51
|
Wang Y, Salonen A, Jian C. Can prebiotics help tackle the childhood obesity epidemic? Front Endocrinol (Lausanne) 2023; 14:1178155. [PMID: 37305030 PMCID: PMC10253620 DOI: 10.3389/fendo.2023.1178155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Globally, excess weight during childhood and adolescence has become a public health crisis with limited treatment options. Emerging evidence suggesting the involvement of gut microbial dysbiosis in obesity instills hope that targeting the gut microbiota could help prevent or treat obesity. In pre-clinical models and adults, prebiotic consumption has been shown to reduce adiposity partially via restoring symbiosis. However, there is a dearth of clinical research into its potential metabolic benefits in the pediatric population. Here, we provide a succinct overview of the common characteristics of the gut microbiota in childhood obesity and mechanisms of action of prebiotics conferring metabolic benefits. We then summarize available clinical trials in children with overweight or obesity investigating the effects of prebiotics on weight management. This review highlights several controversial aspects in the microbiota-dependent mechanisms by which prebiotics are thought to affect host metabolism that warrant future investigation in order to design efficacious interventions for pediatric obesity.
Collapse
Affiliation(s)
- Yaqin Wang
- School of Life and Health Technology, Dongguan University of Technology, Dongguan, China
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ching Jian
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
52
|
Sun X, Chen Z, Yu L, Zeng W, Sun B, Fan H, Bai Y. Bacteroides dorei BDX-01 alleviates DSS-induced experimental colitis in mice by regulating intestinal bile salt hydrolase activity and the FXR-NLRP3 signaling pathway. Front Pharmacol 2023; 14:1205323. [PMID: 37292154 PMCID: PMC10244678 DOI: 10.3389/fphar.2023.1205323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Background: The relationships among intestinal dysbiosis, bile acid (BA) metabolism disorders, and ulcerative colitis pathogenesis are now recognized. However, how specific strains regulate BA metabolism to alleviate colitis is still unclear. This study investigated the effects of Bacteroides dorei on the development of acute colitis and elucidated the underlying mechanisms. Methods: The safety of BDX-01 was evaluated in vitro and in vivo. 2.5% dextran sulfate sodium (DSS) induced colitis in C57BL/6 mice, Caco-2, and J774A.1 cells were used to evaluate the anti-inflammatory effect of BDX-01. qPCR and Western blotting were used to detect the expression of inflammatory pathways. Microbiota composition was analyzed by 16S rRNA gene sequencing. Enzyme activity analysis and targeted metabolomics were used to analyze fecal bile salt hydrolase (BSH) and BA levels. Antibiotic-induced pseudo-germ-free mice were used to investigate the role of gut microbiota in the alleviation of colitis by BDX-01. Results: We confirmed the safety of novel strain Bacteroides dorei BDX-01 in vitro and in vivo. Oral BDX-01 administration significantly ameliorated the symptoms and pathological damage of DSS-induced acute colitis. Moreoever, 16S rRNA sequencing and enzyme activity analysis showed that BDX-01 treatment increased intestinal BSH activity and the abundance of bacteria harboring this enzyme. Targeted metabolomics revealed that BDX-01 significantly increased intestinal BA excretion and deconjugation. Certain BAs act as FXR agonists. The β-muricholic acid (βMCA): taurine β-muricholic acid (T-βMCA) and cholic acid (CA): taurocholic acid (TCA) ratios and the deoxycholic acid (DCA) level decreased markedly in the colitis models but increased substantially in BDX-01-treated mice. The colonic farnesoid X receptor (FXR) and fibroblast growth factor 15 (FGF15) were upregulated in mice treated with BDX-01. BDX-01 downregulated the expression of colonic proinflammatory cytokines pyrin domain-containing 3 (NLRP3), ASC, cleaved caspase-1, and IL-1β. Antibiotic treatment didn't abolish the protective effect of BDX-01 on colitis. In vitro studies showed TβMCA abolished the effects of BDX-01 on FXR activation and inhibition of the NLRP3 inflammasome activation. Conclusion: BDX-01 improved DSS-induced acute colitis by regulating intestinal BSH activity and the FXR-NLRP3 signaling pathway. Our findings indicate that BDX-01 is a promising probiotic to improve the management of ulcerative colitis.
Collapse
Affiliation(s)
- Xiaowei Sun
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenhui Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lu Yu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weisen Zeng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Boyuan Sun
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hongying Fan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yang Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
53
|
Foley MH, Walker ME, Stewart AK, O'Flaherty S, Gentry EC, Patel S, Beaty VV, Allen G, Pan M, Simpson JB, Perkins C, Vanhoy ME, Dougherty MK, McGill SK, Gulati AS, Dorrestein PC, Baker ES, Redinbo MR, Barrangou R, Theriot CM. Bile salt hydrolases shape the bile acid landscape and restrict Clostridioides difficile growth in the murine gut. Nat Microbiol 2023; 8:611-628. [PMID: 36914755 PMCID: PMC10066039 DOI: 10.1038/s41564-023-01337-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/08/2023] [Indexed: 03/16/2023]
Abstract
Bile acids (BAs) mediate the crosstalk between human and microbial cells and influence diseases including Clostridioides difficile infection (CDI). While bile salt hydrolases (BSHs) shape the BA pool by deconjugating conjugated BAs, the basis for their substrate selectivity and impact on C. difficile remain elusive. Here we survey the diversity of BSHs in the gut commensals Lactobacillaceae, which are commonly used as probiotics, and other members of the human gut microbiome. We structurally pinpoint a loop that predicts BSH preferences for either glycine or taurine substrates. BSHs with varying specificities were shown to restrict C. difficile spore germination and growth in vitro and colonization in pre-clinical in vivo models of CDI. Furthermore, BSHs reshape the pool of microbial conjugated bile acids (MCBAs) in the murine gut, and these MCBAs can further restrict C. difficile virulence in vitro. The recognition of conjugated BAs by BSHs defines the resulting BA pool, including the expansive MCBAs. This work provides insights into the structural basis of BSH mechanisms that shape the BA landscape and promote colonization resistance against C. difficile.
Collapse
Affiliation(s)
- Matthew H Foley
- Department of Pathobiology and Population Health, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Morgan E Walker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Allison K Stewart
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Sarah O'Flaherty
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Emily C Gentry
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Shakshi Patel
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Violet V Beaty
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Garrison Allen
- Department of Pathobiology and Population Health, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Meichen Pan
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Joshua B Simpson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caroline Perkins
- Department of Pathobiology and Population Health, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Molly E Vanhoy
- Department of Pathobiology and Population Health, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Michael K Dougherty
- Department of Pediatrics, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah K McGill
- Department of Pediatrics, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ajay S Gulati
- Department of Pediatrics, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Departments of Biochemistry and Biophysics, and Microbiology and Immunology, and the Integrated Program in Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA.
| | - Casey M Theriot
- Department of Pathobiology and Population Health, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
54
|
Zhou C, Wang Y, Li C, Xie Z, Dai L. Amelioration of Colitis by a Gut Bacterial Consortium Producing Anti-Inflammatory Secondary Bile Acids. Microbiol Spectr 2023:e0333022. [PMID: 36943054 PMCID: PMC10101101 DOI: 10.1128/spectrum.03330-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
The Integrative Human Microbiome Project and other cohort studies have indicated that inflammatory bowel disease is accompanied by dysbiosis of gut microbiota, decreased production of secondary bile acids, and increased levels of primary bile acids. Secondary bile acids, such as ursodeoxycholic acid (UDCA) and lithocholic acid (LCA), have been reported to be anti-inflammatory, yet it remains to be studied whether introducing selected bacteria strains to restore bile acid metabolism of the gut microbiome can alleviate intestinal inflammation. In this study, we screened human gut bacterial strains for bile acid metabolism and designed a consortium of three species, including Clostridium AP sp000509125, Bacteroides ovatus, and Eubacterium limosum, and named it BAC (bile acid consortium). We showed that the three-strain gut bacterial consortium BAC is capable of converting conjugated primary bile acids taurochenodeoxycholic acid and glycochenodeoxycholic acid to secondary bile acids UDCA and LCA in vitro. Oral gavage treatment with BAC in mice resulted in protective effects against dextran sulfate sodium (DSS)-induced colitis, including reduced weight loss and increased colon length. Furthermore, BAC treatment increased the fecal level of bile acids, including UDCA and LCA. BAC treatment enhanced intestinal barrier function, which may be attributed to the increased activation of the bile acid receptor TGR5 by secondary bile acids. Finally, we examined the remodeling of gut microbiota by BAC treatment. Taken together, the three-strain gut bacterial consortium BAC restored the dysregulated bile acid metabolism and alleviated DSS-induced colitis. Our study provides a proof-of-concept demonstration that a rationally designed bacterial consortium can reshape the metabolism of the gut microbiome to treat diseases. IMPORTANCE Secondary bile acids have been reported to be anti-inflammatory, yet it remains to be studied whether introducing selected bacteria strains to restore bile acid metabolism of the gut microbiome can alleviate intestinal inflammation. To address this gap, we designed a consortium of human gut bacterial strains based on their metabolic capacity to produce secondary bile acids UDCA and LCA, and we evaluated the efficacy of single bacterial strains and the bacterial consortium in treating the murine colitis model. We found that oral gavage of the bacterial consortium to mice restored secondary bile acid metabolism to increase levels of UDCA and LCA, which induced the activation of TGR5 to improve gut-barrier integrity and reduced the inflammation in murine colitis. Overall, our study demonstrates that rationally designed bacterial consortia can reshape the metabolism of the gut microbiome and provides novel insights into the application of live biotherapeutics for treating IBD.
Collapse
Affiliation(s)
- Chunhua Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Ying Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Cun Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
| |
Collapse
|
55
|
Abstract
A large body of evidence has emerged in the past decade supporting a role for the gut microbiome in the regulation of blood pressure. The field has moved from association to causation in the last 5 years, with studies that have used germ-free animals, antibiotic treatments and direct supplementation with microbial metabolites. The gut microbiome can regulate blood pressure through several mechanisms, including through gut dysbiosis-induced changes in microbiome-associated gene pathways in the host. Microbiota-derived metabolites are either beneficial (for example, short-chain fatty acids and indole-3-lactic acid) or detrimental (for example, trimethylamine N-oxide), and can activate several downstream signalling pathways via G protein-coupled receptors or through direct immune cell activation. Moreover, dysbiosis-associated breakdown of the gut epithelial barrier can elicit systemic inflammation and disrupt intestinal mechanotransduction. These alterations activate mechanisms that are traditionally associated with blood pressure regulation, such as the renin-angiotensin-aldosterone system, the autonomic nervous system, and the immune system. Several methodological and technological challenges remain in gut microbiome research, and the solutions involve minimizing confounding factors, establishing causality and acting globally to improve sample diversity. New clinical trials, precision microbiome medicine and computational methods such as Mendelian randomization have the potential to enable leveraging of the microbiome for translational applications to lower blood pressure.
Collapse
|
56
|
Ryan D, Bornet E, Prezza G, Alampalli SV, de Carvalho TF, Felchle H, Ebbecke T, Hayward R, Deutschbauer AM, Barquist L, Westermann AJ. An integrated transcriptomics-functional genomics approach reveals a small RNA that modulates Bacteroides thetaiotaomicron sensitivity to tetracyclines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528795. [PMID: 36824877 PMCID: PMC9949090 DOI: 10.1101/2023.02.16.528795] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Gene expression plasticity allows bacteria to adapt to diverse environments, tie their metabolism to available nutrients, and cope with stress. This is particularly relevant in a niche as dynamic and hostile as the human intestinal tract, yet transcriptional networks remain largely unknown in gut Bacteroides spp. Here, we map transcriptional units and profile their expression levels in Bacteroides thetaiotaomicron over a suite of 15 defined experimental conditions that are relevant in vivo , such as variation of temperature, pH, and oxygen tension, exposure to antibiotic stress, and growth on simple carbohydrates or on host mucin-derived glycans. Thereby, we infer stress- and carbon source-specific transcriptional regulons, including conditional expression of capsular polysaccharides and polysaccharide utilization loci, and expand the annotation of small regulatory RNAs (sRNAs) in this organism. Integrating this comprehensive expression atlas with transposon mutant fitness data, we identify conditionally important sRNAs. One example is MasB, whose inactivation led to increased bacterial tolerance of tetracyclines. Using MS2 affinity purification coupled with RNA sequencing, we predict targets of this sRNA and discuss their potential role in the context of the MasB-associated phenotype. Together, this transcriptomic compendium in combination with functional sRNA genomics-publicly available through a new iteration of the 'Theta-Base' web browser (www.helmholtz-hiri.de/en/datasets/bacteroides-v2)-constitutes a valuable resource for the microbiome and sRNA research communities alike.
Collapse
|
57
|
Sun L, Zhang Y, Cai J, Rimal B, Rocha ER, Coleman JP, Zhang C, Nichols RG, Luo Y, Kim B, Chen Y, Krausz KW, Harris CC, Patterson AD, Zhang Z, Takahashi S, Gonzalez FJ. Bile salt hydrolase in non-enterotoxigenic Bacteroides potentiates colorectal cancer. Nat Commun 2023; 14:755. [PMID: 36765047 PMCID: PMC9918522 DOI: 10.1038/s41467-023-36089-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Bile salt hydrolase (BSH) in Bacteroides is considered a potential drug target for obesity-related metabolic diseases, but its involvement in colon tumorigenesis has not been explored. BSH-expressing Bacteroides is found at high abundance in the stools of colorectal cancer (CRC) patients with overweight and in the feces of a high-fat diet (HFD)-induced CRC mouse model. Colonization of B. fragilis 638R, a strain with low BSH activity, overexpressing a recombinant bsh gene from B. fragilis NCTC9343 strain, results in increased unconjugated bile acids in the colon and accelerated progression of CRC under HFD treatment. In the presence of high BSH activity, the resultant elevation of unconjugated deoxycholic acid and lithocholic acid activates the G-protein-coupled bile acid receptor, resulting in increased β-catenin-regulated chemokine (C-C motif) ligand 28 (CCL28) expression in colon tumors. Activation of the β-catenin/CCL28 axis leads to elevated intra-tumoral immunosuppressive CD25+FOXP3+ Treg cells. Blockade of the β-catenin/CCL28 axis releases the immunosuppression to enhance the intra-tumoral anti-tumor response, which decreases CRC progression under HFD treatment. Pharmacological inhibition of BSH reduces HFD-accelerated CRC progression, coincident with suppression of the β-catenin/CCL28 pathway. These findings provide insights into the pro-carcinogenetic role of Bacteroides in obesity-related CRC progression and characterize BSH as a potential target for CRC prevention and treatment.
Collapse
Affiliation(s)
- Lulu Sun
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Yi Zhang
- Department of General Surgery, Cancer Center, Peking University Third Hospital, Beijing, 100191, China
| | - Jie Cai
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Bipin Rimal
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary & Biomedical Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Edson R Rocha
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - James P Coleman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Chenran Zhang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Robert G Nichols
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary & Biomedical Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yuhong Luo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Bora Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Yaozong Chen
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Andrew D Patterson
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary & Biomedical Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Zhipeng Zhang
- Department of General Surgery, Cancer Center, Peking University Third Hospital, Beijing, 100191, China.
| | - Shogo Takahashi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
58
|
Jia B, Zou Y, Han X, Bae JW, Jeon CO. Gut microbiome-mediated mechanisms for reducing cholesterol levels: implications for ameliorating cardiovascular disease. Trends Microbiol 2023; 31:76-91. [PMID: 36008191 DOI: 10.1016/j.tim.2022.08.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/24/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022]
Abstract
Cardiovascular disease (CVD) is a health problem worldwide, and elevated cholesterol levels are a key risk factor for the disease. Dysbiotic gut microbiota has been shown to be associated with CVD development. However, the beneficial effects of healthy microbiota in decreasing cholesterol levels have not been summarized. Herein, we begin by discussing the potential mechanisms by which the gut microbiota reduces cholesterol levels. We further sketch the application of probiotics from the genera Lactobacillus and Bifidobacterium in reducing cholesterol levels in clinical studies. Finally, we present the cholesterol-lowering function of beneficial commensal microbes, such as Akkermansia and Bacteroides spp., as these microbes have potential to be the next-generation probiotics (NGPs). The information reviewed in this paper will help people to understand how the gut microbiome might alter cholesterol metabolism and enable the development of NGPs to prevent and treat CVD.
Collapse
Affiliation(s)
- Baolei Jia
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| | | | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jin-Woo Bae
- Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
59
|
Xiao J, Wei Z, Yang C, Dai S, Wang X, Shang Y. The gut microbiota in experimental abdominal aortic aneurysm. Front Cardiovasc Med 2023; 10:1051648. [PMID: 36910527 PMCID: PMC9992639 DOI: 10.3389/fcvm.2023.1051648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a life-threatening disease and there are no effective treatments to inhibit aneurysm progression and rupture. The gut microbiota has been increasingly recognized, as a new therapeutic target, because of its role in host homeostasis. However, the role of the gut microbiota in AAA has not been clarified. Therefore, we performed 16S rRNA analysis to determine and compare the composition of the gut microbiota between AAA and control groups. Methods We used the classical angiotensin-II induced AAA mouse model to investigate the role of gut microbiota and abdominal aortic aneurysm. The mice were randomly assigned to 2 groups: the control (n = 7) group received saline (vehicle), while the AAA (n = 13) group received solutions of Ang II. Aortic tissue and fecal samples were harvested 28 days after infusion. Fecal samples were analyzed by 16S rRNA sequencing. Results The levels of Oscillospira, Coprococcus, Faecalibacterium prausnitzii, Alistipes massiliensis, and Ruminococcus gnavus were increased in the AAA group, while those of Akkermansia muciniphila, Allobaculum, and Barnesiella intestinihominis were increased in the control group. Furthermore, network analysis and ZiPi score assessment highlighted species in the phylum Bacteroidetes as the keystone species. PICRUSt2 analysis revealed that PWY-6629 (a super pathway of L-tryptophan biosynthesis), PWY-7446 (sulfoglycolysis), and PWY-6165 [chorismate biosynthesis II (archaea)] may-be involved in the metabolic pathways that contribute to AAA formation, and E. coli/Shigella may be the key bacteria that influence those three pathways. Conclusion Alterations in the gut microbiota may be associated with the formation of AAA. Akkermansia and Lactobacillus were significantly decreased in the AAA group, but the keystone species in the phylum Bacteroidetes and the metabolic products of these bacteria should be given more attention in AAA formation research.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Cardiovascular Surgery, Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanjie Wei
- Department of General Surgery, Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanlei Yang
- Department of Cardiovascular Surgery, Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Shilin Dai
- Department of Cardiovascular Surgery, Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Xiancan Wang
- Department of Cardiovascular Surgery, Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqiang Shang
- Department of Cardiovascular Surgery, Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
60
|
Lv WJ, Huang JY, Lin J, Ma YM, He SQ, Zhang YW, Wang TZ, Cheng K, Xiong Y, Sun FG, Pan ZC, Sun JB, Mao W, Guo SN. Phytosterols Alleviate Hyperlipidemia by Regulating Gut Microbiota and Cholesterol Metabolism in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6409385. [PMID: 37151603 PMCID: PMC10156461 DOI: 10.1155/2023/6409385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/29/2022] [Accepted: 02/17/2023] [Indexed: 05/09/2023]
Abstract
Phytosterols (PS) have been shown to regulate cholesterol metabolism and alleviate hyperlipidemia (HLP), but the mechanism is still unclear. In this study, we investigated the mechanism by which PS regulates cholesterol metabolism in high-fat diet (HFD) mice. The results showed that PS treatment reduced the accumulation of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) in the serum of HFD mice, while increasing the serum levels of high-density lipoprotein cholesterol (HDL-C). Compared with HFD mice, PS not only increased the antioxidant activity of the liver but also regulated the mRNA expression levels of enzymes and receptors related to cholesterol metabolism. The hypolipidemic effect of PS was abolished by antibiotic (Abx) intervention and reproduced by fecal transplantation (FMT) intervention. The results of 16S rRNA sequencing analysis showed that PS modulated the gut microbiota of mice. PS reduced the relative abundance of Lactobacillus and other bile salt hydrolase- (BSH-) producing gut microbiota in HFD mice, which are potentially related to cholesterol metabolism. These findings partially explain the mechanisms by which PS regulates cholesterol metabolism. This implies that regulation of the gut microbiota would be a potential target for the treatment of HLP.
Collapse
Affiliation(s)
- Wei-Jie Lv
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Jie-Yi Huang
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Jin Lin
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Yi-Mu Ma
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Shi-Qi He
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Ying-Wen Zhang
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Tian-Ze Wang
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Ke Cheng
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Ying Xiong
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Feng-Gang Sun
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Zhong-Chao Pan
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Jing-Bo Sun
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Wei Mao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Shi-Ning Guo
- College of Veterinary Medicine, South China Agricultural University, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| |
Collapse
|
61
|
Promotion of Deoxycholic Acid Effect on Colonic Cancer Cell Lines In Vitro by Altering the Mucosal Microbiota. Microorganisms 2022; 10:microorganisms10122486. [PMID: 36557741 PMCID: PMC9788287 DOI: 10.3390/microorganisms10122486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent neoplasm and the second leading cause of cancer death worldwide. Microbiota and their products, such as bile acids (BAs), are important causal factors for the occurrence and development of CRC. Therefore, we performed 16S ribosomal RNA (16S rRNA) and liquid chromatography/mass spectrometry (LC-MS) to measure mucosal microbiota and BA composition in paired cancerous and noncancerous gut tissue samples from 33 patients with CRC at a hospital in Beijing. In cancerous tissues, we detected altered mucosal microbiota with increased levels of the genera Bacteroides, Curtobacterium, and Campylobacter and an increase in deoxycholic acid (DCA), which was the only BA elevated in cancerous tissues. Ex vivo coculture showed that the mucosal microbiota in cancerous tissues indeed had a stronger DCA production ability, indicating that DCA-producing bacteria are enriched in tumors. Results from the CCK8 and Transwell assays indicated that DCA enhances the overgrowth, migration, and invasion of CRC cell lines, and, through qPCR and Western blot analyses, downregulation of FXR was observed in CRC cell lines after DCA culture. We then verified the downregulation of FXR expression in cancerous tissues using our data and the TCGA database, and we found that FXR downregulation plays an important role in the development of CRC. In conclusion, differing mucosal microbiota, increased amounts of mucosal DCA, and lower FXR expression were demonstrated in cancerous tissues compared to normal tissue samples. The results of this study can be applied to the development of potential therapeutic targets for CRC prevention, such as altering mucosal microbiota, DCA, or FXR.
Collapse
|
62
|
Zhao Y, Zhang C, Yu L, Tian F, Zhao J, Zhang H, Chen W, Zhai Q. Strain-specific effect of Limosilactobacillus fermentum with distinct genetic lineages on loperamide-induced constipation in mice: attributing effects to certain genes. Food Funct 2022; 13:12742-12754. [PMID: 36411976 DOI: 10.1039/d2fo02675a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In 2013, Limosilactobacillus fermentum was regarded as a "generally recognized as safe" organism by the US Food and Drug Administration, and emerging evidence showed that it can exert beneficial health effects on humans. In this study, five L. fermentum strains from different phylogroups of a phylogenetic tree containing 224 L. fermentum strains were chosen, and their protective effects against loperamide-induced constipation in mice were studied. Animal experiments showed that L. fermentum YN54 significantly alleviated weight loss, increased fecal moisture, accelerated intestinal peristalsis, and increased the small intestinal transit rate in mice with constipation by regulating gastrointestinal peptides and increasing the amount of intestinal short-chain fatty acids. However, the other four L. fermentum strains (XJ61, CECT5716, WX115, and GD121) did not relieve constipation in mice treated with loperamide. A comparative genomic analysis of these strains was conducted and "L. fermentum YN54 only" genes were functionally annotated and validated with the other three L. fermentum strains (FJ12, GX51, and ZH1010) that had different functional genes. Finally, the genes involved in the synthesis of fatty acid hydrase, polysaccharides, and cell membranes were identified to be associated with the probiotic effect of L. fermentum on mice with constipation through preliminary experiments in this study.
Collapse
Affiliation(s)
- Yan Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
63
|
Arifuzzaman M, Won TH, Li TT, Yano H, Digumarthi S, Heras AF, Zhang W, Parkhurst CN, Kashyap S, Jin WB, Putzel GG, Tsou AM, Chu C, Wei Q, Grier A, Worgall S, Guo CJ, Schroeder FC, Artis D. Inulin fibre promotes microbiota-derived bile acids and type 2 inflammation. Nature 2022; 611:578-584. [PMID: 36323778 PMCID: PMC10576985 DOI: 10.1038/s41586-022-05380-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
Abstract
Dietary fibres can exert beneficial anti-inflammatory effects through microbially fermented short-chain fatty acid metabolites<sup>1,2</sup>, although the immunoregulatory roles of most fibre diets and their microbiota-derived metabolites remain poorly defined. Here, using microbial sequencing and untargeted metabolomics, we show that a diet of inulin fibre alters the composition of the mouse microbiota and the levels of microbiota-derived metabolites, notably bile acids. This metabolomic shift is associated with type 2 inflammation in the intestine and lungs, characterized by IL-33 production, activation of group 2 innate lymphoid cells and eosinophilia. Delivery of cholic acid mimics inulin-induced type 2 inflammation, whereas deletion of the bile acid receptor farnesoid X receptor diminishes the effects of inulin. The effects of inulin are microbiota dependent and were reproduced in mice colonized with human-derived microbiota. Furthermore, genetic deletion of a bile-acid-metabolizing enzyme in one bacterial species abolishes the ability of inulin to trigger type 2 inflammation. Finally, we demonstrate that inulin enhances allergen- and helminth-induced type 2 inflammation. Taken together, these data reveal that dietary inulin fibre triggers microbiota-derived cholic acid and type 2 inflammation at barrier surfaces with implications for understanding the pathophysiology of allergic inflammation, tissue protection and host defence.
Collapse
Affiliation(s)
- Mohammad Arifuzzaman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Tae Hyung Won
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Ting-Ting Li
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Hiroshi Yano
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Sreehaas Digumarthi
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Andrea F Heras
- Gale and Ira Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Wen Zhang
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Christopher N Parkhurst
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Sanchita Kashyap
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Wen-Bing Jin
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory Garbès Putzel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Amy M Tsou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Weill Cornell Medicine, New York, NY, USA
| | - Coco Chu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Qianru Wei
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Alex Grier
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Stefan Worgall
- Gale and Ira Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Chun-Jun Guo
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - Frank C Schroeder
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
64
|
Sharpton SR, Oh TG, Madamba E, Wang C, Yu RT, Atkins AR, Huan T, Downes M, Evans RM, Loomba R. Gut metagenome-derived signature predicts hepatic decompensation and mortality in NAFLD-related cirrhosis. Aliment Pharmacol Ther 2022; 56:1475-1485. [PMID: 36164267 PMCID: PMC9746351 DOI: 10.1111/apt.17236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/14/2022] [Accepted: 09/15/2022] [Indexed: 01/30/2023]
Abstract
BACKGROUND There are limited data on the diagnostic accuracy of gut microbial signatures for predicting hepatic decompensation in patients with cirrhosis. AIMS To determine whether a stool metagenome-derived signature accurately detects hepatic decompensation and mortality risk in cirrhosis secondary to non-alcoholic fatty liver disease (NAFLD) METHODS: Shotgun metagenomic sequencing was performed on faecal samples collected at study entry from a prospective cohort of adults with NAFLD-related cirrhosis. A Random Forest machine learning algorithm was utilised to identify a metagenomic signature of decompensated cirrhosis (defined by ascites, hepatic encephalopathy or variceal haemorrhage) and subsequently validated in an external cohort. A Cox proportional hazards regression model was used to examine predictors of all-cause mortality. RESULTS In all, 25 adults with NAFLD-related cirrhosis (training cohort) were included. Among the 16 participants with decompensated cirrhosis, 33% had ascites, 56% had hepatic encephalopathy and 22% had experienced a variceal haemorrhage (not mutually exclusive). We identified a stool metagenomic signature comprising 13 discriminatory species that reliably distinguished decompensated NAFLD-related cirrhosis (diagnostic accuracy, 0.97, 95% confidence interval [CI] 0.96-0.99). Diagnostic accuracy of the 13-species signature remained high after adjustment for lactulose (area under the curve [AUC] 0.99) and rifaximin use (AUC 0.93). The discriminative ability of 13-species metagenomic signature was robust in an independent test cohort (AUC 0.95, 95% CI 0.81-1.00). The 13-species metagenomic signature (hazard ratio [HR] 1.54, 95% CI 1.10-2.15, p = 0.01) was a stronger predictor of mortality than the Model for End-Stage Liver Disease score (HR 1.25, 95% CI 1.03-1.53, p = 0.03). CONCLUSIONS This study provides evidence for a gut metagenome-derived signature with high diagnostic accuracy for hepatic decompensation that predicts risk of mortality in NAFLD-related cirrhosis.
Collapse
Affiliation(s)
- Suzanne R. Sharpton
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, California, USA
- NAFLD Research Center, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Tae Gyu Oh
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Egbert Madamba
- NAFLD Research Center, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Chenjingyi Wang
- Faculty of Science, Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Ruth T. Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Annette R. Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Tao Huan
- Faculty of Science, Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Rohit Loomba
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, California, USA
- NAFLD Research Center, Department of Medicine, University of California San Diego, La Jolla, California, USA
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
65
|
Hedblom GA, Dev K, Bowden SD, Baumler DJ. Comparative genome analysis of commensal segmented filamentous bacteria (SFB) from turkey and murine hosts reveals distinct metabolic features. BMC Genomics 2022; 23:659. [PMID: 36115942 PMCID: PMC9482736 DOI: 10.1186/s12864-022-08886-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Segmented filamentous bacteria (SFB) are intestinal commensal microorganisms that have been demonstrated to induce the innate and adaptive immune responses in mouse and rat hosts. SFB are Gram-positive, spore-forming bacteria that fail to grow optimally under in vitro conditions due to unique metabolic requirements. Recently, SFB have been implicated in improved health and growth outcomes in commercial turkey flocks. To assess the nature and variations in SFB of turkeys and how they may differ from mammalian-associated SFB, the genome of turkey-associated SFB was compared with six representative genomes from murine hosts using an in silico approach.
Results
The SFB-turkey genome is 1.6 Mb with a G + C content of 26.14% and contains 1,604 coding sequences (CDS). Comparative genome analyses revealed that all the seven SFB strain possesses a common set of metabolic deficiencies and auxotrophies. Specifically, the inability of all the SFB strains to synthesize most of the amino acids, nucleotides and cofactors, emphasizing the importance of metabolite acquisition from the host intestinal environment. Among the seven SFB genomes, the SFB-turkey genome is the largest and contains the highest number of 1,604 predicted CDS. The SFB-turkey genome possesses cellular metabolism genes that are absent in the rodent SFB strains, including catabolic pathways for sucrose, stachyose, raffinose and other complex glycans. Other unique genes associated with SFB-turkey genome is loci for the biosynthesis of biotin, and degradation enzymes to recycle primary bile acids, both of which may play an important role to help turkey associated SFB survive and secure mutualism with its avian host.
Conclusions
Comparative genomic analysis of seven SFB genomes revealed that each strain have a core set of metabolic capabilities and deficiencies that make these bacteria challenging to culture under ex vivo conditions. When compared to the murine-associated strains, turkey-associated SFB serves as a phylogenetic outgroup and a unique member among all the sequenced strains of SFB. This turkey-associated SFB strain is the first reported non-mammalian SFB genome, and highlights the impact of host specificity and the evolution of metabolic capabilities.
Collapse
|
66
|
Huang YH, Wu YH, Tang HY, Chen ST, Wang CC, Ho WJ, Lin YH, Liu GH, Lin PY, Lo CJ, Yeh YM, Cheng ML. Gut Microbiota and Bile Acids Mediate the Clinical Benefits of YH1 in Male Patients with Type 2 Diabetes Mellitus: A Pilot Observational Study. Pharmaceutics 2022; 14:pharmaceutics14091857. [PMID: 36145605 PMCID: PMC9505101 DOI: 10.3390/pharmaceutics14091857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Our previous clinical trial showed that a novel concentrated herbal extract formula, YH1 (Rhizoma coptidis and Shen-Ling-Bai-Zhu-San), improved blood glucose and lipid control. This pilot observational study investigated whether YH1 affects microbiota, plasma, and fecal bile acid (BA) compositions in ten untreated male patients with type 2 diabetes (T2D), hyperlipidemia, and a body mass index ≥ 23 kg/m2. Stool and plasma samples were collected for microbiome, BA, and biochemical analyses before and after 4 weeks of YH1 therapy. As previous studies found, the glycated albumin, 2-h postprandial glucose, triglycerides, total cholesterol, and low-density lipoprotein cholesterol levels were significantly improved after YH1 treatment. Gut microbiota revealed an increased abundance of the short-chain fatty acid-producing bacteria Anaerostipes and Escherichia/Shigella. Furthermore, YH1 inhibited specific phylotypes of bile salt hydrolase-expressing bacteria, including Parabacteroides, Bifidobacterium, and Bacteroides caccae. Stool tauro-conjugated BA levels increased after YH1 treatment. Plasma total BAs and 7α-hydroxy-4-cholesten-3-one (C4), a BA synthesis indicator, were elevated. The reduced deconjugation of BAs and increased plasma conjugated BAs, especially tauro-conjugated BAs, led to a decreased glyco- to tauro-conjugated BA ratio and reduced unconjugated secondary BAs. These results suggest that YH1 ameliorates T2D and hyperlipidemia by modulating microbiota constituents that alter fecal and plasma BA compositions and promote liver cholesterol-to-BA conversion and glucose homeostasis.
Collapse
Affiliation(s)
- Yueh-Hsiang Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yi-Hong Wu
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hsiang-Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Szu-Tah Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Chih-Ching Wang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Wan-Jing Ho
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Yi-Hsuan Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Geng-Hao Liu
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Pei-Yeh Lin
- Department of Medical Nutrition Therapy, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chi-Jen Lo
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Correspondence: (Y.-M.Y.); (M.-L.C.)
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (Y.-M.Y.); (M.-L.C.)
| |
Collapse
|
67
|
Abstract
The metabolism of bile acids (BAs) by gut bacteria plays an important role in human health. This study identified and characterized 7α-dehydroxylating bacteria, which are majorly responsible for converting primary BAs to secondary BAs, in the human gut and investigated their association with human disease. Six 7α-dehydratase (BaiE) clusters were identified from human gut metagenomes through sequence similarity network and genome neighborhood network analyses. Abundance analyses of gut metagenomes and metatranscriptomes identified a cluster of bacteria (cluster 1) harboring baiE genes that may be key 7α-dehydroxylating bacteria in the human gut. The baiE gene abundance of cluster 1 was significantly and positively correlated with the ratio of secondary BAs to primary BAs. Furthermore, the baiE gene abundances of cluster 1 were significantly negatively correlated with inflammatory bowel disease, including Crohn's disease and ulcerative colitis, as well as advanced nonalcoholic fatty liver disease, liver cirrhosis, and ankylosing spondylitis. Phylogenetic and metagenome-assembled genome analyses showed that the 7α-dehydroxylating bacterial clade of cluster 1 was affiliated with the family Oscillospiraceae and may demonstrate efficient BA dehydroxylation ability by harboring both a complete bai operon, for proteins which produce secondary BAs from primary BAs, and a gene for bile salt hydrolase, which deconjugates BAs, in the human gut. IMPORTANCE In this study, we identified a key 7α-dehydroxylating bacterial group predicted to be largely responsible for converting primary bile acids (BAs) to secondary BAs in the human gut through sequence similarity network, genome neighborhood network, and gene abundance analyses using human gut metagenomes. The key bacterial group was phylogenetically quite different from known 7α-dehydroxylating bacteria, and their abundance was highly correlated with the occurrence of diverse diseases associated with bile acid 7α-dehydroxylation. In addition, we characterized the metabolic features of the key bacterial group using their metagenome-assembled genomes. This approach is useful to identify and characterize key gut bacteria highly associated with human health and diseases.
Collapse
|
68
|
Li DK, Chaudhari SN, Lee Y, Sojoodi M, Adhikari AA, Zukerberg L, Shroff S, Barrett SC, Tanabe K, Chung RT, Devlin AS. Inhibition of microbial deconjugation of micellar bile acids protects against intestinal permeability and liver injury. SCIENCE ADVANCES 2022; 8:eabo2794. [PMID: 36026454 PMCID: PMC9417178 DOI: 10.1126/sciadv.abo2794] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Altered host-microbe interactions and increased intestinal permeability have been implicated in disease pathogenesis. However, the mechanisms by which intestinal microbes affect epithelial barrier integrity remain unclear. Here, we investigate the impact of bacterial metabolism of host-produced bile acid (BA) metabolites on epithelial barrier integrity. We observe that rats fed a choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD) exhibit reduced intestinal abundance of host-produced conjugated BAs at early time points, coinciding with increased gut permeability. We show that in vitro, conjugated BAs protect gut epithelial monolayers from damage caused by bacterially produced unconjugated BAs through micelle formation. We then demonstrate that inhibition of bacterial BA deconjugation with a small-molecule inhibitor prevents the development of pathologic intestinal permeability and hepatic inflammation in CDAHFD-fed rats. Our study identifies a signaling-independent, physicochemical mechanism for conjugated BA-mediated protection of epithelial barrier function and suggests that rational manipulation of microbial BA metabolism could be leveraged to regulate gut barrier integrity.
Collapse
Affiliation(s)
- Darrick K. Li
- Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Snehal N. Chaudhari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yoojin Lee
- Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mozhdeh Sojoodi
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Arijit A. Adhikari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Lawrence Zukerberg
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Stuti Shroff
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen Cole Barrett
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kenneth Tanabe
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Raymond T. Chung
- Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - A. Sloan Devlin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
69
|
Stentz R, Jones E, Juodeikis R, Wegmann U, Guirro M, Goldson AJ, Brion A, Booth C, Sudhakar P, Brown IR, Korcsmáros T, Carding SR. The Proteome of Extracellular Vesicles Produced by the Human Gut Bacteria Bacteroides thetaiotaomicron In Vivo Is Influenced by Environmental and Host-Derived Factors. Appl Environ Microbiol 2022; 88:e0053322. [PMID: 35916501 PMCID: PMC9397113 DOI: 10.1128/aem.00533-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
Bacterial extracellular vesicles (BEVs) released from both Gram-negative and Gram-positive bacteria provide an effective means of communication and trafficking of cell signaling molecules. In the gastrointestinal tract (GIT) BEVs produced by members of the intestinal microbiota can impact host health by mediating microbe-host cell interactions. A major unresolved question, however, is what factors influence the composition of BEV proteins and whether the host influences protein packaging into BEVs and secretion into the GIT. To address this, we have analyzed the proteome of BEVs produced by the major human gut symbiont Bacteroides thetaiotaomicron both in vitro and in vivo in the murine GIT in order to identify proteins specifically enriched in BEVs produced in vivo. We identified 113 proteins enriched in BEVs produced in vivo, the majority (62/113) of which accumulated in BEVs in the absence of any changes in their expression by the parental cells. Among these selectively enriched proteins, we identified dipeptidyl peptidases and an asparaginase and confirmed their increased activity in BEVs produced in vivo. We also showed that intact BEVs are capable of degrading bile acids via a bile salt hydrolase. Collectively these findings provide additional evidence for the dynamic interplay of host-microbe interactions in the GIT and the existence of an active mechanism to drive and enrich a selected group of proteins for secretion into BEVs in the GIT. IMPORTANCE The gastrointestinal tract (GIT) harbors a complex community of microbes termed the microbiota that plays a role in maintaining the host's health and wellbeing. How this comes about and the nature of microbe-host cell interactions in the GIT is still unclear. Recently, nanosized vesicles naturally produced by bacterial constituents of the microbiota have been shown to influence responses of different host cells although the molecular basis and identity of vesicle-born bacterial proteins that mediate these interactions is unclear. We show here that bacterial extracellular vesicles (BEVs) produced by the human symbiont Bacteroides thetaiotaomicron in the GIT are enriched in a set of proteins and enzymes, including dipeptidyl peptidases, an asparaginase and a bile salt hydrolase that can influence host cell biosynthetic pathways. Our results provide new insights into the molecular basis of microbiota-host interactions that are central to maintaining GIT homeostasis and health.
Collapse
Affiliation(s)
- Régis Stentz
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Emily Jones
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Rokas Juodeikis
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Udo Wegmann
- School of Chemistry, University East Anglia, Norwich, United Kingdom
| | - Maria Guirro
- Biochemistry and Biotechnology Department, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Andrew J. Goldson
- Core Science Resources Quadram Institute Bioscience, Norwich, United Kingdom
| | - Arlaine Brion
- Core Science Resources Quadram Institute Bioscience, Norwich, United Kingdom
| | - Catherine Booth
- Core Science Resources Quadram Institute Bioscience, Norwich, United Kingdom
| | - Padhmanand Sudhakar
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
- Earlham Institute, Norwich, United Kingdom
- Department of Chronic Diseases, Metabolism and Ageing, TARGID, KU Leuven, Leuven, Belgium
| | - Ian R. Brown
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Tamás Korcsmáros
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
- Earlham Institute, Norwich, United Kingdom
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
- Norwich Medical School, University East Anglia, Norwich, United Kingdom
| |
Collapse
|
70
|
Russell BJ, Brown SD, Siguenza N, Mai I, Saran AR, Lingaraju A, Maissy ES, Dantas Machado AC, Pinto AFM, Sanchez C, Rossitto LA, Miyamoto Y, Richter RA, Ho SB, Eckmann L, Hasty J, Gonzalez DJ, Saghatelian A, Knight R, Zarrinpar A. Intestinal transgene delivery with native E. coli chassis allows persistent physiological changes. Cell 2022; 185:3263-3277.e15. [PMID: 35931082 PMCID: PMC9464905 DOI: 10.1016/j.cell.2022.06.050] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/15/2022] [Accepted: 06/25/2022] [Indexed: 12/26/2022]
Abstract
Live bacterial therapeutics (LBTs) could reverse diseases by engrafting in the gut and providing persistent beneficial functions in the host. However, attempts to functionally manipulate the gut microbiome of conventionally raised (CR) hosts have been unsuccessful because engineered microbial organisms (i.e., chassis) have difficulty in colonizing the hostile luminal environment. In this proof-of-concept study, we use native bacteria as chassis for transgene delivery to impact CR host physiology. Native Escherichia coli bacteria isolated from the stool cultures of CR mice were modified to express functional genes. The reintroduction of these strains induces perpetual engraftment in the intestine. In addition, engineered native E. coli can induce functional changes that affect physiology of and reverse pathology in CR hosts months after administration. Thus, using native bacteria as chassis to “knock in” specific functions allows mechanistic studies of specific microbial activities in the microbiome of CR hosts and enables LBT with curative intent. Native E. coli strains isolated from mouse stool are genetically engineered for long-term engraftment in the conventional mouse gut and enable long-term systemic effects on the host, such as improvements in insulin sensitivity in mouse models of type 2 diabetes.
Collapse
Affiliation(s)
- Baylee J Russell
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Steven D Brown
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole Siguenza
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Irene Mai
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anand R Saran
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amulya Lingaraju
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Erica S Maissy
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ana C Dantas Machado
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Antonio F M Pinto
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Concepcion Sanchez
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Leigh-Ana Rossitto
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yukiko Miyamoto
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - R Alexander Richter
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Samuel B Ho
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA; VA Health Sciences San Diego, La Jolla, CA 92161, USA
| | - Lars Eckmann
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeff Hasty
- BioCircuits Institute, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Rob Knight
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA; Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amir Zarrinpar
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA; VA Health Sciences San Diego, La Jolla, CA 92161, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
71
|
Yao L, D'Agostino GD, Park J, Hang S, Adhikari AA, Zhang Y, Li W, Avila-Pacheco J, Bae S, Clish CB, Franzosa EA, Huttenhower C, Huh JR, Devlin AS. A biosynthetic pathway for the selective sulfonation of steroidal metabolites by human gut bacteria. Nat Microbiol 2022; 7:1404-1418. [PMID: 35982310 DOI: 10.1038/s41564-022-01176-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 06/20/2022] [Indexed: 12/13/2022]
Abstract
Members of the human gut microbiome enzymatically process many bioactive molecules in the gastrointestinal tract. Most gut bacterial modifications characterized so far are hydrolytic or reductive in nature. Here we report that abundant human gut bacteria from the phylum Bacteroidetes perform conjugative modifications by selectively sulfonating steroidal metabolites. While sulfonation is a ubiquitous biochemical modification, this activity has not yet been characterized in gut microbes. Using genetic and biochemical approaches, we identify a widespread biosynthetic gene cluster that encodes both a sulfotransferase (BtSULT, BT0416) and enzymes that synthesize the sulfonate donor adenosine 3'-phosphate-5'-phosphosulfate (PAPS), including an APS kinase (CysC, BT0413) and an ATP sulfurylase (CysD and CysN, BT0414-BT0415). BtSULT selectively sulfonates steroidal metabolites with a flat A/B ring fusion, including cholesterol. Germ-free mice monocolonized with Bacteroides thetaiotaomicron ΔBT0416 exhibited reduced gastrointestinal levels of cholesterol sulfate (Ch-S) compared with wild-type B. thetaiotaomicron-colonized mice. The presence of BtSULT and BtSULT homologues in bacteria inhibited leucocyte migration in vitro and in vivo, and abundances of cluster genes were significantly reduced in patients with inflammatory bowel disease. Together, these data provide a mechanism by which gut bacteria sulfonate steroidal metabolites and suggest that these compounds can modulate immune cell trafficking in the host.
Collapse
Affiliation(s)
- Lina Yao
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Gabriel D D'Agostino
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jinseok Park
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Saiyu Hang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Arijit A Adhikari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yancong Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Wei Li
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | | | - Sena Bae
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric A Franzosa
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - A Sloan Devlin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
72
|
Li X, Zhao W, Xiao M, Yu L, Chen Q, Hu X, Zhao Y, Xiong L, Chen X, Wang X, Ba Y, Guo Q, Wu X. Penthorum chinense Pursh. extract attenuates non-alcholic fatty liver disease by regulating gut microbiota and bile acid metabolism in mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115333. [PMID: 35500802 DOI: 10.1016/j.jep.2022.115333] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Penthorum chinense Pursh. (PCP) is commonly used as a Miao ethnomedicine and health food for liver protection in China. Gansukeli (WS3-B-2526-97) is made from the extract of PCP (PCPE) for the treatment of viral hepatitis. In recent years, PCPE has been reported in the treatment of non-alcoholic fatty liver disease (NAFLD), however its potential mechanism is not fully elucidated. AIM OF THE STUDY To investigate the ameliorating effect of PCPE on high-fat diet (HFD)-induced NAFLD mice and demonstrate whether its protective effect is gut microbiota dependent and associated with bile acid (BA) metabolism. MATERIALS AND METHODS The alleviating effect of PCPE on NAFLD was conducted on male C57BL/6J mice fed an HFD for 16 weeks, and this effect associated with gut microbiota dependent was demonstrated by pseudo-germfree mice treated with antibiotics and fecal microbiota transplantation (FMT). The composition of the gut microbiota in the cecum contents was analyzed by 16S rRNA sequencing, and the levels of BAs in liver and fecal samples were determined by UPLC/MS-MS. RESULTS The results showed that administration of PCPE for 8 weeks could potently ameliorate HFD-induced NAFLD and alleviate dyslipidemia and insulin resistance. Moreover, PCPE treatment alleviated gut dysbiosis, especially reducing the relative abundance of bile salt hydrolase (BSH)-producing bacteria. Furthermore, PCPE significantly increased the levels of taurine-conjugated BAs in feces, such as tauro-β-muricholic acid (T-βMCA), tauroursodesoxycholic acid (TUDCA), and taurochenodeoxycholic acid (TCDCA), and increased hepatic chenodeoxycholic acid (CDCA). The protein and mRNA expression of farnesoid X receptor (FXR) and fibroblast growth factor 15 (FGF15) were decreased in intestine, increased taurine-conjugated BAs inhibited the intestinal signaling pathway, which was associated with increased genes expression of enzymes in the alternative BA synthesis pathway that reduced the levels of cholesterol. The increased CDCA produced via the alternative BA synthesis pathway promoted hepatic FXR activation and BA excretion. CONCLUSION Our study is the first time to demonstrate that PCPE could ameliorate NAFLD in HFD-induced mice by regulating the gut microbiota and BA metabolism, and from a novel perspective, to clarify the mechanism of PCPE in NAFLD.
Collapse
Affiliation(s)
- Xiaoxi Li
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China
| | - Wenwen Zhao
- Department of Pharmacy, Beijing Children's hospital, Capital Medical University, National Center for Children Health, Beijing, 100045, China
| | - Meng Xiao
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Lan Yu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China
| | - Qijun Chen
- School of Pharmaceutical Sciences, Capital Medical University, 100069, Beijing, China
| | - Xiaolu Hu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China
| | - Yimeng Zhao
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China
| | - Lijuan Xiong
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China
| | - Xiaoqing Chen
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China
| | - Xing Wang
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China
| | - Yinying Ba
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China
| | - Qiang Guo
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China
| | - Xia Wu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China.
| |
Collapse
|
73
|
Gadaleta RM, Cariello M, Crudele L, Moschetta A. Bile Salt Hydrolase-Competent Probiotics in the Management of IBD: Unlocking the "Bile Acid Code". Nutrients 2022; 14:3212. [PMID: 35956388 PMCID: PMC9370712 DOI: 10.3390/nu14153212] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 01/18/2023] Open
Abstract
Bile acid (BA) species and the gut microbiota (GM) contribute to intestinal mucosa homeostasis. BAs shape the GM and, conversely, intestinal bacteria with bile salt hydrolase (BSH) activity modulate the BA pool composition. The mutual interaction between BAs and intestinal microorganisms also influences mucosal barrier integrity, which is important for inflammatory bowel disease (IBD) pathogenesis, prevention and therapy. High levels of secondary BAs are detrimental for the intestinal barrier and increase the intestinal inflammatory response and dysbiosis. Additionally, a lack of BSH-active bacteria plays a role in intestinal inflammation and BA dysmetabolism. Thus, BSH-competent bacteria in probiotic formulations are being actively studied in IBD. At the same time, studies exploring the modulation of the master regulator of BA homeostasis, the Farnesoid X Receptor (FXR), in intestinal inflammation and how this impacts the GM are gaining significant momentum. Overall, the choice of probiotic supplementation should be a peculiar issue of personalized medicine, considering not only the disease but also the specific BA and metabolic signatures of a given patient.
Collapse
Affiliation(s)
- Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Marica Cariello
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Lucilla Crudele
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
- INBB National Instituto for Biostructure and Biosystems, Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
| |
Collapse
|
74
|
Walker ME, Simpson JB, Redinbo MR. A structural metagenomics pipeline for examining the gut microbiome. Curr Opin Struct Biol 2022; 75:102416. [PMID: 35841748 PMCID: PMC10039758 DOI: 10.1016/j.sbi.2022.102416] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/25/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
Abstract
Metagenomic sequencing data provide a rich resource from which to expand our understanding of differential protein functions involved in human health. Here, we outline a pipeline that combines microbial whole genome sequencing with protein structure data to yield a structural metagenomics-informed atlas of microbial enzyme families of interest. Visualizing metagenomics data through a structural lens facilitates downstream studies including targeted inhibition and probe-based proteomics to define at the molecular level how different enzyme orthologs impact in vivo function. Application of this pipeline to gut microbial enzymes like glucuronidases, TMA lyases, and bile salt hydrolases is expected to pinpoint their involvement in health and disease and may aid in the development of therapeutics that target specific enzymes within the microbiome.
Collapse
Affiliation(s)
- Morgan E Walker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua B Simpson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Integrated Program for Biological and Genome Sciences, And Departments of Biochemistry and Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
75
|
Meta-Analysis of Altered Gut Microbiota Reveals Microbial and Metabolic Biomarkers for Colorectal Cancer. Microbiol Spectr 2022; 10:e0001322. [PMID: 35766483 PMCID: PMC9431300 DOI: 10.1128/spectrum.00013-22] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer mortality worldwide. The dysbiotic gut microbiota and its metabolite secretions play a significant role in CRC development and progression. In this study, we identified microbial and metabolic biomarkers applicable to CRC using a meta-analysis of metagenomic datasets from diverse geographical regions. We used LEfSe, random forest (RF), and co-occurrence network methods to identify microbial biomarkers. Geographic dataset-specific markers were identified and evaluated using area under the ROC curve (AUC) scores and random effect size. Co-occurrence networks analysis showed a reduction in the overall microbial associations and the presence of oral pathogenic microbial clusters in CRC networks. Analysis of predicted metabolites from CRC datasets showed the enrichment of amino acids, cadaverine, and creatine in CRC, which were positively correlated with CRC-associated microbes (Peptostreptococcus stomatis, Gemella morbillorum, Bacteroides fragilis, Parvimonas spp., Fusobacterium nucleatum, Solobacterium moorei, and Clostridium symbiosum), and negatively correlated with control-associated microbes. Conversely, butyrate, nicotinamide, choline, tryptophan, and 2-hydroxybutanoic acid showed positive correlations with control-associated microbes (P < 0.05). Overall, our study identified a set of global CRC biomarkers that are reproducible across geographic regions. We also reported significant differential metabolites and microbe-metabolite interactions associated with CRC. This study provided significant insights for further investigations leading to the development of noninvasive CRC diagnostic tools and therapeutic interventions. IMPORTANCE Several studies showed associations between gut dysbiosis and CRC. Yet, the results are not conclusive due to cohort-specific associations that are influenced by genomic, dietary, and environmental stimuli and associated reproducibility issues with various analysis approaches. Emerging evidence suggests the role of microbial metabolites in modulating host inflammation and DNA damage in CRC. However, the experimental validations have been hindered by cost, resources, and cumbersome technical expertise required for metabolomic investigations. In this study, we performed a meta-analysis of CRC microbiota data from diverse geographical regions using multiple methods to achieve reproducible results. We used a computational approach to predict the metabolomic profiles using existing CRC metagenomic datasets. We identified a reliable set of CRC-specific biomarkers from this analysis, including microbial and metabolite markers. In addition, we revealed significant microbe-metabolite associations through correlation analysis and microbial gene families associated with dysregulated metabolic pathways in CRC, which are essential in understanding the vastly sporadic nature of CRC development and progression.
Collapse
|
76
|
Ring Trial on Quantitative Assessment of Bile Acids Reveals a Method- and Analyte-Specific Accuracy and Reproducibility. Metabolites 2022; 12:metabo12070583. [PMID: 35888707 PMCID: PMC9319092 DOI: 10.3390/metabo12070583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 12/27/2022] Open
Abstract
(1) Background: Bile acids are a key mediator of the molecular microbiome-host interaction, and various mass spectrometry-based assays have been developed in the recent decade to quantify a wide range of bile acids. We compare existing methodologies to harmonize them. (2) Methods: Methodology for absolute quantification of bile acids from six laboratories in Europe were compared for the quantification of the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) and conjugated products glycocholic acid (GCA) and taurocholic acid (TCA). For the bacterially modified secondary bile acids, the quantification of deoxycholic acid (DCA) and lithocholic acid (LCA) was compared. For the murine bile acids, we used the primary muricholic acids (α-MCA and, β-MCA) and the intestinally produced secondary bile acid muricholic (ω-MCA). The standards were spiked into methanol:water (1:1) mix as well as in human and murine serum at either low concentration range (150–3000 nM) or high concentration range (1500–40,000 nM). (3) Results: The precision was better for higher concentrations. Measurements for the hydrophobic unconjugated bile acids LCA and ω-MCA were the most challenging. (4) Conclusions: The quality assessments were generally very similar, and the comprehensive analyses demonstrated that data from chosen locations can be used for comparisons between studies.
Collapse
|
77
|
Slack E, Diard M. Resistance is futile? Mucosal immune mechanisms in the context of microbial ecology and evolution. Mucosal Immunol 2022; 15:1188-1198. [PMID: 36329192 PMCID: PMC9705250 DOI: 10.1038/s41385-022-00574-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
In the beginning it was simple: we injected a protein antigen and studied the immune responses against the purified protein. This elegant toolbox uncovered thousands of mechanisms via which immune cells are activated. However, when we consider immune responses against real infectious threats, this elegant simplification misses half of the story: the infectious agents are typically evolving orders-of-magnitude faster than we are. Nowhere is this more pronounced than in the mammalian large intestine. A bacterium representing only 0.1% of the human gut microbiota will have a population size of 109 clones, each actively replicating. Moreover, the evolutionary pressure from other microbes is at least as profound as direct effects of the immune system. Therefore, to really understand intestinal immune mechanisms, we need to understand both the host response and how rapid microbial evolution alters the apparent outcome of the response. In this review we use the examples of intestinal inflammation and secretory immunoglobulin A (SIgA) to highlight what is already known (Fig. 1). Further, we will explore how these interactions can inform immunotherapy and prophylaxis. This has major implications for how we design effective mucosal vaccines against increasingly drug-resistant bacterial pathogens Fig. 1 THE IMMUNE RESPONSE SHAPES THE FITNESS LANDSCAPE IN THE GASTRO-INTESTINAL TRACT.: The red arrows depict possible evolutionary paths of a novel colonizer along adaptive peaks in the intestinal fitness landscapes that change with the status of the host immune system. The flat surfaces represent the non-null fitness baselines (values x or y) at which a bacterium can establish at minimum carrying capacity. a In the healthy gut, metabolic competence, resistance to aggressions by competitors and predators, swift adaptation to rapid fluctuations as well as surviving acidic pH and the flow of the intestinal content, represent potent selective pressures and as many opportunities for bacteria to increase fitness by phenotypic or genetic variations. b When pathogens trigger acute inflammation, bacteria must adapt to iron starvation, killing by immune cells and antimicrobial peptides, and oxidative stress, while new metabolic opportunities emerge. c When high-affinity SIgA are produced against a bacterium, e.g., after oral vaccination, escape of SIgA by altering or losing surface epitopes becomes crucial for maximum fitness. However, escaping polyvalent SIgA responses after vaccination with "evolutionary trap" vaccines leads to evolutionary trade-offs: A fitness maximum is reached in the vaccinated host gut that represents a major disadvantage for transmission into naïve hosts (fitness diminished below x) (d).
Collapse
Affiliation(s)
- Emma Slack
- Laboratory for Mucosal Immunology, Institute for Food, Nutrition and Health, D-HEST, ETH Zürich, Zürich, Switzerland.
- Botnar Research Institute for Child Health, Basel, Switzerland.
| | - Médéric Diard
- Botnar Research Institute for Child Health, Basel, Switzerland.
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
78
|
Ranaivo H, Thirion F, Béra-Maillet C, Guilly S, Simon C, Sothier M, Van Den Berghe L, Feugier-Favier N, Lambert-Porcheron S, Dussous I, Roger L, Roume H, Galleron N, Pons N, Le Chatelier E, Ehrlich SD, Laville M, Doré J, Nazare JA. Increasing the diversity of dietary fibers in a daily-consumed bread modifies gut microbiota and metabolic profile in subjects at cardiometabolic risk. Gut Microbes 2022; 14:2044722. [PMID: 35311446 PMCID: PMC8942430 DOI: 10.1080/19490976.2022.2044722] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Some cardiometabolic risk factors such as dyslipidemia and insulin resistance are known to be associated with low gut microbiota richness. A link between gut microbiota richness and the diversity of consumed dietary fibers (DF) has also been reported. We introduced a larger diversity of consumed DF by using a daily consumed bread in subjects at cardiometabolic risk and assessed the impacts on the composition and functions of gut microbiota as well as on cardiometabolic profile. Thirty-nine subjects at cardiometabolic risk were included in a double-blind, randomized, cross-over, twice 8-week study, and consumed daily 150 g of standard bread or enriched with a 7-dietary fiber mixture (5.55 g and 16.05 g of fibers, respectively). Before and after intervention, stool samples were collected for gut microbiota analysis from species determination down to gene-level abundance using shotgun metagenomics, and cardiometabolic profile was assessed. Multi-fiber bread consumption significantly decreased Bacteroides vulgatus, whereas it increased Parabacteroides distasonis, Fusicatenibacter saccharivorans, an unclassified Acutalibacteraceae and an unclassified Eisenbergiella (q < 0.1). The fraction of gut microbiota carrying the gene coding for five families/subfamilies of glycoside hydrolases (CAZymes) were also increased and negatively correlated with peaks and total/incremental area under curve (tAUC/iAUC) of postprandial glycemia and insulinemia. Compared to control bread, multi-fiber bread decreased total cholesterol (-0.42 mM; q < 0.01), LDL cholesterol (-0.36 mM; q < 0.01), insulin (-2.77 mIU/l; q < 0.05), and HOMA (-0.78; q < 0.05). In conclusion, increasing the diversity of DF in a daily consumed product modifies gut microbiota composition and function and could be a relevant nutritional tool to improve cardiometabolic profile.
Collapse
Affiliation(s)
- Harimalala Ranaivo
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Oullins, France,Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Cens, Fcrin/force Network, Pierre-Bénite, France
| | | | - Christel Béra-Maillet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Susie Guilly
- Université Paris-Saclay, INRAE, MGP, Jouy-en-Josas, France
| | - Chantal Simon
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Oullins, France,Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Cens, Fcrin/force Network, Pierre-Bénite, France
| | - Monique Sothier
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Oullins, France,Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Cens, Fcrin/force Network, Pierre-Bénite, France
| | - Laurie Van Den Berghe
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Oullins, France,Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Cens, Fcrin/force Network, Pierre-Bénite, France
| | - Nathalie Feugier-Favier
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Oullins, France,Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Cens, Fcrin/force Network, Pierre-Bénite, France
| | - Stéphanie Lambert-Porcheron
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Oullins, France,Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Cens, Fcrin/force Network, Pierre-Bénite, France
| | | | | | - Hugo Roume
- Université Paris-Saclay, INRAE, MGP, Jouy-en-Josas, France
| | | | - Nicolas Pons
- Université Paris-Saclay, INRAE, MGP, Jouy-en-Josas, France
| | | | - Stanislav Dusko Ehrlich
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Oullins, France,Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Cens, Fcrin/force Network, Pierre-Bénite, France
| | - Martine Laville
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Oullins, France,Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Cens, Fcrin/force Network, Pierre-Bénite, France
| | - Joël Doré
- Université Paris-Saclay, INRAE, MGP, Jouy-en-Josas, France,Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Julie-Anne Nazare
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Oullins, France,Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Cens, Fcrin/force Network, Pierre-Bénite, France,CONTACT Julie-Anne Nazare CRNH Rhône-Alpes (Centre de recherche en Nutrition Humaine) Centre Hospitalier Lyon Sud – Secteur 2 Bâtiment 2D - CENS ELI 165 chemin du grand Revoyet 69310 – Pierre Bénite France
| |
Collapse
|
79
|
Li C, Liang Y, Qiao Y. Messengers From the Gut: Gut Microbiota-Derived Metabolites on Host Regulation. Front Microbiol 2022; 13:863407. [PMID: 35531300 PMCID: PMC9073088 DOI: 10.3389/fmicb.2022.863407] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
The human gut is the natural habitat for trillions of microorganisms, known as the gut microbiota, which play indispensable roles in maintaining host health. Defining the underlying mechanistic basis of the gut microbiota-host interactions has important implications for treating microbiota-associated diseases. At the fundamental level, the gut microbiota encodes a myriad of microbial enzymes that can modify various dietary precursors and host metabolites and synthesize, de novo, unique microbiota-derived metabolites that traverse from the host gut into the blood circulation. These gut microbiota-derived metabolites serve as key effector molecules to elicit host responses. In this review, we summarize recent studies in the understanding of the major classes of gut microbiota-derived metabolites, including short-chain fatty acids (SCFAs), bile acids (BAs) and peptidoglycan fragments (PGNs) on their regulatory effects on host functions. Elucidation of the structures and biological activities of such gut microbiota-derived metabolites in the host represents an exciting and critical area of research.
Collapse
|
80
|
Zhang X, Gérard P. Diet-gut microbiota interactions on cardiovascular disease. Comput Struct Biotechnol J 2022; 20:1528-1540. [PMID: 35422966 PMCID: PMC8983311 DOI: 10.1016/j.csbj.2022.03.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVD) are a group of disorders of the heart and blood vessels and remain the leading cause of morbidity and mortality worldwide. Over the past decades, accumulating studies indicated that the gut microbiota, an indispensable "invisible organ", plays a vital role in human metabolism and disease states including CVD. Among many endogenous and exogenous factors that can impact gut microbial communities, the dietary nutrients emerge as an essential component of host-microbiota relationships that can be involved in CVD susceptibility. In this review, we summarize the major concepts of dietary modulation of the gut microbiota and the chief principles of the involvement of this microbiota in CVD development. We also discuss the mechanisms of diet-microbiota crosstalk that regulate CVD progression, including endotoxemia, inflammation, gut barrier dysfunction and lipid metabolism dysfunction. In addition, we describe how metabolites produced by the microbiota, including trimethylamine-N-oxide (TMAO), secondary bile acids (BAs), short chain fatty acids (SCFAs) as well as aromatic amino acids (AAAs) derived metabolites play a role in CVD pathogenesis. Finally, we present the potential dietary interventions which interacted with gut microbiota as novel preventive and therapeutic strategies for CVD management.
Collapse
Affiliation(s)
- Xufei Zhang
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Philippe Gérard
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
81
|
Sangaraju D, Katavolos P, Liang X, Chou C, Zabka TS, Dean B, Maher J. Establishment of baseline profiles of 50 bile acids in preclinical toxicity species: A comprehensive assessment of translational differences and study design considerations for biomarker development. Toxicol Appl Pharmacol 2022; 443:116008. [DOI: 10.1016/j.taap.2022.116008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
|
82
|
Ishimwe JA, Dola T, Ertuglu LA, Kirabo A. Bile acids and salt-sensitive hypertension: a role of the gut-liver axis. Am J Physiol Heart Circ Physiol 2022; 322:H636-H646. [PMID: 35245132 PMCID: PMC8957326 DOI: 10.1152/ajpheart.00027.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/22/2022]
Abstract
Salt-sensitivity of blood pressure (SSBP) affects 50% of the hypertensive and 25% of the normotensive populations. Importantly, SSBP is associated with increased risk for mortality in both populations independent of blood pressure. Despite its deleterious effects, the pathogenesis of SSBP is not fully understood. Emerging evidence suggests a novel role of bile acids in salt-sensitive hypertension and that they may play a crucial role in regulating inflammation and fluid volume homeostasis. Mechanistic evidence implicates alterations in the gut microbiome, the epithelial sodium channel (ENaC), the farnesoid X receptor, and the G protein-coupled bile acid receptor TGR5 in bile acid-mediated effects on cardiovascular function. The mechanistic interplay between excess dietary sodium-induced alterations in the gut microbiome and immune cell activation, bile acid signaling, and whether such interplay may contribute to the etiology of SSBP is still yet to be defined. The main goal of this review is to discuss the potential role of bile acids in the pathogenesis of cardiovascular disease with a focus on salt-sensitive hypertension.
Collapse
Affiliation(s)
- Jeanne A Ishimwe
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Thanvi Dola
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Lale A Ertuglu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
83
|
Cai J, Sun L, Gonzalez FJ. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host Microbe 2022; 30:289-300. [PMID: 35271802 PMCID: PMC8923532 DOI: 10.1016/j.chom.2022.02.004] [Citation(s) in RCA: 288] [Impact Index Per Article: 144.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) and colorectal cancer (CRC) are heterogeneous intestinal diseases that threaten the health of an increasing number of individuals as their lifestyles become westernized. New insights have been discovered with the development of various omics techniques, revealing that gut-microbiota-derived metabolites play important roles in maintaining intestinal homeostasis and modulating the progression of intestinal diseases from both metabolic and immunological perspectives. Clinical metagenomic and metabolomic studies have revealed links between microbial bile acid (BA) metabolism and IBD and CRC progression. Several BA-derived metabolites were recently been demonstrated to play a role in intestinal immunity, providing fresh insights into how BAs affect the course of IBD and CRC. In this review, we discuss recent studies on the involvement of gut microbiota-derived BAs in intestinal immunity, inflammation, and tumorigenesis along with human omics data to provide prospective insights into future prevention and treatment of IBD and CRC.
Collapse
Affiliation(s)
- Jie Cai
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Lulu Sun
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
84
|
Sun H, Liu Y, Zeng T, Li G, Tao Z, Zhou X, Wen J, Chen X, Xu W, Lu L, Cao H. Effects of Coated Sodium Butyrate and Polysaccharides From Cordyceps cicadae on Intestinal Tissue Morphology and Ileal Microbiome of Squabs. Front Vet Sci 2022; 9:813800. [PMID: 35310408 PMCID: PMC8931417 DOI: 10.3389/fvets.2022.813800] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
This experiment was conducted to investigate the effects of dietary supplementation with different levels of coated sodium butyrate (CSB) and polysaccharides extracted from Cordyceps cicadae (CCP) on growth performance, intestinal tissue morphology and ileum microbiome in squabs. A total of 420 1-day-old squabs were randomly divided into seven groups with 5 replicates each and 12 squabs per replicate. The squabs were fed basal diet (control group) and basal diet supplemented with different levels of CSB (275, 550, and 1,100 mg/kg, groups CSB-275, CSB-550, CSB-1100) and CCP (27.5, 55, and 110 mg/kg, groups CCP-27.5, CCP-55, and CCP-110), respectively. The experiment was conducted for 28 days. The results revealed that the final BW and average daily gain concentration were higher (P < 0.05) in squabs of CSB-275 and CCP-110 groups than those in the CON group. Comparing with control group, the squabs in the groups CSB-275, CSB-550, and CCP-55 obtained higher villus height/crypt depth (VH/CD) of the duodenum and higher VH of the jejunum (P < 0.05). Operational taxonomic units in the groups CSB-550 and CCP-27.5 were also increased (P < 0.05). Regarding the relative abundance of flora, the Actinobacteria abundance in the groups CSB-550, CSB-1100, and CCP-55 were higher than in control group (P < 0.05), and the Aeriscardovia abundance of CSB-275, CSB-550, CSB-1100, and CCP-110 were elevated (P < 0.05). However, the Enterococcus abundance in CSB-275, CSB-550, CSB-1100, and CCP-27.5 decreased (P < 0.05). In summary, results obtained in the present study indicate that CSB and CCP can improve growth performance, intestinal microbial balance and gut health of squabs.
Collapse
Affiliation(s)
- Hanxue Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Animal Husbandry and Veterinary Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yali Liu
- Zhejiang Animal Husbandary Promotion Station, Hangzhou, China
| | - Tao Zeng
- Animal Husbandry and Veterinary Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guoqin Li
- Animal Husbandry and Veterinary Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhengrong Tao
- Animal Husbandry and Veterinary Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xueqin Zhou
- Huzhou Huajia Special Breeding Co.Ltd, Huzhou, China
| | - Jihui Wen
- Aofeng Pigeon Industry in Pingyang County, Wenzhou, China
| | - Xiaoyan Chen
- Aofeng Pigeon Industry in Pingyang County, Wenzhou, China
| | - Wenwu Xu
- Animal Husbandry and Veterinary Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lizhi Lu
- Animal Husbandry and Veterinary Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Lizhi Lu
| | - Hongguo Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Hongguo Cao
| |
Collapse
|
85
|
Stankeviciute G, Tang P, Ashley B, Chamberlain JD, Hansen ME, Coleman A, D’Emilia R, Fu L, Mohan EC, Nguyen H, Guan Z, Campopiano DJ, Klein EA. Convergent evolution of bacterial ceramide synthesis. Nat Chem Biol 2022; 18:305-312. [PMID: 34969973 PMCID: PMC8891067 DOI: 10.1038/s41589-021-00948-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 10/29/2021] [Indexed: 12/20/2022]
Abstract
The bacterial domain produces numerous types of sphingolipids with various physiological functions. In the human microbiome, commensal and pathogenic bacteria use these lipids to modulate the host inflammatory system. Despite their growing importance, their biosynthetic pathway remains undefined since several key eukaryotic ceramide synthesis enzymes have no bacterial homolog. Here we used genomic and biochemical approaches to identify six proteins comprising the complete pathway for bacterial ceramide synthesis. Bioinformatic analyses revealed the widespread potential for bacterial ceramide synthesis leading to our discovery of a Gram-positive species that produces ceramides. Biochemical evidence demonstrated that the bacterial pathway operates in a different order from that in eukaryotes. Furthermore, phylogenetic analyses support the hypothesis that the bacterial and eukaryotic ceramide pathways evolved independently.
Collapse
Affiliation(s)
- Gabriele Stankeviciute
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA,Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Peijun Tang
- East Chem School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Ben Ashley
- East Chem School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Joshua D. Chamberlain
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA
| | - Matthew E.B. Hansen
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aimiyah Coleman
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA
| | - Rachel D’Emilia
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA
| | - Larina Fu
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA
| | - Eric C. Mohan
- East Chem School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Hung Nguyen
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA.
| | - Dominic J. Campopiano
- East Chem School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom,Correspondence to: , , and
| | - Eric A. Klein
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA,Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA,Biology Department, Rutgers University-Camden, Camden, NJ 08102, USA.,Correspondence to: , , and
| |
Collapse
|
86
|
Abstract
PURPOSE OF REVIEW Colorectal cancer (CRC) is the third most common cancer and the second most common cause of cancer-related deaths. Of the various established risk factors for this aggressive condition, diet is a notable modifiable risk factor. This review aims to summarize the mounting evidence to suggest the role of diet, the microbiota and their cross-talk in modulating an individual's risk of developing CRC. RECENT FINDINGS Specifically, the metabolism of bile acids and its symbiosis with the microbiota has gained weight given its basis on a high meat, high fat, and low fibre diet that is present in populations with the highest risk of CRC. Bacteria modify bile acids that escape enterohepatic circulation to increase the diversity of the human bile acid pool. The production of microbial bile acids contributes to this as well. Epidemiological studies have shown that changing the diet results in different levels and composition of bile acids, which has in turn modified the risk of CRC at a population level. Evidence to identify underlying mechanisms have tied into the microbiota-led digestions of various foods into fatty acids that feedback into bile acid physiology as well as modulation of endogenous receptors for bile acids. SUMMARY There is adequate evidence to support the role of microbiota in in the metabolism of bile acids, and how this relates to colorectal cancer. Further work is necessary to identify specific bacteriome involved and their underlying mechanistic pathways.
Collapse
|
87
|
Paik D, Yao L, Zhang Y, Bae S, D'Agostino GD, Zhang M, Kim E, Franzosa EA, Avila-Pacheco J, Bisanz JE, Rakowski CK, Vlamakis H, Xavier RJ, Turnbaugh PJ, Longman RS, Krout MR, Clish CB, Rastinejad F, Huttenhower C, Huh JR, Devlin AS. Human gut bacteria produce Τ Η17-modulating bile acid metabolites. Nature 2022; 603:907-912. [PMID: 35296854 PMCID: PMC9132548 DOI: 10.1038/s41586-022-04480-z] [Citation(s) in RCA: 251] [Impact Index Per Article: 125.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/27/2022] [Indexed: 01/14/2023]
Abstract
The microbiota modulates gut immune homeostasis. Bacteria influence the development and function of host immune cells, including T helper cells expressing interleukin-17A (TH17 cells). We previously reported that the bile acid metabolite 3-oxolithocholic acid (3-oxoLCA) inhibits TH17 cell differentiation1. Although it was suggested that gut-residing bacteria produce 3-oxoLCA, the identity of such bacteria was unknown, and it was unclear whether 3-oxoLCA and other immunomodulatory bile acids are associated with inflammatory pathologies in humans. Here we identify human gut bacteria and corresponding enzymes that convert the secondary bile acid lithocholic acid into 3-oxoLCA as well as the abundant gut metabolite isolithocholic acid (isoLCA). Similar to 3-oxoLCA, isoLCA suppressed TH17 cell differentiation by inhibiting retinoic acid receptor-related orphan nuclear receptor-γt, a key TH17-cell-promoting transcription factor. The levels of both 3-oxoLCA and isoLCA and the 3α-hydroxysteroid dehydrogenase genes that are required for their biosynthesis were significantly reduced in patients with inflammatory bowel disease. Moreover, the levels of these bile acids were inversely correlated with the expression of TH17-cell-associated genes. Overall, our data suggest that bacterially produced bile acids inhibit TH17 cell function, an activity that may be relevant to the pathophysiology of inflammatory disorders such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Donggi Paik
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Lina Yao
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yancong Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Sena Bae
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Gabriel D D'Agostino
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Minghao Zhang
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eunha Kim
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Eric A Franzosa
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | - Jordan E Bisanz
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | | | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Randy S Longman
- Jill Roberts Center for IBD, Weill Cornell Medicine, New York, NY, USA
| | - Michael R Krout
- Department of Chemistry, Bucknell University, Lewisburg, PA, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fraydoon Rastinejad
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| | - A Sloan Devlin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
88
|
Bacteroides thetaiotaomicron uses a widespread extracellular DNase to promote bile-dependent biofilm formation. Proc Natl Acad Sci U S A 2022; 119:2111228119. [PMID: 35145026 PMCID: PMC8851478 DOI: 10.1073/pnas.2111228119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 11/18/2022] Open
Abstract
Biofilms are communities of surface-attached bacteria exhibiting biofilm-specific properties. Although anaerobic biofilms impact health, industry, and environment, they are mostly studied in aerobic bacterial species. Here, we studied biofilm formation in Bacteroides thetaiotaomicron, an anaerobic gut symbiont degrading diet sugars and contributing to gut maturation. Although B. thetaiotaomicron adhesion contributes to intestinal colonization, little is known about the determinants of its biofilm capacities. We identified that bile is a physiologically relevant gut signal inducing biofilm formation in B. thetaiotaomicron and other gut Bacteroidales. Moreover, we showed that, in contrast to the known scaffolding role of extracellular DNA, bile-dependent biofilm requires a DNase degrading matrix DNA, thus revealing a previously unrecognized factor contributing to the adhesion capacity of major gut symbionts. Bacteroides thetaiotaomicron is a gut symbiont that inhabits the mucus layer and adheres to and metabolizes food particles, contributing to gut physiology and maturation. Although adhesion and biofilm formation could be key features for B. thetaiotaomicron stress resistance and gut colonization, little is known about the determinants of B. thetaiotaomicron biofilm formation. We previously showed that the B. thetaiotaomicron reference strain VPI-5482 is a poor in vitro biofilm former. Here, we demonstrated that bile, a gut-relevant environmental cue, triggers the formation of biofilm in many B. thetaiotaomicron isolates and common gut Bacteroidales species. We determined that bile-dependent biofilm formation involves the production of the DNase BT3563 or its homologs, degrading extracellular DNA (eDNA) in several B. thetaiotaomicron strains. Our study therefore shows that, although biofilm matrix eDNA provides a biofilm-promoting scaffold in many studied Firmicutes and Proteobacteria, BT3563-mediated eDNA degradation is required to form B. thetaiotaomicron biofilm in the presence of bile.
Collapse
|
89
|
Mohammed AD, Mohammed Z, Roland MM, Chatzistamou I, Jolly A, Schoettmer LM, Arroyo M, Kakar K, Tian Y, Patterson A, Nagarkatti M, Nagarkatti P, Kubinak JL. Defective humoral immunity disrupts bile acid homeostasis which promotes inflammatory disease of the small bowel. Nat Commun 2022; 13:525. [PMID: 35082296 PMCID: PMC8792037 DOI: 10.1038/s41467-022-28126-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
Mucosal antibodies maintain gut homeostasis by promoting spatial segregation between host tissues and luminal microbes. Whether and how mucosal antibody responses influence gut health through modulation of microbiota composition is unclear. Here, we use a CD19-/- mouse model of antibody-deficiency to demonstrate that a relationship exists between dysbiosis, defects in bile acid homeostasis, and gluten-sensitive enteropathy of the small intestine. The gluten-sensitive small intestine enteropathy that develops in CD19-/- mice is associated with alterations to luminal bile acid composition in the SI, marked by significant reductions in the abundance of conjugated bile acids. Manipulation of bile acid availability, adoptive transfer of functional B cells, and ablation of bacterial bile salt hydrolase activity all influence the severity of small intestine enteropathy in CD19-/- mice. Collectively, results from our experiments support a model whereby mucosal humoral immune responses limit inflammatory disease of the small bowel by regulating bacterial BA metabolism.
Collapse
Affiliation(s)
- Ahmed Dawood Mohammed
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA.,University of Baghdad School of Veterinary Medicine, Baghdad, Iraq
| | - Zahraa Mohammed
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA.,Al-Mustansiriyah University School of Medicine Department of Microbiology, Baghdad, Iraq
| | - Mary M Roland
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Ioulia Chatzistamou
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Amy Jolly
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Lillian M Schoettmer
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Mireya Arroyo
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Khadija Kakar
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Yuan Tian
- Pennsylvania State University Department of Veterinary and Biomedical Sciences, State College, PA, USA
| | - Andrew Patterson
- Pennsylvania State University Department of Veterinary and Biomedical Sciences, State College, PA, USA
| | - Mitzi Nagarkatti
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Prakash Nagarkatti
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Jason L Kubinak
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA.
| |
Collapse
|
90
|
Zheng L, Tan Y, Hu Y, Shen J, Qu Z, Chen X, Ho CL, Leung ELH, Zhao W, Dai L. CRISPR/Cas-Based Genome Editing for Human Gut Commensal Bacteroides Species. ACS Synth Biol 2022; 11:464-472. [PMID: 34990118 DOI: 10.1021/acssynbio.1c00543] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bacteroides is the most abundant genus in the human gut microbiome and has been increasingly used as model organisms for studying the function and ecology of the gut microbiome. However, genome editing tools for such commensal gut microbes are still lacking. Here we developed a versatile, highly efficient CRISPR/Cas-based genome editing tool that allows markerless gene deletion and insertion in human gut Bacteroides species. We constructed multiple CRISPR/Cas systems in all-in-one Bacteroides-E. coli shuttle plasmids and systematically evaluated the genome editing efficiency in Bacteroides thetaiotaomicron, including the mode of Cas protein expression (constitutive, inducible), different Cas proteins (FnCas12a, SpRY, SpCas9), and sgRNAs. Using the anhydrotetracycline (aTc)-inducible CRISPR/FnCas12a system, we successfully deleted large genomic fragments up to 50 kb to study the function of metabolic gene clusters. Furthermore, we demonstrated that CRISPR/FnCas12a can be broadly applied to engineer multiple human gut Bacteroides species, including Bacteroides fragilis, Bacteroides ovatus, Bacteroides uniformis, and Bacteroides vulgatus. We envision that CRISPR/Cas-based genome editing tools for Bacteroides will greatly facilitate mechanistic studies of the gut commensal and the development of engineered live biotherapeutics.
Collapse
Affiliation(s)
- Linggang Zheng
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Yang Tan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China
| | - Yucan Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juntao Shen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China
| | - Zepeng Qu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Xianbo Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China
| | - Chun Loong Ho
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Elaine Lai-Han Leung
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Wei Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
91
|
Tavella T, Rampelli S, Guidarelli G, Bazzocchi A, Gasperini C, Pujos-Guillot E, Comte B, Barone M, Biagi E, Candela M, Nicoletti C, Kadi F, Battista G, Salvioli S, O’Toole PW, Franceschi C, Brigidi P, Turroni S, Santoro A. Elevated gut microbiome abundance of Christensenellaceae, Porphyromonadaceae and Rikenellaceae is associated with reduced visceral adipose tissue and healthier metabolic profile in Italian elderly. Gut Microbes 2022; 13:1-19. [PMID: 33557667 PMCID: PMC7889099 DOI: 10.1080/19490976.2021.1880221] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aging is accompanied by physiological changes affecting body composition and functionality, including accumulation of fat mass at the expense of muscle mass, with effects upon morbidity and quality of life. The gut microbiome has recently emerged as a key environmental modifier of human health that can modulate healthy aging and possibly longevity. However, its associations with adiposity in old age are still poorly understood. Here we profiled the gut microbiota in a well-characterized cohort of 201 Italian elderly subjects from the NU-AGE study, by 16S rRNA amplicon sequencing. We then tested for association with body composition from dual-energy X-ray absorptiometry (DXA), with a focus on visceral and subcutaneous adipose tissue. Dietary patterns, serum metabolome and other health-related parameters were also assessed. This study identified distinct compositional structures of the elderly gut microbiota associated with DXA parameters, diet, metabolic profiles and cardio-metabolic risk factors.
Collapse
Affiliation(s)
- Teresa Tavella
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giulia Guidarelli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Alberto Bazzocchi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Chiara Gasperini
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Estelle Pujos-Guillot
- Université Clermont Auvergne, INRAE, UNH, Plateforme d’Exploration Du Métabolisme, MetaboHUB Clermont, Clermont- Ferrand, France
| | - Blandine Comte
- Université Clermont Auvergne, INRAE, UNH, Plateforme d’Exploration Du Métabolisme, MetaboHUB Clermont, Clermont- Ferrand, France
| | - Monica Barone
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Elena Biagi
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Claudio Nicoletti
- Gut Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK,Department of Experimental and Clinical Medicine, Section of Anatomy, University of Florence, Florence, Italy
| | - Fawzi Kadi
- School of Health Sciences, Örebro University, Örebro, Sweden
| | - Giuseppe Battista
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy,Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Paul W. O’Toole
- School of Microbiology, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy,Department of Applied Mathematics, Institute of Information Technology, Mathematics and Mechanics (ITMM), Lobachevsky State University of Nizhny Novgorod-National Research University (UNN), Nizhny Novgorod, Russia
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy,CONTACT Silvia Turroni
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy,Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| |
Collapse
|
92
|
BSH-TRAP: Bile salt hydrolase tagging and retrieval with activity-based probes. Methods Enzymol 2022; 664:85-102. [DOI: 10.1016/bs.mie.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
93
|
Lei L, Zhao N, Zhang L, Chen J, Liu X, Piao S. Gut microbiota is a potential goalkeeper of dyslipidemia. Front Endocrinol (Lausanne) 2022; 13:950826. [PMID: 36176475 PMCID: PMC9513062 DOI: 10.3389/fendo.2022.950826] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
Dyslipidemia, as a common metabolic disease, could cause atherosclerosis, coronary heart disease, stroke and other cardio-cerebrovascular diseases. It is mainly caused by the interaction of genetic and environmental factors and its incidence has increased for several years. A large number of studies have shown that gut microbiota disorder is related to the development of dyslipidemia closely. Especially its metabolites such as short-chain fatty acids, bile acids and trimethylamine N-oxide affect dyslipidemia by regulating cholesterol balance. In this paper, we systematically reviewed the literature and used knowledge graphs to analyze the research trends and characteristics of dyslipidemia mediated by gut microbiota, revealing that the interaction between diet and gut microbiota leads to dyslipidemia as one of the main factors. In addition, starting from the destruction of the dynamic balance between gut microbiota and host caused by dyslipidemia, we systematically summarize the molecular mechanism of gut microbiota regulating dyslipidemia and provide a theoretical basis for the treatment of dyslipidemia by targeting the gut microbiota.
Collapse
Affiliation(s)
- Lirong Lei
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
| | - Ning Zhao
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
| | - Lei Zhang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
| | - Jiamei Chen
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
| | - Xiaomin Liu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
| | - Shenghua Piao
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
- *Correspondence: Shenghua Piao,
| |
Collapse
|
94
|
Thibaut MM, Bindels LB. Crosstalk between bile acid-activated receptors and microbiome in entero-hepatic inflammation. Trends Mol Med 2022; 28:223-236. [DOI: 10.1016/j.molmed.2021.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
|
95
|
Zhu H, Zhao F, Zhang W, Xia W, Chen Y, Liu Y, Fan Z, Zhang Y, Yang Y. Cholesterol-lowering effect of bile salt hydrolase from a Lactobacillus johnsonii strain mediated by FXR pathway regulation. Food Funct 2022; 13:725-736. [DOI: 10.1039/d1fo03143k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypercholesterolemia is a major risk factor for cardiovascular diseases worldwide.
Collapse
Affiliation(s)
- Huanjing Zhu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Fang Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Wenjun Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Wenxu Xia
- Skyline Therapeutics (Shanghai) Co., Ltd, Shanghai 201203, China
| | - Ying Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yanrong Liu
- Nanjing Institute of Product Quality Inspection, Nanjing 210019, China
| | - Zhiwen Fan
- Department of Pathology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Yumeng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yao Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
96
|
THERDTATHA P, SHINODA A, NAKAYAMA J. Crisis of the Asian gut: associations among diet, microbiota, and metabolic diseases. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2022; 41:83-93. [PMID: 35854695 PMCID: PMC9246424 DOI: 10.12938/bmfh.2021-085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/16/2022] [Indexed: 11/06/2022]
Abstract
The increase of lifestyle-related diseases in Asia has recently become remarkably
serious. This has been associated with a change in dietary habits that may alter the
complex gut microbiota and its metabolic function in Asian people. Notably, the
penetration of modern Western diets into Asia, which has been accompanied by an increase
in fat content and decrease in plant-derived dietary fiber, is restructuring the Asian gut
microbiome. In this review, we introduce the current status of obesity and diabetes in
Asia and discuss the links of changes in dietary style with gut microbiota alterations
which may predispose Asian people to metabolic diseases.
Collapse
Affiliation(s)
- Phatthanaphong THERDTATHA
- Department of Innovative Science and Technology for Bio-industry, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akari SHINODA
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jiro NAKAYAMA
- Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
97
|
Kiriyama Y, Nochi H. Physiological Role of Bile Acids Modified by the Gut Microbiome. Microorganisms 2021; 10:68. [PMID: 35056517 PMCID: PMC8777643 DOI: 10.3390/microorganisms10010068] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
Bile acids (BAs) are produced from cholesterol in the liver and are termed primary BAs. Primary BAs are conjugated with glycine and taurine in the liver and then released into the intestine via the gallbladder. After the deconjugation of glycine or taurine by the gut microbiome, primary BAs are converted into secondary BAs by the gut microbiome through modifications such as dehydroxylation, oxidation, and epimerization. Most BAs in the intestine are reabsorbed and transported to the liver, where both primary and secondary BAs are conjugated with glycine or taurine and rereleased into the intestine. Thus, unconjugated primary Bas, as well as conjugated and unconjugated secondary BAs, have been modified by the gut microbiome. Some of the BAs reabsorbed from the intestine spill into the systemic circulation, where they bind to a variety of nuclear and cell-surface receptors in tissues, whereas some of the BAs are not reabsorbed and bind to receptors in the terminal ileum. BAs play crucial roles in the physiological regulation of various tissues. Furthermore, various factors, such as diet, age, and antibiotics influence BA composition. Here, we review recent findings regarding the physiological roles of BAs modified by the gut microbiome in the metabolic, immune, and nervous systems.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan;
- Laboratory of Neuroendocrinology, Institute of Neuroscience, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan;
| |
Collapse
|
98
|
López de Felipe F, de las Rivas B, Muñoz R. Molecular Responses of Lactobacilli to Plant Phenolic Compounds: A Comparative Review of the Mechanisms Involved. Antioxidants (Basel) 2021; 11:antiox11010018. [PMID: 35052520 PMCID: PMC8772861 DOI: 10.3390/antiox11010018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 01/23/2023] Open
Abstract
Lactobacilli are well-studied bacteria that can undergo oxidative selective pressures by plant phenolic compounds (PPCs) in plants, during some food fermentations or in the gastrointestinal tract of animals via dietary inputs. Lactobacilli are known to be more tolerant to PPCs than other bacterial groups and, therefore, must have mechanisms to cope with the effects of these metabolites. In this review, we intend to present what is currently known about the basics beyond the responses of Lactobacillus spp. to individual PPCs. We review the molecular mechanisms that are engaged in the PPC-modulated responses studied to date in these bacteria that have been mainly characterized by system-based strategies, and we discuss their differences and similarities. A wide variety of mechanisms are induced to increase the oxidative stress response highlighting the antimicrobial nature of PPCs. However other uncovered mechanisms that are involved in the response to these compounds are reviewed, including the capacity of PPCs to modulate the expression of molecular functions used by lactobacilli to adapt to host environments. This shows that these phytochemicals can act as more than just antimicrobial agents in the dual interaction with lactobacilli.
Collapse
|
99
|
Béchon N, Ghigo JM. Gut biofilms: Bacteroides as model symbionts to study biofilm formation by intestinal anaerobes. FEMS Microbiol Rev 2021; 46:6440158. [PMID: 34849798 DOI: 10.1093/femsre/fuab054] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Bacterial biofilms are communities of adhering bacteria that express distinct properties compared to their free-living counterparts, including increased antibiotic tolerance and original metabolic capabilities. Despite the potential impact of the biofilm lifestyle on the stability and function of the dense community of micro-organisms constituting the mammalian gut microbiota, the overwhelming majority of studies performed on biofilm formation by gut bacteria focused either on minor and often aerobic members of the community or on pathogenic bacteria. In this review, we discuss the reported evidence for biofilm-like structures formed by gut bacteria, the importance of considering the anaerobic nature of gut biofilms and we present the most recent advances on biofilm formation by Bacteroides, one of the most abundant genera of the human gut microbiota. Bacteroides species can be found attached to food particles and colonizing the mucus layer and we propose that Bacteroides symbionts are relevant models to probe the physiology of gut microbiota biofilms.
Collapse
Affiliation(s)
- Nathalie Béchon
- Institut Pasteur, Université de Paris, UMR CNRS2001, Genetics of Biofilms Laboratory 75015 Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université de Paris, UMR CNRS2001, Genetics of Biofilms Laboratory 75015 Paris, France
| |
Collapse
|
100
|
Tamura M, Watanabe J, Hori S, Inose A, Kubo Y, Noguchi T, Nishikawa T, Ikezawa M, Araki R, Kobori M. Effects of a high-γ-polyglutamic acid-containing natto diet on liver lipids and cecal microbiota of adult female mice. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2021; 40:176-185. [PMID: 34631329 PMCID: PMC8484009 DOI: 10.12938/bmfh.2020-061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/19/2021] [Indexed: 11/05/2022]
Abstract
Natto is a traditional Japanese fermented soy product high in γ-polyglutamic acid (γ-PGA), whose beneficial effects have been reported. We prepared high-γ-PGA natto and compared the dietary influence on liver lipids and cecal microbiota in mice fed a diet containing it or a standard diet. The mice were served a 30% high-γ-PGA natto diet (PGA group) or standard diet (Con group) for 28 days. Liver lipids, fecal lipids, and fecal bile acids were quantified. Cecal microbiota were analyzed by PCR amplification of the V3 and V4 regions of 16S rRNA genes and sequenced using a MiSeq System. Additionally, the cecal short-chain fatty acid profile was assessed. The results revealed that the liver lipid and triglyceride contents were significantly lower (p<0.01) and amounts of bile acids and lipids in the feces were significantly higher in the PGA group than in the Con group. The cecal butyric acid concentration was observed to be significantly higher in the PGA group than in the Con group. Principal component analysis of the cecal microbiota revealed that the PGA and Con groups were distinct. The ratio of Firmicutes/Bacteroidetes was found to be significantly low in the PGA mice. The results revealed a significantly higher relative abundance of Lachnospiraceae (p<0.05) and significantly lower relative abundance of Coriobacteriaceae (p<0.01) in the PGA group. Analysis of the correlation between bacterial abundance and liver lipids, cecal short-chain fatty acids, fecal lipids, and fecal bile acids suggested that intestinal microbiota can be categorized into different types based on lipid metabolism. Hepatic lipid accumulation typically facilitates the onset of nonalcoholic fatty liver disease (NAFLD). Our findings suggest that high-γ-PGA natto is a beneficial dietary component for the prevention of NAFLD.
Collapse
Affiliation(s)
- Motoi Tamura
- Food Research Institute of the National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Jun Watanabe
- Food Research Institute of the National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.,Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Sachiko Hori
- Food Research Institute of the National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Atsuko Inose
- Food Research Institute of the National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Yuji Kubo
- Industrial Technology Innovation Center of Ibaraki Prefecture, 3781-1 Nagaoka, Ibaraki-machi, Higashi-ibaraki-gun, Ibaraki 311-3116, Japan
| | - Tomotsugu Noguchi
- Industrial Technology Innovation Center of Ibaraki Prefecture, 3781-1 Nagaoka, Ibaraki-machi, Higashi-ibaraki-gun, Ibaraki 311-3116, Japan
| | | | - Masaya Ikezawa
- Takanofoods Co., Ltd., 1542 Noda, Omitama, Ibaraki 311-3411, Japan
| | - Risa Araki
- Department of Clinical and Translational Research Methodology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | - Masuko Kobori
- Food Research Institute of the National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| |
Collapse
|