51
|
Zerebecki RA, Hughes AR. Environmental Stress and Resource Availability Affect the Maintenance of Genetic Variation in a Dominant Marsh Plant (Spartina alterniflora). Mol Ecol 2025; 34:e17628. [PMID: 39686905 DOI: 10.1111/mec.17628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/17/2024] [Indexed: 12/18/2024]
Abstract
Changes in genetic variation, and particularly documented declines in genetic diversity, influence not only evolutionary potential but also current ecological function. Given this context, it is essential to understand what abiotic and biotic factors promote or disrupt the maintenance of genetic variation in natural populations. To address this knowledge gap in the context of salt marsh plants, we established a three-year field experiment, testing the independent and interactive effects of nutrient availability and physical stress on the maintenance of plant (Spartina alterniflora) genotypic diversity. We found that in environments with high physical stress (i.e., low marsh elevations), diversity declined over time. However, the addition of nutrients promoted the maintenance of Spartina genotypic diversity across the physical stress gradient. We also observed changes in genotypic composition and genetic divergence across environmental stress treatments, indicating variation among Spartina genotypes in their response to these factors. Our results suggest that tidal inundation acts a selective gradient within coastal marshes, altering genotypic diversity and composition across the landscape. Moreover, our work highlights that the effects of increasing inundation due to continued sea-level rise on the maintenance of diversity may be modulated by concomitant changes in nutrient inputs, with cascading effects on marsh structure and function.
Collapse
Affiliation(s)
- Robyn A Zerebecki
- Marine Science Center and Coastal Sustainability Institute, Northeastern University, Nahant, Massachusetts, USA
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | - A Randall Hughes
- Marine Science Center and Coastal Sustainability Institute, Northeastern University, Nahant, Massachusetts, USA
| |
Collapse
|
52
|
Santostefano F, Moiron M, Sánchez-Tójar A, Fisher DN. Indirect genetic effects increase the heritable variation available to selection and are largest for behaviors: a meta-analysis. Evol Lett 2025; 9:89-104. [PMID: 39906585 PMCID: PMC11790215 DOI: 10.1093/evlett/qrae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 02/06/2025] Open
Abstract
The evolutionary potential of traits is governed by the amount of heritable variation available to selection. While this is typically quantified based on genetic variation in a focal individual for its own traits (direct genetic effects, DGEs), when social interactions occur, genetic variation in interacting partners can influence a focal individual's traits (indirect genetic effects, IGEs). Theory and studies on domesticated species have suggested IGEs can greatly impact evolutionary trajectories, but whether this is true more broadly remains unclear. Here, we perform a systematic review and meta-analysis to quantify the amount of trait variance explained by IGEs and the contribution of IGEs to predictions of adaptive potential. We identified 180 effect sizes from 47 studies across 21 species and found that, on average, IGEs of a single social partner account for a small but statistically significant amount of phenotypic variation (0.03). As IGEs affect the trait values of each interacting group member and due to a typically positive-although statistically nonsignificant-correlation with DGEs (r DGE-IGE = 0.26), IGEs ultimately increase trait heritability substantially from 0.27 (narrow-sense heritability) to 0.45 (total heritable variance). This 66% average increase in heritability suggests IGEs can increase the amount of genetic variation available to selection. Furthermore, whilst showing considerable variation across studies, IGEs were most prominent for behaviors and, to a lesser extent, for reproduction and survival, in contrast to morphological, metabolic, physiological, and development traits. Our meta-analysis, therefore, shows that IGEs tend to enhance the evolutionary potential of traits, especially for those tightly related to interactions with other individuals, such as behavior and reproduction.
Collapse
Affiliation(s)
- Francesca Santostefano
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall, United Kingdom
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Maria Moiron
- Institute of Avian Research, Wilhelmshaven, Germany
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | | | - David N Fisher
- School of Biological Sciences, University of Aberdeen, King’s College, Aberdeen, United Kingdom
| |
Collapse
|
53
|
Douhard M, Baubet E, Gamelon M. Female Embryos Are More Likely to Die Than Males in a Wild Mammal. Am Nat 2025; 205:240-249. [PMID: 39913936 DOI: 10.1086/733425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
AbstractBiased birth sex ratios have been documented in many mammalian populations, but it is often difficult to know whether they result from biases in the sex ratio at conception and/or sex differences in prenatal mortality. It is generally admitted that there is an excess of males at conception and a higher level of mortality during gestation for males because of a positive relationship between size and vulnerability. Here, we challenge this classical prediction in a wild boar (Sus scrofa) population facing highly variable food resources (mast seeding) and in which male fetuses are heavier than females. Using long-term hunting and mast seeding data, we show that sex ratio at conception is balanced and that females suffer from higher embryonic mortality particularly in large litters, whatever the level and the type of food resources. One possible explanation is that a female embryo is ready for implantation later than an identically aged male because of slower development and is more likely to miss the implantation window. To what extent a lower survival of female embryos is a common feature in mammals remains to be carefully explored.
Collapse
|
54
|
Le MP, Burggren W, Martinez-Bautista G. Development and sex affect respiratory responses to temperature and dissolved oxygen in the air-breathing fishes Betta splendens and Trichopodus trichopterus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:27. [PMID: 39680326 DOI: 10.1007/s10695-024-01411-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
Ventilation frequencies of the gills (fG) and the air-breathing organ (fABO) were measured in juveniles and adults of the air-breathing betta (Betta splendens) and the blue gourami (Trichopodus trichopterus) in response to temperature and hypoxia. Ventilatory rates were evaluated after 1 h of exposure to 27 °C (control), 23 and 31 °C (PO2 = 21.0 kPa), after acute temperature changes (ATC) from 23 to 27, and 27 to 31 °C, and under progressive hypoxia (PH; PO2 = ~ 21 to 2.5 kPa). Complex, multi-phased ventilatory alterations were evident across species and experimental groups revealing different stress responses and shock reactions (e.g., changes in temperature sensitivity (Q10) of fG between 1-h exposure and ACT in both species). Female and male gourami showed differences in Q10 over the temperature range 23-31 °C. No such Q10 differences occurred in betta. Juveniles of both species showed higher Q10 for fABO (~ 3.7) than fG (~ 2.2). Adult fish exhibited variable Q10s for fG (~ 1.5 to ~ 4.3) and fABO (~ 0.8 to ~ 15.5) as a function of temperature, suggesting a switch from aquatic towards aerial ventilation in response to thermal stress. During PH, juveniles from both species showed higher fG than adults at all oxygen levels. Females from both species showed higher fG compared with males. Collectively, our results suggest that environmental cues modulate ventilatory responses in both species throughout ontogeny, but the actual responses reflect species-specific differences in natural habitat and ecology. Finally, we strongly suggest assessing physiological differences between male and female fish to avoid masking relevant findings and to facilitate results interpretation.
Collapse
Affiliation(s)
- My Phuong Le
- Department of Agriculture, Bac Lieu University, Bac Lieu, Vietnam
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Warren Burggren
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | | |
Collapse
|
55
|
Long X, Székely T, Komdeur J, Weissing FJ. A Life History Perspective on the Evolutionary Interplay of Sex Ratios and Parental Sex Roles. Am Nat 2025; 205:E49-E65. [PMID: 39913938 DOI: 10.1086/733457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
AbstractThe parental roles of males and females differ remarkably across the tree of life, and several studies suggest that parental sex roles are associated with biased sex ratios. However, there is considerable debate on the causal relationship between sex roles and sex ratios and on the relative importance of the operational sex ratio (OSR), the adult sex ratio (ASR), and the maturation sex ratio (MSR). Here, we use individual-based evolutionary simulations to investigate the joint evolution of sex-specific parental behavior and the various sex ratios in several life history scenarios. We show that typically, but not always, the sex with lower mortality or faster maturity tends to provide most of the care. The association of parental sex roles with the various sex ratios is more intricate. At equilibrium, the OSR is typically biased toward the less caring sex, but the direction and strength of OSR biases may change considerably during evolution. When the MSR or ASR is biased, a broad spectrum of parental care patterns can evolve, although the overrepresented sex generally does most of the caring. We conclude that none of the sex ratios is a driver of parental sex roles; they rather coevolve with care biases in a subtle manner.
Collapse
|
56
|
Larson DL, Brenden TO, Baker EA, Scribner KT. Changes in lake sturgeon spawning periodicity is associated with prior reproductive effort. Sci Rep 2025; 15:3783. [PMID: 39885297 PMCID: PMC11782595 DOI: 10.1038/s41598-025-87717-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
Long-lived iteroparous organisms vary resource expenditures toward migration and reproduction in response to individual physical factors and conspecific interactions, which can affect future reproductive timing and interval. Reproductive actions can lead to trade-offs associated with allocations to current vs. future reproduction, including longer reproductive interval, require additional study. The objective of this study was to evaluate associations between physical stream characteristics, individual behaviors, and breeding demographics and spawning periodicity in lake sturgeon (Acipenser fulvescens). We used Radio Frequency Identification tags to monitor spawning migration by male (N = 1931) and female (N = 683) adults over seven consecutive years (2016 through 2022) in the Black River, Cheboygan Co., MI. We used ordinal regression models to quantify associations. Male spawning periodicity (1.60 ± 0.63 years; mean ± SE) decreased with increasing body size and intra-sex interactions and increased with increasing cumulative temperature, discharge, number of inter-sex interactions, and complete river migrations in a season. Female spawning periodicity (3.19 ± 0.05 years, mean ± SE) decreased with increasing upstream swimming time and inter-sex interactions. Results demonstrated spawning periodicity shortened as male lake sturgeon age, and future breeding opportunities decreased, while female periodicity may be more individualized and is more likely to be affected by resource acquisition.
Collapse
Affiliation(s)
- Douglas L Larson
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA.
| | - Travis O Brenden
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
- Quantitative Fisheries Center, Michigan State University, East Lansing, MI, USA
| | - Edward A Baker
- Michigan Department of Natural Resources, Marquette Fisheries Research Station, Marquette, MI, USA
| | - Kim T Scribner
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
57
|
Chevin LM, Bridle J. Impacts of limits to adaptation on population and community persistence in a changing environment. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230322. [PMID: 39780591 PMCID: PMC11712278 DOI: 10.1098/rstb.2023.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/04/2024] [Accepted: 10/18/2024] [Indexed: 01/11/2025] Open
Abstract
A key issue in predicting how ecosystems will respond to environmental change is understanding why populations and communities are able to live and reproduce in some parts of ecological and geographical space, but not in others. The limits to adaptation that cause ecological niches to vary in position and width across taxa and environmental contexts determine how communities and ecosystems emerge from selection on phenotypes and genomes. Ecological trade-offs mean that phenotypes can only be optimal in some environments unless these trade-offs can be reshaped through evolution. However, the amount and rate of evolution are limited by genetic architectures, developmental systems (including phenotypic plasticity) and the legacies of recent evolutionary history. Here, we summarize adaptive limits and their ecological consequences in time (evolutionary rescue) and space (species' range limits), relating theoretical predictions to empirical tests. We then highlight key avenues for future research in this area, from better connections between evolution and demography to analysing the genomic architecture of adaptation, the dynamics of plasticity and interactions between the biotic and abiotic environment. Progress on these questions will help us understand when and where evolution and phenotypic plasticity will allow species and communities to persist in the face of rapid environmental change.This article is part of the discussion meeting issue 'Bending the curve towards nature recovery: building on Georgina Mace's legacy for a biodiverse future'.
Collapse
Affiliation(s)
| | - Jon Bridle
- Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
58
|
Battlay P, Craig S, Putra AR, Monro K, De Silva NP, Wilson J, Bieker VC, Kabir S, Shamaya N, van Boheemen L, Rieseberg LH, Stinchcombe JR, Fournier-Level A, Martin MD, Hodgins KA. Rapid Parallel Adaptation in Distinct Invasions of Ambrosia Artemisiifolia Is Driven by Large-Effect Structural Variants. Mol Biol Evol 2025; 42:msae270. [PMID: 39812008 PMCID: PMC11733498 DOI: 10.1093/molbev/msae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/21/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
When introduced to multiple distinct ranges, invasive species provide a compelling natural experiment for understanding the repeatability of adaptation. Ambrosia artemisiifolia is an invasive, noxious weed, and chief cause of hay fever. Leveraging over 400 whole-genome sequences spanning the native-range in North America and 2 invasions in Europe and Australia, we inferred demographically distinct invasion histories on each continent. Despite substantial differences in genetic source and effective population size changes during introduction, scans of both local climate adaptation and divergence from the native-range revealed genomic signatures of parallel adaptation between invasions. Disproportionately represented among these parallel signatures are 37 large haploblocks-indicators of structural variation-that cover almost 20% of the genome and exist as standing genetic variation in the native-range. Many of these haploblocks are associated with traits important for adaptation to local climate, like size and the timing of flowering, and have rapidly reformed native-range clines in invaded ranges. Others show extreme frequency divergence between ranges, consistent with a response to divergent selection on different continents. Our results demonstrate the key role of large-effect standing variants in rapid adaptation during range expansion, a pattern that is robust to diverse invasion histories.
Collapse
Affiliation(s)
- Paul Battlay
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Samuel Craig
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Andhika R Putra
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Keyne Monro
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Nissanka P De Silva
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Jonathan Wilson
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Vanessa C Bieker
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Saila Kabir
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Nawar Shamaya
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Lotte van Boheemen
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S3B2, Canada
| | | | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
59
|
Parée T, Noble L, Roze D, Teotónio H. Selection Can Favor a Recombination Landscape That Limits Polygenic Adaptation. Mol Biol Evol 2025; 42:msae273. [PMID: 39776196 PMCID: PMC11739800 DOI: 10.1093/molbev/msae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Modifiers of recombination rates have been described but the selective pressures acting on them and their effect on adaptation to novel environments remain unclear. We performed experimental evolution in the nematode Caenorhabditis elegans using alternative rec-1 alleles modifying the position of meiotic crossovers along chromosomes without detectable direct fitness effects. We show that adaptation to a novel environment is impaired by the allele that decreases recombination rates in the genomic regions containing fitness variation. However, the allele that impairs adaptation is indirectly favored by selection, because it increases recombination rates and reduces the associations among beneficial and deleterious variation located in its chromosomal vicinity. These results validate theoretical expectations about the evolution of recombination but suggest that genome-wide polygenic adaptation is of little consequence to indirect selection on recombination rate modifiers.
Collapse
Affiliation(s)
- Tom Parée
- Institut de Biologie, École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, Paris 75005, France
- Department of Biology, New York University, New York, NY 10003, USA
| | - Luke Noble
- Institut de Biologie, École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, Paris 75005, France
- EnviroDNA, 95 Albert St Brunswick, Melbourne, Victoria 3065, Australia
| | - Denis Roze
- Adaptation et Diversité en Milieu Marin CNRS UMR 7144, Station Biologique de Roscoff, Sorbonne University, Roscoff 29688, France
| | - Henrique Teotónio
- Institut de Biologie, École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, Paris 75005, France
| |
Collapse
|
60
|
Nguyen MT, Pannell JR. The evolution and maintenance of trioecy with cytoplasmic male sterility. Heredity (Edinb) 2025; 134:1-9. [PMID: 39397113 PMCID: PMC11723941 DOI: 10.1038/s41437-024-00729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
Trioecy, the co-existence of females, males and hermaphrodites, is a rare sexual system in plants that may be an intermediate state in transitions between hermaphroditism and dioecy. Previous models have identified pollen limitation as a necessary condition for the evolution of trioecy from hermaphroditism. In these models, the seed-production and pollen production of females and males relative to those of hermaphrodites, respectively, are compromised by self-fertilization by hermaphrodites under pollen- limitation. Here, we investigate the evolution of trioecy via the invasion of cytoplasmic male sterility (CMS) into androdioecious populations in which hermaphrodites co-occur with males and where the male determiner is linked to a (partial) fertility restorer. We show that the presence of males in a population renders invasion by CMS more difficult. However, the presence of males also facilitates the maintenance of trioecy even in the absence of pollen limitation by negative frequency-dependent selection, because males reduce the transmission of CMS by females by siring sons (which cannot transmit CMS). We discuss our results in light of empirical observations of trioecy in plants and its potential role in the evolution of dioecy.
Collapse
Affiliation(s)
- M T Nguyen
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.
| | - J R Pannell
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
61
|
Zeidler T, Ros A, Roch S, Jacobs A, Geist J, Brinker A. Non-random mating behaviour between diverging littoral and pelagic three-spined sticklebacks in an invasive population from Upper Lake Constance. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241252. [PMID: 39816745 PMCID: PMC11732402 DOI: 10.1098/rsos.241252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/16/2024] [Accepted: 11/25/2024] [Indexed: 01/18/2025]
Abstract
Adaptive divergence and increased genetic differentiation among populations can lead to reproductive isolation. In Lake Constance, Germany, a population of invasive three-spined stickleback (Gasterosteus aculeatus) is currently diverging into littoral and pelagic ecotypes, which both nest in the littoral zone. We hypothesized that assortative mating behaviour contributes to reproductive isolation between these ecotypes and performed a behavioural experiment in which females could choose between two nest-guarding males. Behaviour was recorded, and data on traits relevant to mate choice were collected. Both females of the same and different ecotypes were courted with equal vigour. However, there was a significant interaction effect of male and female ecotypes on the level of aggression in females. Littoral females were more aggressive towards pelagic males, and pelagic females were more aggressive towards littoral males. This indicates rejection of males of different ecotypes in spite of the fact that littoral males were larger, more intensely red-coloured and more aggressive than the pelagic males-all mating traits female sticklebacks generally select for. This study documents the emergence of behavioural barriers during early divergence in an invasive and rapidly diversifying stickleback population and discusses their putative role in facilitating reproductive isolation and adaptive radiation within this species.
Collapse
Affiliation(s)
- Tobias Zeidler
- Fisheries Research Station Baden-Württemberg, Argenweg 50/1, 88085 Langenargen, Germany
| | - Albert Ros
- Fisheries Research Station Baden-Württemberg, Argenweg 50/1, 88085 Langenargen, Germany
| | - Samuel Roch
- Fisheries Research Station Baden-Württemberg, Argenweg 50/1, 88085 Langenargen, Germany
| | - Arne Jacobs
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, GlasgowG12 8QQ, UK
| | - Juergen Geist
- Department of Life Science Systems, Aquatic Systems Biology Unit, Technical University of Munich, TUM School of Life Sciences, Mühlenweg 22, 85354 Freising, Germany
| | - Alexander Brinker
- Fisheries Research Station Baden-Württemberg, Argenweg 50/1, 88085 Langenargen, Germany
- University of Constance, Institute for Limnology, Mainaustraße 252, 78464 Konstanz, Germany
| |
Collapse
|
62
|
Morgan TJH, Feldman MW. Human culture is uniquely open-ended rather than uniquely cumulative. Nat Hum Behav 2025; 9:28-42. [PMID: 39511345 DOI: 10.1038/s41562-024-02035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024]
Abstract
Theories of how humans came to be so ecologically dominant increasingly centre on the adaptive abilities of human culture and its capacity for cumulative change and high-fidelity transmission. Here we revisit this hypothesis by comparing human culture with animal cultures and cases of epigenetic inheritance and parental effects. We first conclude that cumulative change and high transmission fidelity are not unique to human culture as previously thought, and so they are unlikely to explain its adaptive qualities. We then evaluate the evidence for seven alternative explanations: the inheritance of acquired characters, the pathways of inheritance, the non-random generation of variation, the scope of heritable variation, effects on organismal fitness, effects on genetic fitness and effects on evolutionary dynamics. From these, we identify the open-ended scope of human cultural variation as a key, but generally neglected, phenomenon. We end by articulating a hypothesis for the cognitive basis of this open-endedness.
Collapse
Affiliation(s)
- Thomas J H Morgan
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.
- Institute of Human Origins, Arizona State University, Tempe, AZ, USA.
| | | |
Collapse
|
63
|
Novoplansky A, Souza G, Brenner E, Bhatla S, Van Volkenburgh E. Exploring the complex information processes underlying plant behavior. PLANT SIGNALING & BEHAVIOR 2024; 19:2411913. [PMID: 39381978 PMCID: PMC11469436 DOI: 10.1080/15592324.2024.2411913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
Newly discovered plant behaviors, linked to historical observations, contemporary technologies, and emerging knowledge of signaling mechanisms, argue that plants utilize complex information processing systems. Plants are goal-oriented in an evolutionary and physiological sense; they demonstrate agency and learning. While most studies on plant plasticity, learning, and memory deal with the responsiveness of individual plants to resource availability and biotic stresses, adaptive information is often perceived from and coordinated with neighboring plants, while competition occurs for limited resources. Based on existing knowledge, technologies, and sustainability principles, climate-smart agricultural practices are now being adopted to enhance crop resilience and productivity. A deeper understanding of the dynamics of plant behavior offers a rich palette of potential amelioration strategies for improving the productivity and health of natural and agricultural ecosystems.
Collapse
Affiliation(s)
- A. Novoplansky
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - G.M. Souza
- Department of Botany, Institute of Biology – Section of Plant Physiology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - E.D. Brenner
- Department of Biology, Pace University, New York, New York, USA
| | - S.C. Bhatla
- Department of Botany, University of Delhi, New Delhi, Delhi, India
| | | |
Collapse
|
64
|
Nocchi G, Whiting JR, Yeaman S. Repeated global adaptation across plant species. Proc Natl Acad Sci U S A 2024; 121:e2406832121. [PMID: 39705310 DOI: 10.1073/pnas.2406832121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 11/09/2024] [Indexed: 12/22/2024] Open
Abstract
Global adaptation occurs when all populations of a species undergo selection toward a common optimum. This can occur by a hard selective sweep with the emergence of a new globally advantageous allele that spreads throughout a species' natural range until reaching fixation. This evolutionary process leaves a temporary trace in the region affected, which is detectable using population genomic methods. While selective sweeps have been identified in many species, there have been few comparative and systematic studies of the genes involved in global adaptation. Building upon recent findings showing repeated genetic basis of local adaptation across independent populations and species, we asked whether certain genes play a more significant role in driving global adaptation across plant species. To address this question, we scanned the genomes of 17 plant species to identify signals of repeated global selective sweeps. Despite the substantial evolutionary distance between the species analyzed, we identified several gene families with strong evidence of repeated positive selection. These gene families tend to be enriched for reduced pleiotropy, consistent with predictions from Fisher's evolutionary model and the cost of complexity hypothesis. We also found that genes with repeated sweeps exhibit elevated levels of gene duplication. Our findings contrast with recent observations of increased pleiotropy in genes driving local adaptation, consistent with predictions based on the theory of migration-selection balance.
Collapse
Affiliation(s)
- Gabriele Nocchi
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - James R Whiting
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Samuel Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
65
|
Uyenoyama MK. Neutral Genetic Diversity in Mixed Mating Systems. Genes (Basel) 2024; 15:1635. [PMID: 39766902 PMCID: PMC11675171 DOI: 10.3390/genes15121635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Systems of reproduction differ with respect to the magnitude of neutral genetic diversity maintained in a population. In particular, the partitioning of reproductive organisms into mating types and regular inbreeding have long been recognized as key factors that influence effective population number. Here, a range of reproductive systems are compared with respect to the maintenance of neutral genetic diversity. This study addresses full gonochorism, full hermaphroditism, androdioecy (male and hermaphroditic reproductives), and gynodioecy (female and hermaphroditic reproductives). METHODS Coalescence theory is used to determine the level of diversity maintained under each mating system considered. RESULTS For each mating system, the nature of the dependence of the level of neutral diversity on inbreeding depression, sex-specific viability, and other factors is described. In particular, the models account for the effects of sex-specific viability on the evolutionarily stable sex ratio and the collective contribution of each mating type (sex) to the offspring generation. CONCLUSIONS Within the context of conservation biology, population genetic and quantitative genetic theory has addressed the determination of the target minimum effective population size. In contrast, this study proposes and explores a summary statistic (a ratio of effective numbers) as a means of characterizing the context in which evolution occurs.
Collapse
Affiliation(s)
- Marcy K Uyenoyama
- Department of Biology, Duke University, P.O. Box 90338, Durham, NC 27708-0338, USA
| |
Collapse
|
66
|
Josefson CC, Orr TJ. Introduction to the Symposium: An Integrative Look at Whole-organism Trade-offs from the Female-centered Perspective of Biology. Integr Comp Biol 2024; 64:1601-1605. [PMID: 39404079 DOI: 10.1093/icb/icae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 12/21/2024] Open
Abstract
Trade-offs during reproduction have long been a central focus within biology and much of the foundational work within life history evolution has focused on females, as the fitness of females is more easily quantified for use in theoretical models. However, in many regards, the field of organismal biology has deviated from this early focus on females, particularly as it relates to the nuances and dynamic nature of female reproduction. Regardless, at the organismal level, reproduction is thought to trade-off with other simultaneously occurring processes. Recent papers have sought to outline the issues with our current understanding of whole-organism trade-offs, though the field as a whole has not come to a consensus on what trade-offs mean to a reproducing female. To rectify this important gap in how trade-offs are discussed in organismal biology as well as confusion about what constitutes a trade-off, our overarching goal of this symposium was to discuss trade-offs from an integrative perspective that places female reproduction at the center. By answering what trade-offs are and what they mean to reproducing females, what has been neglected in the context of whole-organism physiology, and how maternal effects fit within this framework, our group of speakers and their associated papers will crystalize nuances of measuring and determining presence (if any) of trade-offs in reproducing females in a range of taxa and subfields.
Collapse
Affiliation(s)
- Chloe C Josefson
- North Carolina Central University, Department of Biological and Biomedical Sciences, Durham, NC, 27707, USA
| | - Teri J Orr
- New Mexico State University, Department of Biology, Las Cruces, NM, 88003, USA
| |
Collapse
|
67
|
Wientjes YCJ, Peeters K, Bijma P, Huisman AE, Calus MPL. Changes in allele frequencies and genetic architecture due to selection in two pig populations. Genet Sel Evol 2024; 56:76. [PMID: 39690415 DOI: 10.1186/s12711-024-00941-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/30/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Genetic selection improves a population by increasing the frequency of favorable alleles. Understanding and monitoring allele frequency changes is, therefore, important to obtain more insight into the long-term effects of selection. This study aimed to investigate changes in allele frequencies and in results of genome-wide association studies (GWAS), and how those two are related to each other. This was studied in two maternal pig lines where selection was based on a broad selection index. Genotypes and phenotypes were available from 2015 to 2021. RESULTS Several large changes in allele frequencies over the years were observed in both lines. The largest allele frequency changes were not larger than expected under drift based on gene dropping simulations, but the average allele frequency change was larger with selection. Moreover, several significant regions were found in the GWAS for the traits under selection, but those regions did not overlap with regions with larger allele frequency changes. No significant GWAS regions were found for the selection index in both lines, which included multiple traits, indicating that the index is affected by many loci of small effect. Additionally, many significant regions showed pleiotropic, and often antagonistic, associations with other traits under selection. This reduces the selection pressure on those regions, which can explain why those regions are still segregating, although the traits have been under selection for several generations. Across the years, only small changes in Manhattan plots were found, indicating that the genetic architecture was reasonably constant. CONCLUSIONS No significant GWAS regions were found for any of the traits under selection among the regions with the largest changes in allele frequency, and the correlation between significance level of marker associations and changes in allele frequency over one generation was close to zero for all traits. Moreover, the largest changes in allele frequency could be explained by drift and were not necessarily a result of selection. This is probably because selection acted on a broad index for which no significant GWAS regions were found. Our results show that selecting on a broad index spreads the selection pressure across the genome, thereby limiting allele frequency changes.
Collapse
Affiliation(s)
- Yvonne C J Wientjes
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH, Wageningen, The Netherlands.
| | | | - Piter Bijma
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH, Wageningen, The Netherlands
| | - Abe E Huisman
- Hendrix Genetics B.V., 5830AC, Boxmeer, The Netherlands
| | - Mario P L Calus
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH, Wageningen, The Netherlands
| |
Collapse
|
68
|
Kardos M, Keller LF, Funk WC. What Can Genome Sequence Data Reveal About Population Viability? Mol Ecol 2024:e17608. [PMID: 39681836 DOI: 10.1111/mec.17608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Biologists have long sought to understand the impacts of deleterious genetic variation on fitness and population viability. However, our understanding of these effects in the wild is incomplete, in part due to the rarity of sufficient genetic and demographic data needed to measure their impact. The genomics revolution is promising a potential solution by predicting the effects of deleterious genetic variants (genetic load) bioinformatically from genome sequences alone bypassing the need for costly demographic data. After a historical perspective on the theoretical and empirical basis of our understanding of the dynamics and fitness effects of deleterious genetic variation, we evaluate the potential for these new genomic measures of genetic load to predict population viability. We argue that current genomic analyses alone cannot reliably predict the effects of deleterious genetic variation on population growth, because these depend on demographic, ecological and genetic parameters that need more than just genome sequence data to be measured. Thus, while purely genomic analyses of genetic load promise to improve our understanding of the composition of the genetic load, they are currently of little use for evaluating population viability. Demographic data and ecological context remain crucial to our understanding of the consequences of deleterious genetic variation for population fitness. However, when combined with such demographic and ecological data, genomic information can offer important insights into genetic variation and inbreeding that are crucial for conservation decision making.
Collapse
Affiliation(s)
- Marty Kardos
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Lukas F Keller
- Department of Evolutionary Biology and Environmental Studies & Natural History Museum, University of Zurich, Zurich, Switzerland
| | - W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
69
|
VanKuren NW, Sheikh SI, Fu CL, Massardo D, Lu W, Kronforst MR. Supergene evolution via gain of autoregulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574839. [PMID: 38260248 PMCID: PMC10802445 DOI: 10.1101/2024.01.09.574839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Development requires the coordinated action of many genes across space and time, yet numerous species have evolved the ability to develop multiple discrete, alternate phenotypes1-5. Such polymorphisms are often controlled by supergenes, sets of tightly-linked loci that function together to control development of a polymorphic phenotype6-10. Although theories of supergene evolution are well-established, the mutations that cause functional differences between supergene alleles have been difficult to identify. The doublesex gene is a master regulator of insect sexual differentiation but has been co-opted to function as a supergene in multiple Papilio swallowtail butterflies, where divergent dsx alleles control development of discrete non-mimetic or mimetic female wing shapes and color patterns11-15. Here we demonstrate that the Papilio alphenor supergene evolved via recruitment of six new cis-regulatory elements (CREs) that control allele-specific dsx expression. Most dsx CREs, including four of the six new CREs, are bound by the DSX transcription factor itself. Our findings provide experimental support to classic supergene theory and suggest that autoregulation may provide a simple route to supergene origination and to the co-option of pleiotropic genes into new developmental roles.
Collapse
Affiliation(s)
| | - Sofia I. Sheikh
- Department of Ecology & Evolution, The University of Chicago, Chicago IL USA
| | - Claire L. Fu
- Department of Ecology & Evolution, The University of Chicago, Chicago IL USA
| | - Darli Massardo
- Department of Ecology & Evolution, The University of Chicago, Chicago IL USA
| | - Wei Lu
- Department of Ecology & Evolution, The University of Chicago, Chicago IL USA
| | - Marcus R. Kronforst
- Department of Ecology & Evolution, The University of Chicago, Chicago IL USA
| |
Collapse
|
70
|
Schroeder J, Dunning J, Chan AHH, Chik HYJ, Burke T. Not so social in old age: demography as one driver of decreasing sociality. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220458. [PMID: 39463245 PMCID: PMC11513642 DOI: 10.1098/rstb.2022.0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Humans become more selective with whom they spend their time, and as a result, the social networks of older humans are smaller than those of younger ones. In non-human animals, processes such as competition and opportunity can result in patterns of declining sociality with age. While there is support for declining sociality with age in mammals, evidence from wild bird populations is lacking. Here, we test whether sociality declines with age in a wild, insular bird population, where we know the exact ages of individuals. Using 6 years of sociality data, we find that as birds aged, their degree and betweenness decreased. The number of same-age birds still alive also decreased with age. Our results suggest that a longitudinal change in sociality with age may be, in part, an emergent effect of natural changes in demography. This highlights the need to investigate the changing costs and benefits of sociality across a lifetime.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Julia Schroeder
- Department of Life Sciences, Imperial College London, Silwood Park Campus, AscotSL5 7PY, UK
| | - Jamie Dunning
- Department of Life Sciences, Imperial College London, Silwood Park Campus, AscotSL5 7PY, UK
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Alex Hoi Han Chan
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, KonstanzPostbox 687, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behaviour, Radolfzell78464, Germany
| | - Heung Ying Janet Chik
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen9747 AG, The Netherlands
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Terry Burke
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, SheffieldS10 2TN, UK
| |
Collapse
|
71
|
Payseur BA. Genetics of Recombination Rate Variation Within and Between Species. J Evol Biol 2024:voae158. [PMID: 39680417 DOI: 10.1093/jeb/voae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Indexed: 12/17/2024]
Abstract
Recombination diversifies the genomes of offspring, influences the evolutionary dynamics of populations, and ensures that chromosomes segregate properly during meiosis. Individuals recombine at different rates but observed levels of variation in recombination rate remain mostly unexplained. Genetic dissection of differences in recombination rate within and between species provides a powerful framework for understanding how this trait evolves. In this Perspective, I amalgamate published findings from genetic studies of variation in the genome-wide number of crossovers within and between species, and I use exploratory analyses to identify preliminary patterns. The narrow-sense heritability of crossover count is consistently low, indicating limited resemblance among relatives and predicting a weak response to short-term selection. Variants associated with crossover number within populations span the range of minor allele frequency. The size of the additive effect of recombination-associated variants, along with a negative correlation between this effect and minor allele frequency, raises the prospect that mutations inducing phenotypic shifts larger than a few crossovers are deleterious, though the contributions of methodological biases to these patterns deserve investigation. Quantitative trait loci that contribute to differences between populations or species alter crossover number in both directions, a pattern inconsistent with selection toward a constant optimum for this trait. Building on this characterization of genetic variation in crossover number within and between species, I describe fruitful avenues for future research. Better integrating recombination rate into quantitative genetics will reveal the balance of evolutionary forces responsible for genetic variation in this trait that shapes inheritance.
Collapse
Affiliation(s)
- Bret A Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
72
|
Evans BJ, Gvoždík V, Knytl M, Cauret CMS, Herrel A, Greenbaum E, Patel J, Premachandra T, Papenfuss TJ, Parente J, Horb ME, Measey J. Rapid Sex Chromosome Turnover in African Clawed Frogs (Xenopus) and the Origins of New Sex Chromosomes. Mol Biol Evol 2024; 41:msae234. [PMID: 39665151 PMCID: PMC11635168 DOI: 10.1093/molbev/msae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/08/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024] Open
Abstract
Sex chromosomes of some closely related species are not homologous, and sex chromosome turnover is often attributed to mechanisms that involve linkage to or recombination arrest around sex-determining loci. We examined sex chromosome turnover and recombination landscapes in African clawed frogs (genus Xenopus) with reduced representation genome sequences from 929 individuals from 19 species. We recovered extensive variation in sex chromosomes, including at least eight nonhomologous sex-associated regions-five newly reported here, with most maintaining female heterogamety, but two independent origins of Y chromosomes. Seven of these regions are found in allopolyploid species in the subgenus Xenopus, and all of these reside in one of their two subgenomes, which highlights functional asymmetry between subgenomes. In three species with chromosome-scale genome assemblies (Xenopus borealis, Xenopus laevis, and Xenopus tropicalis), sex-specific recombination landscapes have similar patterns of sex differences in rates and locations of recombination. Across these Xenopus species, sex-associated regions are significantly nearer chromosome ends than expected by chance, even though this is where the ancestral recombination rate is highest in both sexes before the regions became sex associated. As well, expansions of sex-associated recombination arrest occurred multiple times. New information on sex linkage along with among-species variation in female specificity of the sex-determining gene dm-w argues against a "jumping gene" model, where dm-w moves around the genome. The diversity of sex chromosomes in Xenopus raises questions about the roles of natural and sexual selection, polyploidy, the recombination landscape, and neutral processes in driving sex chromosome turnover in animal groups with mostly heterogametic females.
Collapse
Affiliation(s)
- Ben J Evans
- Department of Biology, Life Sciences Building Room 328, McMaster University, 1280 Main Street West, Hamilton, ON Canada L8S4K1
| | - Václav Gvoždík
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Zoology, National Museum of the Czech Republic, Prague, Czech Republic
| | - Martin Knytl
- Department of Biology, Life Sciences Building Room 328, McMaster University, 1280 Main Street West, Hamilton, ON Canada L8S4K1
- Department of Cell Biology, Charles University, Viničná 7, Prague 12843, Czech Republic
| | - Caroline M S Cauret
- Department of Biology, Life Sciences Building Room 328, McMaster University, 1280 Main Street West, Hamilton, ON Canada L8S4K1
- Department of Botany and Plant Pathology, Oregon State University, Cordley Hall 4605, 2701 SW Campus Way, Corvallis, OR 97331, USA
| | - Anthony Herrel
- UMR 7179, Mécanismes Adaptatifs et Evolution, Muséum national d'Histoire naturelle CNRS, Paris, France
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
- Department of Biology, University of Antwerp, Wilrijk, Belgium
- Naturhistorisches Museum Bern, Bern, Switzerland
| | - Eli Greenbaum
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jay Patel
- Department of Biology, Life Sciences Building Room 328, McMaster University, 1280 Main Street West, Hamilton, ON Canada L8S4K1
| | - Tharindu Premachandra
- Department of Biology, Life Sciences Building Room 328, McMaster University, 1280 Main Street West, Hamilton, ON Canada L8S4K1
| | | | - James Parente
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Marko E Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA, USA
| | - John Measey
- UMR 7179, Mécanismes Adaptatifs et Evolution, Muséum national d'Histoire naturelle CNRS, Paris, France
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch 7602, South Africa
- Centre for Invasion Biology, Institute of Biodiversity, Yunnan University in Kunming, Yunnan Province, China
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
73
|
Jiang D, Pennell M. Alternative mutational architectures producing identical M -matrices can lead to different patterns of evolutionary divergence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.11.553044. [PMID: 39677663 PMCID: PMC11642737 DOI: 10.1101/2023.08.11.553044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Explaining macroevolutionary divergence in light of population genetics requires understanding the extent to which the patterns of mutational input contribute to long-term trends. In the context of quantitative traits, mutational input is typically described by the mutational variance-covariance matrix, or the M -matrix, which summarizes phenotypic variances and covariances introduced by new mutations per generation. However, as a summary statistic, the M -matrix does not fully capture all the relevant information from the underlying mutational architecture, and there exist infinitely many possible underlying mutational architectures that give rise to the same M -matrix. Using individual-based simulations, we demonstrate mutational architectures that produce the same M -matrix can lead to different levels of constraint on evolution and result in difference in within-population genetic variance, between-population divergence, and rate of adaptation. In particular, the rate of adaptation and that of neutral evolution are both reduced when a greater proportion of loci are pleiotropic. Our results reveal that aspects of mutational input not reflected by the M -matrix can have a profound impact on long-term evolution, and suggest it is important to take them into account in order to connect patterns of long-term phenotypic evolution to underlying microevolutionary mechanisms.
Collapse
Affiliation(s)
- Daohan Jiang
- Department of Quantitative and Computational Biology, University of Southern California, USA
- Macroevolution Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, USA
- Department of Biological Sciences, University of Southern California, USA
- Department of Computational Biology, Cornell University, USA
| |
Collapse
|
74
|
Chaparro-Pedraza PC, Roth G, Melián CJ. Ecological diversification in sexual and asexual lineages. Sci Rep 2024; 14:30369. [PMID: 39638813 PMCID: PMC11621406 DOI: 10.1038/s41598-024-81770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
The presence or absence of sex can have a strong influence on the processes whereby species arise. Yet, the mechanistic underpinnings of this influence are poorly understood. To gain insights into the mechanisms whereby the reproductive mode may influence ecological diversification, we investigate how natural selection, genetic mixing, and the reproductive mode interact and how this interaction affects the evolutionary dynamics of diversifying lineages. To do so, we analyze models of ecological diversification for sexual and asexual lineages, in which diversification is driven by intraspecific resource competition. We find that the reproductive mode strongly influences the diversification rate and, thus, the ensuing diversity of a lineage. Our results reveal that ecologically-based selection is stronger in asexual lineages because asexual organisms have a higher reproductive potential than sexual ones. This promotes faster diversification in asexual lineages. However, a small amount of genetic mixing accelerates the trait expansion process in sexual lineages, overturning the effect of ecologically-based selection alone and enabling a faster niche occupancy than asexual lineages. As a consequence, sexual lineages can occupy more ecological niches, eventually resulting in higher diversity. This suggests that sexual reproduction may be widespread among species because it increases the rate of diversification.
Collapse
Affiliation(s)
- P Catalina Chaparro-Pedraza
- Department of Fish Ecology and Evolution, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland.
- Department Systems Analysis, Integrated Assessment and Modelling, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Dübendorf, Switzerland.
- Inst. of Ecology and Evolution, University of Bern, Bern, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Gregory Roth
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Carlos J Melián
- Department of Fish Ecology and Evolution, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
- Inst. of Ecology and Evolution, University of Bern, Bern, Switzerland
- Inst. de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Palma de Mallorca, Spain
| |
Collapse
|
75
|
Kasimatis KR, Willis JH, Sedore CA, Phillips PC. Transcriptomic Sexual Conflict at Two Evolutionary Timescales Revealed by Experimental Evolution in Caenorhabditis elegans. Genome Biol Evol 2024; 16:evae256. [PMID: 39570916 DOI: 10.1093/gbe/evae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024] Open
Abstract
Sex-specific regulation of gene expression is the most plausible way for generating sexually differentiated phenotypes from an essentially shared genome. However, since genetic material is shared, sex-specific selection in one sex can have an indirect response in the other sex. From a gene expression perspective, this tethered response can move one sex away from their wild-type expression state and potentially impact many gene regulatory networks. Here, using experimental evolution in the model nematode Caenorhabditis elegans, we explore the coupling of direct sexual selection on males with the transcriptomic response in males and females over microevolutionary timescales to uncover the extent to which postinsemination reproductive traits share a genetic basis between the sexes. We find that differential gene expression evolved in a sex-specific manner in males, while in females, indirect selection causes an evolved response. Almost all differentially expressed genes were downregulated in both evolved males and females. Moreover, 97% of significantly differentially expressed genes in males and 69% of significantly differentially expressed genes in females have wild-type female-biased expression profile. Changes in gene expression profiles were likely driven through trans-acting pathways that are shared between the sexes. We found no evidence that the core dosage compensation machinery was impacted by experimental evolution. Together, these data suggest a defeminization of the male transcriptome and masculinization of the female transcriptome driven by direct selection on male sperm competitive ability. Our results indicate that on short evolutionary timescales, sexual selection can generate putative sexual conflict in expression space.
Collapse
Affiliation(s)
- Katja R Kasimatis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Christine A Sedore
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| |
Collapse
|
76
|
Xiao Y, Lv YW, Wang ZY, Wu C, He ZH, Hu XS. Selfing Shapes Fixation of a Mutant Allele Under Flux Equilibrium. Genome Biol Evol 2024; 16:evae261. [PMID: 39656771 DOI: 10.1093/gbe/evae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Sexual reproduction with alternative generations in a life cycle is an important feature in eukaryotic evolution. Partial selfing can regulate the efficacy of purging deleterious alleles in the gametophyte phase and the masking effect in heterozygotes in the sporophyte phase. Here, we develop a new theory to analyze how selfing shapes fixation of a mutant allele that is expressed in the gametophyte or the sporophyte phase only or in two phases. In an infinitely large population, we analyze a critical selfing rate beyond which the mutant allele tends to be fixed under equilibrium between irreversible mutation and selection effects. The critical selfing rate varies with genes expressed in alternative phases. In a finite population with partial self-fertilization, we apply Wright's method to calculate the fixation probability of the mutant allele under flux equilibrium among irreversible mutation, selection, and drift effects and compare it with the fixation probability derived from diffusion model under equilibrium between selection and drift effects. Selfing facilitates fixation of the deleterious allele expressed in the gametophyte phase only but impedes fixation of the deleterious allele expressed in the sporophyte phase only. Selfing facilitates or impedes fixation of the deleterious allele expressed in two phases, depending upon how phase variation in selection occurs in a life cycle. The overall results help to understand the adaptive strategy that sexual reproductive plant species evolve through the joint effects of partial selfing and alternative generations in a life cycle.
Collapse
Affiliation(s)
- Yu Xiao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Yan-Wen Lv
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Yun Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Chao Wu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Han He
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Xin-Sheng Hu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
77
|
Sinnott-Armstrong N, Fields S, Roth F, Starita LM, Trapnell C, Villen J, Fowler DM, Queitsch C. Understanding genetic variants in context. eLife 2024; 13:e88231. [PMID: 39625477 PMCID: PMC11614383 DOI: 10.7554/elife.88231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/15/2024] [Indexed: 12/06/2024] Open
Abstract
Over the last three decades, human genetics has gone from dissecting high-penetrance Mendelian diseases to discovering the vast and complex genetic etiology of common human diseases. In tackling this complexity, scientists have discovered the importance of numerous genetic processes - most notably functional regulatory elements - in the development and progression of these diseases. Simultaneously, scientists have increasingly used multiplex assays of variant effect to systematically phenotype the cellular consequences of millions of genetic variants. In this article, we argue that the context of genetic variants - at all scales, from other genetic variants and gene regulation to cell biology to organismal environment - are critical components of how we can employ genomics to interpret these variants, and ultimately treat these diseases. We describe approaches to extend existing experimental assays and computational approaches to examine and quantify the importance of this context, including through causal analytic approaches. Having a unified understanding of the molecular, physiological, and environmental processes governing the interpretation of genetic variants is sorely needed for the field, and this perspective argues for feasible approaches by which the combined interpretation of cellular, animal, and epidemiological data can yield that knowledge.
Collapse
Affiliation(s)
- Nasa Sinnott-Armstrong
- Herbold Computational Biology Program, Fred Hutchinson Cancer CenterSeattleUnited States
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
| | - Stanley Fields
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Department of Medicine, University of WashingtonSeattleUnited States
| | - Frederick Roth
- Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of TorontoTorontoCanada
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai HospitalTorontoCanada
- Department of Computational and Systems Biology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Lea M Starita
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
| | - Cole Trapnell
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
| | - Judit Villen
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
| | - Douglas M Fowler
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
- Department of Bioengineering, University of WashingtonSeattleUnited States
| | - Christine Queitsch
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
| |
Collapse
|
78
|
Charlesworth B, Olito C. Making sense of recent models of the "sheltering" hypothesis for recombination arrest between sex chromosomes. Evolution 2024; 78:1891-1899. [PMID: 39399984 DOI: 10.1093/evolut/qpae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/01/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
In their most extreme form, sex chromosomes exhibit a complete lack of genetic recombination along much of their length in the heterogametic sex. Some recent models explain the evolution of such suppressed recombination by the "sheltering" of deleterious mutations by chromosomal inversions that prevent recombination around a polymorphic locus controlling sex. This sheltering hypothesis is based on the following reasoning. An inversion that is associated with the male-determining allele (with male heterogamety) is present only in the heterozygous state. If such an inversion carries a lower-than-average number of deleterious mutations, it will accrue a selective advantage and will be sheltered from homozygosity for any mutations that it carries due to the enforced heterozygosity for the inversion itself. It can, therefore, become fixed among all carriers of the male-determining allele. Recent population genetics models of this process are discussed. It is shown that, except under the unlikely scenario of a high degree of recessivity of most deleterious mutations, inversions of this type that lack any other fitness effects will have, at best, a modest selective advantage; they will usually accumulate on proto-Y chromosomes at a rate close to, or less than, the neutral expectation. While the existence of deleterious mutations does not necessarily prevent the spread of Y-linked inversions, it is unlikely to provide a significant selective advantage to them.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Colin Olito
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
79
|
Pollo P, Lagisz M, Yang Y, Culina A, Nakagawa S. Synthesis of sexual selection: a systematic map of meta-analyses with bibliometric analysis. Biol Rev Camb Philos Soc 2024; 99:2134-2175. [PMID: 38982618 DOI: 10.1111/brv.13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Sexual selection has been a popular subject within evolutionary biology because of its central role in explaining odd and counterintuitive traits observed in nature. Consequently, the literature associated with this field of study became vast. Meta-analytical studies attempting to draw inferences from this literature have now accumulated, varying in scope and quality, thus calling for a synthesis of these syntheses. We conducted a systematic literature search to create a systematic map with a report appraisal of meta-analyses on topics associated with sexual selection, aiming to identify the conceptual and methodological gaps in this secondary literature. We also conducted bibliometric analyses to explore whether these gaps are associated with the gender and origin of the authors of these meta-analyses. We included 152 meta-analytical studies in our systematic map. We found that most meta-analyses focused on males and on certain animal groups (e.g. birds), indicating severe sex and taxonomic biases. The topics in these studies varied greatly, from proximate (e.g. relationship of ornaments with other traits) to ultimate questions (e.g. formal estimates of sexual selection strength), although the former were more common. We also observed several common methodological issues in these studies, such as lack of detailed information regarding searches, screening, and analyses, which ultimately impairs the reliability of many of these meta-analyses. In addition, most of the meta-analyses' authors were men affiliated to institutions from developed countries, pointing to both gender and geographical authorship biases. Most importantly, we found that certain authorship aspects were associated with conceptual and methodological issues in meta-analytical studies. Many of our findings might simply reflect patterns in the current state of the primary literature and academia, suggesting that our study can serve as an indicator of issues within the field of sexual selection at large. Based on our findings, we provide both conceptual and analytical recommendations to improve future studies in the field of sexual selection.
Collapse
Affiliation(s)
- Pietro Pollo
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| | - Yefeng Yang
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| | - Antica Culina
- Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb, 10000, Croatia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| |
Collapse
|
80
|
Zhu Z, Han C, Huang S. New insights shed light on the enigma of genetic diversity and species complexity. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2774-2776. [PMID: 39167323 DOI: 10.1007/s11427-023-2610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/04/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Zuobin Zhu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Conghui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, 221009, China.
| | - Shi Huang
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Medical University, Xuzhou, 221004, China.
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
81
|
Branciamore S, Rodin AS, Riggs AD. Stochastic Epigenetic Modification and Evolution of Sex Determination in Vertebrates. J Mol Evol 2024; 92:861-873. [PMID: 39565411 PMCID: PMC11646274 DOI: 10.1007/s00239-024-10213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 10/19/2024] [Indexed: 11/21/2024]
Abstract
In this report, we propose a novel mathematical model of the origin and evolution of sex determination in vertebrates that is based on the stochastic epigenetic modification (SEM) mechanism. We have previously shown that SEM, with rates consistent with experimental observation, can both increase the rate of gene fixation and decrease pseudogenization, thus dramatically improving the efficacy of evolution. Here, we present a conjectural model of the origin and evolution of sex determination wherein the SEM mechanism alone is sufficient to parsimoniously trigger and guide the evolution of heteromorphic sex chromosomes from the initial homomorphic chromosome configuration, without presupposing any allele frequency differences. Under this theoretical model, the SEM mechanism (i) predated vertebrate sex determination origins and evolution, (ii) has been conveniently and parsimoniously co-opted by the vertebrate sex determination systems during the evolutionary transitioning to the extant vertebrate sex determination, likely acting "on top" of these systems, and (iii) continues existing, alongside all known vertebrate sex determination systems, as a universal pan-vertebrate sex determination modulation mechanism.
Collapse
Affiliation(s)
- Sergio Branciamore
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, USA.
| | - Andrei S Rodin
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, USA.
| | - Arthur D Riggs
- Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte , USA
| |
Collapse
|
82
|
Latrille T, Joseph J, Hartasánchez DA, Salamin N. Estimating the proportion of beneficial mutations that are not adaptive in mammals. PLoS Genet 2024; 20:e1011536. [PMID: 39724093 PMCID: PMC11709321 DOI: 10.1371/journal.pgen.1011536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 01/08/2025] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Mutations can be beneficial by bringing innovation to their bearer, allowing them to adapt to environmental change. These mutations are typically unpredictable since they respond to an unforeseen change in the environment. However, mutations can also be beneficial because they are simply restoring a state of higher fitness that was lost due to genetic drift in a stable environment. In contrast to adaptive mutations, these beneficial non-adaptive mutations can be predicted if the underlying fitness landscape is stable and known. The contribution of such non-adaptive mutations to molecular evolution has been widely neglected mainly because their detection is very challenging. We have here reconstructed protein-coding gene fitness landscapes shared between mammals, using mutation-selection models and a multi-species alignments across 87 mammals. These fitness landscapes have allowed us to predict the fitness effect of polymorphisms found in 28 mammalian populations. Using methods that quantify selection at the population level, we have confirmed that beneficial non-adaptive mutations are indeed positively selected in extant populations. Our work confirms that deleterious substitutions are accumulating in mammals and are being reverted, generating a balance in which genomes are damaged and restored simultaneously at different loci. We observe that beneficial non-adaptive mutations represent between 15% and 45% of all beneficial mutations in 24 of 28 populations analyzed, suggesting that a substantial part of ongoing positive selection is not driven solely by adaptation to environmental change in mammals.
Collapse
Affiliation(s)
- Thibault Latrille
- Department of Computational Biology, Université de Lausanne, Lausanne, Switzerland
| | - Julien Joseph
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Villeurbanne, France
| | | | - Nicolas Salamin
- Department of Computational Biology, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
83
|
Han CS, Robledo-Ruiz DA, Garcia-Gonzalez F, Dingemanse NJ, Tuni C. Unraveling mate choice evolution through indirect genetic effects. Evol Lett 2024; 8:841-850. [PMID: 39677572 PMCID: PMC11637604 DOI: 10.1093/evlett/qrae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 12/17/2024] Open
Abstract
Attractiveness is not solely determined by a single sexual trait but rather by a combination of traits. Because the response of the chooser is based on the combination of sexual traits in the courter, variation in the chooser's responses that are attributable to the opposite-sex courter genotypes (i.e., the indirect genetic effects [IGEs] on chooser response) can reflect genetic variation in overall attractiveness. This genetic variation can be associated with the genetic basis of other traits in both the chooser and the courter. Investigating this complex genetic architecture, including IGEs, can enhance our understanding of the evolution of mate choice. In the present study on the field cricket Gryllus bimaculatus, we estimated (1) genetic variation in overall attractiveness and (2) genetic correlations between overall attractiveness and other pre- and postcopulatory traits (e.g., male latency to sing, female latency to mount, male guarding intensity, male and female body mass, male mandible size, and testis size) within and between sexes. We revealed a genetic basis for attractiveness in both males and females. Furthermore, a genetic variance associated with female attractiveness was correlated with a genetic variance underlying larger male testes. Our findings imply that males that mate with attractive females can produce offspring that are successful in terms of precopulatory sexual selection (daughters who are attractive) and postcopulatory sexual selection (sons with an advantage in sperm competition), potentially leading to runaway sexual selection. Our study exemplifies how the incorporation of the IGE framework provides novel insights into the evolution of mate choice.
Collapse
Affiliation(s)
- Chang S Han
- Department of Biology, Kyung Hee University, Seoul, Korea
| | - Diana A Robledo-Ruiz
- Department of Biology, Ludwig Maximilian University, Munich, Germany
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Francisco Garcia-Gonzalez
- Estación Biológica de Doñana-CSIC, Seville, Spain
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | | | - Cristina Tuni
- Department of Biology, Ludwig Maximilian University, Munich, Germany
- Department of Life Science & Systems Biology, University of Turin, Torino, Italy
| |
Collapse
|
84
|
Wang X‘M, Muller J, McDowell M, Rasmussen DA. Quantifying the strength of viral fitness trade-offs between hosts: a meta-analysis of pleiotropic fitness effects. Evol Lett 2024; 8:851-865. [PMID: 39677573 PMCID: PMC11637551 DOI: 10.1093/evlett/qrae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 12/17/2024] Open
Abstract
The range of hosts a given virus can infect is widely presumed to be limited by fitness trade-offs between alternative hosts. These fitness trade-offs may arise naturally due to antagonistic pleiotropy if mutations that increase fitness in one host tend to decrease fitness in alternate hosts. Yet there is also growing recognition that positive pleiotropy may be more common than previously appreciated. With positive pleiotropy, mutations have concordant fitness effects such that a beneficial mutation can simultaneously increase fitness in different hosts, providing a genetic mechanism by which selection can overcome fitness trade-offs. How readily evolution can overcome fitness trade-offs therefore depends on the overall distribution of mutational fitness effects between hosts, including the relative frequency of antagonistic versus positive pleiotropy. We therefore conducted a systematic meta-analysis of the pleiotropic fitness effects of viral mutations reported in different hosts. Our analysis indicates that while both antagonistic and positive pleiotropy are common, fitness effects are overall positively correlated between hosts and unconditionally beneficial mutations are not uncommon. Moreover, the relative frequency of antagonistic versus positive pleiotropy may simply reflect the underlying frequency of beneficial and deleterious mutations in individual hosts. Given a mutation is beneficial in one host, the probability that it is deleterious in another host is roughly equal to the probability that any mutation is deleterious, suggesting there is no natural tendency toward antagonistic pleiotropy. The widespread prevalence of positive pleiotropy suggests that many fitness trade-offs may be readily overcome by evolution given the right selection pressures.
Collapse
Affiliation(s)
- Xuechun ‘May’ Wang
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Julia Muller
- Gillings School of Global Public Health, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Mya McDowell
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - David A Rasmussen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
85
|
Bourrat P, Takacs P, Doulcier G, Nitschke MC, Black AJ, Hammerschmidt K, Rainey PB. Individuality Through Ecology: Rethinking the Evolution of Complex Life From an Externalist Perspective. Ecol Evol 2024; 14:e70661. [PMID: 39650545 PMCID: PMC11622154 DOI: 10.1002/ece3.70661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/08/2024] [Indexed: 12/11/2024] Open
Abstract
The evolution of complex life forms, exemplified by multicellular organisms, can be traced through a series of evolutionary transitions in individuality, beginning with the origin of life, followed by the emergence of the eukaryotic cell, and, among other transitions, culminating in the shift from unicellularity to multicellularity. Several attempts have been made to explain the origins of such transitions, many of which have been internalist (i.e., based largely on internal properties of ancestral entities). Here, we show how externalist perspectives can shed new light on questions pertaining to evolutionary transitions in individuality. We do this by presenting the ecological scaffolding framework in which properties of complex life forms arise from an external scaffold. Ultimately, we anticipate that progress will come from recognition of the importance of both the internalist and externalist modes of explanation. We illustrate this by considering an extension of the ecological scaffolding model in which cells modify the environment that later becomes the scaffold giving rise to multicellular individuality.
Collapse
Affiliation(s)
- Pierrick Bourrat
- Department of PhilosophyMacquarie UniversityNorth RydeNew South WalesAustralia
- Department of Philosophy & Charles Perkins CenterUniversity of SydneySydneyNew South WalesAustralia
| | - Peter Takacs
- Department of PhilosophyMacquarie UniversityNorth RydeNew South WalesAustralia
- Department of Philosophy & Charles Perkins CenterUniversity of SydneySydneyNew South WalesAustralia
| | - Guilhem Doulcier
- Department of PhilosophyMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Matthew C. Nitschke
- Global Ecology LaboratoryPartuyarta Ngadluku Wardli Kuu, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Andrew J. Black
- School of Computer and Mathematical SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | | | - Paul B. Rainey
- Department of Microbial Population BiologyMax Planck Institute for Evolutionary BiologyPlönGermany
- Laboratoire Biophysique et Évolution, CBI, ESPCI ParisUniversité PSL, CNRSParisFrance
| |
Collapse
|
86
|
Siljestam M, Rueffler C. Heterozygote advantage can explain the extraordinary diversity of immune genes. eLife 2024; 13:e94587. [PMID: 39589392 PMCID: PMC11723581 DOI: 10.7554/elife.94587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
The majority of highly polymorphic genes are related to immune functions and with over 100 alleles within a population, genes of the major histocompatibility complex (MHC) are the most polymorphic loci in vertebrates. How such extraordinary polymorphism arose and is maintained is controversial. One possibility is heterozygote advantage (HA), which can in principle maintain any number of alleles, but biologically explicit models based on this mechanism have so far failed to reliably predict the coexistence of significantly more than 10 alleles. We here present an eco-evolutionary model showing that evolution can result in the emergence and maintenance of more than 100 alleles under HA if the following two assumptions are fulfilled: first, pathogens are lethal in the absence of an appropriate immune defence; second, the effect of pathogens depends on host condition, with hosts in poorer condition being affected more strongly. Thus, our results show that HA can be a more potent force in explaining the extraordinary polymorphism found at MHC loci than currently recognised.
Collapse
Affiliation(s)
- Mattias Siljestam
- Department of Ecology and Genetics, Animal Ecology, Uppsala UniversityUppsalaSweden
| | - Claus Rueffler
- Department of Ecology and Genetics, Animal Ecology, Uppsala UniversityUppsalaSweden
| |
Collapse
|
87
|
Loegler V, Friedrich A, Schacherer J. Overview of the Saccharomyces cerevisiae population structure through the lens of 3,034 genomes. G3 (BETHESDA, MD.) 2024; 14:jkae245. [PMID: 39559979 PMCID: PMC11631439 DOI: 10.1093/g3journal/jkae245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024]
Abstract
With the rise of high-throughput sequencing technologies, a holistic view of genetic variation within populations-through population genomics studies-appears feasible, although it remains an ongoing effort. Genetic variation arises from a diverse range of evolutionary forces, with mutation and recombination being key drivers in shaping genomes. Studying genetic variation within a population represents a crucial first step in understanding the relationship between genotype and phenotype and the evolutionary history of species. In this context, the budding yeast Saccharomyces cerevisiae has been at the forefront of population genomic studies. In addition, it has a complex history that involves adaptation to a wide range of wild and human-related ecological niches. Although to date more than 3,000 diverse isolates have been sequenced, there is currently a lack of a resource bringing together sequencing data and associated metadata for all sequenced isolates. To perform a comprehensive analysis of the population structure of S. cerevisiae, we collected genome sequencing data from 3,034 natural isolates and processed the data uniformly. We determined ploidy levels, identified single nucleotide polymorphisms (SNPs), small insertion-deletions (InDels), copy number variations (CNVs), and aneuploidies across the population, creating a publicly accessible resource for the yeast research community. Interestingly, we showed that this population captures ∼93% of the species diversity. Using neighbor-joining and Bayesian methods, we redefined the populations, revealing clustering patterns primarily based on ecological origin. This work represents a valuable resource for the community and efforts have been made to make it evolvable and integrable to future yeast population studies.
Collapse
Affiliation(s)
- Victor Loegler
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, 67000, France
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, 67000, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, 67000, France
- Institut Universitaire de France (IUF), Paris, 75005, France
| |
Collapse
|
88
|
Emam AM, Semida DA, El-Full EA, Mahmoud BY, Abdel-Azim AM, Elnesr SS. Is the sex ratio of Japanese quail offspring equal? Trop Anim Health Prod 2024; 56:384. [PMID: 39548002 PMCID: PMC11567978 DOI: 10.1007/s11250-024-04224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Offspring sex ratios in avian species are of significant scientific interest, with implications for evolutionary biology and poultry production. This study investigated sex ratios in Japanese quail (Coturnix japonica), a valuable model for other poultry species due to its rapid generation interval. The study examined the impact of selection over generations, age at first egg (AFE), and body weight at AFE (BWAFE) on offspring sex ratios. The dataset included 4,282 Japanese quail records from 968 dams over eight generations, comprising two lines: one selected for high growth rate during 1-21 days of age and an unselected control line. Offspring sex ratio data were categorized based on dam characteristics: AFE (early: <48 days, medium: 48-52 days, late: >52 days) and BWAFE (low: <249 g, medium: 249-268 g, heavy: >268 g). These categories represent below average, average, and above average values for each parameter, respectively. Analyses were done on pedigree and hatching records from two lines of selected and control quails. The chi square and logistic regression analyses exhibited insignificant associations between the examined predictor variables (generation, line, AFE, and BWAFE) and the sex ratio outcome in Japanese quail. Therefore, it can be concluded that the proportion of male and female offspring quail in the flock is statistically equal. However, regarding the BWAFE categories the residual analyses revealed a potential tendency toward a male-biased sex ratio within the medium category also, they suggest potential tendencies toward male-biased (eighth generation) and female-biased (sixth generation) sex ratios that warrant further investigation.
Collapse
Affiliation(s)
- Ahmed M Emam
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Doaa A Semida
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Ensaf A El-Full
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Bothaina Y Mahmoud
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Ali M Abdel-Azim
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Shaaban Saad Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt.
| |
Collapse
|
89
|
Malabusini S, Lupi D. Exploring the Biology of Quasi-Social Idiobiont Parasitoids in the Genus Sclerodermus (Hymenoptera: Bethylidae). INSECTS 2024; 15:880. [PMID: 39590480 PMCID: PMC11594604 DOI: 10.3390/insects15110880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024]
Abstract
Species in the genus Sclerodermus are among the most socially complex parasitoids, unlike most parasitoids, which are solitary and do not provide care after laying eggs. In Sclerodermus, groups of females paralyse their host, lay eggs on it, and work together to care for the brood (a quasi-social form of reproduction). This research, through database analysis and meta-analysis, covers the biology of the genus, which has 80 species, though only 24 have been studied in detail. It describes their morphology and behaviour, focusing on offspring production, developmental time, and the factors influencing these, such as kinship and the number of females tending the brood. The materials and methods used provide a comprehensive approach to data collection and analysis, drawing on diverse sources, rigorous classification, and advanced statistical techniques. This approach revealed that Sclerodermus species display a high degree of consistency in their responses to temperature, host size, and foundress number.
Collapse
Affiliation(s)
| | - Daniela Lupi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy;
| |
Collapse
|
90
|
Morgan AP, Payseur BA. Genetic background affects the strength of crossover interference in house mice. Genetics 2024; 228:iyae146. [PMID: 39241112 PMCID: PMC11538424 DOI: 10.1093/genetics/iyae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 09/08/2024] Open
Abstract
Meiotic recombination is required for faithful chromosome segregation in most sexually reproducing organisms and shapes the distribution of genetic variation in populations. Both the overall rate and the spatial distribution of crossovers vary within and between species. Adjacent crossovers on the same chromosome tend to be spaced more evenly than expected at random, a phenomenon known as crossover interference. Although interference has been observed in many taxa, the factors that influence the strength of interference are not well understood. We used house mice (Mus musculus), a well-established model system for understanding recombination, to study the effects of genetics and age on recombination rate and interference in the male germline. We analyzed crossover positions in 503 progeny from reciprocal F1 hybrids between inbred strains representing the three major subspecies of house mice. Consistent with previous studies, autosomal alleles from M. m. musculus tend to increase recombination rate, while inheriting a M. m. musculus X chromosome decreases recombination rate. Old males transmit an average of 0.6 more crossovers per meiosis (5.0%) than young males, though the effect varies across genetic backgrounds. We show that the strength of crossover interference depends on genotype, providing a rare demonstration that interference evolves over short timescales. Differences between reciprocal F1s suggest that X-linked factors modulate the strength of interference. Our findings motivate additional comparisons of interference among recently diverged species and further examination of the role of paternal age in determining the number and positioning of crossovers.
Collapse
Affiliation(s)
- Andrew P Morgan
- Department of Medicine, University of North Carolina, Campus Box #7085, Chapel Hill, NC 27599-7085, USA
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
91
|
Braendle C, Paaby A. Life history in Caenorhabditis elegans: from molecular genetics to evolutionary ecology. Genetics 2024; 228:iyae151. [PMID: 39422376 PMCID: PMC11538407 DOI: 10.1093/genetics/iyae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Life history is defined by traits that reflect key components of fitness, especially those relating to reproduction and survival. Research in life history seeks to unravel the relationships among these traits and understand how life history strategies evolve to maximize fitness. As such, life history research integrates the study of the genetic and developmental mechanisms underlying trait determination with the evolutionary and ecological context of Darwinian fitness. As a leading model organism for molecular and developmental genetics, Caenorhabditis elegans is unmatched in the characterization of life history-related processes, including developmental timing and plasticity, reproductive behaviors, sex determination, stress tolerance, and aging. Building on recent studies of natural populations and ecology, the combination of C. elegans' historical research strengths with new insights into trait variation now positions it as a uniquely valuable model for life history research. In this review, we summarize the contributions of C. elegans and related species to life history and its evolution. We begin by reviewing the key characteristics of C. elegans life history, with an emphasis on its distinctive reproductive strategies and notable life cycle plasticity. Next, we explore intraspecific variation in life history traits and its underlying genetic architecture. Finally, we provide an overview of how C. elegans has guided research on major life history transitions both within the genus Caenorhabditis and across the broader phylum Nematoda. While C. elegans is relatively new to life history research, significant progress has been made by leveraging its distinctive biological traits, establishing it as a highly cross-disciplinary system for life history studies.
Collapse
Affiliation(s)
- Christian Braendle
- Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Annalise Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
92
|
Müller NA. X-specific methylation distorts sex. NATURE PLANTS 2024; 10:1619-1620. [PMID: 39406862 DOI: 10.1038/s41477-024-01829-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Affiliation(s)
- Niels A Müller
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany.
| |
Collapse
|
93
|
Uttam V, Vohra V, Chhotaray S, Santhosh A, Diwakar V, Patel V, Gahlyan RK. Exome-wide comparative analyses revealed differentiating genomic regions for performance traits in Indian native buffaloes. Anim Biotechnol 2024; 35:2277376. [PMID: 37934017 DOI: 10.1080/10495398.2023.2277376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
In India, 20 breeds of buffalo have been identified and registered, yet limited studies have been conducted to explore the performance potential of these breeds, especially in the Indian native breeds. This study is a maiden attempt to delineate the important variants and unique genes through exome sequencing for milk yield, milk composition, fertility, and adaptation traits in Indian local breeds of buffalo. In the present study, whole exome sequencing was performed on Chhattisgarhi (n = 3), Chilika (n = 4), Gojri (n = 3), and Murrah (n = 4) buffalo breeds and after stringent quality control, 4333, 6829, 4130, and 4854 InDels were revealed, respectively. Exome-wide FST along 100-kb sliding windows detected 27, 98, 38, and 35 outlier windows in Chhattisgarhi, Chilika, Gojri, and Murrah, respectively. The comparative exome analysis of InDels and subsequent gene ontology revealed unique breed specific genes for milk yield (CAMSAP3), milk composition (CLCN1, NUDT3), fertility (PTGER3) and adaptation (KCNA3, TH) traits. Study provides insight into mechanism of how these breeds have evolved under natural selection, the impact of these events on their respective genomes, and their importance in maintaining purity of these breeds for the traits under study. Additionally, this result will underwrite to the genetic acquaintance of these breeds for breeding application, and in understanding of evolution of these Indian local breeds.
Collapse
Affiliation(s)
- Vishakha Uttam
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vikas Vohra
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Supriya Chhotaray
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Ameya Santhosh
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vikas Diwakar
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vaibhav Patel
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Rajesh Kumar Gahlyan
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
94
|
Class B, Strickland K, Potvin D, Jackson N, Nakagawa S, Frère C. Sex-Specific Associations between Social Behavior, Its Predictability, and Fitness in a Wild Lizard. Am Nat 2024; 204:501-516. [PMID: 39486032 DOI: 10.1086/732178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
AbstractSocial environments impose a number of constraints on individuals' behavior. These constraints have been hypothesized to generate behavioral variation among individuals, social responsiveness, and within-individual behavioral consistency (also termed "predictability"). In particular, the social niche specialization hypothesis posits that higher levels of competition associated with higher population density should increase among-individual behavioral variation and individual predictability as a way to reduce conflicts. Being predictable should hence have fitness benefits in group-living animals. However, to date empirical studies of the fitness consequences of behavioral predictability remain scarce. In this study, we investigated the associations between social behavior, its predictability, and fitness in the eastern water dragon (Intellagama lesueurii), a wild gregarious lizard. Since this species is sexually dimorphic, we examined these patterns both between sexes and among individuals. Although females were more sociable than males, there was no evidence for sex differences in among-individual variation or predictability. However, females exhibited positive associations between social behavior, its predictability, and survival, while males exhibited only a positive association between mean social behavior and fitness. These findings hence partly support predictions from the social niche specialization hypothesis and suggest that the function of social predictability may be sex dependent.
Collapse
|
95
|
De Pasqual C, Selenius E, Burdfield-Steel E, Mappes J. Morph-linked variation in female pheromone signalling and male response in a polymorphic moth. J Anim Ecol 2024; 93:1697-1709. [PMID: 39295575 DOI: 10.1111/1365-2656.14182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 08/20/2024] [Indexed: 09/21/2024]
Abstract
Understanding the maintenance of genetic variation in reproductive strategies and polymorphisms in the wild requires a comprehensive examination of the complex interactions between genetic basis, behaviour and environmental factors. We tested the association between three colour genotypes and variation in female pheromone signalling and male antennal morphology in the wood tiger moth (Arctia plantaginis). These moths have genetically determined white (WW, Wy) and yellow (yy) hindwings that are linked to mating success and fitness, with heterozygotes (Wy) having an advantage. We hypothesized that attractiveness and reproductive success are correlated, with Wy females being more attractive than the other two genotypes which could contribute to maintaining the polymorphism. Female attractiveness was tested by baiting traps with females of the three colour genotypes both in low- (i.e. field set-up) and in high-population density (i.e. large enclosure set-up). Male's ability to reach females was correlated to their own colour genotype and antennal morphology (length, area and lamellae count). Contrary to our prediction, morph-related reproductive success and attractiveness were not correlated. Heavier Wy females attracted a lower proportion of males compared to WW and yy females. Specifically, an increase in weight corresponded to a decreased Wy but increased yy female attractiveness. yy females were generally more attractive than others likely due to earlier pheromone release. In males, lamellae count and genetic colour morph were linked to the male's ability to locate females. Furthermore, male traits affected their ability to reach females in a context-specific way. Males with denser antennae (i.e. higher lamellae count) and white males reached the females faster than yellows in the enclosure, while yellow males located females faster than whites in the field. Our results indicate that higher yy female attractiveness was likely affected by the combined effect of early pheromone release, female weight and higher population density. Males' searching success was affected by morph-specific behavioural strategies and local population density. Ultimately, the combined effect of genotype-related pheromone signalling strategies of females together with environment-dependent male behaviour affect male response and potentially contribute to maintaining variation in fitness-related traits.
Collapse
Affiliation(s)
- Chiara De Pasqual
- Organismal and Evolutionary Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Eetu Selenius
- Organismal and Evolutionary Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Emily Burdfield-Steel
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Johanna Mappes
- Organismal and Evolutionary Biology Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
96
|
Pilakouta N, Hanlon EJH, Smiseth PT. Intraspecific Variation in Parental Care May Reflect Variation in Parental Quality. Ecol Evol 2024; 14:e70578. [PMID: 39539680 PMCID: PMC11560317 DOI: 10.1002/ece3.70578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/26/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The existence of life-history trade-offs is a fundamental assumption of evolutionary biology and behavioural ecology, yet empirical studies have found mixed evidence for this. Such trade-offs are expected when individuals vary in how they allocate their limited resource budgets between different life-history functions (variation in resource allocation), but they may be masked when individuals vary in how many resources they have acquired that they can later allocate to life-history functions (variation in resource acquisition). We currently lack studies on the extent to which individual differences in behaviour reflect variation between individuals in resource acquisition and resource allocation. Here, we use parental care as a case study for exploring this question. We used the burying beetle Nicrophorus vespilloides, which exhibits facultative biparental care, comprising direct care (provisioning food or interacting with larvae) and indirect care (guarding or maintaining the carcass). We found some evidence for a positive relationship between these two components of care for both male and female parents. In addition, parents that spent more time providing care 24 h after hatching also tended to provide care for longer. Lastly, parents that provided more parental care did not experience a trade-off of reduced lifespan after the breeding attempt. On the contrary, we found a positive relationship between the duration of care provided and parents' post-breeding lifespan. Our finding of positive relationships between parental behaviours and between parental care and lifespan suggests that variation in care was mainly driven by differences in prior resource acquisition (i.e., parental quality) among individuals rather than differences in resource allocation. Our findings thus suggest that high intraspecific variation in parental quality can potentially mask reproductive investment trade-offs within populations.
Collapse
Affiliation(s)
- Natalie Pilakouta
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
- Centre for Biological Diversity, School of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Elizabeth J. H. Hanlon
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Per T. Smiseth
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
97
|
Demetrius LA, Sahasranaman A, Ziehe M. Directionality theory and mortality patterns across the primate lineage. Biogerontology 2024; 25:1215-1237. [PMID: 39240404 PMCID: PMC11486795 DOI: 10.1007/s10522-024-10134-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
Empirical studies of aging in primates show that local selective forces rather than phylogenetic history determine the exceptional nature of human longevity (Bronikowski et al., Science 331:1325-1328, 2011). This article proposes an evolutionary rationale for this pattern of primate mortality by invoking the parameter, Life-Table Entropy, a measure of the uncertainty in the life span of a randomly chosen newborn. Life-table entropy is positively correlated with maximal life span, that is, the mean life span of a species living under favourable conditions.The logic which underlies the exceptional nature of human longevity derives from the terrestrial life-history of humans - a singularity within the primate lineage; and the concomitant ecological constraints-the hunter-gatherer, agricultural, and industrial modes of subsistence, that have defined human evolutionary history. The effect of these ecological constraints on the evolution of life span is encoded in the Entropic Principle of Longevity: life-table entropy increases in equilibrium species, populations evolving in environments with stable, renewable resources; and decreases in opportunistic species, populations subject to fluctuating resource endowments.The Entropic Principle of Longevity is a derivative of Directionality Theory, an analytic study of the evolutionary process of variation and selection based on Evolutionary Entropy, a statistical measure of the uncertainty in the age of the mother of a randomly chosen newborn. Evolutionary entropy is the organizing concept of The Entropic Principle of Evolution: Evolutionary Entropy increases in equilibrium species and decreases in opportunistic species.
Collapse
Affiliation(s)
- Lloyd A Demetrius
- Dept. of Organismic and Evolutionary Biology, Harvard University, Cambridge, Mass, 02138, USA.
| | - Anand Sahasranaman
- Centre for Complexity Science, Imperial College London, London, SW72AZ, UK.
| | - Martin Ziehe
- Faculty of Forest Genetics and Forest Ecology, University of Gottingen, Busgenweg 2, 37077, Gottingen, Germany.
| |
Collapse
|
98
|
Santidrián Tomillo P. Re-Equilibrating Sex Ratios: Adjustment of Reaction Norms in Species With Temperature-Dependent Sex Determination. GLOBAL CHANGE BIOLOGY 2024; 30:e17568. [PMID: 39492691 DOI: 10.1111/gcb.17568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Fisher's general principle for sex allocation holds that population sex ratios are typically balanced because parents producing the rare sex are benefited and the rare sex alternates over time. In species that have temperature-dependent sex determination (TSD), thermal reaction norms need to be adjusted at the population level to avoid extremely biased sex ratios and extinction. Extant species with TSD experienced drastic climatic changes in the geological past and must necessarily have mechanisms of adaptation. I propose here a conceptual framework to explain how TSD curves could be adjusted by means of natural selection, based on Fisher's equilibrium sex-ratio principle. Through a process that alternatively favors mothers that tend to produce the rare sex under new temperatures, sex ratios eventually return toward a theoretical equilibrium. Prerequisites for this model are variability among mothers in the tendency to produce a particular sex at a given temperature (i.e., variability in the thermal reaction norm), inheritance of this trend, and higher fitness of the rare sex. This straightforward mechanism could facilitate thermal adaptation in species with TSD over multiple generations.
Collapse
Affiliation(s)
- Pilar Santidrián Tomillo
- Centre Oceanogràfic de les Balears, Instituto Español de Oceanografía (IEO, CSIC), Palma de Mallorca, Spain
| |
Collapse
|
99
|
Van Dyken JD, Zee PC. Disentangling the Factors Selecting for Unicellular Programmed Cell Death. Am Nat 2024; 204:468-481. [PMID: 39486033 DOI: 10.1086/732199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
AbstractThe widespread occurrence of genetically programmed cell death (PCD) in unicellular species poses an evolutionary puzzle. While kin selection theory predicts that the fitness benefits of cell suicide must be preferentially directed toward genetic relatives, it does not predict the nature of these benefits. Furthermore, cell suicide must be conditionally expressed, leaving open the question of what conditions optimally regulate expression. Here we formalize several verbal hypotheses for the ecological function of unicellular PCD. We show that self-sacrifice by healthy cells cannot evolve. Instead, PCD evolution requires that damaged cells sense impending death and then (1) expedite this death to spare resources for groupmates, (2) prepare cellular contents so that necrotic toxins are not released upon death, or initiate autolysis in order to (3) release beneficial compounds or (4) release anticompetitior toxins. The prerequisite ability to predict death is a severe cell biological constraint as well as an ecological constraint that restricts PCD evolution to species with specific sources of mortality. We show that the specific type of PCD that will evolve, though, differs on the basis of a species' ecology, life history, and genetic structure.
Collapse
|
100
|
McDonough Y, Ruzicka F, Connallon T. Reconciling theories of dominance with the relative rates of adaptive substitution on sex chromosomes and autosomes. Proc Natl Acad Sci U S A 2024; 121:e2406335121. [PMID: 39436652 PMCID: PMC11536091 DOI: 10.1073/pnas.2406335121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
The dominance of beneficial mutations is a key evolutionary parameter affecting the rate and genetic basis of adaptation, yet it is notoriously difficult to estimate. A leading method to infer it is to compare the relative rates of adaptive substitution for X-linked and autosomal genes, which-according to a classic model by Charlesworth et al. (1987)-is a simple function of the dominance of new beneficial mutations. Recent evidence that rates of adaptive substitution are faster for X-linked genes implies, accordingly, that beneficial mutations are usually recessive. However, this conclusion is incompatible with leading theories of dominance, which predict that beneficial mutations tend to be dominant or overdominant with respect to fitness. To address this incompatibility, we use Fisher's geometric model to predict the distribution of fitness effects of new mutations and the relative rates of positively selected substitution on the X and autosomes. Previous predictions of faster-X theory emerge as a special case of our model in which the phenotypic effects of mutations are small relative to the distance to the phenotypic optimum. But as mutational effects become large relative to the optimum, we observe an elevated tempo of positively selected substitutions on the X relative to the autosomes across a broader range of dominance conditions, including those predicted by theories of dominance. Our results imply that, contrary to previous models, dominant and overdominant beneficial mutations can plausibly generate patterns of faster-X adaptation. We discuss resulting implications for genomic studies of adaptation and inferences of dominance.
Collapse
Affiliation(s)
- Yasmine McDonough
- School of Biological Sciences, Monash University, Clayton, VIC3800, Australia
| | - Filip Ruzicka
- School of Biological Sciences, Monash University, Clayton, VIC3800, Australia
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | - Tim Connallon
- School of Biological Sciences, Monash University, Clayton, VIC3800, Australia
| |
Collapse
|