51
|
Duan H, Yang X, Cai S, Zhang L, Qiu Z, Wang J, Wang S, Li Z, Li X. Nrf2 mitigates sepsis-associated encephalopathy-induced hippocampus ferroptosis via modulating mitochondrial dynamic homeostasis. Int Immunopharmacol 2024; 143:113331. [PMID: 39396427 DOI: 10.1016/j.intimp.2024.113331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a serious neurological complication accompanied with acute and long-term cognitive dysfunction. Ferroptosis is a newly discovered type of cell death that is produced by iron-dependent lipid peroxidation. Emerging evidence suggests that ferroptosis is involved in SAE. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a mitochondria related gene involved in ferroptosis. However, the role of Nrf2 in SAE and the mechanisms remains elusive. In this study, we found that Nrf2 knockout aggravated cognitive and emotional dysfunction and promoted caecal ligation and puncture (CLP)-induced brain injury and hippocampus ferroptosis as indicated by the increase of ROS, Fe2+ and the levels of proinflammatory cytokines. Meanwhile, the levels of glutathione peroxidase 4 (GPX4), SLC7A11 and glutathionewere downregulatedin Nrf2 knockout group. In vitro experiments showed that mitochondrial ROS, Fe2+ and the expression of Fis1 and Drp1 decreased, and the level of Mfn1 and Opa-1 increased after Nrf2 overexpression. The silence of Nrf2 increased the expression of ROS, MDA and Fe2+, while decreased glutathione, mitochondrial membrane potential (MMP) and cell viability in vitro, indicating Nrf2 improved LPS-induced mitochondrial dysfunction and mitigated hippocampal cells ferroptosis. These results suggest that Nrf2 could inhibit ferroptosis and neuroinflammation in hippocampus and reduce cognitive dysfunction in SAE mice, making it a potential therapeutic target in the treatment of SAE. The protective effects of Nrf2 on the brain may be mediated by maintaining mitochondrial dynamic homeostasis.
Collapse
Affiliation(s)
- Haifeng Duan
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China
| | - Xin Yang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China
| | - Shuhan Cai
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Lei Zhang
- Department of Anesthesiology, the First Clinical College of Hubei University of Medicine, Shiyan, Hubei, China
| | - Zebao Qiu
- Department of Anesthesiology, Suizhou Zengdu Hospital, Suizhou, Hubei, China
| | - Jin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shun Wang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinyi Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China.
| |
Collapse
|
52
|
Sun R, Li H, Chen Y, Hu M, Wang J. Tubuloside A alleviates postmyocardial infarction cardiac fibrosis by inhibiting TGM2: Involvement of inflammation and mitochondrial pathway apoptosis. Int Immunopharmacol 2024; 143:113324. [PMID: 39393274 DOI: 10.1016/j.intimp.2024.113324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Cardiac fibrosis is associated with myocardial remodeling following myocardial infarction (MI), which can lead to heart failure, arrhythmias, and even death. This study aimed to determine the effects of tubuloside A (TA) on cardiac fibrosis after MI and elucidate their underlying molecular mechanisms. Rats were divided into the following groups: sham (fake surgery), MI, MI + 1 mg/kg TA, and MI + 3 mg/kg TA. Compared with MI, the addition of TA significantly reduced mortality, improved cardiac function, decreased infarct size, and inhibited myocardial injury and fibrosis. To verify the direct targets of TA, we used cellular thermal shift assay and drug affinity responsive target stability to analyze drug-protein interactions and discovered that TA can bind directly to TGM2 and inhibit its enzymatic activity. Furthermore, to investigate whether TA can inhibit the TGF-β1-mediated activation of cardiac fibroblasts (CFs) through TGM2, we overexpressed TGM2 in CF cells and treated them with TA. We found that TA inhibited the activity of TGM2 in CF cells and reduced α-SMA, collagen-I, and collagen-III levels, thereby inhibiting the progression of fibrosis. Similarly, we found that TA could exert anti-inflammatory and antiapoptotic effects by inhibiting TGM2. Overall, we demonstrated that TA is a potential candidate drug for inhibiting the impacts of myocardial infarction and cardiac fibrosis, reducing postinfarction fibrosis by inhibiting the NF-κB signaling pathway and suppressing mitochondrial pathway-mediated apoptosis. Therefore, focusing on drug discovery strategies for TA may provide a promising therapeutic approach for MI.
Collapse
Affiliation(s)
- Runfeng Sun
- Department of Cardiology, Donghai People's Hospital Affiliated to Kangda College of Nanjing Medical University, Donghai People's Hospital, Lianyungang 222300, China
| | - Hua Li
- Department of Cardiology, Donghai People's Hospital Affiliated to Kangda College of Nanjing Medical University, Donghai People's Hospital, Lianyungang 222300, China
| | - Yun Chen
- Department of Cardiology, Donghai People's Hospital Affiliated to Kangda College of Nanjing Medical University, Donghai People's Hospital, Lianyungang 222300, China
| | - Ming Hu
- Department of Cardiology, Donghai People's Hospital Affiliated to Kangda College of Nanjing Medical University, Donghai People's Hospital, Lianyungang 222300, China
| | - Jiaping Wang
- Department of Cardiology, Donghai People's Hospital Affiliated to Kangda College of Nanjing Medical University, Donghai People's Hospital, Lianyungang 222300, China.
| |
Collapse
|
53
|
Ye X, Pei F, Li W, Xue J, Huang X, Huang J, Zhang L. Fibroblast growth factor 21 attenuates pulmonary ischemia/reperfusion injury via inhibiting endoplasmic reticulum stress-induced ferroptosis though FGFR1/PPARδ signaling pathway. Int Immunopharmacol 2024; 143:113307. [PMID: 39366074 DOI: 10.1016/j.intimp.2024.113307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Acute lung injury is a critical life-threatening complication of pulmonary and cardiac surgery with a high rate of morbidity and mortality. Fibroblast growth factor 21 (FGF21) has been reported to play an important role in protecting vital organs from damage. This study aims to investigate the potential protective role and mechanism of FGF21 in pulmonary ischemia/reperfusion (I/R)-induced acute lung injury. METHODS A pulmonary epithelial cell line was treated with hypoxia/regeneration (H/R) in vitro and a mouse model of acute lung injury was induced with pulmonary I/R in vivo. Lung injury after pulmonary I/R was compared between FGF21-konckout (KO) mice and wild-type (WT) mice. Recombinant FGF21 was administrated in vivo and in vitro to determine its therapeutic effect. RESULTS Circulating levels of FGF21 in mice with pulmonary I/R injury were significantly higher than in those without pulmonary I/R injury. Lung injury was aggravated in FGF21-KO mice compared with WT mice and the administration of FGF21 alleviated lung injury in mouse treated with I/R and pulmonary epithelial cell injury treated with H/R. FGF21 treatment decreased endoplasmic reticulum (ER) stress, Fe2+ and lipid reactive oxygen species (ROS) contents and GPX4 expression and increased PTGS2 levels. Mechanistically, FGF21 upregulated the expression of FGFR1 and PPARδ, ameliorated ER stress and ER stress induced-ferroptosis. Furthermore, FGF21 increased the expression level of PPARδ in pulmonary epithelial cell exposed to H/R, which was inhibited by FGFR1 inhibitor (PD173074). The protective effects of FGF21 were abolished by co-treatment with PPARδ inhibitor (GSK0660), indicating FGF21 attenuated ER stress-induced ferroptosis by dependent on FGFR1/PPARδ signaling pathway. CONCLUSION Our study reveals that FGF21 protects against pulmonary I/R injury via inhibiting ER stress-induced ferroptosis though FGFR1/PPARδ signaling pathway. Boosting endogenous FGF21 or the administration of recombinant FGF21 could be promising therapeutic strategies for pulmonary IRI.
Collapse
Affiliation(s)
- Xinqiao Ye
- Department of Thoracic Surgery, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou 341009, Jiangxi, China
| | - Fang Pei
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou 341009, Jiangxi, China.
| | - Wei Li
- People's Hospital of Ningdu County, Ganzhou 342899, Jiangxi, China
| | - Jinping Xue
- Xinfeng Hospital of Traditional Chinese Midicine, Ganzhou 341699, Jiangxi, China
| | - Xiuyun Huang
- Dingnan Second Hospital, Ganzhou 341999, Jiangxi, China
| | - Jianming Huang
- Department of Thoracic Surgery, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou 341009, Jiangxi, China
| | - Liyan Zhang
- Department of Clinical Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 519041, Guangdong, China
| |
Collapse
|
54
|
Chen GL, Li JY, Chen X, Liu JW, Zhang Q, Liu JY, Wen J, Wang N, Lei M, Wei JP, Yi L, Li JJ, Ling YP, Yi HQ, Hu Z, Duan J, Zhang J, Zeng B. Mechanosensitive channels TMEM63A and TMEM63B mediate lung inflation-induced surfactant secretion. J Clin Invest 2024; 134:e174508. [PMID: 38127458 PMCID: PMC10904053 DOI: 10.1172/jci174508] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
Pulmonary surfactant is a lipoprotein complex lining the alveolar surface to decrease the surface tension and facilitate inspiration. Surfactant deficiency is often seen in premature infants and in children and adults with respiratory distress syndrome. Mechanical stretch of alveolar type 2 epithelial (AT2) cells during lung expansion is the primary physiological factor that stimulates surfactant secretion; however, it is unclear whether there is a mechanosensor dedicated to this process. Here, we show that loss of the mechanosensitive channels TMEM63A and TMEM63B (TMEM63A/B) resulted in atelectasis and respiratory failure in mice due to a deficit of surfactant secretion. TMEM63A/B were predominantly localized at the limiting membrane of the lamellar body (LB), a lysosome-related organelle that stores pulmonary surfactant and ATP in AT2 cells. Activation of TMEM63A/B channels during cell stretch facilitated the release of surfactant and ATP from LBs fused with the plasma membrane. The released ATP evoked Ca2+ signaling in AT2 cells and potentiated exocytic fusion of more LBs. Our study uncovered a vital physiological function of TMEM63 mechanosensitive channels in preparing the lungs for the first breath at birth and maintaining respiration throughout life.
Collapse
Affiliation(s)
- Gui-Lan Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jing-Yi Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Xin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jia-Wei Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Qian Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jie-Yu Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jing Wen
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Na Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jun-Peng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Li Yi
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jia-Jia Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Yu-Peng Ling
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - He-Qiang Yi
- Department of Cardiothoracic Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhenying Hu
- Human Aging Research Institute and School of Life Sciences and
| | - Jingjing Duan
- Human Aging Research Institute and School of Life Sciences and
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| |
Collapse
|
55
|
Cavaillon JM, Chaudry IH. Facing stress and inflammation: From the cell to the planet. World J Exp Med 2024; 14:96422. [DOI: 10.5493/wjem.v14.i4.96422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 10/31/2024] Open
Abstract
As identified in 1936 by Hans Selye, stress is shaping diseases through the induction of inflammation. But inflammation display some yin yang properties. On one hand inflammation is merging with the innate immune response aimed to fight infectious or sterile insults, on the other hand inflammation favors chronic physical or psychological disorders. Nature has equipped the cells, the organs, and the individuals with mediators and mechanisms that allow them to deal with stress, and even a good stress (eustress) has been associated with homeostasis. Likewise, societies and the planet are exposed to stressful settings, but wars and global warming suggest that the regulatory mechanisms are poorly efficient. In this review we list some inducers of the physiological stress, psychologic stress, societal stress, and planetary stress, and mention some of the great number of parameters which affect and modulate the response to stress and render it different from an individual to another, from the cellular level to the societal one. The cell, the organ, the individual, the society, and the planet share many stressors of which the consequences are extremely interconnected ending in the domino effect and the butterfly effect.
Collapse
Affiliation(s)
| | - Irshad H Chaudry
- Department of Surgery, University of Alabama Birmingham, Birmingham, AL 35294, United States
| |
Collapse
|
56
|
Huang J, Wang X, Zeng Y, Xu H, Zhang S, Ding Z, Guo R. Identification of key mitochondria-related genes and their potential crosstalk role with immune pattern in Idiopathic pulmonary fibrosis. Gene 2024; 930:148840. [PMID: 39147114 DOI: 10.1016/j.gene.2024.148840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) stands out as a life-threatening and one of the most severe interstitial lung diseases. The pathogenesis of IPF is not fully understood, while recent studies have highlighted the association of mitochondrial dysfunction with IPF. This study is dedicated to pinpointing crucial genes related to mitochondria that potentially impact the advancement of IPF, thereby offering new perspectives on the pathogenesis of this condition. METHODS The Gene Expression Omnibus (GEO) database was utilized to download three datasets (GSE32537, GSE92592, and GSE150910), following which a comprehensive analysis was conducted to identify differentially expressed mitochondria-related genes (DEMTRGs) in the IPF lung tissues. Subsequently, GO and KEGG enrichment analysis of the DEMTRGs was performed. Next, external datasets and in vivo experiments were performed to validate their expression. Additionally, a Logistic regression model based on key DEMTRGs was constructed, and the model's ability to distinguish between IPF and controls was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC). Finally, gene set enrichment analysis (GSEA) and CIBERSORT algorithm were conducted. RESULTS We identified five key DEMTRGs (ALDH18A1, ALDH1B1, MCCC1, ACAT1, and PDHA1), ALDH18A1 and ALDH1B1 exhibited upregulated expression levels, whereas MCCC1, ACAT1, and PDHA1 showed downregulation in the lung tissue of individuals with IPF. The expression levels of these key DEMTRGs were validated by an independent external dataset (GSE53845) and the bleomycin-induced pulmonary fibrosis mice. In addition, the ROCs indicated that the diagnostic model constructed based on key DEMTRGs could effectively distinguish between IPF and controls (AUC>0.8). GSEA analysis and immune-related analysis shed light on the potential mechanisms through which these key DEMTRGs influence IPF. CONCLUSION Our research has pinpointed key genes associated with mitochondria that may ultimately contribute to the progression of IPF by exerting regulatory effects on mitochondrial function, thereby influencing multiple cellular processes.
Collapse
Affiliation(s)
- Jun Huang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Xia Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Youjie Zeng
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Huilin Xu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Siyi Zhang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Zhigang Ding
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Ren Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
57
|
Lazzeri C, Bonizzoli M, Feltrin G, Peris A. Normothermic regional perfusion mobile teams in controlled donation after circulatory death pathway: Evidence and peculiarities. World J Transplant 2024; 14:97860. [DOI: 10.5500/wjt.v14.i4.97860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 09/20/2024] Open
Abstract
To facilitate the implementation of controlled donation after circulatory death (cDCD) programs even in hospitals not equipped with a local Extracorporeal Membrane Oxygenation (ECMO) team (Spokes), some countries and Italian Regions have launched a local cDCD network with a ECMO mobile team who move from Hub hospitals to Spokes for normothermic regional perfusion (NRP) implantation in the setting of a cDCD pathway. While ECMO teams have been clearly defined by the Extracorporeal Life Support Organization, regarding composition, responsibilities and training programs, no clear, widely accepted indications are to date available for NRP teams. Although existing NRP mobile networks were developed due to the urgent need to increase the number of cDCDs, there is now the necessity for transplantation medicine to identify the peculiarities and responsibility of a NRP team for all those centers launching a cDCD pathway. Thus, in the present manuscript we summarized the characteristics of an ECMO mobile team, highlighting similarities and differences with the NRP mobile team. We also assessed existing evidence on NRP teams with the goal of identifying the characteristic and essential features of an NRP mobile team for a cDCD program, especially for those centers who are starting the program. Differences were identified between the mobile ECMO team and NRP mobile team. The common essential feature for both mobile teams is high skills and experience to reduce complications and, in the case of cDCD, to reduce the total warm ischemic time. Dedicated training programs should be developed for the launch of de novo NRP teams.
Collapse
Affiliation(s)
- Chiara Lazzeri
- Department of Emergency, Extracorporeal Membrane Oxygenation Center, Regional Transplant Center, Florence 50134, Italy
| | - Manuela Bonizzoli
- Department of Emergency, Extracorporeal Membrane Oxygenation Center, Florence 50134, Italy
| | | | - Adriano Peris
- Department of Emergency, Extracorporeal Membrane Oxygenation Center, Florence 50134, Italy
| |
Collapse
|
58
|
Nag DS, Varghese K, Swain A, Patel R, Sahu S, Sam M. Update on the aetiopathogenesis of obstructive sleep apnea: Role of inflammatory and immune mediated mechanisms. World J Clin Cases 2024; 12:6754-6759. [DOI: 10.12998/wjcc.v12.i35.6754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/19/2024] [Accepted: 09/09/2024] [Indexed: 10/24/2024] Open
Abstract
Obstructive sleep apnea (OSA) is often a lifestyle disease associated with obesity, which is rapidly evolving as a major health concern with diverse multisystemic implications. To prevent and mitigate its adverse effects and reduce its burden on society, its aetiopathogeneses must be precisely understood. Numerous studies focusing on the range of diverse anatomic, functional, and lifestyle factors have already been carried out to determine the possible contributory roles of these factors in OSA. Recently, evidence to validate the role of inflammatory pathways and immune mechanisms in the aetiopathogeneses of OSA is being developed. This allows for further research and translation of such knowledge for targeted therapeutic and preventive interventions in patients with or who are at risk of developing OSA.
Collapse
Affiliation(s)
- Deb Sanjay Nag
- Department of Anaesthesiology, Tata Main Hospital, Jamshedpur 831001, Jharkhand, India
| | - Koshy Varghese
- Department of Anaesthesiology, Tata Main Hospital, Jamshedpur 831001, Jharkhand, India
| | - Amlan Swain
- Department of Anaesthesiology, Tata Main Hospital, Jamshedpur 831001, Jharkhand, India
- Department of Anaesthesiology, Manipal Tata Medical College, Jamshedpur 831017, India
| | - Roushan Patel
- Department of Anaesthesiology, Tata Main Hospital, Jamshedpur 831001, Jharkhand, India
- Department of Anaesthesiology, Manipal Tata Medical College, Jamshedpur 831017, India
| | - Seelora Sahu
- Department of Anaesthesiology, Tata Main Hospital, Jamshedpur 831001, Jharkhand, India
- Department of Anaesthesiology, Manipal Tata Medical College, Jamshedpur 831017, India
| | - Merina Sam
- Department of Anaesthesiology, Tata Main Hospital, Jamshedpur 831001, Jharkhand, India
| |
Collapse
|
59
|
Lee JYT, Tikellis G, Hoffman M, Mellerick CR, Symons K, Bondarenko J, Khor YH, Glaspole I, Holland AE. A self-management package for pulmonary fibrosis: A feasibility study. PEC INNOVATION 2024; 5:100328. [PMID: 39247403 PMCID: PMC11378933 DOI: 10.1016/j.pecinn.2024.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/01/2024] [Accepted: 08/03/2024] [Indexed: 09/10/2024]
Abstract
Background and objective There is currently no self-management package designed to meet the needs of people with pulmonary fibrosis (PF). This study evaluated the feasibility and acceptability of a PF-specific self-management package. Methods Adults with PF were randomly allocated (1:1) to either receive the self-management package with healthcare professional (HCP) support or standardised PF information. Primary outcomes were feasibility and acceptability of the intervention. Secondary outcomes included health-related quality of life, self-efficacy, breathlessness, daily steps, use of PF-related treatments, and healthcare utilisation. Participants' experiences of using the package were explored using qualitative interviews. Results Thirty participants were included. Recruitment rate was 91% and 100% of those recruited were randomised. Eighty-seven percent of participants who received the package read ≥1 module and set a goal. Secondary outcomes were feasible to collect with high assessment completion rates (87%). Most participants reported the package was easy to use and enhanced knowledge, but suggested some improvements, while HCP support was highly valued. Conclusion A PF-specific self-management package was feasible to deliver and requires further testing in a trial powered to detect changes in clinical outcomes. Innovation This is the first self-management package designed specifically for people with PF, informed by patient experience and expert consensus.
Collapse
Affiliation(s)
- Joanna Y T Lee
- Respiratory Research@Alfred, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Gabriella Tikellis
- Respiratory Research@Alfred, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Mariana Hoffman
- Respiratory Research@Alfred, School of Translational Medicine, Monash University, Melbourne, Australia
- Institute for Breathing and Sleep, Melbourne, Australia
| | - Christie R Mellerick
- Respiratory Research@Alfred, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Karen Symons
- Department of Respiratory and Sleep Medicine, Alfred Health, Melbourne, Australia
| | - Janet Bondarenko
- Respiratory Research@Alfred, School of Translational Medicine, Monash University, Melbourne, Australia
- Department of Physiotherapy, Alfred Health, Melbourne, Australia
| | - Yet H Khor
- Respiratory Research@Alfred, School of Translational Medicine, Monash University, Melbourne, Australia
- Institute for Breathing and Sleep, Melbourne, Australia
- Department of Respiratory and Sleep Medicine, Alfred Health, Melbourne, Australia
- Department of Respiratory and Sleep Medicine, Austin Health, Melbourne, Australia
| | - Ian Glaspole
- Department of Respiratory and Sleep Medicine, Alfred Health, Melbourne, Australia
| | - Anne E Holland
- Respiratory Research@Alfred, School of Translational Medicine, Monash University, Melbourne, Australia
- Institute for Breathing and Sleep, Melbourne, Australia
- Department of Respiratory and Sleep Medicine, Alfred Health, Melbourne, Australia
- Department of Physiotherapy, Alfred Health, Melbourne, Australia
| |
Collapse
|
60
|
Dikranian LC, Irish DE, Shanley KE, Walker DR, de Waal Malefyt SK. Improving asthma self-management education through inhaler labeling. PEC INNOVATION 2024; 5:100330. [PMID: 39252880 PMCID: PMC11381901 DOI: 10.1016/j.pecinn.2024.100330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/15/2024] [Accepted: 08/03/2024] [Indexed: 09/11/2024]
Abstract
Objective Improper use and poor understanding of asthma medications can lead to poorly controlled asthma, emergency department visits, and hospitalizations for children with asthma. Pharmacists play a critical role in improving asthma medication adherence through education on asthma self-management. The use of color-coded labels applied at pharmacies to help patients differentiate between rescue and maintenance inhalers has not been explored. Methods Pharmacies were recruited to join a community pharmacy asthma coalition. Pharmacists provided patient education and labeled inhalers with two types of color-coded stickers. A red sticker labeled "RESCUE" was used for short-acting β-2 agonist medication inhalers. A green sticker labeled "USE EVERY DAY" was used for inhaled corticosteroids (ICS) or combination ICS/long-acting β-2 agonist medication inhalers. Results During the two years of the pilot program, 25 pharmacy locations participated. Pharmacies labeled over 6000 rescue and 9000 controller medications using color-coded labels. Over 1000 children and 7000 adults were served by the coalition. Conclusion Color-coded asthma medication labels can be successfully utilized by pharmacies. This low-cost tool provides vital information regarding the proper use of asthma medications. Innovation The color-coded labeling of asthma medications is a novel innovation that can be successfully used by pharmacists to improve asthma self-management education.
Collapse
Affiliation(s)
- Lea C Dikranian
- Children's Hospital of Michigan, Detroit, MI, United States of America
| | | | | | - Don R Walker
- University of Las Vegas, Las Vegas, NV, United States of America
| | | |
Collapse
|
61
|
Goyal R, Corrier G, Ring D, Fatehi A, Ramtin S. Potential misinformation in websites on carpal tunnel syndrome. PEC INNOVATION 2024; 5:100323. [PMID: 39149540 PMCID: PMC11325073 DOI: 10.1016/j.pecinn.2024.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 08/17/2024]
Abstract
Objective We sought to evaluate the potential reinforcement of misconceptions in websites discussing carpal tunnel syndrome (CTS). Methods After removing all cookies to limit personalization, we entered "carpal tunnel syndrome" into five search engines and collected the first 50 results displayed for each search. For each of the 105 unique websites, we recorded publication date, author background, and number of views. The prevalence of potential reinforcement and/or reorientation of misconceptions for each website was then scored using a rubric based on our interpretation of the best current evidence regarding CTS. The informational quality of websites was graded with the DISCERN instrument, a validated tool for assessing online health information. Results Every website contained at least one potentially misleading statement in our opinion. The most common misconceptions reference "excessive motion" and "inflammation." Greater potential reinforcement of misinformation about CTS was associated with fewer page views and lower informational quality scores. Conclusions Keeping in mind that this analysis is based on our interpretation of current best evidence, potential misinformation on websites addressing CTS is common and has the potential to increase symptom intensity and magnitude of incapability via reinforcement of unhelpful thoughts regarding symptoms. Innovation The prevalence of patient-directed health information that can increase discomfort and incapability by reinforcing common unhelpful thoughts supports the need for innovations in how we develop, oversee, and evolve healthy online material.
Collapse
Affiliation(s)
- Ria Goyal
- Department of Surgery and Perioperative Care Dell Medical School - The University of Texas at Austin, 1701 Trinity Street, Austin, TX 78712, USA
| | - Grace Corrier
- Department of Surgery and Perioperative Care Dell Medical School - The University of Texas at Austin, 1701 Trinity Street, Austin, TX 78712, USA
| | - David Ring
- Department of Surgery and Perioperative Care Dell Medical School - The University of Texas at Austin, 1701 Trinity Street, Austin, TX 78712, USA
| | - Amirreza Fatehi
- Department of Surgery and Perioperative Care Dell Medical School - The University of Texas at Austin, 1701 Trinity Street, Austin, TX 78712, USA
| | - Sina Ramtin
- Department of Surgery and Perioperative Care Dell Medical School - The University of Texas at Austin, 1701 Trinity Street, Austin, TX 78712, USA
| |
Collapse
|
62
|
Biswal L, Sahu VK, Sardoiwala MN, Karmakar S, Choudhury SR. Antibody conjugated targeted nanotherapy epigenetically inhibits calpain-mediated mitochondrial dysfunction to attenuate Parkinson's disease. Carbohydr Polym 2024; 346:122575. [PMID: 39245478 DOI: 10.1016/j.carbpol.2024.122575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024]
Abstract
Many neurodegenerative and psychiatric malignancies like Parkinson' disease (PD) originate from an imbalance of 17β-Estradiol (E2) in the human brain. However, the peripheral side effects of the usage of E2 for PD therapy and less understanding of the molecular mechanism hinder establishing its neurotherapeutic potential. In the present work, systemic side effects were overcome by targeted delivery using Dopamine receptor D3 (DRD3) conjugated E2-loaded chitosan nanoparticles (Ab-ECSnps) that showed a promising delivery to the brain. E2 is a specific calpain inhibitor that fosters neurodegeneration by disrupting mitochondrial function, while B-cell-specific Moloney murine leukemia virus integration region 1 (BMI1), an epigenetic regulator, is crucial in preserving mitochondrial homeostasis. We showed the administration of Ab-ECSnps inhibits calpain's translocation into mitochondria while promoting the translocation of BMI1 to mitochondria, thereby conferring neurotherapeutic benefits by enhancing cell viability, increasing mitochondrial DNA copy number, and preserving mitochondrial membrane potential. Further, we showed a novel molecular mechanism of BMI1 regulation by calpain that might contribute to maintaining mitochondrial homeostasis for attenuating PD. Concomitantly, Ab-ECSnps showed neurotherapeutic potential in the in vivo PD model. We showed for the first time that our brain-specific targeted delivery might regulate calpain-mediated BMI1 expression, thereby preserving mitochondrial homeostasis to alleviate PD.
Collapse
Affiliation(s)
- Liku Biswal
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Vikas Kumar Sahu
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Mohammed Nadim Sardoiwala
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Surajit Karmakar
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Subhasree Roy Choudhury
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| |
Collapse
|
63
|
Miano S, Kheirandish-Gozal L, De Pieri M. Comorbidity of obstructive sleep apnea and narcolepsy: A challenging diagnosis and complex management. Sleep Med X 2024; 8:100126. [PMID: 39386319 PMCID: PMC11462365 DOI: 10.1016/j.sleepx.2024.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Narcolepsy and obstructive sleep apnea syndrome (OSA) are relevant causes of excessive daytime sleepiness (EDS); although different for etiopathogenesis and symptoms, differential diagnosis is sometimes difficult, and guidelines are lacking concerning their management when coexisting in a same patient. Methods A narrative review of the literature was realized including PubMed, Scopus and Embase, aimed to regroup studies and case reports evaluating epidemiology, clinical and instrumental features and treatment of patients presenting comorbid NT1 and OSA. Moreover, a snowball search on the pathophysiology underpinnings of the association of the two disorder was realized. Results For adults, the prevalence of OSA in NT1 ranged from 24.8 % to 51.4 %. No studies were found concerning the treatment of EDS in double-diagnosis patients, but only case reports; these latter and the experience on patients with either NT or OSA suggest that modafinil, methylphenidate, pitolisant and solriamfetol are effective. Discussion Adults with NT1 showed a higher prevalence of OSA compared to the general population, but the reach of the results reviewed here is limited by the retrospective design of most of the studies and by the inhomogeneous utilization of diagnostic criteria. The association with OSA is likely to be explained by the involvement of orexin in hypercapnic-hypoxic responses: a deficit of orexin may promote obstructive events during sleep. Open questions warrant further investigation, especially orexin's involvement in other sleep disorders associated with EDS, and the more appropriate treatment for the OSA-narcolepsy comorbidity.
Collapse
Affiliation(s)
- Silvia Miano
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Civic Hospital, EOC, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900, Lugano, Switzerland
| | | | - Marco De Pieri
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 2 Chemin du Petit-Bel-Air, CH-1226, Thonex, Switzerland
| |
Collapse
|
64
|
Zhu X, Benjafield A, Deas R, Willes L, Armitstead J. Feasibility and acceptability of switching from a previous-generation to a new-generation mask for positive airway pressure therapy of sleep apnea using remote care. Sleep Med X 2024; 8:100128. [PMID: 39498349 PMCID: PMC11532967 DOI: 10.1016/j.sleepx.2024.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
Purpose Mask selection could affect an individual's experience with positive airway pressure (PAP) treatment for obstructive sleep apnea, but there is very limited data on the impact of switching to a different mask once established on PAP therapy. This study investigated the patient's experience when switching from a previous-generation PAP mask to a new-generation mask via remote care. Methods A new-generation mask (AirFit F30i or AirFit N30i) was successfully fitted to 215 participants during video conferencing sessions. Participants completed online questionnaires on day 1, day 3, day 7, day 30 and day 90 after mask switch to collect subjective feedback and quality of life data; objective PAP device data were also downloaded. Results Residual apnea-hypopnea index showed statistically significant difference from baseline at day 30 (+0.2 ± 0.9/h [p = 0.026]) and day 90 (+0.2 ± 0.8/h [p = 0.006]), however unlikely to be clinically relevant. Average daily usage was significantly increased from baseline at day 30 (+0.2 ± 1.2 h/day [p = 0.010]) but not day 90 (+0.1 ± 1.0 h/day [p = 0.126]). Functional Outcomes of Sleep Questionnaire (FOSQ-10) score was significantly higher at day 90 (change from baseline to day 90: +0.48 ± 2.29 [p = 0.015]). Subjective ratings for comfort, seal, and usability of the new-generation mask were significantly better than the predefined acceptability level. Rates of PAP-related side effects were generally acceptable. Conclusion Remote management of mask change was associated with good outcomes in terms of objective device data and patient acceptability. This approach could be used to improve the overall therapy experience for individuals requiring a PAP therapy mask change for any reason. Clinical trial registration http://clinicaltrials.gov (NCT05262439).
Collapse
Affiliation(s)
| | | | - Ross Deas
- ResMed Science Center, Sydney, Australia
| | | | | |
Collapse
|
65
|
Wafa SEI, Sawatari H, Ahmed R, Deshpande S, Khan H, Providencia R, Padmanabhan D, Somers VK, Ramphul K, Awad W, Chahal CAA, Khanji MY. CHA 2DS 2-VASc predicts readmission, outcomes and resource utilization in patients undergoing coronary artery bypass grafting: A 7-year National Readmission Database study. Int J Cardiol 2024; 417:132529. [PMID: 39244101 DOI: 10.1016/j.ijcard.2024.132529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND CHA2DS2-VASc score is used to assess thromboembolic risk in patients with atrial fibrillation (AF)/atrial flutter (AFL), however its utilization to predict outcomes and readmission at following discharge in patients undergoing coronary artery bypass grafting (CABG) regardless of AF/AFL presence is understudied. We sought to assess its utility in predicting outcomes, length of hospital stay (LOS), and healthcare-associated costs (HAC) in these patients. METHOD The National Readmission Database (NRD) was queried from 2010 to 2017 for patients with/without AF/AFL undergoing CABG using the International Classification of Diseases, Ninth and Tenth editions (ICD-9-&-10). Multiple regression analysis and multivariate analysis using Cox-Hazard analysis were used to evaluate outcomes up to 90-day readmission from discharge, LOS, and HAC against CHA2DS2-VASc score (cut-off-score:6) were abstracted from the database. RESULTS Of the 420,458 patients that underwent CABG, 76,859 (18.3 %) were re-admitted to hospital within 90-days from discharge. Statistically significant increase in 90-day all-cause readmissions were demonstrated with increasing CHA2DS2-VASc score [No AF/AFL vs AF/AFL: score-0 (2.4 % vs1.4 %), score-6 (3.1 % vs 4.5 %, p-value<0.0001]. Similar trends were seen in re-admissions for TIA/Stroke and heart failure. The survival rate for all events were lower with incremental increase in CHA2DS2-VASc score (score-0 = 100 %; score-6 = 73 %, p-value<0.0001). Greater LOS and HAC was associated with increasing higher CHA2DS2-VASc score (standardized-beta[β]; no AF/AFL vs AF/AFL: LOS = score-1: 0.08 vs 0.06, score-6: 0.12 vs 0.13. HAC = score-1: 0.02 vs 0.009, score-6: 0.02 vs 0.01, p-value <0.001). CONCLUSION CHA2DS2-VASc score is an easy-to-use tool that predicts poorer outcomes, higher readmission, longer LOS, higher HAC, not just in patients with AF/AFL undergoing CABG, but also in those without AF/AFL.
Collapse
Affiliation(s)
- Syed Emir Irfan Wafa
- Department of Cardiology, Russell's Hall Hospital, Dudley Group NHS Foundation Trust, UK
| | - Hiroyuki Sawatari
- Department of Perioperative and Critical Care Management, Graduate School of Biomedical and Health Sciences, Hiroshima University (JP), Japan
| | - Raheel Ahmed
- Department of Cardiology, Royal Brompton Hospital and Harefield Hospitals, London, UK
| | - Saurabh Deshpande
- Sri Jayadeva Institute of Cardiovascular Sciences and Research, India
| | - Hassan Khan
- Norton Heart Specialists, Norton Healthcare, Louisville, KY, USA
| | - Rui Providencia
- Department of Cardiology, Newham University Hospital, Barts Health NHS Trust, UK; Institute of Health Informatics Research, Univestity College London, London, UK; Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, UK
| | - Deepak Padmanabhan
- Sri Jayadeva Institute of Cardiovascular Sciences and Research, India; Division of Cardiology, University of Pennsylvania, Philadelphia, PA, USA; Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Virend K Somers
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | | | - Wael Awad
- Department of Cardiothoracic Surgery, Barts Health NHS Trust, UK
| | - C Anwar A Chahal
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, UK; Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA; Centre for Inherited Cardiovascular Diseases, WellSpan Health, York, PA, USA; NIHR Barts Cardiovascular Biomedical Research Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University, UK
| | - Mohammed Y Khanji
- Department of Cardiology, Newham University Hospital, Barts Health NHS Trust, UK; Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, UK; NIHR Barts Cardiovascular Biomedical Research Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University, UK.
| |
Collapse
|
66
|
Sécher T, Cortes M, Boisseau C, Barba Goudiaby MT, Pitiot A, Parent C, Thomas M, Heuzé-Vourc’h N. Synergy between Lactobacillus murinus and anti-PcrV antibody delivered in the airways to boost protection against Pseudomonas aeruginosa. Mol Ther Methods Clin Dev 2024; 32:101330. [PMID: 39314638 PMCID: PMC11418128 DOI: 10.1016/j.omtm.2024.101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Therapeutic antibodies (Ab) have revolutionized the management of multiple illnesses including respiratory tract infections (RTIs). However, anti-infectious Ab displayed several limitations including antigen restrictiveness, narrowed therapeutic windows, and limited dose in the vicinity of the target when delivered by parenteral routes. Strategies enhancing further Ab-dependent containment of infection are currently needed. Here we showed that a combination of inhaled anti-infectious Ab and probiotics is an efficient formulation to protect against lung infection. Using a mouse model of Pseudomonas aeruginosa-induced pneumonia, we demonstrated a synergistic effect reducing both bacterial burden and pro-inflammatory response affording protection against primary and secondary infections. This is the first study showing that the local combination in the airways of anti-infective Ab and probiotics subverts suboptimal potency of Ab monotherapy and provides protection against respiratory pathogen.
Collapse
Affiliation(s)
- Thomas Sécher
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100 Tours, France
- Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100 Tours, France
| | - Mélanie Cortes
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100 Tours, France
- Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100 Tours, France
| | - Chloé Boisseau
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100 Tours, France
- Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100 Tours, France
| | - Marie-Thérèse Barba Goudiaby
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, UMR1319 Jouy-en-Josas, France
- Paris Center for Microbiome Medicine (PaCeMM), Fédération Hospitalo-Universitaire, Paris, France
| | - Aubin Pitiot
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100 Tours, France
- Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100 Tours, France
| | - Christelle Parent
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100 Tours, France
- Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100 Tours, France
| | - Muriel Thomas
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, UMR1319 Jouy-en-Josas, France
- Paris Center for Microbiome Medicine (PaCeMM), Fédération Hospitalo-Universitaire, Paris, France
| | - Nathalie Heuzé-Vourc’h
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100 Tours, France
- Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100 Tours, France
| |
Collapse
|
67
|
Stack JT, Rayner RE, Nouri R, Suarez CJ, Kim SH, Kanke KL, Vetter TA, Cormet-Boyaka E, Vaidyanathan S. DNA-PKcs inhibition improves sequential gene insertion of the full-length CFTR cDNA in airway stem cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102339. [PMID: 39398224 PMCID: PMC11470261 DOI: 10.1016/j.omtn.2024.102339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024]
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Although many people with CF (pwCF) are treated using CFTR modulators, some are non-responsive due to their genotype or other uncharacterized reasons. Autologous airway stem cell therapies, in which the CFTR cDNA has been replaced, may enable a durable therapy for all pwCF. Previously, CRISPR-Cas9 with two AAVs was used to sequentially insert two-halves of the CFTR cDNA and an enrichment cassette into the CFTR locus. However, the editing efficiency was <10% and required enrichment to restore CFTR function. Further improvement in gene insertion may enhance cell therapy production. To improve CFTR cDNA insertion in human airway basal stem cells (ABCs), we evaluated the use of the small molecules AZD7648 and ART558, which inhibit non-homologous end-joining (NHEJ) and micro-homology mediated end-joining (MMEJ). Adding AZD7648 alone improved gene insertion by 2- to 3-fold. Adding both ART558 and AZD7648 improved gene insertion but induced toxicity. ABCs edited in the presence of AZD7648 produced differentiated airway epithelial sheets with restored CFTR function after enrichment. Adding AZD7648 did not increase off-target editing. Further studies are necessary to validate if AZD7648 treatment enriches cells with oncogenic mutations.
Collapse
Affiliation(s)
- Jacob T. Stack
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Rachael E. Rayner
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Reza Nouri
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Carlos J. Suarez
- Department of Pathology, Stanford University, Palo Alto, CA 94305, USA
| | - Sun Hee Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Karen L. Kanke
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Tatyana A. Vetter
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Sriram Vaidyanathan
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
68
|
Gupta A, Singh O, Juneja D. Clinical prediction scores predicting weaning failure from invasive mechanical ventilation: Role and limitations. World J Crit Care Med 2024; 13:96482. [DOI: 10.5492/wjccm.v13.i4.96482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 10/31/2024] Open
Abstract
Invasive mechanical ventilation (IMV) has become integral to modern-day critical care. Even though critically ill patients frequently require IMV support, weaning from IMV remains an arduous task, with the reported weaning failure (WF) rates being as high as 50%. Optimizing the timing for weaning may aid in reducing time spent on the ventilator, associated adverse effects, patient discomfort, and medical care costs. Since weaning is a complex process and WF is often multi-factorial, several weaning scores have been developed to predict WF and aid decision-making. These scores are based on the patient's physiological and ventilatory parameters, but each has limitations. This review highlights the current role and limitations of the various clinical prediction scores available to predict WF.
Collapse
Affiliation(s)
- Anish Gupta
- Institute of Critical Care Medicine, Max Hospital, Gurugram 122022, Haryana, India
| | - Omender Singh
- Institute of Critical Care Medicine, Max Super Specialty Hospital, New Delhi 110017, India
| | - Deven Juneja
- Institute of Critical Care Medicine, Max Super Specialty Hospital, New Delhi 110017, India
| |
Collapse
|
69
|
Vujaklija Brajkovic A, Markota A, Bielen L, Vujević A, Rora M, Radonic R. Angiotensin II administration in severe thrombocytopenia and chronic venous thrombosis: A case report. World J Crit Care Med 2024; 13:96755. [DOI: 10.5492/wjccm.v13.i4.96755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 10/31/2024] Open
Abstract
BACKGROUND The initial trials on angiotensin II (AT II) administration indicated a high incidence of thrombocytopenia and thrombosis, as well as a positive correlation between hyperreninemia and response to the medication.
CASE SUMMARY We describe a case of a patient presenting with catecholamine resistant septic shock, thrombocytopenia, deep vein thrombosis, and normal renin concentration who responded immediately to AT II treatment. We observed no worsening of thrombocytopenia and no progression of thrombosis or additional thromboses during treatment.
CONCLUSION Our case underscores the need for individualized assessment of patients for potential therapy with AT II.
Collapse
Affiliation(s)
- Ana Vujaklija Brajkovic
- Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb 10000, Croatia
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Andrej Markota
- Department of Intensive Internal Medicine, University Medical Centre Maribor, Maribor 2000, Slovenia
| | - Luka Bielen
- Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb 10000, Croatia
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Andro Vujević
- Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| | - Mia Rora
- Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| | - Radovan Radonic
- Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb 10000, Croatia
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
70
|
Padte S, Mehta P, Bansal V, singh N, Sunasra R, Goyal V, Chaudhary RB, Junnarkar Y, Shah V, Arshad Z, Nawaz FA, Surani S, Kashyap R. Impact of diabetes mellitus on mortality in pulmonary hypertension: A systematic review and meta-analysis. World J Crit Care Med 2024; 13:99564. [DOI: 10.5492/wjccm.v13.i4.99564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 10/31/2024] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a progressive disease characterized by endothelial dysfunction and vascular remodeling and is a leading cause of mortality worldwide. Although it is independently associated with multiple comorbidities, the impact of diabetes mellitus (DM) on mortality in patients with PH remains uncertain. To address this issue, we conducted a systematic review and meta-analysis to investigate the effect of DM on survival in patients with pulmonary hypertension.
AIM To investigate the impact of diabetes mellitus on mortality in pulmonary hypertension patients.
METHODS We conducted a comprehensive search of four major electronic bibliographic databases like PubMed, Google Scholar, Scopus, and Embase, and identified 106 relevant studies, out of 1561 articles, published since the year 2000 for full-text review. Fourteen retrospective and prospective cohort studies that compared survival between patients with DM and those without DM in the context of PH were deemed eligible for inclusion in our meta-analysis. The study was registered on PROSPERO with the identifier CRD42023390232.
RESULTS A total of 116455 patients with PH were included in the meta-analysis, of whom 41228 suffered from DM and 75227 did not. The results of our meta-analysis indicate an elevated mortality rate among PH patients with diabetes mellitus in comparison to those without DM [odds ratio (OR) = 1.40, 95%CI: 1.15–1.70, P = 0.0006]. The meta-regression analysis unveiled a statistically significant negative association between mean age and effect size (coefficient = -0.036, P value = 0.018). Conversely, a statistically significant positive association was detected between female proportion and effect size (coefficient = 0.000, P value < 0.001).
CONCLUSION Our meta-analysis, which included approximately 116500 PH patients, revealed that the presence of diabetes mellitus was associated with increased odds of mortality when compared to non-diabetic patients. The meta-regression analysis indicates that studies with older participants and lower proportions of females tend to exhibit smaller effect sizes. Clinically, these findings underscore the importance of incorporating diabetes status into the risk stratification of patients with PH with more aggressive monitoring and early intervention to improve prognosis potentially.
Collapse
Affiliation(s)
- Smitesh Padte
- Department of Research, Global Remote Research Scholar Program, Princeton Junction, Princeton, NJ 08550, United States
- Department of Internal Medicine, WellSpan York Hospital, York, PA 17403, United States
| | - Priyal Mehta
- Department of Research, Global Remote Research Scholar Program, Princeton Junction, Princeton, NJ 08550, United States
- Department of Internal Medicine, St. Vincent Hospital, Worchester, MA 01608, United States
| | - Vikas Bansal
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55902, United States
| | - Niti singh
- Department of Anesthesiology and Critical Care, Seth G. S. Medical College and K.E.M. Hospital, Mumbai 400012, Mahārāshtra, India
| | - Rayyan Sunasra
- Department of Medicine, Hinduhridaysamrat Balasaheb Thackeray Medical College and Dr. R. N Cooper Hospital, Mumbai 400056, India
| | - Vidhi Goyal
- Department of Medicine, HBT Medical College and Dr. RN Cooper Hospital, Mumbai 400056, Mahārāshtra, India
| | - Raunaq B Chaudhary
- Department of Medicine, HBT Medical College and Dr. RN Cooper Hospital, Mumbai 400056, Mahārāshtra, India
| | - Yash Junnarkar
- Department of Medicine, HBT Medical College and Dr. RN Cooper Hospital, Mumbai 400056, Mahārāshtra, India
| | - Vidhi Shah
- Department of Medicine, HBT Medical College and Dr. RN Cooper Hospital, Mumbai 400056, Mahārāshtra, India
| | - Zara Arshad
- Department of Research, Global Remote Research Scholar Program, Princeton Junction, Princeton, NJ 08550, United States
| | - Faisal A Nawaz
- Department of Research, Global Remote Research Scholar Program, Princeton Junction, Princeton, NJ 08550, United States
- Department of Psychiatry, Al Amal Psychiatry Hospital, Dubai 50262, Dubayy, United Arab Emirates
| | - Salim Surani
- Department of Research, Global Remote Research Scholar Program, Princeton Junction, Princeton, NJ 08550, United States
- Department of Medicine & Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Rahul Kashyap
- Department of Research, Global Remote Research Scholar Program, Princeton Junction, Princeton, NJ 08550, United States
- Department of Research, Wellspan Health, York, PA 17403, United States
| |
Collapse
|
71
|
Zhu Z, Feng YD, Zou YL, Xiao YH, Wu JJ, Yang YR, Jiang XX, Wang L, Xu W. Integrating serum pharmacochemistry, network pharmacology and untargeted metabolomics strategies to reveal the material basis and mechanism of action of Feining keli in the treatment of chronic bronchitis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118643. [PMID: 39089660 DOI: 10.1016/j.jep.2024.118643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Feining keli (FNKL) is herbal preparation mainly made from Senecio cannabifolius Less., In recent years, more and more studies have found that FNKL has excellent therapeutic effects on chronic bronchitis (CB). Nevertheless, its pharmacodynamic material basis and mechanism of action are still unknown. AIM OF THE STUDY This study aimed to explore the pharmacodynamic material basis and mechanism of action of FNKL in treating CB. MATERIALS AND METHODS The CB rat model was induced using nasal drops of lipopolysaccharide (LPS) in combination with smoking. Various assessments including behavioral and body mass examination, lung index measurement, enzyme linked immunosorbent assay (ELISA), as well as histological analyses using hematoxylin and eosin (H&E) and Masson staining were conducted to validate the reliability of the CB model. The serum components of FNKL in CB rats were identified using ultra-high-performance liquid chromatography Orbitrap Exploris mass spectrometer (UHPLC-OE-MS). Network pharmacology was used to predict the network of action of the active ingredients in FNKL based on these serum components. Signaling pathways were enriched and analyzed, and molecular docking was conducted for key targets. Molecular dynamics simulations were performed using GROMACS software. The mechanism was confirmed through a series of experiments including Western blot (WB), immunofluorescence (IF), and reverse transcription (RT)-PCR. Additionally, untargeted metabolomics was employed to identify biomarkers and relevant metabolic pathways associated with the treatment of CB with FNKL. RESULTS In CB rats, FNKL improved body mass, lung index, and pathological damage of lung tissues. It also decreased interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), malonaldehyde (MDA) levels, and percentage of lung collagen fiber area. Furthermore, FNKL increased IL-10 and superoxide dismutase (SOD) levels, which helped alleviate bronchial inflammation in the lungs. A total of 70 FNKL chemical components were identified in CB rat serum. Through network pharmacology analysis, 5 targets, such as PI3K, AKT, NF-κB, HIF-1α, and MYD88, were identified as key targets of FNKL in the treatment of CB. Additionally, the key signaling pathways identified were PI3K/AKT pathway、NF-κB/MyD88 pathway、HIF-1α pathway. WB, IF, and RT-PCR experiments were conducted to confirm the findings. Molecular docking studies demonstrated successful docking of 16 potential active components with 5 key targets. Additionally, molecular dynamics simulations indicated the stability of quercetin-3-galactoside and HIF-1α. Metabolomics analysis revealed that FNKL primarily regulated pathways related to alpha-linolenic acid metabolism, primary bile acid biosynthesis, bile secretion, arachidonic acid metabolism, neuroactive ligand-receptor interaction, and folate biosynthesis. Furthermore, the expression levels of traumatic acid, traumatin, alpha linolenic acid, cholic acid, 2-arachidonoylglycerol, deoxycholic acid, 7,8-dihydroneopterin, and other metabolites were found to be regulated. CONCLUSION FNKL exhibits positive therapeutic effects on CB, with quercetin-3-galactoside identified as a key active component. The mechanism of FNKL's therapeutic action on CB involves reducing inflammatory response, oxidative stress, and regulating metabolism, and its molecular mechanism was better elucidated in a holistic manner. This study serves as a reference for understanding the pharmacodynamic material basis and mechanism of action of FNKL in treating CB, and provides avenues for exploring the effects of compounded herbal medicines on CB.
Collapse
Affiliation(s)
- Zhu Zhu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ya-Dong Feng
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yun-Lu Zou
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ying-Hao Xiao
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jia-Jun Wu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yong-Run Yang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiao-Xue Jiang
- Jilin Yimintang Pharmaceutical Co., Ltd, Siping, 136000, China
| | - Lin Wang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Wei Xu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
72
|
Li F, Bai Y, Guan Z, Ji X, Zhan X, Gao Y, Zhong W, Rao Z. Dexmedetomidine attenuates sepsis-associated acute lung injury by regulating macrophage efferocytosis through the ROS/ADAM10/AXL pathway. Int Immunopharmacol 2024; 142:112832. [PMID: 39362816 DOI: 10.1016/j.intimp.2024.112832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/20/2024] [Accepted: 07/26/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND The lungs are highly susceptible to damage during sepsis, with severe lung injury potentially progressing to acute respiratory distress syndrome and even fatal sepsis. Effective efferocytosis of apoptotic cells is crucial in alleviating inflammation and tissue injury. METHODS We established a septic lung injury mouse model via intraperitoneal injection of lipopolysaccharide. Lung injury was assessed by histology, immunofluorescence, neutrophil immunohistochemistry staining, and cytokine detection. We extracted alveolar macrophages by bronchoalveolar lavage and primary macrophages from mouse bone marrow to investigate the regulatory effects of Dexmedetomidine (DEX) on efferocytosis. We further validated the molecular mechanisms underlying the regulation of macrophage efferocytosis by DEX through knockdown of AXL expression. Additionally, we examined the efferocytic ability of monocytes isolated from patients. RESULTS We discovered that DEX treatment effectively alleviated pulmonary injury and inflammation. Lipopolysaccharide reduced macrophage efferocytosis and AXL expression which were reversed by DEX. We also found DEX inhibited the increased activation of A Disintegrin And Metalloproteinase 10 (ADAM10) and the production of soluble AXL. Moreover, our findings demonstrated that DEX decreased the elevated ROS production linked to higher ADAM10 activation. Blocking AXL negated DEX's benefits on efferocytosis and lung protection. Efferocytosis in monocytes from septic lung injury patients was notably lower than in healthy individuals. CONCLUSION Our findings demonstrated that DEX treatment effectively reduces septic lung injury by promoting macrophage efferocytosis through ROS/ADAM10/AXL signaling pathwway.
Collapse
Affiliation(s)
- Fei Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, China; Department of Anesthesiology, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, China
| | - Yan Bai
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, China
| | - Zhu Guan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, China
| | - Xingyue Ji
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, China
| | - Xinyu Zhan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), 210029 Nanjing, China
| | - Yiyun Gao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), 210029 Nanjing, China
| | - Weizhe Zhong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), 210029 Nanjing, China.
| | - Zhuqing Rao
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, China.
| |
Collapse
|
73
|
Cao M, Zou J, Shi M, Zhao D, Liu C, Liu Y, Li L, Jiang H. A promising therapeutic: Exosome-mediated mitochondrial transplantation. Int Immunopharmacol 2024; 142:113104. [PMID: 39270344 DOI: 10.1016/j.intimp.2024.113104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Mitochondrial dysfunction has been identified as a trigger for cellular autophagy dysfunction and programmed cell death. Emerging studies have revealed that, in pathological contexts, intercellular transfer of mitochondria takes place, facilitating the restoration of mitochondrial function, energy metabolism, and immune homeostasis. Extracellular vesicles, membranous structures released by cells, exhibit reduced immunogenicity and enhanced stability during the transfer of mitochondria. Thus, this review provides a concise overview of mitochondrial dysfunction related diseases and the mechanism of mitochondrial dysfunction in diseases progression, and the composition and functions of the extracellular vesicles, along with elucidating the principal mechanisms underlying intercellular mitochondrial transfer. In this article, we will focus on the advancements in both animal models and clinical trials concerning the therapeutic efficacy of extracellular vesicle-mediated mitochondrial transplantation across various systemic diseases in neurodegenerative diseases and cardiovascular diseases. Additionally, the review delves into the multifaceted roles of extracellular vesicle-transplanted mitochondria, encompassing anti-inflammatory actions, promotion of tissue repair, enhancement of cellular function, and modulation of metabolic and immune homeostasis within diverse pathological contexts, aiming to provide novel perspectives for extracellular vesicle transplantation of mitochondria in the treatment of various diseases.
Collapse
Affiliation(s)
- Meiling Cao
- Department of Neonatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jiahui Zou
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Mingyue Shi
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Danyang Zhao
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Chang Liu
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yanshan Liu
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Lei Li
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Hongkun Jiang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
74
|
Wang S, Xiao Z, Wang J, Su T, Xu W, Hu X, Zhao J, Yang L, Wu Z, Li C, Wang S, Song D, Ma B, Cheng L. A novel online calculator based on inflammation-related endotypes and clinical features to predict postoperative pulmonary infection in patients with cervical spinal cord injury. Int Immunopharmacol 2024; 142:113246. [PMID: 39340987 DOI: 10.1016/j.intimp.2024.113246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/28/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Postoperative pulmonary infection (POI) of patients with cervical spinal cord injury (CSCI) is highly heterogeneous, while the potential endotypes and related risk factors remain unclear. METHODS A retrospective collection of 290 CSCI patients was conducted from January 2010 to July 2024 using 1:1 propensity score matching to compare POI (n = 145) and non-POI (n = 145) groups. We generated laboratory examination data from admission patients and identified endotypes using unsupervised consensus clustering and machine learning. CSCI patients were randomly assigned to the training set (n = 203) and internal validation set (n = 87). A separate cohort comprising 245 CSCI patients were used for external validation. Independent predictors for POI were identified using univariate and multivariate logistic regression. A nomogram and an online calculator were developed and validated, both internally and externally. RESULTS Two inflammation-related endotypes were identified: high inflammation endotype (endotype C1) and low inflammation endotype (endotype C2). Eight predictors for POI were identified (including age, operation duration, number of surgical segments, time between injury and surgery, preoperative steroid pulse, American Spinal Injury Association (ASIA) grade, smoking history, and inflammation-related endotype). A nomogram integrating the risk factors showed excellent discrimination in the training set (AUC, 0.976; 95% CI 0.956-0.996), internal validation set (AUC, 0.993; 95% CI 0.981-1.000), and external validation set (AUC, 0.799; 95%CI 0.744-0.854). Calibration curves demonstrated excellent fit, and decision curves highlighted its favorable clinical value. An online calculator (https://tjspine.shinyapps.io/dynnomapp/) was constructed to improve the convenience and efficiency of our prediction model. CONCLUSIONS We identified inflammation-related endotype and constructed a web-based calculator for predicting POI in patients with CSCI, exhibiting excellent clinical utility.
Collapse
Affiliation(s)
- Siqiao Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China
| | - Zhihui Xiao
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China
| | - Jianjie Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Tong Su
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wei Xu
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Xiao Hu
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Jingwei Zhao
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Li Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Chen Li
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Shaoke Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Bei Ma
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China.
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China.
| |
Collapse
|
75
|
Wang X, Kong Y, Qiu T, Chen T, Liu Y, Shi G, Sun Q, Chen W, Zhang J, Qiu J. Development of a novel humanized anti-TSLP monoclonal antibody, QX008N, and exploration of combination therapy of anti-TSLP antibody and anti-IL-4R antibody. Int Immunopharmacol 2024; 142:113102. [PMID: 39276452 DOI: 10.1016/j.intimp.2024.113102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Severe asthma is a complex and chronic respiratory disease, and current conventional treatments are not effective in controlling the patients' condition. Thymic stromal lymphopoietin (TSLP) is a key regulatory factor in the initiation and maintenance of asthma. Thus, blocking TSLP during allergic inflammation emerges as a promising therapeutic approach; however, novel anti-TSLP therapies remain to be developed. Furthermore, the importance of other signaling molecules, such as IL-4 and IL-13, should be considered. Moreover, to the best of our knowledge, the inhibitory effect of binding upstream and downstream signaling molecules has not been assessed. PURPOSE This study aimed to develop a novel, humanized anti-TSLP antibody and explore the enhancement in its efficacy when combined with anti-IL-4R antibodies to treat asthma. RESULTS QX008N, derived from a rabbit antibody platform, exhibits a high affinity for TSLP and superior efficacy in blocking TSLP-induced signaling pathways and inflammation in vitro compared with Tezepelumab. In a cynomolgus monkey asthma model, QX008N ameliorated lung function and reduced the levels of eosinophils and IgE. Moreover, the coadministration of QX008N with anti-IL-4R antibodies enhanced the inhibition of inflammatory mediator production triggered via costimulation in vitro. In mouse asthma models, the simultaneous blockade of TSLP and IL-4R using anti-TL4R and anti-TSLP surrogates surpassed the efficacy of monotherapy. To the best of our knowledge, the therapeutic effect of a combination of anti-TSLP and IL-4R antibodies in an asthma model has not yet been reported. CONCLUSION These results furnish comprehensive preclinical evidence for QX008N as an innovative anti-TSLP therapeutic agent and provide a preliminary rationale for the development of combination therapies that simultaneously target the TSLP and IL-4R signaling pathways.
Collapse
Affiliation(s)
- Xiaomu Wang
- Antibody Engineering Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yong Kong
- Qyuns Therapeutics Co., Ltd., Taizhou, Jiangsu, China
| | | | - Tao Chen
- Qyuns Therapeutics Co., Ltd., Taizhou, Jiangsu, China
| | - Yuzhi Liu
- Qyuns Therapeutics Co., Ltd., Taizhou, Jiangsu, China
| | - Gaoyong Shi
- Qyuns Therapeutics Co., Ltd., Taizhou, Jiangsu, China
| | - Qiuping Sun
- Qyuns Therapeutics Co., Ltd., Taizhou, Jiangsu, China
| | - Wei Chen
- Qyuns Therapeutics Co., Ltd., Taizhou, Jiangsu, China
| | - Juan Zhang
- Antibody Engineering Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| | - Jiwan Qiu
- Qyuns Therapeutics Co., Ltd., Taizhou, Jiangsu, China.
| |
Collapse
|
76
|
Shao W, Zhang J, Yao Z, Zhao P, Li B, Tang W, Zhang J. Cannabidiol suppresses silica-induced pulmonary inflammation and fibrosis through regulating NLRP3/TGF-β1/Smad2/3 pathway. Int Immunopharmacol 2024; 142:113088. [PMID: 39244899 DOI: 10.1016/j.intimp.2024.113088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Silica-induced pulmonary fibrosis is an irreversible and progressive lung disease with limited treatments available. In this work, FDA-approved cannabidiol (CBD) was studied for its potential medical use in silicosis. In silicosis female C57BL/6 mice model, oral CBD or pirfenidone (PFD) on day 1 after intratracheal drip silica (150 mg/mL) and continued for 42 days. Lung inflammatory and fibrotic changes were studied using ELISA kits, H&E staining and Masson staining. Osteopontion (OPN) and α-smooth muscle actin (α-SMA) expression in lung tissues was determined using immunohistochemical staining. The results indicated that CBD attenuated silica-induced pulmonary inflammation and fibrosis. Human myeloid leukemia mononuclear cells (THP-1) were treated with silica (200 μg/mL) to induce cell damage, then CBD (10 μM, 20 μM) and PFD (100 μM) were incubated. In vitro experiments showed that CBD can effectively reduce the expression of NLRP3 inflammasome in THP-1 cells and subsequently block silica-stimulated transformation of fibromuscular-myofibroblast transition (FMT) by culturing human embryonic lung fibroblasts (MRC-5) in conditioned medium of THP-1 cells. Therefore, CBD exhibited the potential therapy for silicosis through inhibiting the silica-induced pulmonary inflammation and fibrosis via the NLRP3/TGF-β1/Smad2/3 signaling pathway.
Collapse
Affiliation(s)
- Wei Shao
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei 230032, China; Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China
| | - Jiazhen Zhang
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China
| | - Zongze Yao
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China
| | - Pan Zhao
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China
| | - Bo Li
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China
| | - Wenjian Tang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei 230032, China; Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Jing Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei 230032, China; Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China.
| |
Collapse
|
77
|
Rajkumari S, Singh J, Agrawal U, Agrawal S. Myeloid-derived suppressor cells in cancer: Current knowledge and future perspectives. Int Immunopharmacol 2024; 142:112949. [PMID: 39236460 DOI: 10.1016/j.intimp.2024.112949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
MDSCs (myeloid-derived suppressor cells) are crucial for immune system evasion in cancer. They accumulate in peripheral blood and tumor microenvironment, suppressing immune cells like T-cells, natural killer cells and dendritic cells. They promote tumor angiogenesis and metastasis by secreting cytokines and growth factors and contribute to a tumor-promoting environment. The accumulation of MDSCs in cancer patients has been linked to poor prognosis and resistance to various cancer therapies. Targeting MDSCs and their immunosuppressive mechanisms may improve treatment outcomes and enhance immune surveillance by developing drugs that inhibit MDSC function, by preventing their accumulation and by disrupting the tumor-promoting environment. This review presents a detailed overview of the MDSC research in cancer with regulation of their development and function. The relevance of MDSC as a prognostic and predictive biomarker in different types of cancers, along with recent advancements on the therapeutic approaches to target MDSCs are discussed in detail.
Collapse
Affiliation(s)
- Sunanda Rajkumari
- ICMR National Institute of Medical Statistics, Ansari Nagar, New Delhi 110029, India
| | - Jaspreet Singh
- ICMR National Institute of Pathology, Safdarjung Hospital Campus, Ansari Nagar, New Delhi 110029, India
| | - Usha Agrawal
- Asian Institute of Public Health University (AIPH) University, 1001 Haridamada, Jatani, Near IIT Bhubaneswar, Bhubaneswar 751002, India
| | - Sandeep Agrawal
- Discovery Research Division, Indian Council of Medical Research, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
78
|
Li H, Liu Y, Zhang H, Shi X, Luo Y, Fu G, Zhao C, Guo L, Li X, Shan L. Identification of potential diagnostic biomarkers and therapeutic targets in patients with hypoxia pulmonary hypertension. Int Immunopharmacol 2024; 142:113028. [PMID: 39226824 DOI: 10.1016/j.intimp.2024.113028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Pulmonary hypertension is a serious disease. Emerging studies have shown that M2 macrophages play an essential role in pulmonary hypertension; however, their mechanism of action is uncertain. METHODS Four GEO datasets were downloaded. The differentially expressed genes (DEGs) were obtained using the limma package. Simultaneously, the Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) algorithm and weighted gene co-expression network analysis (WGCNA) were used to get the information about M2 macrophage-related modules. Potential key genes were obtained by intersecting DEGs with M2 macrophage-related module genes (M2MRGs), and finally the area under the curve (AUC) was calculated. Rats were exposed to hypoxia condition (10 % O2) for 4 weeks to induce PH. Subsequently, potential key genes with AUC>0.7 were analyzed by quantitative real-time polymerase chain reaction and Western blot using normoxia and hypoxia rat lungs. We knocked down EPHA3 in Raw264.7 cells and detected the protein expression of M2 macrophage markers including arginase 1 (ARG1) and interleukin 10 (IL-10), phospho-protein kinase B (P-Akt), and protein kinase B (Akt) to explore the downstream pathways of EPHA3. RESULTS Seven potential hub genes were detected by intersecting M2MRGs and DEGs. Six genes with AUC values above 0.7 were used for further exploration. The expression of EPHA3 mRNA and protein was significantly more upregulated in rats with hypoxia than in rats with normoxia. The expression levels of IL10, ARG1, and P-Akt/Akt decreased after knocking down EPHA3. CONCLUSIONS This study suggested that the activation of the P-Akt/Akt signaling pathway promoted by EPHA3 played an essential role in the progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Yi Liu
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Hongli Zhang
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Xianbao Shi
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Yue Luo
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Gaoge Fu
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Churong Zhao
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Lixuan Guo
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Xin Li
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Lina Shan
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
79
|
Shi J, Song S, Wang Y, Wu K, Liang G, Wang A, Xu X. Esketamine alleviates ferroptosis-mediated acute lung injury by modulating the HIF-1α/HO-1 pathway. Int Immunopharmacol 2024; 142:113065. [PMID: 39243557 DOI: 10.1016/j.intimp.2024.113065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/07/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Alveolar epithelial cell (AEC) ferroptosis contributes to the progression of acute lung injury (ALI). Esketamine (ESK) is a new clinical sedative, anesthetic, and analgesic drug that has attracted substantial attention in mental health research because of its antidepressant effects. However, the effects of ESK on ferroptosis-mediated ALI remain unclear. OBJECTIVE This study aimed to explore the protective effect of ESK on AEC ferroptosis in ALI and its potential molecular mechanism in vivo and in vitro. METHODS The antiferroptotic and anti-inflammatory effects of ESK were assessed in a mouse model of lipopolysaccharide (LPS)-induced ALI. In vitro, the epithelial cell lines MLE-12 and A549 were used to examine the underlying mechanism by which ESK regulates inflammation and ferroptosis. RESULTS ESK protected mice against LPS-induced ALI, significantly attenuated pathological changes in the lungs and decreased inflammation and ferroptosis. In vitro, ESK inhibited LPS-induced inflammation and ferroptosis in MLE-12 and A549 cells. Moreover, ferroptosis mediated inflammation in LPS-induced ALI in vivo and in vitro, and ESK decreased the LPS-induced inflammatory response by suppressing ferroptosis. ESK promoted the HIF-1α/HO-1 pathway in LPS-treated AECs and in the lung tissues of mice with LPS-induced ALI. Moreover, pretreatment with ESK and the HIF-1α stabilizer dimethyloxaloylglycine (DMOG) substantially attenuated lung injury and prevented changes in ferroptosis-related biochemical indicators, including glutathione (GSH) depletion, malondialdehyde (MDA) production and glutathione peroxidase 4 (GPX4) downregulation, in untreated LPS-induced mice but not in LPS-induced mice treated with the HO-1 inhibitor zinc protoporphyrin (ZNPP). Similar effects were observed in vitro in HO-1 siRNA-transfected A549 cells after LPS incubation but not in control siRNA-transfected cells. CONCLUSION ESK can inhibit ferroptosis-mediated lipid peroxidation by increasing the expression of HIF-1α/HO-1 pathway, highlighting the potential of ESK to treat LPS-induced ALI.
Collapse
Affiliation(s)
- Jinye Shi
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Shuang Song
- Department of Respiratory Medicine, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Yajie Wang
- Reproductive Medicine Center, General Hospital of Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Kaixuan Wu
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Gui Liang
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Aizhong Wang
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Xiaotao Xu
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| |
Collapse
|
80
|
Niu X, Sun W, Tang X, Chen J, Zheng H, Yang G, Yao G. Bufalin alleviates inflammatory response and oxidative stress in experimental severe acute pancreatitis through activating Keap1-Nrf2/HO-1 and inhibiting NF-κB pathways. Int Immunopharmacol 2024; 142:113113. [PMID: 39276459 DOI: 10.1016/j.intimp.2024.113113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/02/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Severe acute pancreatitis (SAP) is a prevalent acute inflammatory disease that is clinically manifested by systemic inflammation dysregulation, resulting in a significantly elevated mortality rate. Bufalin has been verified to have potent pharmacological properties, including analgesic, anti-tumor and anti-inflammatory effects. However, it remains unclear whether bufalin inhibits SAP. Thus, we aim to explore the impact of bufalin in SAP rats and to evaluate the potential mechanisms of action. In addition to analyzing serum biochemistry and pancreatic tissue pathology, we elucidated its mechanisms of action through enzyme-linked immunosorbent assay (ELISA), immunohistochemical analysis, Western blot, and quantitative real-time PCR. The results demonstrated that bufalin dose-dependently reversed the elevation of serum Amylase (Amy) and Lipase (LPS) levels in SAP rats, alleviating pancreatic tissue pathological damage. Bufalin exhibited potent antioxidant effects by reducing malondialdehyde (MDA) levels, decreasing Superoxide dismutase (SOD) and glutathione(GSH) consumption, inhibiting the interaction of Keap1-Nrf2, and increasing HO-1 expression. Furthermore, bufalin inhibited TNF-α, IL-6, IL-1β, p-NF-κB-p65, p-IκBα, and NF-κB-p65 expression, while enhancing IκBα expression, ultimately confirming its anti-inflammatory effects on SAP. In summary, our findings suggest that bufalin exerts anti-inflammatory and antioxidant actions in NaT-SAP rats by inhibiting NF-κB and activating the Keap1-Nrf2/HO-1 pathway. This study represents the inaugural application of bufalin in NaT-induced SAP rats, indicating its potential as an effective therapeutic agent for SAP patients.
Collapse
Affiliation(s)
- Xiaolong Niu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Sun
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaohang Tang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jialiang Chen
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huaqun Zheng
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guimei Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangtao Yao
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
81
|
Wu Y, Zhang Y, Ge L, He S, Zhang Y, Chen D, Nie Y, Zhu M, Pang Q. RTA408 alleviates lipopolysaccharide-induced acute lung injury via inhibiting Bach1-mediated ferroptosis. Int Immunopharmacol 2024; 142:113250. [PMID: 39340988 DOI: 10.1016/j.intimp.2024.113250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/07/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
The approved traditional Asian medicine RTA408 (Omaveloxolone) has demonstrated potent anti-inflammatory properties in the treatment of Friedreich's ataxia. However, its effect on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains poorly understood. This study aims to evaluate the effect of RTA408 on LPS-induced ALI and elucidate its underlying mechanisms. In this study, in vivo experiments demonstrated that RTA408 significantly ameliorated LPS-induced mouse ALI, characterized by reduced pathological damage and neutrophil infiltration as well as decreased lung edema of murine lung tissues. Moreover, LPS administration induced ferroptosis in ALI mice, evidenced by increased MDA levels, reduced GSH and SOD activity, and decreased expression of ferroptosis repressors (GPX4 and SLC7A11), whereas RTA408 reversed these changes. Consistently, RTA408 reduced ferroptosis and improved cell damage in LPS-stimulated MLE-12 cells, as evidenced by decreased ROS and MDA levels, increased SOD, GSH activity and ferroptosis repressors expression. Meanwhile, the protective effective of RTA408 on LPS-induced oxidative damage was blocked by ferroptosis inhibitor ferrostatin-1 (Fer-1). Mechanistic studies demonstrated that RTA408 inhibited the expression and nuclear translocation of Bach1, and the anti-ferroptosis effect was diminished by Bach1 siRNA or Bach1 knockout (Bach1-/-) mice. Furthermore, Bach1-/- mice exhibited attenuated ALI induced by LPS compared to wild-type (WT) mice, and the protective effect of RTA408 on LPS-challenged ALI was not observed in Bach1-/- mice. In conclusion, our data suggested that RTA408 alleviates LPS-induced ALI by interfering Bach1-mediated ferroptosis and might be a novel candidate for LPS-induced ALI/ARDS therapy.
Collapse
Affiliation(s)
- Yaxian Wu
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Yaru Zhang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Longlong Ge
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Shuai He
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Yanli Zhang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Dan Chen
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Yunjuan Nie
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Minmin Zhu
- Department of Anesthesiology and Pain Medicine, Jiangnan University Medical Center, Zhongshan Road 68, Wuxi 214002, Jiangsu Province, PR China.
| | - Qingfeng Pang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| |
Collapse
|
82
|
Li R, Deng H, Han Y, Tong Y, Hou Y, Huang T, Xiao M, Deng L, Zhao X, Chen Y, Feng P, Chen R, Yang Z, Qi H, Jia Z, Feng W. Therapeutic effects of Lianhua Qingke on COPD and influenza virus-induced exacerbation of COPD are associated with the inhibition of NF-κB signaling and NLRP3 inflammasome responses. Int Immunopharmacol 2024; 142:113213. [PMID: 39317049 DOI: 10.1016/j.intimp.2024.113213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/01/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Lianhua Qingke (LHQK), a traditional Chinese medicine (TCM) used clinically for the treatment of respiratory diseases with acute tracheobronchitis, and cough, has demonstrated promising efficacy in suppressing inflammation, inhibitingmucin secretion, reducing goblet cell hyperplasia andmaintainingairway epithelial integrity. However, its efficacy in managing chronic obstructive pulmonary disease (COPD) progression, particularly virus-induced acute exacerbations of COPD (AECOPD),remains unclear. Here, cigarette smoke (CS)-induced COPD and CS+virus (influenza H1N1)-triggered AECOPD mouse models were employed to evaluated the therapeutic potential of LHQK. The findings demonstrated that LHQK treatment led to significant improved pulmonary function, suppressed pulmonary inflammation, alleviated lung histopathological changes, and preserved airway epithelial integrity in COPD mice. Additionally, LHQK treatment effectively inhibited viral replication in the lungs of AECOPD mice and decreased recruitment of immune cells (M1 macrophages, progenitor-exhausted T cells and CD8 + T cells) to the lungs. Western blot analysis indicated that the therapeutic effects of LHQK are associated with the inhibition ofNF-κB signaling and NLRP3 inflammasome activation. Collectively, these findings elucidate the underlying mechanisms by which LHQK mitigates COPD and AECOPD, thereby supporting its potential as a therapeutic option for individuals afflicted with these conditions.
Collapse
Affiliation(s)
- Runfeng Li
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Guangdong 510120, China
| | - Huihuang Deng
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Guangdong 510120, China
| | - Yu Han
- Department of Pharmacy, Hebei Children's Hospital, Shijiazhuang Hebei 050031, China
| | - Yanan Tong
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang Hebei 050035, China
| | - Yunlong Hou
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang Hebei 050035, China; Hebei Academy of Integrated Traditional Chinese and Western Medicine, Hebei 050035, China
| | - Tao Huang
- Guangdong Key Laboratory of Chemical Measurement and Emergency Test Technology, China National Analytical Center, Institute of Analysis, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Mengjie Xiao
- Guangdong Key Laboratory of Chemical Measurement and Emergency Test Technology, China National Analytical Center, Institute of Analysis, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Lingzhu Deng
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Guangdong 510120, China
| | - Xin Zhao
- Guangdong Key Laboratory of Chemical Measurement and Emergency Test Technology, China National Analytical Center, Institute of Analysis, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yaorong Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Guangdong 510120, China
| | - Pei Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa 519020, Macau
| | - Ruifeng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa 519020, Macau
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Guangdong 510120, China; Guangzhou Laboratory, Guangzhou, Guangdong 510120, China
| | - Hui Qi
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang Hebei 050035, China; Hebei Academy of Integrated Traditional Chinese and Western Medicine, Hebei 050035, China.
| | - Zhenhua Jia
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang Hebei 050035, China; Hebei Academy of Integrated Traditional Chinese and Western Medicine, Hebei 050035, China; Affiliated Yiling Hospital of Hebei Medical University, Shijiazhuang, Hebei 050091, China.
| | - Wei Feng
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang Hebei 050035, China; Hebei Academy of Integrated Traditional Chinese and Western Medicine, Hebei 050035, China.
| |
Collapse
|
83
|
Mudasir Ahmad S, Saleem A, Nazir J, Khalid Yousuf S, Mir Y, Manzoor T, Farhat B, Ahmad SF, Zaffar A, Haq Z. Synthesis and pharmacological evaluation of Andrographolide and Ajwain as promising alternatives to antibiotics for treating Salmonella gallinarum infection in chicken. Int Immunopharmacol 2024; 142:113163. [PMID: 39303542 DOI: 10.1016/j.intimp.2024.113163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
The emergence of antibiotic resistance in pathogenic bacteria, including Salmonella gallinarum, poses a significant challenge to poultry health and food safety. In response, alternative strategies are urgently needed to mitigate bacterial infections without exacerbating antibiotic resistance. Phytoremediation, a sustainable and environmentally friendly approach, harnesses the natural detoxification capabilities of plants to remediate contaminants. This study explores the potential of combined phytoremediation using Andrographolide, derived from Andrographis paniculata, and Ajwain derived from Trachyspermum ammi as promising alternatives to antibiotics for treating Salmonella gallinarum infection in poultry. Andrographolide, known for its potent antimicrobial properties, exhibits inhibitory effects while Ajwain, rich in bioactive compounds, possesses antimicrobial and immunomodulatory properties. By leveraging their combined phytoremediation potential, Andrographolide and Ajwain offer a multifaceted approach to combat Salmonella gallinarum within the poultry environment. The study employed a rigorous experimental design, including in vitro assessments of antimicrobial susceptibility, cytotoxicity, and optimal concentration determination. Following this, in vivo experiments were conducted using a chicken model infected with Salmonella gallinarum. Results demonstrated that the selected combinations effectively reduced mortality rates, alleviated clinical symptoms, and mitigated gross pathological signs associated with Salmonella infection. Gene expression studies indicated a downregulation of proinflammatory cytokines, underscoring potential implications of a combined phytoremediation strategy as an innovative and sustainable solution to address Salmonella gallinarum infections in poultry production systems.
Collapse
Affiliation(s)
- Syed Mudasir Ahmad
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India.
| | - Afnan Saleem
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India
| | - Junaid Nazir
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India
| | | | - Yaawar Mir
- Sher-e-Kashmir Institute of Medical Sciences, Kashmir, India
| | - Tasaduq Manzoor
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India
| | | | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Zulfqarul Haq
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India
| |
Collapse
|
84
|
Zhang ZH, Zhan ZY, Jiang M, Wang XY, Quan SL, Wu YL, Nan JX, Lian LH. Casting NETs on Psoriasis: The modulation of inflammatory feedback targeting IL-36/IL-36R axis. Int Immunopharmacol 2024; 142:113190. [PMID: 39306890 DOI: 10.1016/j.intimp.2024.113190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
NETosis happens when neutrophils are activated and neutrophil extracellular traps (NETs) are formed synchronously, which is a hallmark of psoriasis. However, the specific trigger that drives NET formation and the distinct contents and interaction with interleukin-36 receptor (IL-36R) of NETs remain to be further elucidated. This work identified NET formation driven by toll-like receptor (TLR) 3 ligand (especially polyinosinic-polycytidylic acid (Poly(I:C)) were enhanced by purinergic receptor P2X ligand-gated ion channel 7 receptor (P2X7R) ligands (especially adenosine 5'-triphosphate (ATP)). NET formation was accompanied by the secretion of inflammatory cytokines and characterized by IL-1β decoration. NET formation blockade decreased expressions of inflammatory cytokines and chemokines, which consequently improved inflammatory responses. Additionally, imiquimod (IMQ)-induced psoriasiform symptoms including neutrophilic infiltration tended to be time-sensitive. Mouse primary keratinocytes and mice deficient in Il1rl2, which encodes IL-36R, mitigated inflammatory responses and NET formation, thereby delaying the pathophysiology of psoriasis. Together, the findings provided the therapeutic potential for IL-36 targeting NET inhibitors in psoriasis treatment.
Collapse
Affiliation(s)
- Zhi-Hong Zhang
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Zi-Ying Zhan
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Min Jiang
- Department of Pharmacology, Binzhou Medical University, Yantai Campus, Yantai, Shandong Province, China
| | - Xiang-Yuan Wang
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Shu-Lin Quan
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| |
Collapse
|
85
|
Zhou ZR, Fang SB, Liu XQ, Li CG, Xie YC, He BX, Sun Q, Tian T, Deng XH, Fu QL. Serum amyloid A1 induced dysfunction of airway macrophages via CD36 pathway in allergic airway inflammation. Int Immunopharmacol 2024; 142:113081. [PMID: 39244902 DOI: 10.1016/j.intimp.2024.113081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024]
Abstract
Previous studies showed that serum amyloid A (SAA) and macrophages were associated with allergic airway inflammation. However, the interaction between SAA1 and macrophages in allergic airway inflammation remains to be further elucidated. In this study, the levels of SAA1 were measured in nasal tissues from patients with eosinophilic chronic rhinosinusitis with nasal polyps (CRSwNP), house dust mite (HDM)-treated BEAS-2B cells and the tissues of mice of HDM-induced allergic airway inflammation. Human monocytes-derived macrophages and mouse bone marrow-derived macrophages (BMDMs) were exposed to SAA1, and CCL17 and the other M1/M2-related factors were evaluated using RT-PCR and/or ELISA. To test the effects of SAA1-treated BMDMs on chemotaxis and differentiation of CD4+ T cells, number of migrated cells and the levels of Th1 and Th2 were measured using flow cytometry. SAA1 receptors were examined in BMDMs and lung macrophages of model mice. CD36 neutralizing antibody was applied to explore the mechanisms of SAA1 in regulating BMDMs using RT-PCR and/or ELISA. We found that SAA1 was expressed in epithelial cells, and was increased in the nasal tissues of patients with eosinophilic CRSwNP and HDM-treated BEAS-2B- cells as well as the bronchoalveolar lavage fluid and lung tissues of mice exposed to HDM. We also found that the level of CCL17 was increased in M2 macrophages, more CD4+ T cells were recruited and proportion of Th2 was increased after the treatment of SAA1. The treatment of CD36 neutralizing antibody decreased CCL17 level in SAA1-treated M2 BMDMs. In summary, our results showed that SAA1 was increased in allergic airway inflammation, and the administration of SAA1 upregulated the expression of CCL17 in M2 macrophages via CD36 and promoted the chemotaxis of CD4+ T cells and differentiation of Th2. It may provide a new therapeutic strategy that could mediate allergic airway inflammation via suppressing SAA1 to reduce recruitment of CD4+ T cells and activation of Th2.
Collapse
Affiliation(s)
- Zhi-Rou Zhou
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Shu-Bin Fang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Xiao-Qing Liu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Chan-Gu Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Ying-Chun Xie
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Bi-Xin He
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Qi Sun
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China
| | - Tian Tian
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China; Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Hui Deng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China; Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China; Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
86
|
Li S, Wang Y, Lv Z, Wang Q, Jia T, Zhai Z, Fang W. Angiotensin 1-7 restrains vascular injury of extracorporeal membrane oxygenation by inhibiting ferroptosis. Int Immunopharmacol 2024; 142:113177. [PMID: 39298820 DOI: 10.1016/j.intimp.2024.113177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Angiotensin 1-7 (Ang1-7) is the classical end product of angiotensin II, which has the effects of dilating blood vessels, protecting endothelial cells, anti-hypertension, improving cardiac function, and inhibiting atherosclerosis. We hypothesize that Ang1-7 inhibits human umbilical vein endothelial cells (HUVEC) ferroptosis through NF-κB/P53 signal pathway, and reduces extracorporeal membrane oxygenation (ECMO) vascular injury. METHODS Cultured HUVEC were seeded into 15 wells and randomly divided into five groups: the control group and four experimental groups (erastin, erastin + Ang1-7, erastin + Ang1-7 + Betulinic acid, erastin + Betulinic acid). After stimulation, cell viability, lactate dehydrogenase (LDH), malondialdehyde (MDA), and superoxide dismutase (SOD) activity were measured. The effects of Ang1-7 on HUVEC microstructure, antioxidant enzymes (ferritin heavy chain 1 (FTH1), cystine/glutamic acid reverse transport solute carrier family 7 members 11 (SLC7A11 or XCT), superoxide dismutase-2 (SOD-2) and glutathione peroxidase 4 (GPX4)), NF-κB, P-NF-κB, P53, and P-P53). RESULTS Erastin stimulation promoted HUVEC lipid peroxidation, decreased antioxidant enzyme expression, increased P-NF-κB, P53, and P-P53 expressions, and damaged HUVEC mitochondrial structure. Ang1-7 alleviated the effect of erastin on HUVEC, which was destroyed by Betulinic acid. CONCLUSION Angiotensin1-7 pretreatment inhibited vascular endothelial cells' ferroptosis and alleviated ECMO vessel injury through NF-κB /P53 signal pathway.
Collapse
Affiliation(s)
- Shengqiang Li
- The Affiliated Taian City Central Hospital of Qingdao University, 271000 Taian, China; Department of Physiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuping Wang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhen Lv
- Department of Cardiology, Zibo First Hospital, Zibo 255200, China
| | - Qizhi Wang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tong Jia
- Department of Geratology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Zhenzhen Zhai
- The Affiliated Taian City Central Hospital of Qingdao University, 271000 Taian, China.
| | - Wei Fang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
87
|
Quintin L. Using the sympathetic system, beta blockers, alpha-2 agonists to address acute respiratory distress syndrome. Int Immunopharmacol 2024; 142:113135. [PMID: 39326295 DOI: 10.1016/j.intimp.2024.113135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024]
Affiliation(s)
- L Quintin
- Anesthesia-Critical Care, Hopital d Instruction des Armées Desgenettes, Lyon, France..
| |
Collapse
|
88
|
Kim J, Kadayat TM, Lee JE, Kwon S, Jung K, Hwang JS, Kwon OB, Kim YJ, Choi YK, Park KG, Hwang H, Cho SJ, Lee T, Jeon YH, Chin J. Discovery of the therapeutic potential of PPARδ agonist bearing 1,3,4- thiadiazole in inflammatory disorders. Eur J Med Chem 2024; 279:116856. [PMID: 39270454 DOI: 10.1016/j.ejmech.2024.116856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
As a defense mechanism against deleterious stimuli, inflammation plays a vital role in the development of many disorders, including atherosclerosis, inflammatory bowel disease, experimental autoimmune encephalomyelitis, septic and non-septic shock, and non-alcoholic fatty liver disease (NAFLD). Despite the serious adverse effects of extended usage, traditional anti-inflammatory medications, such as steroidal and non-steroidal anti-inflammatory medicines (NSAIDs), are commonly used for alleviating symptoms of inflammation. The PPARδ subtype of peroxisome proliferator-activated receptors (PPARs) has attracted interest because of its potential for reducing inflammation and related disorders. In this study, a series of 1,3,4-thiadiazole derivatives were designed, synthesized, and evaluated. Compound 11 exhibited potent PPARδ agonistic activity with EC50 values 20 nM and strong selectivity over PPARα and PPARγ. Furthermore, compound 11 demonstrated favorable in vitro and in vivo pharmacokinetic properties. In vivo experiments using labeled macrophages and paw thickness measurements confirmed compound 11's potential to reduce macrophage infiltration and alleviate inflammation. These findings highlight compound 11 as a potent and promising therapeutic candidate for the treatment of acute inflammatory diseases and warrant further investigation to explore various biological roles.
Collapse
Affiliation(s)
- Jina Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Tara Man Kadayat
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Jae-Eon Lee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Sugyeong Kwon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Kyungjin Jung
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Ji Sun Hwang
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Oh-Bin Kwon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Ye Jin Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Yeon-Kyung Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Keun-Gyu Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Hayoung Hwang
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea.
| | - Taeho Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea.
| | - Jungwook Chin
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea.
| |
Collapse
|
89
|
Luo L, Liu K, Deng L, Wang W, Lai T, Li X. Chicoric acid acts as an ALOX15 inhibitor to prevent ferroptosis in asthma. Int Immunopharmacol 2024; 142:113187. [PMID: 39298822 DOI: 10.1016/j.intimp.2024.113187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Chicoric acid (CA) is a crucial immunologically active compound found in chicory and echinacea, possessing a range of biological activities. Ferroptosis, a type of iron-dependent cell death induced by lipid peroxidation, plays a key role in the development and advancement of asthma. Targeting ferroptosis could be a potential therapeutic strategy for treating asthma. PURPOSE The purpose of this study was to explore the screening of ALOX15, a pivotal target of ferroptosis in asthma, and potential therapeutic agents, as well as to investigate the promising potential of CA as an ALOX15 inhibitor for modulating ferroptosis in asthma. METHODS Through high-throughput data processing of bronchial epithelial RNA from asthma patients using bioinformatics and machine learning, the key target of ferroptosis in asthma, ALOX15, was identified. An inhibitor of ALOX15 was then obtained through high-throughput molecular docking and molecular dynamics simulation tests. In vitro experiments were conducted using a 16HBE cell model induced by house dust mite (HDM) and lipopolysaccharide (LPS), which were treated with the ALOX15 inhibitor (PD146176), CA treatment, or ALOX15 knockdown. In vivo experiments were also carried out using a mouse model induced by HDM and LPS. RESULTS The composite model of ALOX15 and CA in molecular dynamics simulations shows good stability and flexibility. Network pharmacological analysis reveals that CA regulates ferroptosis through ALOX15 in treating asthma. In vitro studies show that ALOX15 is highly expressed in HDM and LPS treatments, while CA inhibits HDM and LPS-induced ferroptosis in 16HBE cells by reducing ALOX15 expression. Knockdown of ALOX15 has the opposite effect. Metabolomics analysis identifies key compounds associated with ferroptosis, including L-Targinine, eicosapentaenoic acid, 16-hydroxy hexadecanoic acid, and succinic acid. In vivo experiments demonstrate that CA suppresses ALOX15 expression, inhibits ferroptosis, and improves asthma symptoms in mice. CONCLUSION Our research initially identified CA as a promising asthma treatment that effectively blocks ferroptosis by specifically targeting ALOX15. This study not only highlights CA as a potential therapeutic agent for asthma but also introduces novel targets and treatment options for this condition, along with innovative approaches for utilizing natural compounds to target diseases associated with ferroptosis.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Kangdi Liu
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Liyan Deng
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Wenjian Wang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Tianli Lai
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Xiaoling Li
- Experimental Animal Center, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| |
Collapse
|
90
|
Wu W, Meng F, Zhang H, Tian H, Zhang X. Neutrophil PPIF exacerbates lung ischemia-reperfusion injury after lung transplantation by promoting calcium overload-induced neutrophil extracellular traps formation. Int Immunopharmacol 2024; 142:113051. [PMID: 39236457 DOI: 10.1016/j.intimp.2024.113051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Lung ischemia-reperfusion (I/R) injury is the main risk factor for primary graft dysfunction and patient death after lung transplantation (LTx). It is widely accepted that the main pathological mechanism of lung I/R injury are calcium overload, oxygen free radical explosion and neutrophil-mediated damage, which leading to the lack of effective treatment options. The aim of this study was to further explore the mechanisms of lung I/R injury after LTx and to provide potential therapeutic strategies. Our bioinformatics analysis revealed that the neutrophil extracellular traps (NETs) formation was closely involved in lung I/R injury after LTx, which was accompanied by up-regulation of peptidylprolyl isomerase F (PPIF) and peptidyl arginine deiminase 4 (PADI4). We further established an orthotopic LTx mouse model to simulate lung I/R injury in vivo, and found that PPIF and PADI4 inhibitors effectively reduced neutrophil infiltration, NETs formation, inflammatory response, and lung I/R injury. In the neutrophil model induced by HL-60 cell line in vitro, we found that PPIF inhibitor cyclosporin A (Cys A) better alleviated calcium overload induced inflammatory response, reactive oxygen species content and NETs formation. Further study demonstrated that interfering with neutrophil PPIF protected mitochondrial function by alleviating store-operated calcium entry (SOCE) during calcium overload and played the above positive role. On this basis, we found that the reduction of calcium content in neutrophils was accompanied by the inhibition of calcineurin (CN) and nuclear factor of activated T cells (NFAT). In conclusion, our findings suggested that neutrophil PPIF could serve as a novel biomarker and potential therapeutic target of lung I/R injury after LTx, which provided new clues for its treatment by inhibiting calcium overload-induced NETs formation.
Collapse
Affiliation(s)
- Wensi Wu
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fanqing Meng
- Department of Anesthesiology, Jinan Maternity and Child Care Hospital, Jinan, China
| | - Huiying Zhang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China.
| | - Xiaojun Zhang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
91
|
Schuijs MJ, Brenis Gomez CM, Bick F, Van Moorleghem J, Vanheerswynghels M, van Loo G, Beyaert R, Voehringer D, Locksley RM, Hammad H, Lambrecht BN. Interleukin-33-activated basophils promote asthma by regulating Th2 cell entry into lung tissue. J Exp Med 2024; 221:e20240103. [PMID: 39297875 PMCID: PMC11413418 DOI: 10.1084/jem.20240103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Asthma is characterized by lung eosinophilia, remodeling, and mucus plugging, controlled by adaptive Th2 effector cells secreting IL-4, IL-5, and IL-13. Inhaled house dust mite (HDM) causes the release of barrier epithelial cytokines that activate various innate immune cells like DCs and basophils that can promote Th2 adaptive immunity directly or indirectly. Here, we show that basophils play a crucial role in the development of type 2 immunity and eosinophilic inflammation, mucus production, and bronchial hyperreactivity in response to HDM inhalation in C57Bl/6 mice. Interestingly, conditional depletion of basophils during sensitization did not reduce Th2 priming or asthma inception, whereas depletion during allergen challenge did. During the challenge of sensitized mice, basophil-intrinsic IL-33/ST2 signaling, and not FcεRI engagement, promoted basophil IL-4 production and subsequent Th2 cell recruitment to the lungs via vascular integrin expression. Basophil-intrinsic loss of the ubiquitin modifying molecule Tnfaip3, involved in dampening IL-33 signaling, enhanced key asthma features. Thus, IL-33-activated basophils are gatekeepers that boost allergic airway inflammation by controlling Th2 tissue entry.
Collapse
Affiliation(s)
- Martijn J. Schuijs
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Claudia M. Brenis Gomez
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Fabian Bick
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Manon Vanheerswynghels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Geert van Loo
- Laboratory of Molecular and Cellular Pathophysiology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen, Erlangen, Germany
| | - Richard M. Locksley
- UCSF Department of Medicine and Howard Hugues Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N. Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, ErasmusMC, Rotterdam, Netherlands
| |
Collapse
|
92
|
Kähönen E, Kähönen E, Pälve K, Hulkkonen J, Kähönen M, Raitakari OT, Hutri N, Lehtimäki T, Aatola H. Association of childhood socioeconomic status with adulthood maximal exercise blood pressure: the Cardiovascular Risk in Young Finns Study. Blood Press 2024; 33:2323987. [PMID: 38465629 DOI: 10.1080/08037051.2024.2323987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
PURPOSE Socioeconomic status has been related to resting blood pressure (BP) levels at different stages of life. However, the association of childhood socioeconomic status (SES) and adulthood exercise BP is largely unknown. Therefore, we studied the association of childhood SES with adulthood maximal exercise BP. MATERIALS AND METHODS This investigation consisted of 373 individuals (53% women) participating in the Cardiovascular Risk in Young Finns Study who had data concerning family SES in childhood (baseline in 1980, at age of 6-18 years) and exercise BP response data in adulthood (follow-up in adulthood in 27-29 years since baseline). A maximal cardiopulmonary exercise test with BP measurements was performed by participants, and peak exercise BP was measured. RESULTS In stepwise multivariable analysis including childhood risk factors and lifestyle factors (body mass index, systolic BP, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, insulin, fruit consumption, vegetable consumption, and physical activity), lower family SES in childhood was associated with higher maximal exercise BP in adulthood (β value ± SE, 1.63 ± 0.77, p = 0.035). The association remained significant after further adjustment with participants SES in adulthood (β value ± SE, 1.68 ± 0.65, p = 0.011) and after further adjustment with adulthood body-mass index, systolic BP, maximal exercise capacity, and peak heart rate in exercise (β value ± SE, 1.25 ± 0.56, p = 0.027). CONCLUSIONS These findings suggest that lower childhood family SES is associated with higher maximal exercise BP in adulthood.
Collapse
Affiliation(s)
- Erika Kähönen
- Department of Clinical Physiology and Nuclear Medicine, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Emilia Kähönen
- Department of Clinical Physiology and Nuclear Medicine, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Kristiina Pälve
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Heart Center, Turku University Hospital, Turku, Finland
| | | | - Mika Kähönen
- Department of Clinical Physiology and Nuclear Medicine, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
- Finnish Cardiovascular Research Center-Tampere, Tampere, Finland
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Nina Hutri
- Tampere Centre for Skills Training and Simulation, Tampere University, Tampere, Finland
| | - Terho Lehtimäki
- Finnish Cardiovascular Research Center-Tampere, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Heikki Aatola
- Department of Clinical Physiology and Nuclear Medicine, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
93
|
Helin T, Palviainen M, Lemponen M, Maaninka K, Siljander P, Joutsi-Korhonen L. Increased circulating platelet-derived extracellular vesicles in severe COVID-19 disease. Platelets 2024; 35:2313362. [PMID: 38380806 DOI: 10.1080/09537104.2024.2313362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2024] [Indexed: 02/22/2024]
Abstract
Coagulation disturbances are major contributors to COVID-19 pathogenicity, but limited data exist on the involvement of extracellular vesicles (EVs) and residual cells (RCs). Fifty hospitalized COVID-19 patients stratified by their D-dimer levels into high (>1.5 mg/L, n = 15) or low (≤1.5 mg/l, n = 35) and 10 healthy controls were assessed for medium-sized EVs (mEVs; 200-1000 nm) and large EVs/RCs (1000-4000 nm) by high sensitivity flow cytometry. EVs were analyzed for CD61, CD235a, CD45, and CD31, commonly used to detect platelets, red blood cells, leukocytes or endothelial cells, respectively, whilst phosphatidyl serine EVs/RCs were detected by lactadherin-binding implicating procoagulant catalytic surface. Small EV detection (sEVs; 50-200 nm) and CD41a (platelet integrin) colocalization with general EV markers CD9, CD63, and CD81 were performed by single particle interferometric reflectance imaging sensor. Patients with increased D-dimer exhibited the highest number of RCs and sEVs irrespective of cell origin (p < .05). Platelet activation, reflected by increased CD61+ and lactadherin+ mEV and RC levels, associated with coagulation disturbances. Patients with low D-dimer could be discriminated from controls by tetraspanin signatures of the CD41a+ sEVs, suggesting the changes in the circulating platelet sEV subpopulations may offer added prognostic value during COVID progression.
Collapse
Affiliation(s)
- Tuukka Helin
- HUS Diagnostics Centre, HUSLAB Clinical Chemistry, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mari Palviainen
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
- EV core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marja Lemponen
- HUS Diagnostics Centre, HUSLAB Clinical Chemistry, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Katariina Maaninka
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
- EV core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pia Siljander
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
- EV core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Lotta Joutsi-Korhonen
- HUS Diagnostics Centre, HUSLAB Clinical Chemistry, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
94
|
Liang Q, Xu X, Ding S, Wu J, Huang M. Prediction of successful weaning from renal replacement therapy in critically ill patients based on machine learning. Ren Fail 2024; 46:2319329. [PMID: 38416516 PMCID: PMC10903749 DOI: 10.1080/0886022x.2024.2319329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/10/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Predicting the successful weaning of acute kidney injury (AKI) patients from renal replacement therapy (RRT) has emerged as a research focus, and we successfully built predictive models for RRT withdrawal in patients with severe AKI by machine learning. METHODS This retrospective single-center study utilized data from our general intensive care unit (ICU) Database, focusing on patients diagnosed with severe AKI who underwent RRT. We evaluated RRT weaning success based on patients being free of RRT in the subsequent week and their overall survival. Multiple logistic regression (MLR) and machine learning algorithms were adopted to construct the prediction models. RESULTS A total of 976 patients were included, with 349 patients successfully weaned off RRT. Longer RRT duration (7.0 vs. 9.6 d, p = 0.002, OR = 0.94), higher serum cystatin C levels (1.2 vs. 3.2 mg/L, p < 0.001, OR = 0.46), and the presence of septic shock (28.1% vs. 41.5%, p < 0.001, OR = 0.63) were associated with reduced likelihood of RRT weaning. Conversely, a positive furosemide stress test (FST) (60.2% vs. 40.7%, p < 0.001, OR = 2.75) and higher total urine volume 3 d before RRT withdrawal (755 vs. 125 mL/d, p < 0.001, OR = 2.12) were associated with an increased likelihood of successful weaning from RRT. Next, we demonstrated that machine learning models, especially Random Forest and XGBoost, achieving an AUROC of 0.95. The XGBoost model exhibited superior accuracy, yielding an AUROC of 0.849. CONCLUSION High-risk factors for unsuccessful RRT weaning in severe AKI patients include prolonged RRT duration. Machine learning prediction models, when compared to models based on multivariate logistic regression using these indicators, offer distinct advantages in predictive accuracy.
Collapse
Affiliation(s)
- Qiqiang Liang
- General Intensive Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
| | - Xin Xu
- General Intensive Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
| | - Shuo Ding
- General Intensive Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
| | - Jin Wu
- General Intensive Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
| | - Man Huang
- General Intensive Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
- Key Laboratory of Multiple Organ Failure, China National Ministry of Education, Hangzhou, PR China
| |
Collapse
|
95
|
Zhou T, Guan Y, Lin X, Zhou X, Mao L, Ma Y, Fan B, Li J, Tu W, Liu S, Fan L. A clinical-radiomics nomogram based on automated segmentation of chest CT to discriminate PRISm and COPD patients. Eur J Radiol Open 2024; 13:100580. [PMID: 38989052 PMCID: PMC11233899 DOI: 10.1016/j.ejro.2024.100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Purpose It is vital to develop noninvasive approaches with high accuracy to discriminate the preserved ratio impaired spirometry (PRISm) group from the chronic obstructive pulmonary disease (COPD) groups. Radiomics has emerged as an image analysis technique. This study aims to develop and confirm the new radiomics-based noninvasive approach to discriminate these two groups. Methods Totally 1066 subjects from 4 centers were included in this retrospective research, and classified into training, internal validation or external validation sets. The chest computed tomography (CT) images were segmented by the fully automated deep learning segmentation algorithm (Unet231) for radiomics feature extraction. We established the radiomics signature (Rad-score) using the least absolute shrinkage and selection operator algorithm, then conducted ten-fold cross-validation using the training set. Last, we constructed a radiomics signature by incorporating independent risk factors using the multivariate logistic regression model. Model performance was evaluated by receiver operating characteristic (ROC) curve, calibration curve, and decision curve analyses (DCA). Results The Rad-score, including 15 radiomic features in whole-lung region, which was suitable for diffuse lung diseases, was demonstrated to be effective for discriminating between PRISm and COPD. Its diagnostic accuracy was improved through integrating Rad-score with a clinical model, and the area under the ROC (AUC) were 0.82(95 %CI 0.79-0.86), 0.77(95 %CI 0.72-0.83) and 0.841(95 %CI 0.78-0.91) for training, internal validation and external validation sets, respectively. As revealed by analysis, radiomics nomogram showed good fit and superior clinical utility. Conclusions The present work constructed the new radiomics-based nomogram and verified its reliability for discriminating between PRISm and COPD.
Collapse
Affiliation(s)
- TaoHu Zhou
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai 200003, China
- School of Medical Imaging, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Yu Guan
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai 200003, China
| | - XiaoQing Lin
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai 200003, China
- College of Health Sciences and Engineering, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai 200093, China
| | - XiuXiu Zhou
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai 200003, China
| | - Liang Mao
- Department of Medical Imaging, Affiliated Hospital of Ji Ning Medical University, Ji Ning 272000, China
| | - YanQing Ma
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, ZJ, China
| | - Bing Fan
- Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Jie Li
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai 200003, China
- College of Health Sciences and Engineering, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai 200093, China
| | - WenTing Tu
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai 200003, China
| | - ShiYuan Liu
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai 200003, China
| | - Li Fan
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai 200003, China
| |
Collapse
|
96
|
Gu P, Lu P, Ding H, Liu Q, Ding X, Chen Y, Zhu L. Effectiveness, cost, and safety of four regimens recommended by WHO for RR/MDR-TB treatment: a cohort study in Eastern China. Ann Med 2024; 56:2344821. [PMID: 38697138 PMCID: PMC11067554 DOI: 10.1080/07853890.2024.2344821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/24/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND To compare the effectiveness, cost, and safety of four regimens recommended by the World Health Organization (WHO) for rifampicin resistance/multidrug-resistance tuberculosis (RR/MDR-TB) Treatment in Eastern China. METHODS We performed a cohort study among patients with RR/MDR between 2020 and 2022 in Jiangsu Province. The treatment success rate, cost, and drug adverse reaction rate were compared. RESULTS Between 2020 and 2022, 253 RR/MDR-TB patients were enrolled in the study. 37 (14.62%), 76 (30.04%), 74 (29.25%), and 66 (26.09%) patients had the short-term regimens, the new long-term oral regimens, the new long-term injectable regimens, and the traditional long-term regimens, respectively. The treatment success rate was the highest among patients treated with the short-term regimen (75.68%) and was the lowest among patients treated with the traditional long-term regimens (60.61%). The estimated mean cost per favorable outcome was 142.61 thousand Chinese Yuan (CNY), and the short-term regimens showed the lowest cost in the four regimes (88.51 thousand CNY vs. 174.24 thousand CNY, 144.00 thousand CNY, and 134.98 thousand CNY). Incremental cost-effectiveness ratios of the short-term regimens, the new long-term oral regimen, and the new long-term injectable regimens were -3083.04, 6040.09, and 819.68 CNY compared to the traditional long-term regimens. CONCLUSIONS For RR/MDR-TB patients in China who meet the criteria for short-term regimens, the short-term regimens were proven to be the most cost-effective of the four regimens recommended by WHO. For RR/MDR-TB patients in China who don't meet the criteria for short-term regimens, the new long-term injectable regimens are more cost-effective than the remaining two regimens.
Collapse
Affiliation(s)
- Pengcheng Gu
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
| | - Peng Lu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
| | - Hui Ding
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
| | - Qiao Liu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
| | - Xiaoyan Ding
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
| | - Yongfa Chen
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
| | - Limei Zhu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
| |
Collapse
|
97
|
Zhang Z, Li L, Wang H, Ran X, Chen Y, Liu X, Ran Y. Disasters pile up on the rubbing heel: Sporothrix globosa as secondary infection to Mycobacterium chelonae infection. Emerg Microbes Infect 2024; 13:2358073. [PMID: 38764403 PMCID: PMC11168209 DOI: 10.1080/22221751.2024.2358073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Mycobacterium chelonae and Sporothrix globosa, both of which are opportunistic pathogens, have been proved to be possible multidrug resistant. However, are all recurring symptoms in chronic infections related to decreasing susceptibility? Here we report a case of sporotrichosis secondary to M. chelonae infection. In addition, we find that the blackish-red spots under the dermoscopic view can be employed as a signal for the early identification and regression of subcutaneous fungal infection.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Lina Li
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Department of Dermatovenereology, Henan Provincial People’s Hospital (People’s Hospital of Zhengzhou University), Zhengzhou, People’s Republic of China
| | - Hongsheng Wang
- Laboratory of Mycobacteria, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People’s Republic of China
| | - Xin Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yuan Chen
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Xinyao Liu
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yuping Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
98
|
Liang C, Shen Y, Xu Y, Liang Y, Qiu S, Tang H, Zhong X. Dendritic Cells Promote the Differentiation of ILCs into NCR -ILC3s in the Lungs of Mice Exposed to Cigarette Smoke. COPD 2024; 21:2389909. [PMID: 39143749 DOI: 10.1080/15412555.2024.2389909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/07/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
The involvement of Group 3 innate lymphoid cells (ILC3s) and dendritic cells (DCs) in chronic lung inflammation has been increasingly regarded as the key to understand the inflammatory mechanisms of smoke-related chronic obstructive pulmonary disease (COPD). However, the mechanism underlying the engagement of both remains unclear. Our study aimed to explore NCR-ILC3 differentiation in the lungs of mice exposed to cigarette smoke (CS) and to further investigate whether DCs activated by CS exposure contribute to the differentiation of ILCs into NCR-ILC3s. The study involved both in vivo and in vitro experiments. In the former, the frequencies of lung NCR-ILC3s and NKp46-IL-17A+ ILCs and the expression of DCs, CD40, CD86, IL-23, and IL-1β quantified by flow cytometry were compared between CS-exposed mice and air-exposed mice. In the latter, NKp46-IL-17A+ ILC frequencies quantified by flow cytometry were compared after two cocultures, one involving lung CD45+Lin-CD127+ ILCs sorted from air-exposed mice and DCs sifted by CD11c magnetic beads from CS-exposed mice and another including identical CD45+Lin-CD127+ ILCs and DCs from air-exposed mice. The results indicated significant increases in the frequencies of NCR-ILC3s and NKp46-IL-17A+ ILCs; in the expression of DCs, CD40, CD86, IL-23, and IL-1β in CS-exposed mice; and in the frequency of NKp46-IL-17A+ ILCs after the coculture with DCs from CS-exposed mice. In conclusion, CS exposure increases the frequency of lung ILCs and NCR-ILC3s. CS-induced DC activation enhances the differentiation of ILCs into NCR-ILC3s, which likely acts as a mediating step in the involvement of NCR-ILC3s in chronic lung inflammation.
Collapse
Affiliation(s)
- Caixia Liang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Ying Shen
- General Practice School, Guangxi Medical University, Nanning, P.R. China
| | - Yifang Xu
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Yi Liang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Shilin Qiu
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Haijuan Tang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Xiaoning Zhong
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| |
Collapse
|
99
|
Juhlin J, Sernert N, Åhlund K. Pre-operative gluteus medius tendon degeneration and its impact on strength and functional ability one year after total hip replacement. Ann Med 2024; 56:2388701. [PMID: 39140369 PMCID: PMC11328601 DOI: 10.1080/07853890.2024.2388701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 08/15/2024] Open
Abstract
OBJECTIVE Hip osteoarthritis is a common cause of disability and surgery is often unavoidable. Patient satisfaction is high and functional ability improves after surgery. However, residual impairment and pain are common. Degenerative changes in tendons and muscles are probable causes. The aim of this study is to investigate gluteus medius (GMED) tendon degeneration in relation to muscle strength, physical function and walking distance before and one year after total hip replacement. MATERIAL AND METHODS In total, 18 patients were examined pre- and post-operatively, of whom 15 were available in the final analysis. Muscle strength, physical function and walking distance were assessed. Tendon biopsies were assessed microscopically, and the total degeneration score (TDS) was calculated. RESULTS A correlation between the TDS and muscle strength was found for the hamstrings, GMED and quadriceps pre- or post-operatively. No correlations were found between the TDS and functional ability. Functional ability and muscle strength improved significantly after surgery. CONCLUSION Our results indicate a correlation between tendon degeneration and the muscle strength of the hip and knee in patients with hip OA and one year after THR. To minimise post-operative residual discomfort, rehabilitation programs should probably be modified over time to match the pre- and post-operative needs. Further studies are needed.This study was registered at https://www.researchweb.org/is/vgr/project/279039 (in Swedish).
Collapse
Affiliation(s)
- Johanna Juhlin
- Department of Physiotherapy, NU Hospital Group, Trollhättan/Uddevalla, Sweden
- Institute of Clinical Science, Department of Orthopaedics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ninni Sernert
- Institute of Clinical Science, Department of Orthopaedics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Research and Development, NU Hospital Group, Trollhättan/Uddevalla, Sweden
| | - Kristina Åhlund
- Institute of Clinical Science, Department of Orthopaedics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Research and Development, NU Hospital Group, Trollhättan/Uddevalla, Sweden
- Department of Health Sciences, University West, Trollhättan, Sweden
| |
Collapse
|
100
|
Quan Z, Xu J, Li M, Cheng C, Mijiti P, Jiang Q, Takiff H, Ren Z, Gao Q. Transmission of tuberculosis in rural Henan, China: a prospective population-based genomic spatial epidemiological study. Emerg Microbes Infect 2024; 13:2399273. [PMID: 39207222 PMCID: PMC11378662 DOI: 10.1080/22221751.2024.2399273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The incidence of tuberculosis (TB) has declined more slowly in rural than urban areas in China, and data on the patterns of transmission and the high-risk populations in rural areas remains scarce. We conducted a population-based study of culture-positive pulmonary TB patients diagnosed in rural Linzhou City, Henan Province from July 2018 to February 2023. Genomic clusters were defined based on whole-genome sequencing and risk factors for clustering were identified by logistic regression. Transmission events were inferred with phybreak and transmission links were sought through epidemiological investigation of clustered patients. Logistic regression was used to explore the relationship between genomic differences of patient isolates and geographical distances of patient residences. Spatial hotspots were defined using kernel density estimation. Of 455 culture-positive patients, 430 were included in the final analysis. Overall, 192 (44.7%,192/430) patients were grouped into 49 clusters. Clusters containing ≥5 patients accounted for 18.4% (9/49) of the clusters and clustering was highest in student patients. No super-spreaders were detected. Confirmed epidemiologic links were identified for only 18.2% of clustered patients. The clustering risk decreased rapidly with increasing distances between patient residences, but 77.6% of clustered patient pairs lived ≥5.0 km apart. Both the Central Subdistrict and Rencun Township were identified as hotspots for TB transmission. Recent transmission appears to be an important driver of the TB burden in Linzhou. The formulation of effective strategies to reduce TB incidence in rural areas will require further studies to identify high-risk populations and venues where local inhabitants congregate and transmit the infection.
Collapse
Affiliation(s)
- Zhuo Quan
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/ NHC/CAMS), School of Basic Medical Science, Fudan University, Shanghai, People's Republic of China
| | - Jiying Xu
- Institution for Tuberculosis Prevention and Control, Henan Provincial Center for Disease Control and Prevention, Zhengzhou, People's Republic of China
| | - Meng Li
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/ NHC/CAMS), School of Basic Medical Science, Fudan University, Shanghai, People's Republic of China
| | - Changyu Cheng
- Linzhou City Center for Disease Control and Prevention, Anyang, People's Republic of China
| | - Peierdun Mijiti
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/ NHC/CAMS), School of Basic Medical Science, Fudan University, Shanghai, People's Republic of China
| | - Qi Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, People's Republic of China
| | - Howard Takiff
- Laboratorio de Genética Molecular, CMBC, Instituto Venezolano de Investigaciones Científicas, IVIC, Caracas, Venezuela
| | - Zhenhuan Ren
- Linzhou City Center for Disease Control and Prevention, Anyang, People's Republic of China
| | - Qian Gao
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/ NHC/CAMS), School of Basic Medical Science, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|