Gogstad
- Global Disease Detection Division, Centers for Disease Control and Prevention-Kenya, Nairobi, Kenya ; Division of Global Health Protection, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | - Peninah Munyua
- Global Disease Detection Division, Centers for Disease Control and Prevention-Kenya, Nairobi, Kenya
| | - Joel Montgomery
- Global Disease Detection Division, Centers for Disease Control and Prevention-Kenya, Nairobi, Kenya ; Global Implementation Solutions, Chicago, Illinois, USA
| | - Robert Breiman
- Global Disease Detection Division, Centers for Disease Control and Prevention-Kenya, Nairobi, Kenya ; Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Carol Rubin
- One Health Office, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kariuki Njenga
- Global Disease Detection Division, Centers for Disease Control and Prevention-Kenya, Nairobi, Kenya
| |
Collapse
|
90
|
Mweya CN, Holst N, Mboera LEG, Kimera SI. Simulation modelling of population dynamics of mosquito vectors for rift valley Fever virus in a disease epidemic setting. PLoS One 2014; 9:e108430. [PMID: 25259792 PMCID: PMC4178157 DOI: 10.1371/journal.pone.0108430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 08/19/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Rift Valley Fever (RVF) is weather dependent arboviral infection of livestock and humans. Population dynamics of mosquito vectors is associated with disease epidemics. In our study, we use daily temperature and rainfall as model inputs to simulate dynamics of mosquito vectors population in relation to disease epidemics. METHODS/FINDINGS Time-varying distributed delays (TVDD) and multi-way functional response equations were implemented to simulate mosquito vectors and hosts developmental stages and to establish interactions between stages and phases of mosquito vectors in relation to vertebrate hosts for infection introduction in compartmental phases. An open-source modelling platforms, Universal Simulator and Qt integrated development environment were used to develop models in C++ programming language. Developed models include source codes for mosquito fecundity, host fecundity, water level, mosquito infection, host infection, interactions, and egg time. Extensible Markup Language (XML) files were used as recipes to integrate source codes in Qt creator with Universal Simulator plug-in. We observed that Floodwater Aedines and Culicine population continued to fluctuate with temperature and water level over simulation period while controlled by availability of host for blood feeding. Infection in the system was introduced by floodwater Aedines. Culicines pick infection from infected host once to amplify disease epidemic. Simulated mosquito population show sudden unusual increase between December 1997 and January 1998 a similar period when RVF outbreak occurred in Ngorongoro district. CONCLUSION/SIGNIFICANCE Findings presented here provide new opportunities for weather-driven RVF epidemic simulation modelling. This is an ideal approach for understanding disease transmission dynamics towards epidemics prediction, prevention and control. This approach can be used as an alternative source for generation of calibrated RVF epidemics data in different settings.
Collapse
Affiliation(s)
- Clement N. Mweya
- National Institute for Medical Research, Tukuyu, Tanzania
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Niels Holst
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | | | - Sharadhuli I. Kimera
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
91
|
Sow A, Faye O, Ba Y, Ba H, Diallo D, Faye O, Loucoubar C, Boushab M, Barry Y, Diallo M, Sall AA. Rift Valley fever outbreak, southern Mauritania, 2012. Emerg Infect Dis 2014; 20:296-9. [PMID: 24447334 PMCID: PMC3901467 DOI: 10.3201/eid2002.131000] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Rift Valley Fever Outbreak, Mauritania, 2012 After a period of heavy rainfall, an outbreak of Rift Valley fever occurred in southern Mauritania during September–November 2012. A total of 41 human cases were confirmed, including 13 deaths, and 12 Rift Valley fever virus strains were isolated. Moudjeria and Temchecket Departments were the most affected areas.
Collapse
|
92
|
Kortekaas J. One Health approach to Rift Valley fever vaccine development. Antiviral Res 2014; 106:24-32. [DOI: 10.1016/j.antiviral.2014.03.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/10/2014] [Accepted: 03/15/2014] [Indexed: 10/25/2022]
|
93
|
Community knowledge and attitudes and health workers' practices regarding non-malaria febrile illnesses in eastern Tanzania. PLoS Negl Trop Dis 2014; 8:e2896. [PMID: 24852787 PMCID: PMC4031176 DOI: 10.1371/journal.pntd.0002896] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 04/11/2014] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Although malaria has been the leading cause of fever for many years, with improved control regimes malaria transmission, morbidity and mortality have decreased. Recent studies have increasingly demonstrated the importance of non-malaria fevers, which have significantly improved our understanding of etiologies of febrile illnesses. A number of non-malaria febrile illnesses including Rift Valley Fever, dengue fever, Chikungunya virus infection, leptospirosis, tick-borne relapsing fever and Q-fever have been reported in Tanzania. This study aimed at assessing the awareness of communities and practices of health workers on non-malaria febrile illnesses. METHODS Twelve focus group discussions with members of communities and 14 in-depth interviews with health workers were conducted in Kilosa district, Tanzania. Transcripts were coded into different groups using MaxQDA software and analyzed through thematic content analysis. RESULTS The study revealed that the awareness of the study participants on non-malaria febrile illnesses was low and many community members believed that most instances of fever are due to malaria. In addition, the majority had inappropriate beliefs about the possible causes of fever. In most cases, non-malaria febrile illnesses were considered following a negative Malaria Rapid Diagnostic Test (mRDT) result or persistent fevers after completion of anti-malaria dosage. Therefore, in the absence of mRDTs, there is over diagnosis of malaria and under diagnosis of non-malaria illnesses. Shortages of diagnostic facilities for febrile illnesses including mRDTs were repeatedly reported as a major barrier to proper diagnosis and treatment of febrile patients. CONCLUSION Our results emphasize the need for creating community awareness on other causes of fever apart from malaria. Based on our study, appropriate treatment of febrile patients will require inputs geared towards strengthening of diagnostic facilities, drugs availability and optimal staffing of health facilities.
Collapse
|
94
|
Kifaro EG, Nkangaga J, Joshua G, Sallu R, Yongolo M, Dautu G, Kasanga CJ. Epidemiological study of Rift Valley fever virus in Kigoma, Tanzania. ACTA ACUST UNITED AC 2014; 81:E1-5. [PMID: 25005550 DOI: 10.4102/ojvr.v81i2.717] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 11/01/2022]
Abstract
Rift Valley fever virus (RVFV) is an acute, zoonotic viral disease caused by a Phlebovirus, which belongs to the Bunyaviridae family. Among livestock, outbreaks of the disease are economically devastating. They are often characterised by large, sweeping abortion storms and have significant mortality in adult livestock. The aim of the current study was to investigate RVFV infection in the Kigoma region, which is nestled under the hills of the western arm of the Great Rift Valley on the edge of Lake Tanganyika, Tanzania. A region-wide serosurvey was conducted on non-vaccinated small ruminants (sheep and goats, n = 411). Sera samples were tested for the presence of anti-RVFV antibodies and viral antigen, using commercial enzyme-linked immunosorbent assay and reverse transcriptase polymerase chain reaction, respectively. The overall past infections were detected in 22 of the 411 animals, 5.4% (Confidence Interval (CI) 95% = 3.5% - 8.1%). The Kigoma rural area recorded the higher seroprevalence of 12.0% (CI 95% = 7.3% - 18.3%; p < 0.0001), followed by Kibondo at 2.3% (CI 95% = 0.5% - 6.5%; p > 0.05) and the Kasulu district at 0.8% (CI 95% = 0.0% - 4.2%; p > 0.05). The prevalence was 12.5% and 4.7% for sheep and goats, respectively. Reverse transcriptase polymerase chain reaction results indicated that only eight samples were found to be positive (n = 63). This study has confirmed, for the first time, the presence of the RVFV in the Kigoma region four years after the 2007 epizootic in Tanzania. The study further suggests that the virus activity exists during the inter-epizootic period, even in regions with no history of RVFV.
Collapse
Affiliation(s)
- Emmanuel G Kifaro
- Department of Microbiology and Parasitology, Sokoine University of Agriculture.
| | | | | | | | | | | | | |
Collapse
|
95
|
Sindato C, Karimuribo ED, Pfeiffer DU, Mboera LEG, Kivaria F, Dautu G, Bernard B, Paweska JT. Spatial and temporal pattern of Rift Valley fever outbreaks in Tanzania; 1930 to 2007. PLoS One 2014; 9:e88897. [PMID: 24586433 PMCID: PMC3934866 DOI: 10.1371/journal.pone.0088897] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 01/13/2014] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Rift Valley fever (RVF)-like disease was first reported in Tanzania more than eight decades ago and the last large outbreak of the disease occurred in 2006-07. This study investigates the spatial and temporal pattern of RVF outbreaks in Tanzania over the past 80 years in order to guide prevention and control strategies. MATERIALS AND METHODS A retrospective study was carried out based on disease reporting data from Tanzania at district or village level. The data were sourced from the Ministries responsible for livestock and human health, Tanzania Meteorological Agency and research institutions involved in RVF surveillance and diagnosis. The spatial distribution of outbreaks was mapped using ArcGIS 10. The space-time permutation model was applied to identify clusters of cases, and a multivariable logistic regression model was used to identify risk factors associated with the occurrence of outbreaks in the district. PRINCIPAL FINDINGS RVF outbreaks were reported between December and June in 1930, 1947, 1957, 1960, 1963, 1968, 1977-79, 1989, 1997-98 and 2006-07 in 39.2% of the districts in Tanzania. There was statistically significant spatio-temporal clustering of outbreaks. RVF occurrence was associated with the eastern Rift Valley ecosystem (OR = 6.14, CI: 1.96, 19.28), total amount of rainfall of >405.4 mm (OR = 12.36, CI: 3.06, 49.88), soil texture (clay [OR = 8.76, CI: 2.52, 30.50], and loam [OR = 8.79, CI: 2.04, 37.82]). CONCLUSION/SIGNIFICANCE RVF outbreaks were found to be distributed heterogeneously and transmission dynamics appeared to vary between areas. The sequence of outbreak waves, continuously cover more parts of the country. Whenever infection has been introduced into an area, it is likely to be involved in future outbreaks. The cases were more likely to be reported from the eastern Rift Valley than from the western Rift Valley ecosystem and from areas with clay and loam rather than sandy soil texture.
Collapse
Affiliation(s)
- Calvin Sindato
- National Institute for Medical Research, Tabora, Tanzania
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
- Southern Africa Centre for Infectious Disease Surveillance, Morogoro, Tanzania
| | - Esron D. Karimuribo
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
- Southern Africa Centre for Infectious Disease Surveillance, Morogoro, Tanzania
| | | | | | - Fredrick Kivaria
- Food and Agriculture Organization of the United Nations, Dar es Salaam, Tanzania
| | - George Dautu
- Department of Disease Control, University of Zambia, Lusaka, Zambia
| | - Bett Bernard
- International Livestock Research Institute, Nairobi, Kenya
| | - Janusz T. Paweska
- Center for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, of the National Health Laboratory Service, Sandringham, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
96
|
Hartman AL, Powell DS, Bethel LM, Caroline AL, Schmid RJ, Oury T, Reed DS. Aerosolized rift valley fever virus causes fatal encephalitis in african green monkeys and common marmosets. J Virol 2014; 88:2235-45. [PMID: 24335307 PMCID: PMC3911574 DOI: 10.1128/jvi.02341-13] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/04/2013] [Indexed: 01/25/2023] Open
Abstract
Rift Valley fever (RVF) is a veterinary and human disease in Africa and the Middle East. The causative agent, RVF virus (RVFV), can be naturally transmitted by mosquito, direct contact, or aerosol. We sought to develop a nonhuman primate (NHP) model of severe RVF in humans to better understand the pathogenesis of RVF and to use for evaluation of medical countermeasures. NHP from four different species were exposed to aerosols containing RVFV. Both cynomolgus and rhesus macaques developed mild fevers after inhalation of RVFV, but no other clinical signs were noted and no macaque succumbed to RVFV infection. In contrast, both marmosets and African green monkeys (AGM) proved susceptible to aerosolized RVF virus. Fever onset was earlier with the marmosets and had a biphasic pattern similar to what has been reported in humans. Beginning around day 8 to day 10 postexposure, clinical signs consistent with encephalitis were noted in both AGM and marmosets; animals of both species succumbed between days 9 and 11 postexposure. Marmosets were susceptible to lower doses of RVFV than AGM. Histological examination confirmed viral meningoencephalitis in both species. Hematological analyses indicated a drop in platelet counts in both AGM and marmosets suggestive of thrombosis, as well as leukocytosis that consisted mostly of granulocytes. Both AGM and marmosets would serve as useful models of aerosol infection with RVFV.
Collapse
Affiliation(s)
- Amy L. Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases & Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Diana S. Powell
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Laura M. Bethel
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amy L. Caroline
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Richard J. Schmid
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tim Oury
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
97
|
Chengula AA, Kasanga CJ, Mdegela RH, Sallu R, Yongolo M. Molecular detection of Rift Valley fever virus in serum samples from selected areas of Tanzania. Trop Anim Health Prod 2014; 46:629-34. [PMID: 24464589 DOI: 10.1007/s11250-014-0540-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2014] [Indexed: 01/18/2023]
Abstract
Rift Valley fever (RVF) is an acute mosquito-borne viral zoonotic disease affecting domestic animals and humans caused by the Rift Valley fever virus (RVFV). The virus belongs to the genus Phlebovirus of the family Bunyaviridae. The main aim of this study was to detect the presence of antibodies to RVFV as well as the virus in the serum samples that were collected from livestock during the 2006/2007 RVF outbreaks in different locations in Tanzania. Analysis of selected samples was done using a RVF-specific inhibition enzyme-linked immunosorbent assay (I-ELISA) and reverse transcription polymerase chain reaction (RT-PCR). Genomic viral RNA was extracted directly from serum samples using a QIAamp Viral RNA Mini Kit (QIAGEN), and a one-step RT-PCR protocol was used to amplify the S segment of RVFV. Positive results were obtained in 39.5% (n = 200) samples using the RVF I-ELISA, and 17.6% (n = 108) of samples were positive by RT-PCR. I-ELISA detected 41 (38.7%), 32 (39.0%), and 6 (50.0%) positive results in cattle, goats, and sheep sera, respectively, whereas the RT-PCR detected 11 (0.2%), 7 (0.2%), and 1 (0.1%) positive results in cattle, goats, and sheep sera, respectively. These findings have demonstrated the presence of RVFV in Tanzania during the 2006/2007 RVF outbreaks. To our knowledge, this is the first report to detect RVFV in serum samples from domestic animals in Tanzania using PCR technique. Therefore, a detailed molecular study to characterize the virus from different geographical locations in order to establish the profile of strains circulating in the country and develop more effective and efficient control strategies should be done.
Collapse
Affiliation(s)
- Augustino Alfred Chengula
- Department of Veterinary Microbiology and Parasitology, Faculty of Veterinary Medicine, Sokoine University of Agriculture, P. O. Box 3019, Morogoro, Tanzania,
| | | | | | | | | |
Collapse
|
98
|
Paweska JT. Rift Valley Fever. Emerg Infect Dis 2014. [DOI: 10.1016/b978-0-12-416975-3.00006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
99
|
Archer BN, Thomas J, Weyer J, Cengimbo A, Landoh DE, Jacobs C, Ntuli S, Modise M, Mathonsi M, Mashishi MS, Leman PA, le Roux C, Jansen van Vuren P, Kemp A, Paweska JT, Blumberg L. Epidemiologic Investigations into Outbreaks of Rift Valley Fever in Humans, South Africa, 2008-2011. Emerg Infect Dis 2013; 19. [PMID: 29360021 PMCID: PMC3840856 DOI: 10.3201/eid1912.121527] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Rift Valley fever continues to pose a notable public health threat to humans. Rift Valley fever (RVF) is an emerging zoonosis posing a public health threat to humans in Africa. During sporadic RVF outbreaks in 2008–2009 and widespread epidemics in 2010–2011, 302 laboratory-confirmed human infections, including 25 deaths (case-fatality rate, 8%) were identified. Incidence peaked in late summer to early autumn each year, which coincided with incidence rate patterns in livestock. Most case-patients were adults (median age 43 years), men (262; 87%), who worked in farming, animal health or meat-related industries (83%). Most case-patients reported direct contact with animal tissues, blood, or other body fluids before onset of illness (89%); mosquitoes likely played a limited role in transmission of disease to humans. Close partnership with animal health and agriculture sectors allowed early recognition of human cases and appropriate preventive health messaging.
Collapse
|
100
|
Chengula AA, Mdegela RH, Kasanga CJ. Socio-economic impact of Rift Valley fever to pastoralists and agro pastoralists in Arusha, Manyara and Morogoro regions in Tanzania. SPRINGERPLUS 2013; 2:549. [PMID: 24255846 PMCID: PMC3825084 DOI: 10.1186/2193-1801-2-549] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/11/2013] [Indexed: 11/10/2022]
Abstract
Rift Valley fever (RVF) is a viral notifiable zoonotic disease primarily of domestic ruminants that causes significant socio-economic impacts. Using the 2006-07 outbreak cases, this study aimed to establish the socio-economic impact of RVF and assessing knowledge, attitude and practice of livestock keepers towards controlling RVF in selected areas of Tanzania. Data were collected in Arusha, Manyara and Morogoro regions using questionnaires, focus group discussions and in-depth interviews with key informants. Results indicate that there was little knowledge on disease (all clinical signs scored <50%) and the difference between the three regions was statistically significant (P = 0.00459). Socio-economic impacts of RVF shown by this study included; animal and human deaths, disruption of livestock market chains, inability of pastoralists to achieve their daily demands, inability to obtain protein leading to malnutrition and monetary loss at individual and national level during control of the disease. These findings have demonstrated low knowledge of the community on RVF, thus, more education and engagement is needed in order to develop more effective and efficient control strategies.
Collapse
Affiliation(s)
- Augustino A Chengula
- Department of Veterinary Microbiology and Parasitology, Faculty of Veterinary Medicine, Sokoine University of Agriculture, P O Box 3019, Morogoro, Tanzania
| | | | | |
Collapse
|