51
|
A review on epidermal growth factor receptor's role in breast and non-small cell lung cancer. Chem Biol Interact 2021; 351:109735. [PMID: 34742684 DOI: 10.1016/j.cbi.2021.109735] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/28/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022]
Abstract
Epithelial growth factor receptor (EGFR) is a cell surface transmembrane receptor that mediates the tyrosine signaling pathway to carry the extracellular messages inside the cell and thereby alter the function of nucleus. This leads to the generation of various protein products to up or downregulate the cellular function. It is encoded by cell erythroblastosis virus oncogene B1, so called C-erb B1/ERBB2/HER-2 gene that acts as a proto-oncogene. It belongs to the HER-2 receptor-family in breast cancer and responds best with anti-Herceptin therapy (anti-tyrosine kinase monoclonal antibody). HER-2 positive breast cancer patient exhibits worse prognosis without Herceptin therapy. Similar incidence and prognosis are reported in other epithelial neoplasms like EGFR + lung non-small cell carcinoma and glioblastoma (grade IV brain glial tumor). Present study highlights the role and connectivity of EGF with various cancers via signaling pathways, cell surface receptors mechanism, macromolecules, mitochondrial genes and neoplasm. Present study describes the EGFR associated gene expression profiling (in breast cancer and NSCLC), relation between mitrochondrial genes and carcinoma, and several in vitro and in vivo models to screen the synergistic effect of various combination treatments. According to this study, although clinical studies including targeted treatments, immunotherapies, radiotherapy, TKi-EGFR combined targeted therapy have been carried out to investigate the synergism of combination therapy; however still there is a gap to apply the scenarios of experimental and clinical studies for further developments. This review will give an idea about the transition from experimental to most advanced clinical studies with different combination drug strategies to treat cancer.
Collapse
|
52
|
Increasing cytosolic Ca 2+ levels restore cell proliferation and stem cell potency in aged MSCs. Stem Cell Res 2021; 56:102560. [PMID: 34624617 PMCID: PMC8596392 DOI: 10.1016/j.scr.2021.102560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/14/2021] [Accepted: 09/30/2021] [Indexed: 11/24/2022] Open
Abstract
Aging is an inescapable complex physiological but extendable process, and all cells, including stem cells, are altered over time. Diverse mechanism(s) could modulate stem cell number, their proliferation rate, and promote tissue repair during aging that leads to longevity. However, the factors that could restore aging stem cell potency and would lead to healthy aging are not fully identified. Here we show that maintaining cytosolic Ca2+ levels was essential for modulating stem cells function in aged mesenchymal stem cells (MSCs). Increasing external Ca2+ induced spindle shape stem cell morphology and maintained stem cell surface marker expression in aged bone marrow-derived MSCs. Similarly, stem cell survival and proliferation of aged MSCs was dependent on cytosolic Ca2+ levels. Importantly, Ca2+ entry potentiated cell cycle progression, and stem cell potential was increased in cells incubated with higher external Ca2+. Moreover, blocking Ca2+ entry using SKF 96365, decreased stem cell survival and its proliferation but, treatment with 2-APB did not significantly affected cell proliferation, rather only modulated cell viability. Evaluation of Ca2+ entry channels, showed that TRPC1/Orai1/Orai3 and their regulator STIM1 was essential for MSCs proliferation/viability as gene silencing of Orai1/Orai3/TRPC1/STIM1 significantly inhibited stem cell viability. Finally, MSCs isolated from aged mice that were subjected to higher Ca2+ levels, were able to rescue age-induced loss of MSCs function. Together these results suggest that Ca2+ entry is essential for preventing the loss of aged stem cell function and supplementing Ca2+ not only restored their proliferative potential but, allowed them to develop into younger stem cell lineages that could be critical for regenerative medicine.
Collapse
|
53
|
Chorioamnionitis induces changes in ovine pulmonary endogenous epithelial stem/progenitor cells in utero. Pediatr Res 2021; 90:549-558. [PMID: 33070161 DOI: 10.1038/s41390-020-01204-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Chorioamnionitis, an intrauterine infection of the placenta and fetal membranes, is a common risk factor for adverse pulmonary outcomes in premature infants including BPD, which is characterized by an arrest in alveolar development. As endogenous epithelial stem/progenitor cells are crucial for organogenesis and tissue repair, we examined whether intrauterine inflammation negatively affects these essential progenitor pools. METHODS In an ovine chorioamnionitis model, fetuses were intra-amniotically exposed to LPS, 2d or 7d (acute inflammation) before preterm delivery at 125d of gestation, or to intra-amniotic Ureaplasma parvum for 42d (chronic inflammation). Lung function, pulmonary endogenous epithelial stem/progenitor pools, and downstream functional markers were studied. RESULTS Lung function was improved in the 7d LPS and 42d Ureaplasma groups. However, intrauterine inflammation caused a loss of P63+ basal cells in proximal airways and reduced SOX-9 expression and TTF-1+ Club cells in distal airways. Attenuated type-2 cell numbers were associated with lower proliferation and reduced type-1 cell marker Aqp5 expression, indicative for impaired progenitor function. Chronic Ureaplasma infection only affected distal airways, whereas acute inflammation affected stem/progenitor populations throughout the lungs. CONCLUSIONS Acute and chronic prenatal inflammation improve lung function at the expense of stem/progenitor alterations that potentially disrupt normal lung development, thereby predisposing to adverse postnatal outcomes. IMPACT In this study, prenatal inflammation improved lung function at the expense of stem/progenitor alterations that potentially disrupt normal lung development, thereby predisposing to adverse postnatal outcomes. Importantly, we demonstrate that these essential alterations can already be initiated before birth. So far, stem/progenitor dysfunction has only been shown postnatally. This study indicates that clinical protocols to target the consequences of perinatal inflammatory stress for the immature lungs should be initiated as early as possible and ideally in utero. Within this context, our data suggest that interventions, which promote function or repair of endogenous stem cells in the lungs, hold great promise.
Collapse
|
54
|
Opportunities and Challenges in Stem Cell Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1341:143-175. [PMID: 33748933 DOI: 10.1007/5584_2021_624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Studying aging, as a physiological process that can cause various pathological phenotypes, has attracted lots of attention due to its increasing burden and prevalence. Therefore, understanding its mechanism to find novel therapeutic alternatives for age-related disorders such as neurodegenerative and cardiovascular diseases is essential. Stem cell senescence plays an important role in aging. In the context of the underlying pathways, mitochondrial dysfunction, epigenetic and genetic alterations, and other mechanisms have been studied and as a consequence, several rejuvenation strategies targeting these mechanisms like pharmaceutical interventions, genetic modification, and cellular reprogramming have been proposed. On the other hand, since stem cells have great potential for disease modeling, they have been useful for representing aging and its associated disorders. Accordingly, the main mechanisms of senescence in stem cells and promising ways of rejuvenation, along with some examples of stem cell models for aging are introduced and discussed. This review aims to prepare a comprehensive summary of the findings by focusing on the most recent ones to shine a light on this area of research.
Collapse
|
55
|
Das M, Kale V. Involvement of extracellular vesicles in aging process and their beneficial effects in alleviating aging-associated symptoms. Cell Biol Int 2021; 45:2403-2419. [PMID: 34427351 DOI: 10.1002/cbin.11691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/25/2021] [Accepted: 08/14/2021] [Indexed: 12/16/2022]
Abstract
Aging is a gradual and unavoidable physiological phenomenon that manifests in the natural maturation process and continues to progress from infanthood to adulthood. Many elderly people suffer from aging-associated hematological and nonhematological disorders. Recent advances in regenerative medicine have shown new revolutionary paths of treating such diseases using stem cells; however, aging also affects the quality and competence of stem and progenitor cells themselves and ultimately directs their death or apoptosis and senescence, leading to a decline in their regenerative potential. Recent research works show that extracellular vesicles (EVs) isolated from different types of stem cells may provide a safe treatment for aging-associated disorders. The cargo of EVs comprises packets of information in the form of various macromolecules that can modify the fate of the target cells. To harness the true potential of EVs in regenerative medicine, it is necessary to understand how this cargo contributes to the rejuvenation of aged stem and progenitor populations and to identify the aging-associated changes in the macromolecular profile of the EVs themselves. In this review, we endeavor to summarize the current knowledge of the involvement of EVs in the aging process and delineate the role of EVs in the reversal of aging-associated phenotypes. We have also analyzed the involvement of the molecular cargo of EVs in the generation of aging-associated disorders. This knowledge could not only help us in understanding the mechanism of the aging process but could also facilitate the development of new cell-free biologics to treat aging-related disorders in the future.
Collapse
Affiliation(s)
- Madhurima Das
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
56
|
Hattori H, Takaoka K, Ueta M, Oshitani M, Tamaoka J, Noguchi K, Kishimoto H. Senescent RAW264.7 cells exhibit increased production of nitric oxide and release inducible nitric oxide synthase in exosomes. Mol Med Rep 2021; 24:681. [PMID: 34318909 DOI: 10.3892/mmr.2021.12320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/08/2021] [Indexed: 11/06/2022] Open
Abstract
Aging cells not only cease growing, but also secrete various proteins such as inflammatory cytokines. This secretory phenomenon is known as the senescence‑associated secretory phenotype (SASP). The aim of the present study was to elucidate the effects of senescence on the differentiation of osteoclast precursors (OCPs) and corresponding SASP. RAW264.7 cells were used as OCPs and were cultured to passage (P)5, P10 and P20. Cell proliferation assays, senescence‑associated β‑galactosidase staining and telomere length quantification were subsequently performed, and it was revealed that replicative senescence was induced at P20. In addition, the level of tartrate‑resistant acid phosphatase activity in P20 cells treated with receptor activator of nuclear factor‑κB ligand was significantly lower than that in P5 and P10 cells. The SASP factors interleukin‑6, tumour necrosis factor‑α and nitric oxide were significantly increased in P20 culture supernatants compared with those in P5 and P10 supernatants. Furthermore, the number of exosomes at P20 was increased compared with that at P5 and P10, and inducible nitric oxide synthase (iNOS) was expressed in exosomes at P20, but not in exosomes at P5. In conclusion, the present study revealed that senescent RAW264.7 cells exhibit increased expression of SASP factors and release iNOS in exosomes.
Collapse
Affiliation(s)
- Hirokazu Hattori
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Kazuki Takaoka
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Miho Ueta
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Masayuki Oshitani
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Joji Tamaoka
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Kazuma Noguchi
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Hiromitsu Kishimoto
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| |
Collapse
|
57
|
Delben PB, Zomer HD, Acordi da Silva C, Gomes RS, Melo FR, Dillenburg-Pilla P, Trentin AG. Human adipose-derived mesenchymal stromal cells from face and abdomen undergo replicative senescence and loss of genetic integrity after long-term culture. Exp Cell Res 2021; 406:112740. [PMID: 34303697 DOI: 10.1016/j.yexcr.2021.112740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
Body fat depots are heterogeneous concerning their embryonic origin, structure, exposure to environmental stressors, and availability. Thus, investigating adipose-derived mesenchymal stromal cells (ASCs) from different sources is essential to standardization for future therapies. In vitro amplification is also critical because it may predispose cell senescence and mutations, reducing regenerative properties and safety. Here, we evaluated long-term culture of human facial ASCs (fASCs) and abdominal ASCs (aASCs) and showed that both met the criteria for MSCs characterization but presented differences in their immunophenotypic profile, and differentiation and clonogenic potentials. The abdominal tissue yielded more ASCs, and these had higher proliferative potential, but facial cells displayed fewer mitotic errors at higher passages. However, both cell types reduced clonal efficiency over time and entered replicative senescence around P12, as evaluated by progressive morphological alterations, reduced proliferative capacity, and SA-β-galactosidase expression. Loss of genetic integrity was detected by a higher proportion of cells showing nuclear alterations and γ-H2AX expression. Our findings indicate that the source of ASCs can substantially influence their phenotype and therefore should be carefully considered in future cell therapies, avoiding, however, long-term culture to ensure genetic stability.
Collapse
Affiliation(s)
- Priscilla Barros Delben
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Brazil.
| | - Helena Debiazi Zomer
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Brazil; Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, IL, USA.
| | - Camila Acordi da Silva
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Brazil.
| | | | | | | | - Andrea Gonçalves Trentin
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
58
|
Bellu E, Medici S, Coradduzza D, Cruciani S, Amler E, Maioli M. Nanomaterials in Skin Regeneration and Rejuvenation. Int J Mol Sci 2021; 22:7095. [PMID: 34209468 PMCID: PMC8268279 DOI: 10.3390/ijms22137095] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022] Open
Abstract
Skin is the external part of the human body; thus, it is exposed to outer stimuli leading to injuries and damage, due to being the tissue mostly affected by wounds and aging that compromise its protective function. The recent extension of the average lifespan raises the interest in products capable of counteracting skin related health conditions. However, the skin barrier is not easy to permeate and could be influenced by different factors. In the last decades an innovative pharmacotherapeutic approach has been possible thanks to the advent of nanomedicine. Nanodevices can represent an appropriate formulation to enhance the passive penetration, modulate drug solubility and increase the thermodynamic activity of drugs. Here, we summarize the recent nanotechnological approaches to maintain and replace skin homeostasis, with particular attention to nanomaterials applications on wound healing, regeneration and rejuvenation of skin tissue. The different nanomaterials as nanofibers, hydrogels, nanosuspensions, and nanoparticles are described and in particular we highlight their main chemical features that are useful in drug delivery and tissue regeneration.
Collapse
Affiliation(s)
- Emanuela Bellu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (D.C.); (S.C.)
| | - Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, Vienna 2, 07100 Sassari, Italy;
| | - Donatella Coradduzza
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (D.C.); (S.C.)
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (D.C.); (S.C.)
| | - Evzen Amler
- UCEEB, Czech Technical University, Trinecka 1024, 27343 Bustehrad, Czech Republic;
- Institute of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (D.C.); (S.C.)
- Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
- Interuniversity Consortium I.N.B.B., Viale delle Medaglie d’Oro, 305, 00136 Roma, Italy
| |
Collapse
|
59
|
Vennekens A, Laporte E, Hermans F, Cox B, Modave E, Janiszewski A, Nys C, Kobayashi H, Malengier-Devlies B, Chappell J, Matthys P, Garcia MI, Pasque V, Lambrechts D, Vankelecom H. Interleukin-6 is an activator of pituitary stem cells upon local damage, a competence quenched in the aging gland. Proc Natl Acad Sci U S A 2021; 118:e2100052118. [PMID: 34161279 PMCID: PMC8237615 DOI: 10.1073/pnas.2100052118] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Stem cells in the adult pituitary are quiescent yet show acute activation upon tissue injury. The molecular mechanisms underlying this reaction are completely unknown. We applied single-cell transcriptomics to start unraveling the acute pituitary stem cell activation process as occurring upon targeted endocrine cell-ablation damage. This stem cell reaction was contrasted with the aging (middle-aged) pituitary, known to have lost damage-repair capacity. Stem cells in the aging pituitary show regressed proliferative activation upon injury and diminished in vitro organoid formation. Single-cell RNA sequencing uncovered interleukin-6 (IL-6) as being up-regulated upon damage, however only in young but not aging pituitary. Administering IL-6 to young mice promptly triggered pituitary stem cell proliferation, while blocking IL-6 or associated signaling pathways inhibited such reaction to damage. By contrast, IL-6 did not generate a pituitary stem cell activation response in aging mice, coinciding with elevated basal IL-6 levels and raised inflammatory state in the aging gland (inflammaging). Intriguingly, in vitro stem cell activation by IL-6 was discerned in organoid culture not only from young but also from aging pituitary, indicating that the aging gland's stem cells retain intrinsic activatability in vivo, likely impeded by the prevailing inflammatory tissue milieu. Importantly, IL-6 supplementation strongly enhanced the growth capability of pituitary stem cell organoids, thereby expanding their potential as an experimental model. Our study identifies IL-6 as a pituitary stem cell activator upon local damage, a competence quenched at aging, concomitant with raised IL-6/inflammatory levels in the older gland. These insights may open the way to interfering with pituitary aging.
Collapse
Affiliation(s)
- Annelies Vennekens
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Emma Laporte
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Florian Hermans
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Laboratory of Morphology, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Benoit Cox
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Elodie Modave
- Center for Cancer Biology, Vlaams Instituut voor Biotechnologie, 3000 Leuven, Belgium
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Adrian Janiszewski
- Laboratory for Cellular Reprogramming and Epigenetic Regulation, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Charlotte Nys
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Hiroto Kobayashi
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Department of Anatomy and Structural Science, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Bert Malengier-Devlies
- Immunity and Inflammation Research Group, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Joel Chappell
- Laboratory for Cellular Reprogramming and Epigenetic Regulation, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Patrick Matthys
- Immunity and Inflammation Research Group, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Marie-Isabelle Garcia
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Faculty of Medicine, Université Libre de Bruxelles, 1070 Bruxelles, Belgium
| | - Vincent Pasque
- Laboratory for Cellular Reprogramming and Epigenetic Regulation, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Diether Lambrechts
- Center for Cancer Biology, Vlaams Instituut voor Biotechnologie, 3000 Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
60
|
Wang C, Haas M, Yeo SK, Sebti S, Fernández ÁF, Zou Z, Levine B, Guan JL. Enhanced autophagy in Becn1F121A/F121A knockin mice counteracts aging-related neural stem cell exhaustion and dysfunction. Autophagy 2021; 18:409-422. [PMID: 34101533 DOI: 10.1080/15548627.2021.1936358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Macroautophagy/autophagy is emerging as a major pathway that regulates both aging and stem cell function. Previous studies have demonstrated a positive correlation of autophagy with longevity; however, these studies did not directly address the consequence of altered autophagy in stem cells during aging. In this study, we used Becn1F121A/F121A knockin mice (designated as Becn1 KI mice) with the F121A allele in the autophagy gene Becn1 to investigate the consequences of enhanced autophagy in postnatal neural stem cells (NSCs) during aging. We found that increased autophagy protected NSCs from exhaustion and promoted neurogenesis in old (≥18-months-old) mice compared with age-matched wild-type (WT) mice, although it did not affect NSCs in young (3-months-old) mice. After pharmacologically-induced elimination of proliferative cells in the subventricular zone (SVZ), there was enhanced re-activation of quiescent NSCs in old Becn1 KI mice as compared to those in WT mice, with more efficient exit from quiescent status to generate proliferative cells and neuroblasts. Moreover, there was also improved maintenance and increased neuronal differentiation of NSCs isolated from the SVZ of old Becn1 KI mice in in vitro assays. Lastly, the increased neurogenesis in Becn1 KI mice was associated with better olfactory function in aged animals. Together, our results suggest a protective role of increased autophagy in aging NSCs, which may help the development of novel strategies to treat age-related neurodegeneration.
Collapse
Affiliation(s)
- Chenran Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael Haas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Syn Kok Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Salwa Sebti
- Center for Autophagy Research, Department of Internal Medicine, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Álvaro F Fernández
- Center for Autophagy Research, Department of Internal Medicine, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhongju Zou
- Center for Autophagy Research, Department of Internal Medicine, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
61
|
Bellu E, Cruciani S, Garroni G, Balzano F, Satta R, Montesu MA, Fadda A, Mulas M, Sarais G, Bandiera P, Ventura C, Kralovič M, Sabo J, Amler E, Maioli M. Natural Compounds and PCL Nanofibers: A Novel Tool to Counteract Stem Cell Senescence. Cells 2021; 10:cells10061415. [PMID: 34200247 PMCID: PMC8227046 DOI: 10.3390/cells10061415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
Tissue homeostasis mainly depends on the activity of stem cells to replace damaged elements and restore tissue functions. Within this context, mesenchymal stem cells and fibroblasts are essential for maintaining tissue homeostasis in skin, in particular in the dermis. Modifications in collagen fibers are able to affect stem cell features. Skin properties can be significantly reduced after injuries or with aging, and stem cell niches, mainly comprising extracellular matrix (ECM), may be compromised. To this end, specific molecules can be administrated to prevent the aging process induced by UV exposure in the attempt to maintain a youngness phenotype. NanoPCL-M is a novel nanodevice able to control delivery of Mediterranean plant myrtle (Myrtus communis L.) extracts. In particular, we previously described that myrtle extracts, rich in bioactive molecules and nutraceuticals, were able to counteract senescence in adipose derived stem cells. In this study, we analyzed the effect of NanoPCL-M on skin stem cells (SSCs) and dermal fibroblasts in a dynamic cell culture model in order to prevent the effects of UV-induced senescence on proliferation and collagen depot. The BrdU assay results highlight the significantly positive effect of NanoPCL-M on the proliferation of both fibroblasts and SSCs. Our results demonstrate that-M is able to preserve SSCs features and collagen depot after UV-induced senescence, suggesting their capability to retain a young phenotype.
Collapse
Affiliation(s)
- Emanuela Bellu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (S.C.); (G.G.); (F.B.); (P.B.)
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (S.C.); (G.G.); (F.B.); (P.B.)
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (S.C.); (G.G.); (F.B.); (P.B.)
| | - Francesca Balzano
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (S.C.); (G.G.); (F.B.); (P.B.)
| | - Rosanna Satta
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (R.S.); (M.A.M.)
| | - Maria Antonia Montesu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (R.S.); (M.A.M.)
| | - Angela Fadda
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), Traversa la Crucca 3, 07100 Sassari, Italy;
| | - Maurizio Mulas
- Department of Agriculture, University of Sassari, Via De Nicola 9, 07100 Sassari, Italy;
| | - Giorgia Sarais
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, 09042 Monserrato (Cagliari), Italy;
| | - Pasquale Bandiera
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (S.C.); (G.G.); (F.B.); (P.B.)
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering-Eldor Lab, National Institute of Biostructures and Biosystems, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy;
| | - Martin Kralovič
- Institute of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic;
- UCEEB, Czech Technical University, Trinecka 1024, 273 43 Bustehrad, Czech Republic
| | - Jan Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 04011 Košice, Slovakia;
| | - Evzen Amler
- Institute of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic;
- UCEEB, Czech Technical University, Trinecka 1024, 273 43 Bustehrad, Czech Republic
- Correspondence: (E.A.); (M.M.)
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (S.C.); (G.G.); (F.B.); (P.B.)
- Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
- Correspondence: (E.A.); (M.M.)
| |
Collapse
|
62
|
Age-Related Changes in Bone-Marrow Mesenchymal Stem Cells. Cells 2021; 10:cells10061273. [PMID: 34063923 PMCID: PMC8223980 DOI: 10.3390/cells10061273] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
The use of stem cells is part of a strategy for the treatment of a large number of diseases. However, the source of the original stem cells for use is extremely important and determines their therapeutic potential. Mesenchymal stromal cells (MSC) have proven their therapeutic effectiveness when used in a number of pathological models. However, it remains an open question whether the chronological age of the donor organism affects the effectiveness of the use of MSC. The asymmetric division of stem cells, the result of which is some residential stem cells acquiring a non-senile phenotype, means that stem cells possess an intrinsic ability to preserve juvenile characteristics, implying an absence or at least remarkable retardation of senescence in stem cells. To test whether residential MSC senesce, we evaluated the physiological changes in the MSC from old rats, with a further comparison of the neuroprotective properties of MSC from young and old animals in a model of traumatic brain injury. We found that, while the effect of administration of MSC on lesion volume was minimal, functional recovery was remarkable, with the highest effect assigned to fetal cells; the lowest effect was recorded for cells isolated from adult rats and postnatal cells, having intermediate potency. MSC from the young rats were characterized by a faster growth than adult MSC, correlating with levels of proliferating cell nuclear antigen (PCNA). However, there were no differences in respiratory activity of MSC from young and old rats, but young cells showed much higher glucose utilization than old ones. Autophagy flux was almost the same in both types of cells, but there were remarkable ultrastructural differences in old and young cells.
Collapse
|
63
|
Afarid M, Sanie-Jahromi F. Mesenchymal Stem Cells and COVID-19: Cure, Prevention, and Vaccination. Stem Cells Int 2021; 2021:6666370. [PMID: 34035820 PMCID: PMC8103964 DOI: 10.1155/2021/6666370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/26/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
COVID-19 disease has been a global health problem since late 2019. There are many concerns about the rapid spread of this disease, and yet, there is no approved treatment for COVID-19. Several biological interventions have been under study recently to investigate efficient treatment for this viral disease. Besides, many efforts have been made to find a safe way to prevent and vaccinate people against COVID-19 disease. In severe cases, patients suffer from acute respiratory distress syndrome usually associated with an increased level of inflammatory cytokines, called a cytokine storm. It seems that reequilibrating the hyperinflammatory response of the host immune system and regeneration of damaged cells could be the main way to manage the disease. Mesenchymal stem cells (MSCs) have been recently under investigation in this regard, and the achieved clinical outcomes show promising evidence for stem cell-based therapy of COVID-19. MSCs are known for their potential for immunomodulation, defense against virus infection, and tissue regeneration. MSCs are a newly emerged platform for designing vaccines and show promising evidence in this area. In the present study, we provided a thorough research study on the most recent clinical studies based on stem cells in the treatment of COVID-19 while introducing stem cell exclusivities for use as an immune disorder or lung cell therapy and its potential application for protection and vaccination against COVID-19.
Collapse
Affiliation(s)
- Mehrdad Afarid
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
64
|
Liu H, Han X, Yang H, Cao Y, Zhang C, Du J, Diao S, Fan Z. GREM1 inhibits osteogenic differentiation, senescence and BMP transcription of adipose-derived stem cells. Connect Tissue Res 2021; 62:325-336. [PMID: 32151168 DOI: 10.1080/03008207.2020.1736054] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Adipose-derived stem cells (ADSCs) are ideal for cell-based therapies to support bone regeneration. It is vital to understand the critical genes and molecular mechanisms involved in the functional regulation of ADSCs for enhancing bone regeneration. In the present study, we investigated the Gremlin 1 (GREM1) effect on ADSCs osteogenic differentiation and senescence.Materials and methods: The in vitro ADSCs osteogenic differentiation potential was evaluated by determining alkaline phosphatase (ALP) activity, mineralization ability, and the expression of osteogenic markers. Cell senescence is determined by SA-β-gal staining, telomerase assay, and the expression of aging markers.Results: GREM1 overexpression in ADSCs reduced ALP activity and mineralization, inhibited the expression of osteogenic related genes OCN, OPN, DSPP, DMP1, and BSP, and key transcription factors, RUNX2 and OSX. GREM1 knockdown in ADSCs enhanced ALP activity and mineralization, promoted the expression of OCN, OPN, DSPP, DMP1, BSP, RUNX2, and OSX. GREM1 overexpression in ADSCs reduced the percent SA-β-Gal positive cells, P16 and P53 expressions, and increased telomerase activity. GREM1 knockdown in ADSCs increased the percentage of SA-β-Gal positive cells, P16 and P53 expressions, and reduced telomerase activity. Furthermore, GREM1 reduced the mRNA expression levels of BMP2, BMP6, and BMP7.Conclusions: In summary, our findings suggested that GREM1 inhibited ADSCs senescence and osteogenic differentiation and antagonized BMP transcription.
Collapse
Affiliation(s)
- Huina Liu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Xiao Han
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Haoqing Yang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yangyang Cao
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Chen Zhang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Juan Du
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Shu Diao
- Department of Pediatric Dentistry, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
65
|
Fuhrman BJ, Moore SC, Byrne C, Makhoul I, Kitahara CM, Berrington de González A, Linet MS, Weiderpass E, Adami HO, Freedman ND, Liao LM, Matthews CE, Stolzenberg-Solomon RZ, Gaudet MM, Patel AV, Lee IM, Buring JE, Wolk A, Larsson SC, Prizment AE, Robien K, Spriggs M, Check DP, Murphy N, Gunter MJ, Van Dusen HL, Ziegler RG, Hoover RN. Association of the Age at Menarche with Site-Specific Cancer Risks in Pooled Data from Nine Cohorts. Cancer Res 2021; 81:2246-2255. [PMID: 33820799 PMCID: PMC8137527 DOI: 10.1158/0008-5472.can-19-3093] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/16/2020] [Accepted: 01/22/2021] [Indexed: 12/24/2022]
Abstract
The average age at menarche declined in European and U.S. populations during the 19th and 20th centuries. The timing of pubertal events may have broad implications for chronic disease risks in aging women. Here we tested for associations of recalled menarcheal age with risks of 19 cancers in 536,450 women [median age, 60 years (range, 31-39 years)] in nine prospective U.S. and European cohorts that enrolled participants from 1981 to 1998. Cox regression estimated multivariable-adjusted HRs and 95% confidence intervals (CI) for associations of the age at menarche with risk of each cancer in each cohort and random-effects meta-analysis was used to generate summary estimates for each cancer. Over a median 10 years of follow-up, 60,968 women were diagnosed with a first primary incident cancer. Inverse linear associations were observed for seven of 19 cancers studied. Each additional year in the age at menarche was associated with reduced risks of endometrial cancer (HR = 0.91; 95% CI, 0.89-0.94), liver cancer (HR = 0.92; 95% CI, 0.85-0.99), melanoma (HR = 0.95; 95% CI, 0.93-0.98), bladder cancer (HR = 0.96; 95% CI, 0.93-0.99), and cancers of the colon (HR = 0.97; 95% CI, 0.96-0.99), lung (HR = 0.98; 95% CI, 0.96-0.99), and breast (HR = 0.98; 95% CI, 0.93-0.99). All but one of these associations remained statistically significant following adjustment for baseline body mass index. Similarities in the observed associations between menarche and seven cancers suggest shared underlying causes rooted early in life. We propose as a testable hypothesis that early exposure to sex hormones increases mid-life cancer risks by altering functional capacities of stem cells with roles in systemic energy balance and tissue homeostasis. SIGNIFICANCE: Age at menarche is associated with risk for seven cancers in middle-aged women, and understanding the shared underlying causal pathways across these cancers may suggest new avenues for cancer prevention.
Collapse
Affiliation(s)
- Barbara J Fuhrman
- University of Pittsburgh, Pittsburgh, Pennsylvania.
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Steven C Moore
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
| | - Celia Byrne
- Uniformed Health Services University, Bethesda, Maryland
| | - Issam Makhoul
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Cari M Kitahara
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
| | | | - Martha S Linet
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Hans-Olov Adami
- Harvard T. H. Chan School of Public Health, Harvard University, Cambridge, Massachusetts
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
| | - Linda M Liao
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
| | - Charles E Matthews
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
| | | | - Mia M Gaudet
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia
| | - Alpa V Patel
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia
| | - I-Min Lee
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Julie E Buring
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Anna E Prizment
- Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Kim Robien
- Exercise and Nutrition Sciences, Public Health, George Washington University, Washington, District of Columbia
| | | | - David P Check
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
| | - Neil Murphy
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Marc J Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | | | - Regina G Ziegler
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
| | - Robert N Hoover
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
66
|
Nys C, Vankelecom H. Pituitary disease and recovery: How are stem cells involved? Mol Cell Endocrinol 2021; 525:111176. [PMID: 33503464 DOI: 10.1016/j.mce.2021.111176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022]
Abstract
The pituitary gland embodies our endocrine hub and rigorously regulates hormone balances in the body, thereby ruling over vital developmental and physiological processes. Pituitary dysfunction and disease strongly impact the organism's biology. Physical damage, tumour development and ageing all negatively affect pituitary state and functionality. On top of its hormone-producing cells, the pituitary contains a population of stem cells. Not only their physiological role is still largely unknown, also whether or how these stem cells are involved in pituitary disease and recovery from defective functionality remains enigmatic. Here, we summarize what is known on the phenotypical and functional behaviour of pituitary stem cells in diseased or dysfunctional gland, as particularly caused by injury, tumourigenesis and ageing.
Collapse
Affiliation(s)
- Charlotte Nys
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000, Leuven, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000, Leuven, Belgium.
| |
Collapse
|
67
|
Zhu Y, Ge J, Huang C, Liu H, Jiang H. Application of mesenchymal stem cell therapy for aging frailty: from mechanisms to therapeutics. Theranostics 2021; 11:5675-5685. [PMID: 33897874 PMCID: PMC8058725 DOI: 10.7150/thno.46436] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Aging frailty is a complex geriatric syndrome that becomes more prevalent with advancing age. It constitutes a major health problem due to frequent adverse outcomes. Frailty is characterized by disruption of physiological homeostasis and progressive decline of health status. Multiple factors contribute to development of frailty with advancing age, including genome instability, DNA damage, epigenetic alternations, stem cell exhaustion, among others. These interrelated factors comprehensively result in loss of tissue homeostasis and diminished reserve capacity in frailty. Therefore, the aged organism gradually represents symptoms of frailty with decline in physiological functions of organs. Notably, the brain, cardiovascular system, skeletal muscle, and endocrine system are intrinsically interrelated to frailty. The patients with frailty may display the diminished reserves capacity of organ systems. Due to the complex pathophysiology, no specific treatments have been approved for prevention of this syndrome. At such, effective strategies for intervening in pathogenic process to improve health status of frail patients are highly needed. Recent progress in cell-based therapy has greatly contributed to the amelioration of degenerative diseases related to age. Mesenchymal stem cells (MSCs) can exert regenerative effects and possess anti-inflammatory properties. Transplantation of MSCs represents as a promising therapeutic strategy to address the pathophysiologic problems of frail syndrome. Currently, MSC therapy have undergone the phase I and II trials in human subjects that have endorsed the safety and efficacy of MSCs for aging frailty. However, despite these positive results, caution is still needed with regard to potential to form tumors, and further large-scale studies are warranted to confirm the therapeutic efficacy of MSC therapy.
Collapse
|
68
|
Wu C, Yu P, Sun R. Adipose tissue and age‑dependent insulin resistance: New insights into WAT browning (Review). Int J Mol Med 2021; 47:71. [PMID: 33693956 PMCID: PMC7952244 DOI: 10.3892/ijmm.2021.4904] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/03/2021] [Indexed: 12/19/2022] Open
Abstract
Insulin resistance (IR) is defined as impaired insulin function, reduced glucose uptake and increased glucose production, which can result in type II diabetes, metabolic syndrome and even bone metabolic disorders. A possible reason for the increasing incidence of IR is population aging. Adipose tissue (AT) is an important endocrine organ that serves a crucial role in whole-body energy homeostasis. AT can be divided into white AT (WAT), beige AT and brown AT (BAT). Several mechanisms have been previously associated with age-dependent IR in WAT. However, BAT, a metabolically active tissue, controls the levels of plasma glucose and triglyceride metabolism. Therefore, the present review aimed to summarize the mechanisms of age-dependent IR induced by AT and to determine the role of WAT browning in achieving positive therapeutic outcomes in age-dependent IR.
Collapse
Affiliation(s)
- Chuanlong Wu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Pei Yu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Ruixin Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
69
|
Murphy GF. COVID-19 and graft-versus-host disease: a tale of two diseases (and why age matters). J Transl Med 2021; 101:274-279. [PMID: 33299126 PMCID: PMC7724622 DOI: 10.1038/s41374-020-00520-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 01/25/2023] Open
Abstract
Disorders involving injury to tissue stem cells that ensure normal tissue homeostasis and repair have potential to show unusually devastating clinical consequences. Acute graft-versus-host disease (aGVHD) is one condition where relatively few cytotoxic immune cells target skin stem cells to produce significant morbidity and mortality. By analogy, SARS-CoV-2 is a vector that initially homes to pulmonary stem cells that preferentially express the ACE2 receptor, thus potentially incurring similarly robust pathological consequences. In older individuals, stem cell number and/or function become depleted due to pathways independent of disease-related injury to these subpopulations. Accordingly, pathologic targeting of stem cells in conditions like aGVHD and COVID-19 infection where these cells are already deficient due to the aging process may have dire consequences in elderly individuals. A hypothesis is herein advanced that, as with aGVHD, lung stem cell targeting is a potential co-factor in explaining age-related severity of COVID-19 infection.
Collapse
Affiliation(s)
- George F Murphy
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
70
|
Qiu YY, Zhang HS, Tang Y, Liu FY, Pang JQ, Zhang XY, Xiong H, Liang YS, Zhao HY, Chen SJ. Mitochondrial dysfunction resulting from the down-regulation of bone morphogenetic protein 5 may cause microtia. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:418. [PMID: 33842639 PMCID: PMC8033356 DOI: 10.21037/atm-21-831] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Bone morphogenetic protein 5 (BMP5) has been identified as one of the important risk factors for microtia; however, the link between them has yet to be clarified. In this study, we aimed to demonstrate the relationship of BMP5 with mitochondrial function and investigate the specific role of mitochondria in regulating microtia development. Methods BMP5 expression was measured in auricular cartilage tissues from patients with and without microtia. The effects of BMP5 knockdown on cellular function and mitochondrial function were also analyzed in vitro. Changes in genome-wide expression profiles were measured in BMP5-knockdown cells. Finally, the specific impact of BMP5 down-regulation on mitochondrial fat oxidation was analyzed in vitro. Results BMP5 expression was down-regulated in the auricular cartilage tissues of microtia patients. BMP5 down-regulation inhibited various cellular functions in vitro, including cell proliferation, mobility, and cytoactivity. The functional integrity of mitochondria was also damaged, accompanied by a decrease in mitochondrial membrane potential, reactive oxygen species (ROS) neutralization, and reduced adenosine triphosphate (ATP) production. Carnitine O-palmitoyltransferase 2 and diacylglycerol acyltransferase 2, two of the key regulators of mitochondrial lipid oxidation, were also found to be decreased by BMP5 down-regulation. Conclusions Down-regulation of BMP5 affects glycerolipid metabolism and fatty acid degradation, leading to mitochondrial dysfunction, reduced ATP production, and changes in cell function, and ultimately resulting in microtia. This research provides supporting evidence for an important role of BMP5 down-regulation in affecting mitochondrial metabolism in cells, and sheds new light on the mechanisms underlying the pathogenesis of microtia.
Collapse
Affiliation(s)
- Yin-Yi Qiu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hua-Song Zhang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, China
| | - Yuan Tang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fei-Yi Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen, University, Guangzhou, China
| | - Jia-Qi Pang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xue-Yuan Zhang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu-Shuang Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen, University, Guangzhou, China
| | - Hui-Ying Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen, University, Guangzhou, China
| | - Sui-Jun Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
71
|
Sarkar A, Saha S, Paul A, Maji A, Roy P, Maity TK. Understanding stem cells and its pivotal role in regenerative medicine. Life Sci 2021; 273:119270. [PMID: 33640402 DOI: 10.1016/j.lfs.2021.119270] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/06/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023]
Abstract
Stem cells (SCs) are clonogenic cells that develop into the specialized cells which later responsible for making up various types of tissue in the human body. SCs are not only the appropriate source of information for cell division, molecular and cellular processes, and tissue homeostasis but also one of the major putative biological aids to diagnose and cure various degenerative diseases. This study emphasises on various research outputs that occurred in the past two decades. This will give brief information on classification, differentiation, detection, and various isolation techniques of SCs. Here, the various signalling pathways which includes WNT, Sonic hedgehog, Notch, BMI1 and C-met pathways and how does it effect on the regeneration of various classes of SCs and factors that regulates the potency of the SCs are also been discussed. We also focused on the application of SCs in the area of regenerative medicine along with the cellular markers that are useful as salient diagnostic or curative tools or in both, by the process of reprogramming, which includes diabetes, cancer, cardiovascular disorders and neurological disorders. The biomarkers that are mentioned in various literatures and experiments include PDX1, FOXA2, HNF6, and NKX6-1 (for diabetes); CD33, CD24, CD133 (for cancer); c-Kit, SCA-1, Wilm's tumor 1 (for cardiovascular disorders); and OCT4, SOX2, c-MYC, EN1, DAT and VMAT2 (for neurological disorders). In this review, we come to know the advancements and scopes of potential SC-based therapies, its diverse applications in clinical fields that can be helpful in the near future.
Collapse
Affiliation(s)
- Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Sanjukta Saha
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Puspita Roy
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India.
| |
Collapse
|
72
|
Pan Q, Li Y, Li Y, Wang H, Kong L, Yang Z, Zhang X, Bai S, Zong Z, Chen G, Lin S, Li G. Local administration of allogeneic or autologous bone marrow-derived mesenchymal stromal cells enhances bone formation similarly in distraction osteogenesis. Cytotherapy 2021; 23:590-598. [PMID: 33546925 DOI: 10.1016/j.jcyt.2020.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/17/2020] [Accepted: 12/16/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND AIMS Distraction osteogenesis (DO) is a surgical technique to promote bone regeneration that requires a long time for bone healing. Bone marrow-derived mesenchymal stromal cells (MSCs) have been applied to accelerate bone formation in DO. Allogeneic MSCs are attractive, as they could be ready to use in clinics. Whether allogeneic MSCs would have an effect similar to autologous MSCs with regard to promoting bone formation in DO is still unknown. This study compares the effect of autologous MSCs versus allogeneic MSCs on bone formation in a rat DO model. METHODS Rat bone marrow-derived MSCs were isolated, characterized and expanded in vitro. Adult rats were subjected to right tibia transverse osteotomy. On the third day of distraction, each rat received one injection of phosphate-buffered saline (PBS), autologous MSCs or allogeneic MSCs at the distraction site. Tibiae were harvested after 28 days of consolidation for micro-computed tomography examination, mechanical test and histological analysis. RESULTS Results showed that treatment with both allogeneic and autologous MSCs promoted bone formation, with significantly higher bone mass, mechanical properties and mineral apposition rate as well as expression of angiogenic and bone formation markers at the regeneration sites compared with the PBS-treated group. No statistical difference in bone formation was found between the allogeneic and autologous MSC treatment groups. CONCLUSIONS This study indicates that allogeneic and autologous MSCs have a similar effect on promoting bone consolidation in DO. MSCs from an allogeneic source could be used off-the-shelf with DO to achieve early bone healing.
Collapse
Affiliation(s)
- Qi Pan
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China
| | - Ye Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China
| | - Yucong Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China
| | - Haixing Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China
| | - Lingchi Kong
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China
| | - Zhengmeng Yang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China
| | - Xiaoting Zhang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China
| | - Shanshan Bai
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China
| | - Zhixian Zong
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Guanghua Chen
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Sien Lin
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China; Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, California, USA.
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China; The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China; Department of Orthopaedics and Traumatology, Affiliated Baoan Hospital of Shenzhen, Southern Medical University, People's Hospital of Baoan District, Shenzhen, China..
| |
Collapse
|
73
|
Ma W, Liu C, Wang S, Xu H, Sun H, Fan X. Efficacy and safety of intra-articular injection of mesenchymal stem cells in the treatment of knee osteoarthritis: A systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e23343. [PMID: 33285713 PMCID: PMC7717742 DOI: 10.1097/md.0000000000023343] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To evaluate the effects and safety of intra-articular injection of mesenchymal stem cells on patients with knee osteoarthritis by a systematic review and meta-analysis. METHODS PubMed, EMBASE, and Cochrane Library were retrieved. An assessment of the risk of bias was done through the Cochrane Collaborative Bias Risk Tool, publication bias was assessed by plotting funnel plots and Egger tests. Pain and functional improvements in patients with knee osteoarthritis were determined by changes in VAS scores and WOMAC scores at baseline and follow-up endpoints. For the evaluation of MRI, the WORMS score and changes in cartilage volume were used. In addition, the number of adverse events in the intervention group and the control group were counted to explore the safety. RESULTS A total of 10 randomized controlled trials involving 335 patients were included. In the pooled analysis, compared with the control groups, the VAS scores of MSC groups decreased significantly (MD,-19.24; 95% CI: -26.31 to -12.18, P < .00001. All of the WOMAC scores also improved significantly: the total scores (SMD, - 0.66; 95% CI: - 1.09 to -0.23, P = .003), pain scores (SMD, - 0.46; 95% CI: - 0.75 to -0.17, P = .002), stiffness scores (SMD, -0.32; 95% CI: -0.64 to 0.00 P = 0.05), and functional scores (SMD, -0.36; 95% CI: -0.69 to -0.04, P = .03). Two studies with non-double-blind designs were the main source of heterogeneity. In terms of cartilage repair, there was no significant difference in the WORMS score, but there was a significant increase in cartilage volume in the MSC group (SMD, 0.69; 95% CI: 0.25 to 1.13, P = .002). The proportion of patients with adverse events in the MSCs treatment group was significantly higher than that in the control group (OR, 3.20; 95% CI: 1.50 to 6.83, P = .003). CONCLUSIONS Intra-articular injection of mesenchymal stem cells is effective and safety to relieve pain and improve motor function of patients with knee osteoarthritis in a short term which is different to conclusions of previous study.
Collapse
Affiliation(s)
- Wei Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine
| | - Cuimiao Liu
- Qingdao Huangdao District Changjiang Road Street Community Health Service Center, China
| | - Shilu Wang
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan
| | - Honghao Xu
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan
| | - Haichao Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine
| | - Xiao Fan
- Qingdao Municipal Hospital, 266011 Qingdao, Shandong Province
| |
Collapse
|
74
|
Zhang B, Gladyshev VN. How can aging be reversed? Exploring rejuvenation from a damage-based perspective. ADVANCED GENETICS (HOBOKEN, N.J.) 2020; 1:e10025. [PMID: 36619246 PMCID: PMC9744548 DOI: 10.1002/ggn2.10025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 01/11/2023]
Abstract
Advanced age is associated with accumulation of damage and other deleterious changes and a consequential systemic decline of function. This decline affects all organs and systems in an organism, leading to their inadaptability to the environment, and therefore is thought to be inevitable for humans and most animal species. However, in vitro and in vivo application of reprogramming strategies, which convert somatic cells to induced pluripotent stem cells, has demonstrated that the aged cells can be rejuvenated. Moreover, the data and theoretical considerations suggest that reversing the biological age of somatic cells (from old to young) and de-differentiating somatic cells into stem cells represent two distinct processes that take place during rejuvenation, and thus they may be differently targeted. We advance a stemness-function model to explain these data and discuss a possibility of rejuvenation from the perspective of damage accumulation. In turn, this suggests approaches to achieve rejuvenation of cells in vitro and in vivo.
Collapse
Affiliation(s)
- Bohan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
75
|
Bellu E, Garroni G, Cruciani S, Balzano F, Serra D, Satta R, Montesu MA, Fadda A, Mulas M, Sarais G, Bandiera P, Torreggiani E, Martini F, Tognon M, Ventura C, Beznoska J, Amler E, Maioli M. Smart Nanofibers with Natural Extracts Prevent Senescence Patterning in a Dynamic Cell Culture Model of Human Skin. Cells 2020; 9:E2530. [PMID: 33255167 PMCID: PMC7760051 DOI: 10.3390/cells9122530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Natural cosmetic products have recently re-emerged as a novel tool able to counteract skin aging and skin related damages. In addition, recently achieved progress in nanomedicine opens a novel approach yielding from combination of modern nanotechnology with traditional treatment for innovative pharmacotherapeutics. In the present study, we investigated the antiaging effect of a pretreatment with Myrtus communis natural extract combined with a polycaprolactone nanofibrous scaffold (NanoPCL-M) on skin cell populations exposed to UV. We set up a novel model of skin on a bioreactor mimicking a crosstalk between keratinocytes, stem cells and fibroblasts, as in skin. Beta-galactosidase assay, indicating the amount of senescent cells, and viability assay, revealed that fibroblasts and stem cells pretreated with NanoPCL-M and then exposed to UV are superimposable to control cells, untreated and unexposed to UV damage. On the other hand, cells only exposed to UV stress, without NanoPCL-M pretreatment, exhibited a significantly higher yield of senescent elements. Keratinocyte-based 3D structures appeared disjointed after UV-stress, as compared to NanoPCL-M pretreated samples. Gene expression analysis performed on different senescence associated genes, revealed the activation of a molecular program of rejuvenation in stem cells pretreated with NanoPCL-M and then exposed to UV. Altogether, our results highlight a future translational application of NanoPCL-M to prevent skin aging.
Collapse
Affiliation(s)
- Emanuela Bellu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (G.G.); (S.C.); (F.B.); (D.S.); (P.B.)
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (G.G.); (S.C.); (F.B.); (D.S.); (P.B.)
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (G.G.); (S.C.); (F.B.); (D.S.); (P.B.)
| | - Francesca Balzano
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (G.G.); (S.C.); (F.B.); (D.S.); (P.B.)
| | - Diletta Serra
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (G.G.); (S.C.); (F.B.); (D.S.); (P.B.)
| | - Rosanna Satta
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (R.S.); (M.A.M.)
| | - Maria Antonia Montesu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (R.S.); (M.A.M.)
| | - Angela Fadda
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), Traversa la Crucca 3, 07100 Sassari, Italy;
| | - Maurizio Mulas
- Department of Agriculture, University of Sassari, Via De Nicola 9, 07100 Sassari, Italy;
| | - Giorgia Sarais
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy;
| | - Pasquale Bandiera
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (G.G.); (S.C.); (F.B.); (D.S.); (P.B.)
| | - Elena Torreggiani
- Department Medical Sciences, Section Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.T.); (F.M.); (M.T.)
| | - Fernanda Martini
- Department Medical Sciences, Section Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.T.); (F.M.); (M.T.)
| | - Mauro Tognon
- Department Medical Sciences, Section Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.T.); (F.M.); (M.T.)
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering-Eldor Lab, National Institute of Biostructures and Biosystems, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy;
| | - Jiří Beznoska
- Institute of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic;
| | - Evzen Amler
- Institute of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic;
- UCEEB, Czech Technical University, Trinecka 1024, 273 43 Bustehrad, Czech Republic
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (G.G.); (S.C.); (F.B.); (D.S.); (P.B.)
- Center for Developmental Biology and Reprogramming-CEDEBIOR, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Italy
| |
Collapse
|
76
|
Abstract
Regenerative therapies aim to develop novel treatments to restore tissue function. Several strategies have been investigated including the use of biomedical implants as three-dimensional artificial matrices to fill the defect side, to replace damaged tissues or for drug delivery. Bioactive implants are used to provide growth environments for tissue formation for a variety of applications including nerve, lung, skin and orthopaedic tissues. Implants can either be biodegradable or non-degradable, should be nontoxic and biocompatible, and should not trigger an immunological response. Implants can be designed to provide suitable surface area-to-volume ratios, ranges of porosities, pore interconnectivities and adequate mechanical strengths. Due to their broad range of properties, numerous biomaterials have been used for implant manufacture. To enhance an implant’s bioactivity, materials can be functionalised in several ways, including surface modification using proteins, incorporation of bioactive drugs, growth factors and/or cells. These strategies have been employed to create local bioactive microenvironments to direct cellular responses and to promote tissue regeneration and controlled drug release. This chapter provides an overview of current bioactive biomedical implants, their fabrication and applications, as well as implant materials used in drug delivery and tissue regeneration. Additionally, cell- and drug-based bioactivity, manufacturing considerations and future trends will be discussed.
Collapse
|
77
|
Sharma R, Padwad Y. Nutraceuticals-Based Immunotherapeutic Concepts and Opportunities for the Mitigation of Cellular Senescence and Aging: A Narrative Review. Ageing Res Rev 2020; 63:101141. [PMID: 32810647 DOI: 10.1016/j.arr.2020.101141] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
The role of increased tissue senescent cell (SC) burden in driving the process of ageing and associated disorders is rapidly gaining attention. Amongst various plausible factors, impairment in immune functions is emerging as a critical regulator of known age-associated accumulation of SC. Immune cells dysfunctions with age are multi-faceted and are uniquely attributed to the independent processes of immunosenescence and cellular senescence which may collectively impair immune system mediated clearance of SC. Moreover, being functionally and phenotypically heterogenic, immune cells are also liable to be affected by senescence microenvironment in other tissues. Therefore, strategies aimed at improving immunosenescence and cellular senescence in immune cells can have pleiotropic effects on ageing physiology including the accumulation of SC. In this regard, nutraceutical's immunomodulatory attributes are well documented which may have implications in developing nutrition-oriented immunotherapeutic approaches against SC. In particular, the three diverse sources of bioactive ingredients, viz., phytochemicals, probiotic bacteria and omega-3-fatty acids have shown promising anti-immunosenescence and anti-cellular senescence potential in immune cells influencing aging and immunity in ways beyond modest stimulation of immune responses. The present narrative review describes the preventive and therapeutic attributes of phytochemicals such as polyphenols, probiotic microbes and omega-3-fatty acids in influencing the emerging nexus of immunosenescence, cellular senescence and SC during aging. Outstanding questions and nutraceuticals-based pro-longevity and niche research areas have been deliberated. Further research using integrative approaches is recommended for developing nutrition-based holistic immunotherapeutic strategies for 'healthy ageing'.
Collapse
|
78
|
Komrakova M, Blaschke M, Ponce ML, Klüver A, Köpp R, Hüfner M, Schieker M, Miosge N, Siggelkow H. Decreased Expression of the Human Urea Transporter SLC14A1 in Bone is Induced by Cytokines and Stimulates Adipogenesis of Mesenchymal Progenitor Cells. Exp Clin Endocrinol Diabetes 2020; 128:582-595. [PMID: 31958845 DOI: 10.1055/a-1084-3888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The human urea transporter SLC14A1 (HUT11/UT-B) has been suggested as a marker for the adipogenic differentiation of bone cells with a relevance for bone diseases. We investigated the function of SLC14A1 in different cells models from bone environment. SLC14A1 expression and cytokine production was investigated in bone cells obtained from patients with osteoporosis. Gene and protein expression of SLC14A1 was studied during adipogenic or osteogenic differentiation of human mesenchymal progenitor cells (hMSCs) and of the single-cell-derived hMSC line (SCP-1), as well as in osteoclasts and chondrocytes. Localization was determined by histochemical methods and functionality by urea transport experiments. Expression of SLC14A1 mRNA was lower in cells from patients with osteoporosis that produced high levels of cytokines. Accordingly, when adding a combination of cytokines to SCP-1 SLC14A1 mRNA expression decreased. SLC14A1 mRNA expression decreased after both osteogenic and more pronounced adipogenic stimulation of hMSCs and SCP-1 cells. The highest SLC14A1 expression was determined in undifferentiated cells, lowest in chondrocytes and osteoclasts. Downregulation of SLC14A1 by siRNA resulted in an increased expression of interleukin-6 and interleukin-1 beta as well as adipogenic markers. Urea influx through SLC14A1 increased expression of osteogenic markers, adipogenic markers were suppressed. SLC14A1 protein was localized in the cell membrane and the cytoplasm. Summarizing, the SLC14A1 urea transporter affects early differentiation of hMSCs by diminishing osteogenesis or by favoring adipogenesis, depending on its expression level. Therefore, SLC14A1 is not unequivocally an adipogenic marker in bone. Our findings suggest an involvement of SLC14A1 in bone metabolism and inflammatory processes and disease-dependent influences on its expression.
Collapse
Affiliation(s)
- Marina Komrakova
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Martina Blaschke
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
- Endokrinologikum Göttingen, Göttingen, Germany
| | - Maria Laura Ponce
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Anne Klüver
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Regine Köpp
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Matthias Schieker
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximillians-University (LMU), Munich, Germany
| | - Nicolai Miosge
- Bone tissue regeneration work group, University Medical Center Göttingen, Göttingen, Germany
| | - Heide Siggelkow
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
- Endokrinologikum Göttingen, Göttingen, Germany
| |
Collapse
|
79
|
Hellwinkel JE, Miclau T, Provencher MT, Bahney CS, Working ZM. The Life of a Fracture: Biologic Progression, Healing Gone Awry, and Evaluation of Union. JBJS Rev 2020; 8:e1900221. [PMID: 32796195 PMCID: PMC11147169 DOI: 10.2106/jbjs.rvw.19.00221] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
New knowledge about the molecular biology of fracture-healing provides opportunities for intervention and reduction of risk for specific phases that are affected by disease and medications. Modifiable and nonmodifiable risk factors can prolong healing, and the informed clinician should optimize each patient to provide the best chance for union. Techniques to monitor progression of fracture-healing have not changed substantially over time; new objective modalities are needed.
Collapse
Affiliation(s)
- Justin E Hellwinkel
- Department of Orthopedic Surgery, New York Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY
- Center for Regenerative Sports Medicine, The Steadman Clinic and Steadman Philippon Research Institute, Vail, Colorado
| | - Theodore Miclau
- Orthopaedic Trauma Institute, University of California, San Francisco (UCSF) and Zuckerberg San Francisco General Hospital (ZSFG), San Francisco, California
| | - Matthew T Provencher
- Center for Regenerative Sports Medicine, The Steadman Clinic and Steadman Philippon Research Institute, Vail, Colorado
| | - Chelsea S Bahney
- Center for Regenerative Sports Medicine, The Steadman Clinic and Steadman Philippon Research Institute, Vail, Colorado
- Orthopaedic Trauma Institute, University of California, San Francisco (UCSF) and Zuckerberg San Francisco General Hospital (ZSFG), San Francisco, California
| | - Zachary M Working
- Orthopaedic Trauma Institute, University of California, San Francisco (UCSF) and Zuckerberg San Francisco General Hospital (ZSFG), San Francisco, California
- Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
80
|
Amartuvshin O, Lin C, Hsu S, Kao S, Chen A, Tang W, Chou H, Chang D, Hsu Y, Hsiao B, Rastegari E, Lin K, Wang Y, Yao C, Chen G, Chen B, Hsu H. Aging shifts mitochondrial dynamics toward fission to promote germline stem cell loss. Aging Cell 2020; 19:e13191. [PMID: 32666649 PMCID: PMC7431834 DOI: 10.1111/acel.13191] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/20/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Changes in mitochondrial dynamics (fusion and fission) are known to occur during stem cell differentiation; however, the role of this phenomenon in tissue aging remains unclear. Here, we report that mitochondrial dynamics are shifted toward fission during aging of Drosophila ovarian germline stem cells (GSCs), and this shift contributes to aging-related GSC loss. We found that as GSCs age, mitochondrial fragmentation and expression of the mitochondrial fission regulator, Dynamin-related protein (Drp1), are both increased, while mitochondrial membrane potential is reduced. Moreover, preventing mitochondrial fusion in GSCs results in highly fragmented depolarized mitochondria, decreased BMP stemness signaling, impaired fatty acid metabolism, and GSC loss. Conversely, forcing mitochondrial elongation promotes GSC attachment to the niche. Importantly, maintenance of aging GSCs can be enhanced by suppressing Drp1 expression to prevent mitochondrial fission or treating with rapamycin, which is known to promote autophagy via TOR inhibition. Overall, our results show that mitochondrial dynamics are altered during physiological aging, affecting stem cell homeostasis via coordinated changes in stemness signaling, niche contact, and cellular metabolism. Such effects may also be highly relevant to other stem cell types and aging-induced tissue degeneration.
Collapse
Affiliation(s)
- Oyundari Amartuvshin
- Molecular and Cell BiologyTaiwan International Graduate ProgramAcademia SinicaTaipeiTaiwan
- Graduate Institute of Life ScienceNational Defense Medical CenterTaipeiTaiwan
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| | - Chi‐Hung Lin
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| | - Shao‐Chun Hsu
- Imaging Core Facility at the Institute of Cellular and Organismic BiologyAcademia SinicaTaipeiTaiwan
| | - Shih‐Han Kao
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
- Present address:
Institute of ChemistryAcademia SinicaTaipeiTaiwan
| | - Alvin Chen
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| | - Wei‐Chun Tang
- Research Center for Applied ScienceAcademia SinicaTaipeiTaiwan
| | - Han‐Lin Chou
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| | - Dong‐Lin Chang
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
- The Affiliated Senior High School of National Taiwan Normal UniversityTaipeiTaiwan
| | - Yen‐Yang Hsu
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
- The Affiliated Senior High School of National Taiwan Normal UniversityTaipeiTaiwan
| | - Bai‐Shiou Hsiao
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
- The Affiliated Senior High School of National Taiwan Normal UniversityTaipeiTaiwan
| | | | - Kun‐Yang Lin
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| | - Yu‐Ting Wang
- Molecular and Cell BiologyTaiwan International Graduate ProgramAcademia SinicaTaipeiTaiwan
- Graduate Institute of Life ScienceNational Defense Medical CenterTaipeiTaiwan
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| | - Chi‐Kuang Yao
- Institute of Biological ChemistryAcademia SinicaTaipeiTaiwan
| | - Guang‐Chao Chen
- Institute of Biological ChemistryAcademia SinicaTaipeiTaiwan
| | - Bi‐Chang Chen
- Research Center for Applied ScienceAcademia SinicaTaipeiTaiwan
| | - Hwei‐Jan Hsu
- Molecular and Cell BiologyTaiwan International Graduate ProgramAcademia SinicaTaipeiTaiwan
- Graduate Institute of Life ScienceNational Defense Medical CenterTaipeiTaiwan
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| |
Collapse
|
81
|
Russell-Goldman E, Murphy GF. The Pathobiology of Skin Aging: New Insights into an Old Dilemma. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1356-1369. [PMID: 32246919 PMCID: PMC7481755 DOI: 10.1016/j.ajpath.2020.03.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/19/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023]
Abstract
Long considered both physiologic and inevitable, skin aging is a degenerative phenomenon whereby both intrinsic and environmental factors conspire to produce an authentic disease. The consequences of this disorder are many and varied, ranging from atrophy and fragility to defective repair to deficient immunity and vulnerability to certain infections. The pathobiologic basis for skin aging remains poorly understood. At a cellular level, stem cell dysfunction and attrition appear to be key events, and both genetic and epigenetic factors are involved in a complex interplay that over time results in deterioration of our main protective interface with the external environment. Past and current understanding of the cellular and molecular intricacies of skin aging provide a foundation for future approaches designed to thwart the aging phenotype. Herein, the authors provide a review of current insights into skin aging, including the mechanisms of skin aging, the role of stem cells in skin aging and the implications of skin aging for the microbiome and for the development of cancer. Conquest of the oft overlooked disease of skin aging should have broad implications that transcend the integument and inform novel approaches to retarding aging and age-related dysfunction in those internal organs that youthful skin was designed to envelop and safeguard.
Collapse
Affiliation(s)
- Eleanor Russell-Goldman
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - George F Murphy
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
82
|
Fellous T, De Maio F, Kalkan H, Carannante B, Boccella S, Petrosino S, Maione S, Di Marzo V, Iannotti FA. Phytocannabinoids promote viability and functional adipogenesis of bone marrow-derived mesenchymal stem cells through different molecular targets. Biochem Pharmacol 2020; 175:113859. [DOI: 10.1016/j.bcp.2020.113859] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
|
83
|
Ghamari SH, Abbasi-Kangevari M, Tayebi T, Bahrami S, Niknejad H. The Bottlenecks in Translating Placenta-Derived Amniotic Epithelial and Mesenchymal Stromal Cells Into the Clinic: Current Discrepancies in Marker Reports. Front Bioeng Biotechnol 2020; 8:180. [PMID: 32232037 PMCID: PMC7083014 DOI: 10.3389/fbioe.2020.00180] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/24/2020] [Indexed: 12/23/2022] Open
Abstract
Placenta-derived amniotic cells have prominent features for application in regenerative medicine. However, there are still discrepancies in the characterization of human amniotic epithelial and mesenchymal stromal cells. It seems crucial that the characterization of human amniotic membrane cells be investigated to determine whether there are currently discrepancies in their characterization reports. In addition, possible causes for the witnessed discrepancies need to be addressed toward paving the way for further clinical application and safer practices. The objective of this review is to investigate the marker characterization as well as the potential causes of the discrepancies in the previous reports on placenta-derived amniotic epithelial and mesenchymal stromal cells. The current discrepancies could be potentially due to reasons including passage number and epithelial to mesenchymal transition (EMT), cell heterogeneity, isolation protocols and cross-contamination, the region of cell isolation on placental disk, measuring methods, and gestational age.
Collapse
Affiliation(s)
- Seyyed-Hadi Ghamari
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Abbasi-Kangevari
- Student Research Committee, Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Tayebi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
84
|
Vélez JL, Morocho P, Montalvo M, Aguayo S, Vélez PA, Velarde G, Jara F, Paz y Miño C. The micro RNAs in human pathology: clinical utility and translational approach. BIONATURA 2020. [DOI: 10.21931/rb/2020.05.01.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In human clinics, pathologies as diverse as cancer, sepsis, autoimmune diseases, among others; of different etiology and a different pathophysiological behavior, converge in a failure of gene repression that allows the phenotypic expression of the disease; The possibility of having a biological marker that shows these events to the clinician is desirable since it would allow early diagnostic and therapeutic strategies. Micro RNAs are small and non-coding RNAs that fulfill that “genetic silencing” role, however, the step from basic research to clinical applicability, that is, their translational utility is still little diffused in specialties other than oncology. The objective of this review is to explain in a more precise way.
Collapse
|
85
|
Le Thi Bich P, Nguyen Thi H, Dang Ngo Chau H, Phan Van T, Do Q, Dong Khac H, Le Van D, Nguyen Huy L, Mai Cong K, Ta Ba T, Do Minh T, Vu Bich N, Truong Chau N, Van Pham P. Allogeneic umbilical cord-derived mesenchymal stem cell transplantation for treating chronic obstructive pulmonary disease: a pilot clinical study. Stem Cell Res Ther 2020; 11:60. [PMID: 32054512 PMCID: PMC7020576 DOI: 10.1186/s13287-020-1583-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/02/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. COPD results from chronic inflammation of the lungs. Current treatments, including physical and chemical therapies, provide limited results. Stem cells, particularly mesenchymal stem cells (MSCs), are used to treat COPD. Here, we evaluated the safety and efficacy of umbilical cord-derived (UC)-MSCs for treating COPD. Methods Twenty patients were enrolled, 9 at stage C and 11 at stage D per the Global Initiative for Obstructive Lung Disease (GOLD) classification. Patients were infused with 106 cells/kg of expanded allogeneic UC-MSCs. All patients were followed for 6 months after the first infusion. The treatment end-point included a comprehensive safety evaluation, pulmonary function testing (PFT), and quality-of-life indicators including questionnaires, the 6-min walk test (6MWT), and systemic inflammation assessments. All patients completed the full infusion and 6-month follow-up. Results No infusion-related toxicities, deaths, or severe adverse events occurred that were deemed related to UC-MSC administration. The UC-MSC-transplanted patients showed a significantly reduced Modified Medical Research Council score, COPD assessment test, and number of exacerbations. However, the forced expiratory volume in 1 s, C-reactive protein, and 6MWT values were nonsignificantly reduced after treatment (1, 3, and 6 months) compared with those before the treatment. Conclusion Systemic UC-MSC administration appears to be safe in patients with moderate-to-severe COPD, can significantly improve their quality of life, and provides a basis for subsequent cell therapy investigations. Trial registration ISRCTN, ISRCTN70443938. Registered 06 July 2019
Collapse
Affiliation(s)
| | - Ha Nguyen Thi
- Van Hanh General Hospital, Ho Chi Minh City, Viet Nam
| | | | - Tien Phan Van
- Van Hanh General Hospital, Ho Chi Minh City, Viet Nam
| | - Quyet Do
- Vietnam Millitay Academy 103, Ha Noi, Viet Nam
| | | | - Dong Le Van
- Vietnam Millitay Academy 103, Ha Noi, Viet Nam
| | | | | | - Thang Ta Ba
- Vietnam Millitay Academy 103, Ha Noi, Viet Nam
| | | | - Ngoc Vu Bich
- Stem Cell Institute, VNUHCM University of Science, Ho Chi Minh City, Viet Nam
| | - Nhat Truong Chau
- Stem Cell Institute, VNUHCM University of Science, Ho Chi Minh City, Viet Nam
| | - Phuc Van Pham
- Stem Cell Institute, VNUHCM University of Science, Ho Chi Minh City, Viet Nam. .,Laboratory of Stem Cell Research and Application, VNUHCM University of Science, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
86
|
Costa C, Briguglio G, Catanoso R, Giambò F, Polito I, Teodoro M, Fenga C. New perspectives on cytokine pathways modulation by pesticide exposure. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
87
|
Olmedo M, Mata‐Cabana A, Jesús Rodríguez‐Palero M, García‐Sánchez S, Fernández‐Yañez A, Merrow M, Artal‐Sanz M. Prolonged quiescence delays somatic stem cell-like divisions in Caenorhabditis elegans and is controlled by insulin signaling. Aging Cell 2020; 19:e13085. [PMID: 31852031 PMCID: PMC6996950 DOI: 10.1111/acel.13085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/30/2019] [Accepted: 11/13/2019] [Indexed: 01/05/2023] Open
Abstract
Cells can enter quiescence in adverse conditions and resume proliferation when the environment becomes favorable. Prolonged quiescence comes with a cost, reducing the subsequent speed and potential to return to proliferation. Here, we show that a similar process happens during Caenorhabditis elegans development, providing an in vivo model to study proliferative capacity after quiescence. Hatching under starvation provokes the arrest of blast cell divisions that normally take place during the first larval stage (L1). We have used a novel method to precisely quantify each stage of postembryonic development to analyze the consequences of prolonged L1 quiescence. We report that prolonged L1 quiescence delays the reactivation of blast cell divisions in C. elegans, leading to a delay in the initiation of postembryonic development. The transcription factor DAF-16/FOXO is necessary for rapid recovery after extended arrest, and this effect is independent from its role as a suppressor of cell proliferation. Instead, the activation of DAF-16 by decreased insulin signaling reduces the rate of L1 aging, increasing proliferative potential. We also show that yolk provisioning affects the proliferative potential after L1 arrest modulating the rate of L1 aging, providing a possible mechanistic link between insulin signaling and the maintenance of proliferative potential. Furthermore, variable yolk provisioning in embryos is one of the sources of interindividual variability in recovery after quiescence of genetically identical animals. Our results support the relevance of L1 arrest as an in vivo model to study stem cell-like aging and the mechanisms for maintenance of proliferation potential after quiescence.
Collapse
Affiliation(s)
- María Olmedo
- Departamento de GenéticaFacultad de BiologíaUniversidad de SevillaSevilleSpain
| | | | - María Jesús Rodríguez‐Palero
- Andalusian Center for Developmental BiologyConsejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de OlavideSevilleSpain
- Department of Molecular Biology and Biochemical EngineeringUniversidad Pablo de OlavideSevilleSpain
| | | | - Antonio Fernández‐Yañez
- Andalusian Center for Developmental BiologyConsejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de OlavideSevilleSpain
- Department of Molecular Biology and Biochemical EngineeringUniversidad Pablo de OlavideSevilleSpain
| | - Martha Merrow
- Institute of Medical PsychologyFaculty of MedicineLMU MunichMunichGermany
| | - Marta Artal‐Sanz
- Andalusian Center for Developmental BiologyConsejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de OlavideSevilleSpain
- Department of Molecular Biology and Biochemical EngineeringUniversidad Pablo de OlavideSevilleSpain
| |
Collapse
|
88
|
Ullah M, Ng NN, Concepcion W, Thakor AS. Emerging role of stem cell-derived extracellular microRNAs in age-associated human diseases and in different therapies of longevity. Ageing Res Rev 2020; 57:100979. [PMID: 31704472 DOI: 10.1016/j.arr.2019.100979] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022]
Abstract
Organismal aging involves the progressive decline in organ function and increased susceptibility to age-associated diseases. This has been associated with the aging of stem cell populations within the body that decreases the capacity of stem cells to self-renew, differentiate, and regenerate damaged tissues and organs. This review aims to explore how aging is associated with the dysregulation of stem cell-derived extracellular vesicles (SCEVs) and their corresponding miRNA cargo (SCEV-miRNAs), which are short non-coding RNAs involved in post-transcriptional regulation of target genes. Recent evidence has suggested that in aging stem cells, SCEV-miRNAs may play a vital role regulating various processes that contribute to aging: cellular senescence, stem cell exhaustion, telomere length, and circadian rhythm. Hence, further clarifying the age-dependent molecular mechanisms through which SCEV-miRNAs exert their downstream effects may inform a greater understanding of the biology of aging, elucidate their role in stem cell function, and identify important targets for future regenerative therapies. Additionally, current studies evaluating therapeutic role of SCEVs and SCEV-miRNAs in treating several age-associated diseases are also discussed.
Collapse
|
89
|
Fendrik AJ, Romanelli L, Rotondo E. Stochastic cell renewal process and lengthening of cell cycle. Phys Biol 2019; 17:016004. [PMID: 31722323 DOI: 10.1088/1478-3975/ab576c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evolution of the stem cell population responsible for homeostatic cell renewal processes is analyzed. We assume that this regime is the product of a delicate balance between symmetric divisions that, after each cell cycle, originates a new stem cell or its disappearance (through cell differentiation). This dynamics leads to a monoclonal population, that is for an initial homogeneous set of stem cells, fixation of each clone is equiprobable. In this work we show that if there is an altered stem cell with a longer cell cycle than the rest, the fixation of this altered clone is more likely. We also study the consequeces of the appearance of successive alterations with these characteristics and their fixations. This effect is purely due to inherent characteristics of the cell renewal dynamics and as time goes by it leads to a quiescence state for stem cells owing to the recurrent fixation of such altered cells. Therefore it would contribute to the aging process.
Collapse
Affiliation(s)
- A J Fendrik
- Instituto de Ciencias, Universidad Nacional de General Sarmiento-J.M.Gutierrez 1150, (1613) Los Polvorines, Buenos Aires, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas- Buenos Aires, Argentina
| | | | | |
Collapse
|
90
|
Hodgson R, Kennedy BK, Masliah E, Scearce-Levie K, Tate B, Venkateswaran A, Braithwaite SP. Aging: therapeutics for a healthy future. Neurosci Biobehav Rev 2019; 108:453-458. [PMID: 31783058 DOI: 10.1016/j.neubiorev.2019.11.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 09/22/2019] [Accepted: 11/25/2019] [Indexed: 01/29/2023]
Abstract
Increased healthcare and pharmaceutical understanding has led to the eradication of many childhood, infectious and preventable diseases; however, we are now experiencing the impact of aging disorders as the lifespan increases. These disorders have already become a major burden on society and threaten to become a defining challenge of our generation. Indications such as Alzheimer's disease gain headlines and have focused the thinking of many towards dementia and cognitive decline in aging. Indications related to neurological function and related behaviors are thus an extremely important starting point in the consideration of therapeutics.However, the reality is that pathological aging covers a spectrum of significant neurological and peripheral indications. Development of therapeutics to treat aging and age-related disorders is therefore a huge need, but represents a largely unexplored path. Fundamental scientific questions need to be considered as we embark towards a goal of improving health in old age, including how we 1) define aging as a therapeutic target, 2) model aging preclinically and 3) effectively translate from preclinical models to man. Furthermore, the challenges associated with identifying novel therapeutics in a financial, regulatory and clinical sense need to be contemplated carefully to ensure we address the unmet need in our increasingly elderly population. The complexity of the challenge requires different perspectives, cross-functional partnerships and diverse concepts. We seek to raise issues to guide the field, considering the current state of thinking to aid in identifying roadblocks and important challenges early. The need for therapeutics that address aging and age-related disorders is acute, but the promise of effective treatments provides huge opportunities that, as a community, we all seek to enable effectively as soon as possible.
Collapse
Affiliation(s)
- Robert Hodgson
- Charles River Laboratories, Wilmington, MA, United States; CNS Biology, Takeda, San Diego, CA, United States
| | - Brian K Kennedy
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Buck Institute for Research on Aging, Novato, CA, United States
| | | | | | | | | | | |
Collapse
|
91
|
Corrigan MA, Coyle S, Eichholz KF, Riffault M, Lenehan B, Hoey DA. Aged Osteoporotic Bone Marrow Stromal Cells Demonstrate Defective Recruitment, Mechanosensitivity, and Matrix Deposition. Cells Tissues Organs 2019; 207:83-96. [PMID: 31655814 DOI: 10.1159/000503444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/18/2019] [Indexed: 11/19/2022] Open
Abstract
Bone formation requires the replenishment of the osteoblast from a progenitor or stem cell population, which must be recruited, expanded, and differentiated to ensure continued anabolism. How this occurs and whether it is altered in the osteoporotic environment is poorly understood. Furthermore, given that emerging treatments for osteoporosis are targeting this progenitor population, it is critical to determine the regenerative capacity of this cell type in the setting of osteoporosis. Human bone marrow stromal cells (hMSCs) from a cohort of aged osteoporotic patients were compared to MSCs isolated from healthy donors in terms of the ability to undergo recruitment and proliferation, and also respond to both the biophysical and biochemical cues that drive osteogenic matrix deposition. hMSCs isolated from healthy donors demonstrate good recruitment, mechanosensitivity, proliferation, and differentiation capacity. Contrastingly, hMSCs isolated from aged osteoporotic patients had significantly diminished regenerative potential. Interestingly, we demonstrated that osteoporotic hMSCs no longer responded to chemokine-directing recruitment and became desensitised to mechanical stimulation. The osteoporotic MSCs had a reduced proliferative potential and, importantly, they demonstrated an attenuated differentiation capability with reduced mineral and lipid formation. Moreover, during osteogenesis, despite minimal differences in the quantity of deposited collagen, the distribution of collagen was dramatically altered in osteoporosis, suggesting a potential defect in matrix quality. Taken together, this study has demonstrated that hMSCs isolated from aged osteoporotic patients demonstrate defective cell behaviour on multiple fronts, resulting in a significantly reduced regenerative potential, which must be considered during the development of new anabolic therapies that target this cell population.
Collapse
Affiliation(s)
- Michele A Corrigan
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Siobhan Coyle
- Department of Trauma and Orthopaedics, University Hospital Limerick, Limerick, Ireland.,Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - Kian F Eichholz
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Mathieu Riffault
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Brian Lenehan
- Department of Trauma and Orthopaedics, University Hospital Limerick, Limerick, Ireland.,Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - David A Hoey
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland, .,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland, .,Advanced Materials and Bioengineering Research Centre, Trinity College Dublin & RCSI, Dublin, Ireland,
| |
Collapse
|
92
|
Schwarze M, Schiltenwolf M. Osteoporosis in the Context of Medial Expert Evidence. ZEITSCHRIFT FUR ORTHOPADIE UND UNFALLCHIRURGIE 2019; 158:517-523. [PMID: 31634955 DOI: 10.1055/a-0969-8743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Due to its high prevalence und sometimes serious medical consequences, osteoporosis is of highest socio-economic importance. Medical experts are confronted with it in a wide variety of fields of law. In order to be able to correctly classify the disease in the respective legal framework, current knowledge about it is required. Important classifications as well as scientifically determined findings on fractures and fracture healing are in the foreground. This knowledge can be used to answer questions concerning prevention, reduced earning capacity, incapacity for work, context assessments or restrictions according to the social compensation law or the severely disabled law.
Collapse
Affiliation(s)
- Martin Schwarze
- Zentrum für Orthopädie, Unfallchirurgie und Paraplegiologie, Universitätsklinikum Heidelberg
| | - Marcus Schiltenwolf
- Zentrum für Orthopädie, Unfallchirurgie und Paraplegiologie, Universitätsklinikum Heidelberg
| |
Collapse
|
93
|
Zhang Y, Xu J, Liu S, Lim M, Zhao S, Cui K, Zhang K, Wang L, Ji Q, Han Z, Kong D, Li Z, Liu N. Embryonic stem cell-derived extracellular vesicles enhance the therapeutic effect of mesenchymal stem cells. Am J Cancer Res 2019; 9:6976-6990. [PMID: 31660081 PMCID: PMC6815953 DOI: 10.7150/thno.35305] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/29/2019] [Indexed: 01/04/2023] Open
Abstract
Background: Embryonic stem cells (ES) have a great potential for cell-based therapies in a regenerative medicine. However, the ethical and safety issues limit its clinical application. ES-derived extracellular vesicles (ES-EVs) have been reported suppress cellular senescence. Mesenchymal stem cells (MSCs) are widely used for clinical cell therapy. In this study, we investigated the beneficial effects of ES-EVs on aging MSCs to further enhancing their therapeutic effects. Methods: In vitro, we explored the rejuvenating effects of ES-EVs on senescent MSCs by senescence-associated β-gal (SA-β-gal) staining, immunostaining, and DNA damage foci analysis. The therapeutic effect of senescent MSC pre-treated with ES-EVs was also evaluated by using mouse cutaneous wound model. Results: We found that ES-EVs significantly rejuvenated the senescent MSCs in vitro and improve the therapeutic effects of MSCs in a mouse cutaneous wound model. In addition, we also identified that the IGF1/PI3K/AKT pathway mediated the antisenescence effects of ES-EVs on MSCs. Conclusions: Our results suggested that ES cells derived-extracellular vesicles possess the antisenescence properties, which significantly rejuvenate the senescent MSCs and enhance the therapeutic effects of MSCs. This strategy might emerge as a novel therapeutic strategy for MSCs clinical application.
Collapse
|
94
|
Gamage S, Peddibhotla S, Reddy PH, Dhurandhar NV, Hegde V. Improvement in Glycemic Control in Mice of Different Age Groups. Exp Clin Endocrinol Diabetes 2019; 129:519-527. [PMID: 31340394 DOI: 10.1055/a-0961-7804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
AIMS AND METHODS The declining ability to control blood glucose with advancement of age is an important health risk factor and may lead to insulin resistance, type-2-diabetes and Alzheimer's disease. Adenovirus 36(Ad36) improves glycemic control independent of insulin signaling(insulin sparing effect) as evidenced by cell, animal and observational human studies. This property of Ad36 may be useful in correcting aging-related glucose intolerance and related health conditions. Therefore, we determined the effect of Ad36 on glycemic control in older mice, to identify the age group that best responds to Ad36. Six, 12 or 20-month old C57Bl/6 mice on chow diet were each divided into weight-matched groups(mock-infected or Ad36-infected). Body weight was recorded weekly post infection (p.i.) and fasting glucose measured(week 0, 4, 8 and 20 p.i.). Blood glucose and serum insulin were measured during glucose tolerance test(week 0 and 16 p.i.). At week 20 p.i., animals were sacrificed, blood and tissues collected. RESULTS Mice from all age groups showed improvement in glucose clearance post Ad36 infection, but a more profound effect was observed in 6-month old mice compared with mock-infected mice. Under fed conditions though there was no difference in blood glucose at 20 wk p.i., interestingly, Ad36 reduced serum insulin in age groups old mice, compared with control mice. CONCLUSIONS These findings suggest Ad36 infected animals improve glycemic control and clear post-prandial gluco00000se increase without increasing insulin secretion in an insulin sparing manner. These beneficial effects provide strong evidence for developing Ad36-based approaches as a novel tool to attenuate age associated glucose intolerance.
Collapse
Affiliation(s)
- Suhadinie Gamage
- Department of Nutritional Sciences, Obesity and Metabolic Health Laboratory, Texas Tech University, Lubbock, TX, USA
| | - Swetha Peddibhotla
- Department of Nutritional Sciences, Obesity and Metabolic Health Laboratory, Texas Tech University, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Internal Medicine, Cell Biology and Biochemistry, Neuroscience/Pharmacology and Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Nikhil V Dhurandhar
- Department of Nutritional Sciences, Obesity and Metabolic Health Laboratory, Texas Tech University, Lubbock, TX, USA
| | - Vijay Hegde
- Department of Nutritional Sciences, Obesity and Metabolic Health Laboratory, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
95
|
Constantinou J, Sullivan J, Mirbahai L. Ageing differently: Sex-dependent ageing rates in Daphnia magna. Exp Gerontol 2019; 121:33-45. [PMID: 30922945 DOI: 10.1016/j.exger.2019.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/08/2019] [Accepted: 03/23/2019] [Indexed: 01/08/2023]
Abstract
Ageing is defined as the gradual decline of normal physiological functions in a time-dependent manner. Significant progress has been made in characterising the regulatory processes involved in the mechanisms of ageing which would have been hindered without the use of model organisms. Use of alternative model organisms greatly diversifies our understanding of different factors underpinning the ageing process and the potential translation for human application. Unique characteristics make Daphnia an attractive model organism for research into mechanisms underlying ageing, such as transparent body, short generation time, well-characterised methylome, regenerative capabilities and available naturally occurring ecotypes. Most interestingly, genetically identical female and male Daphnia have evolved different average lifespans, providing a unique opportunity for understanding the underlying mechanisms of ageing and regulation of lifespan. Investigating sex differences in longevity could provide insight into principal mechanisms of ageing and lifespan regulation. In this study we provide evidence in support of establishing genetically identical female and male Daphnia as unique and valuable resources for research into mechanisms of ageing and begin to delineate the mechanisms involved in sex differences in lifespan. We identify significant differences between genders in physiological markers such as lifespan, growth rate, heart rate and swimming speed in addition to molecular markers such as lipid peroxidation product accumulation, thiol content decline and age-dependent decline in DNA damage repair efficiency. Overall, our data indicates that investigating sex differences in longevity in the clonal organism Daphnia under controlled laboratory conditions can provide insight into principal mechanisms of ageing and lifespan regulation.
Collapse
Affiliation(s)
- Julia Constantinou
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Jack Sullivan
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham B15 2WB, UK
| | - Leda Mirbahai
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
96
|
Radhakrishnan S, Trentz OA, Martin CA, Reddy MS, Rela M, Chinnarasu M, Kalkura N, Sellathamby S. Effect of passaging on the stemness of infrapatellar fat pad‑derived stem cells and potential role of nucleostemin as a prognostic marker of impaired stemness. Mol Med Rep 2019; 20:813-829. [PMID: 31115526 PMCID: PMC6579983 DOI: 10.3892/mmr.2019.10268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/09/2019] [Indexed: 12/13/2022] Open
Abstract
Infrapatellar fat pad‑derived stem cells (IFPSCs) are emerging as an alternative to adipose tissue‑derived stem cells (ADSCs) from other sources. They are a reliable source of autologous stem cells obtained from medical waste that are suitable for use in cell‑based therapy, tissue engineering and regenerative medicine. Such clinical applications require a vast number of high‑quality IFPSCs. Unlike embryonic stem cells (ESCs), ADSCs and IFPSCs have limited population doubling capacity; however, in vitro expansion of primary IFPSCs through multiple passages (referred to as P) is a crucial step to acquire the desired population of cells. The present study investigated the effect of multiple passages on the stemness of IFPSCs during expansion and the possibility of predicting the loss of stemness using certain markers. IFPSCs were isolated from infrapatellar fat pad tissue resected during knee arthroplasty performed on aged patients (>65 years old). These cells from the stromal vascular fraction were serially passaged to at least to P7, and their stemness characteristics were examined at each passage. It was observed that IFPSCs maintained their spindle‑shaped morphology, self‑renewability and homogeneity at P2‑4. Furthermore, immunostaining revealed that these cells expressed mesenchymal stem cell (CD166, CD90 and CD105) and ESC markers [Sox2, Nanog, Oct4 and nucleostemin (NS)], whereas the hematopoietic stem cell marker CD45 was absent. These cells were also able to differentiate into the three germ layer cell types, thus confirming their ability to generate clinical grade cells. The findings indicated that prolonged culture of IFPSCs (P>6) led to the loss of the stem cell proliferative marker NS, with an increased population doubling time and progression toward neuronal differentiation, acquiring a neurogenic phenotype. Additionally, IFPSCs demonstrated an inherent ability to secrete neurotrophic factors and express receptors for these factors, which is the cause of neuronal differentiation at later passages. Therefore, these findings validated NS as a prognostic indicator for impaired stemness and identified IFPSCs as a promising source for cell‑based therapy, particularly for neurodegenerative diseases.
Collapse
Affiliation(s)
- Subathra Radhakrishnan
- National Foundation for Liver Research, Cell Laboratory, Gleneagles Global Health City, Chennai 600100, India
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli 620024, India
| | - Omana Anna Trentz
- MIOT Institute of Research, MIOT International, Chennai 600089, India
| | - Catherine Ann Martin
- National Foundation for Liver Research, Cell Laboratory, Gleneagles Global Health City, Chennai 600100, India
- Crystal Growth Centre, Anna University, Chennai 600025, India
| | - Mettu Srinivas Reddy
- National Foundation for Liver Research, Cell Laboratory, Gleneagles Global Health City, Chennai 600100, India
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai 600100, India
| | - Mohamed Rela
- National Foundation for Liver Research, Cell Laboratory, Gleneagles Global Health City, Chennai 600100, India
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai 600100, India
| | - Marimuthu Chinnarasu
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai 600100, India
| | | | | |
Collapse
|
97
|
Mohammad K, Dakik P, Medkour Y, Mitrofanova D, Titorenko VI. Quiescence Entry, Maintenance, and Exit in Adult Stem Cells. Int J Mol Sci 2019; 20:ijms20092158. [PMID: 31052375 PMCID: PMC6539837 DOI: 10.3390/ijms20092158] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022] Open
Abstract
Cells of unicellular and multicellular eukaryotes can respond to certain environmental cues by arresting the cell cycle and entering a reversible state of quiescence. Quiescent cells do not divide, but can re-enter the cell cycle and resume proliferation if exposed to some signals from the environment. Quiescent cells in mammals and humans include adult stem cells. These cells exhibit improved stress resistance and enhanced survival ability. In response to certain extrinsic signals, adult stem cells can self-renew by dividing asymmetrically. Such asymmetric divisions not only allow the maintenance of a population of quiescent cells, but also yield daughter progenitor cells. A multistep process of the controlled proliferation of these progenitor cells leads to the formation of one or more types of fully differentiated cells. An age-related decline in the ability of adult stem cells to balance quiescence maintenance and regulated proliferation has been implicated in many aging-associated diseases. In this review, we describe many traits shared by different types of quiescent adult stem cells. We discuss how these traits contribute to the quiescence, self-renewal, and proliferation of adult stem cells. We examine the cell-intrinsic mechanisms that allow establishing and sustaining the characteristic traits of adult stem cells, thereby regulating quiescence entry, maintenance, and exit.
Collapse
Affiliation(s)
- Karamat Mohammad
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Paméla Dakik
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Younes Medkour
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Darya Mitrofanova
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Vladimir I Titorenko
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
98
|
Clonal hematopoiesis of indeterminate potential and its impact on patient trajectories after stem cell transplantation. PLoS Comput Biol 2019; 15:e1006913. [PMID: 31026273 PMCID: PMC6505959 DOI: 10.1371/journal.pcbi.1006913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/08/2019] [Accepted: 02/28/2019] [Indexed: 12/27/2022] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is a recently identified process where older patients accumulate distinct subclones defined by recurring somatic mutations in hematopoietic stem cells. CHIP's implications for stem cell transplantation have been harder to identify due to the high degree of mutational heterogeneity that is present within the genetically distinct subclones. In order to gain a better understanding of CHIP and the impact of clonal dynamics on transplantation outcomes, we created a mathematical model of clonal competition dynamics. Our analyses highlight the importance of understanding competition intensity between healthy and mutant clones. Importantly, we highlight the risk that CHIP poses in leading to dominance of precancerous mutant clones and the risk of donor derived leukemia. Furthermore, we estimate the degree of competition intensity and bone marrow niche decline in mice during aging by using our modeling framework. Together, our work highlights the importance of better characterizing the ecological and clonal composition in hematopoietic donor populations at the time of stem cell transplantation.
Collapse
|
99
|
Yoshinari Y, Kurogi Y, Ameku T, Niwa R. Endocrine regulation of female germline stem cells in the fruit fly Drosophila melanogaster. CURRENT OPINION IN INSECT SCIENCE 2019; 31:14-19. [PMID: 31109668 DOI: 10.1016/j.cois.2018.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 06/09/2023]
Abstract
Germline stem cells (GSCs) are critical for the generation of sperms and eggs in most animals including the fruit fly Drosophila melanogaster. It is well known that self-renewal and differentiation of female D. melanogaster GSCs are regulated by local niche signals. However, little is known about whether and how the GSC number is regulated by paracrine signals. In the last decade, however, multiple humoral factors, including insulin and ecdysteroids, have been recognized as key regulators of female D. melanogaster GSCs. This review paper summarizes the role of humoral factors in female D. melanogaster GSC proliferation and maintenance in response to internal and external conditions, such as nutrients, mating stimuli, and aging.
Collapse
Affiliation(s)
- Yuto Yoshinari
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Yoshitomo Kurogi
- College of Biological Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Tomotsune Ameku
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Ryusuke Niwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan; AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
100
|
Sousa‐Franco A, Rebelo K, da Rocha ST, Bernardes de Jesus B. LncRNAs regulating stemness in aging. Aging Cell 2019; 18:e12870. [PMID: 30456884 PMCID: PMC6351848 DOI: 10.1111/acel.12870] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 09/18/2018] [Accepted: 09/28/2018] [Indexed: 12/21/2022] Open
Abstract
One of the most outstanding observations from next-generation sequencing approaches was that only 1.5% of our genes code for proteins. The biggest part is transcribed but give rise to different families of RNAs without coding potential. The functional relevance of these abundant transcripts remains far from elucidated. Among them are the long non-coding RNAs (lncRNAs), a relatively large and heterogeneous group of RNAs shown to be highly tissue-specific, indicating a prominent role in processes controlling cellular identity. In particular, lncRNAs have been linked to both stemness properties and detrimental pathways regulating the aging process, being novel players in the intricate network guiding tissue homeostasis. Here, we summarize the up-to-date information on the role of lncRNAs that affect stemness and hence impact upon aging, highlighting the likelihood that lncRNAs may represent an unexploited reservoir of potential therapeutic targets for reprogramming applications and aging-related diseases.
Collapse
Affiliation(s)
- António Sousa‐Franco
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de LisboaLisboaPortugal
| | - Kenny Rebelo
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de LisboaLisboaPortugal
| | - Simão Teixeira da Rocha
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de LisboaLisboaPortugal
| | - Bruno Bernardes de Jesus
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de LisboaLisboaPortugal
- Department of Medical Sciences and Institute of Biomedicine—iBiMEDUniversity of AveiroAveiroPortugal
| |
Collapse
|