51
|
Kokoulin MS, Kuzmich AS, Filshtein AP, Prassolov VS, Romanenko LA. Capsular polysaccharide from the marine bacterium Cobetia marina induces apoptosis via both caspase-dependent and mitochondria-mediated pathways in HL-60 cells. Carbohydr Polym 2025; 347:122791. [PMID: 39487004 DOI: 10.1016/j.carbpol.2024.122791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/18/2024] [Accepted: 09/20/2024] [Indexed: 11/04/2024]
Abstract
In the present study, we investigated the antiproliferative effect of the capsular polysaccharide (CPS) from marine Gram-negative bacterium Cobetia marina (formerly C. pacifica) KMM 3878 against human leukemia cells in vitro and the potential molecular mechanism underlying this activity. Our results showed that the CPS could inhibit the proliferation of HL-60 cells in a dose-dependent manner with no effect on normal PBMC cells. HL-60 cells treated with the CPS exhibited typical morphologic and biochemical signs of apoptosis. We found that the CPS caused the collapse of mitochondrial transmembrane potential (ΔΨm), activated caspases-8,-9, and - 3, decreased the ratio of anti-apoptotic Bcl-2 and pro-apoptotic Bax proteins, increased ROS production and TNF-α secretion, and stimulated phosphorylation of p38 MAPK and p53 in HL-60 cells. Taken together, these data suggest that both extracellular and intracellular signaling pathways contribute to the CPS-induced apoptosis in HL-60 cells.
Collapse
Affiliation(s)
- Maxim S Kokoulin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 let Vladivostoku, Vladivostok 690022, Russian Federation.
| | - Alexandra S Kuzmich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 let Vladivostoku, Vladivostok 690022, Russian Federation
| | - Alina P Filshtein
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 let Vladivostoku, Vladivostok 690022, Russian Federation
| | - Vladimir S Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova, 32, 119991 Moscow, Russian Federation
| | - Lyudmila A Romanenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 let Vladivostoku, Vladivostok 690022, Russian Federation
| |
Collapse
|
52
|
Zhao Y, Xiang C, Roy BC, Bruce HL, Blecker C, Zhang Y, Liu C, Zhang D, Chen L, Huang C. Apoptosis and its role in postmortem meat tenderness: A comprehensive review. Meat Sci 2025; 219:109652. [PMID: 39265386 DOI: 10.1016/j.meatsci.2024.109652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Tenderness is considered a crucial attribute of postmortem meat quality, directly influencing consumers' preferences and industrial economic benefits. The degradation of myofibrillar proteins by endogenous enzymes within muscle fibers is believed to be the most effective pathway for meat tenderization. After animals are slaughtered and exsanguinated, there is a significant accumulation of reactive oxygen species (ROS), and a dramatic depletion of adenosine triphosphate (ATP) in muscle, leading to inevitable cell death. Caspases are activated in postmortem muscle cells, which disrupt the cell structure and improve meat tenderness through protein hydrolysis. In this review, we systematically summarized the three primary types of cell death studied in postmortem muscle: apoptosis, autophagy and necrosis. Furthermore, we emphasized the molecular mechanisms of apoptosis and its corresponding apoptotic pathways (mitochondrial apoptosis, death receptors, and endoplasmic reticulum stress) that affect meat tenderness during muscle conversion to meat. Additionally, factors affecting apoptosis were comprehensively discussed, such as ROS, heat shock proteins, calcium (Ca2+)/calpains, and Bcl-2 family proteins. Finally, this comprehensive review of existing research reveals that apoptosis is mainly mediated by the mitochondrial pathway. This ultimately leads to myofibrillar proteins degradation through caspase activation, improving meat tenderness. This review summarizes the research progress on postmortem muscle apoptosis and its molecular mechanisms in meat tenderization. We hope this will enhance understanding of postmortem meat tenderness and provide a theoretical basis for meat tenderization techniques development in the future.
Collapse
Affiliation(s)
- Yingxin Zhao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Can Xiang
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Bimol C Roy
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Heather L Bruce
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Christophe Blecker
- Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, University of Liège, Avenue de la Faculté d'Agronomie 2, Gembloux B-5030, Belgium
| | - Yanyan Zhang
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Chongxin Liu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Caiyan Huang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, University of Liège, Avenue de la Faculté d'Agronomie 2, Gembloux B-5030, Belgium.
| |
Collapse
|
53
|
Ribeiro KB, Veiga LH, Carvalho Filho NP, Morton LM, Kleinerman RA, Antoneli CBG. Overall survival and cause-specific mortality in a hospital-based cohort of retinoblastoma patients in São Paulo, Brazil. Int J Cancer 2025; 156:69-78. [PMID: 39138799 PMCID: PMC11537822 DOI: 10.1002/ijc.35127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Studies are lacking on long-term effects among retinoblastoma patients in low- and middle-income countries. Therefore, we examined cause-specific mortality in a retrospective cohort of retinoblastoma patients treated at Antonio Candido de Camargo Cancer Center (ACCCC), São Paulo, Brazil from 1986 to 2003 and followed up through December 31, 2018. Vital status and cause of death were ascertained from medical records and multiple national databases. We estimated overall and cause-specific survival using the Kaplan-Meier survival method, and estimated standardized mortality ratios (SMRs) and absolute excess risk (AER) of death. This cohort study included 465 retinoblastoma patients (42% hereditary, 58% nonhereditary), with most (77%) patients diagnosed at advanced stages (IV or V). Over an 11-year average follow-up, 80 deaths occurred: 70% due to retinoblastoma, 22% due to subsequent malignant neoplasms (SMNs) and 5% to non-cancer causes. The overall 5-year survival rate was 88% consistent across hereditary and nonhereditary patients (p = .67). Hereditary retinoblastoma patients faced an 86-fold higher risk of SMN-related death compared to the general population (N = 16, SMR = 86.1, 95% CI 52.7-140.5), corresponding to 42.4 excess deaths per 10,000 person-years. This risk remained consistent for those treated with radiotherapy and chemotherapy (N = 10, SMR = 90.3, 95% CI 48.6-167.8) and chemotherapy alone (N = 6, SMR = 80.0, 95% CI 35.9-177.9). Nonhereditary patients had only two SMN-related deaths (SMR = 7.2, 95% CI 1.8-28.7). There was no excess risk of non-cancer-related deaths in either retinoblastoma form. Findings from this cohort with a high proportion of advanced-stage patients and extensive chemotherapy use may help guide policy and healthcare planning, emphasizing the need to enhance early diagnosis and treatment access in less developed countries.
Collapse
Affiliation(s)
- Karina B. Ribeiro
- Santa Casa de São Paulo Medical School, Department of Collective Health, São Paulo, Brazil
| | - Lene H.S. Veiga
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States
| | | | - Lindsay M. Morton
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States
| | - Ruth A. Kleinerman
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States
| | | |
Collapse
|
54
|
Kim S, Jung BK, Kim J, Jeon JH, Kim M, Jang SH, Kim CS, Jang H. Anticancer effect of the oncolytic Newcastle disease virus harboring the PTEN gene on glioblastoma. Oncol Lett 2025; 29:6. [PMID: 39492938 PMCID: PMC11526322 DOI: 10.3892/ol.2024.14752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Glioblastoma (GBM) is one of the most lethal types of human brain cancer and is characterized by rapid growth, an aggressive nature and a poor prognosis. GBM is highly heterogeneous, and often involves several genetic mutations and abnormalities. Genetic disorders or low expression of phosphatase and tensin homolog (PTEN) are associated with GBM occurrence, progression and poor prognosis of patients with GBM. However, effective delivery of PTEN for expression in GBM cells within the brain remains challenging. The aim of the present study was to develop a therapeutic strategy to restore PTEN expression in GBM cells by utilizing a recombinant Newcastle disease virus (rNDV) vector expressing the human PTEN gene (rNDV-PTEN). Methods included infection of U87-MG cells with rNDV-PTEN, followed by assessments of PTEN expression, and cell proliferation, migration and apoptosis. Additionally, an orthotopic GBM mouse model was used to evaluate the in vivo efficacy of rNDV-PTEN. Infection with recombinant rNDV-PTEN treatment increased PTEN protein expression in the cytoplasm of the U87-MG cells, reduced cell proliferation and migration, and induced apoptosis by inhibiting the AKT/mTOR signaling pathway. In the orthotopic GBM mouse model, rNDV-PTEN significantly reduced tumor size and improved survival rates. Magnetic resonance imaging and in vivo imaging analyses confirmed the targeted delivery and efficacy of rNDV-PTEN. These findings highlight the usefulness of rNDV-PTEN as a promising therapeutic agent for GBM, representing a potential advancement in treatment, especially for patients with PTEN deficiency.
Collapse
Affiliation(s)
- Seonhee Kim
- Research and Development Division, Libentech Co., Ltd., Daejeon 34013, Republic of Korea
| | - Bo-Kyoung Jung
- Research and Development Division, Libentech Co., Ltd., Daejeon 34013, Republic of Korea
| | - Jinju Kim
- Research and Development Division, Libentech Co., Ltd., Daejeon 34013, Republic of Korea
| | - Joo Hee Jeon
- Research and Development Division, Libentech Co., Ltd., Daejeon 34013, Republic of Korea
| | - Minsoo Kim
- Department of Physiology and Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
| | - Sung Hoon Jang
- Graduate School of Medical Science, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Cuk-Seong Kim
- Department of Physiology and Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
| | - Hyun Jang
- Research and Development Division, Libentech Co., Ltd., Daejeon 34013, Republic of Korea
| |
Collapse
|
55
|
Lu L, Zhang Q, Aladelokun O, Berardi D, Shen X, Marin A, Garcia-Milian R, Roper J, Khan SA, Johnson CH. Asparagine synthetase and G-protein coupled estrogen receptor are critical responders to nutrient supply in KRAS mutant colorectal cancer. Int J Cancer 2025; 156:52-68. [PMID: 39039782 PMCID: PMC11537827 DOI: 10.1002/ijc.35104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024]
Abstract
Survival differences exist in colorectal cancer (CRC) patients by sex and disease stage. However, the potential molecular mechanism(s) are not well understood. Here we show that asparagine synthetase (ASNS) and G protein-coupled estrogen receptor-1 (GPER1) are critical sensors of nutrient depletion and linked to poorer outcomes for females with CRC. Using a 3D spheroid model of isogenic SW48 KRAS wild-type (WT) and G12A mutant (MT) cells grown under a restricted nutrient supply, we found that glutamine depletion inhibited cell growth in both cell lines, whereas ASNS and GPER1 expression were upregulated in KRAS MT versus WT. Estradiol decreased growth in KRAS WT but had no effect on MT cells. Selective GPER1 and ASNS inhibitors suppressed cell proliferation with increased caspase-3 activity of MT cells under glutamine depletion condition particularly in the presence of estradiol. In a clinical colon cancer cohort from The Cancer Genome Atlas, both high GPER1 and ASNS expression were associated with poorer overall survival for females only in advanced stage tumors. These results suggest KRAS MT cells have mechanisms in place that respond to decreased nutrient supply, typically observed in advanced tumors, by increasing the expression of ASNS and GPER1 to drive cell growth. Furthermore, KRAS MT cells are resistant to the protective effects of estradiol under nutrient deplete conditions. The findings indicate that GPER1 and ASNS expression, along with the interaction between nutrient supply and KRAS mutations shed additional light on the mechanisms underlying sex differences in metabolism and growth in CRC, and have clinical implications in the precision management of KRAS mutant CRC.
Collapse
Affiliation(s)
- Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT 06520-8034 USA
| | - Qian Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520-8034, USA
- Department of Colorectal Surgery, Second Affiliated Hospital Harbin Medical University, Heilongjiang Academy of Medical Science, Harbin, Heilongjiang Province 150086, China
| | - Oladimeji Aladelokun
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520-8034, USA
| | - Domenica Berardi
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520-8034, USA
| | - Xinyi Shen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520-8034, USA
| | - Audrey Marin
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520-8034, USA
| | - Rolando Garcia-Milian
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520-8034, USA
- Bioinformatics Support Program, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Jatin Roper
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, NC 27710, USA
| | - Sajid A. Khan
- Section of Surgical Oncology, Department of Surgery, Yale School of Medicine, Yale Cancer Center, Yale University, New Haven, CT 06510, USA
| | - Caroline H. Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520-8034, USA
| |
Collapse
|
56
|
Li YY, Jiang S, Pan TT, Wang Y, Zhang CY. A simple "mix-and-detection" method based on template-free amplification for sensitive measurement of human cellular FEN1. Talanta 2025; 281:126863. [PMID: 39260254 DOI: 10.1016/j.talanta.2024.126863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/23/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Flap endonuclease 1 (FEN1) is a structure-specific nuclease that can specially identify and cleave 5' flap of branched duplex DNA, and it plays a critical role in DNA metabolic pathways and human diseases. Herein, we propose a simple "mix-and-detection" strategy for sensitive measurement of human cellular FEN1 on basis of template-free amplification. We design a dumbbell probe with 5' flap as a substrate of FEN1 and a NH2-labeled 3' termini to prevent nonspecific amplification. When FEN1 is present, the 5' flap is cleaved to release a free 3'-OH termini, initiating Ribonuclease HII (RNase HII)-assisted terminal deoxynucleotidyl transferase (TdT)-induced amplification for the production of a significant fluorescence signal. Due to the high exactitude of TdT-mediated extension reaction and RNase HII-induced single ribonucleotide excise, this assay shows excellent specificity and high sensitivity with a detection limit of 5.64 × 10-6 U/μL. Importantly, it can detect intracellular FEN1 activity with single-cell sensitivity under isothermal condition in a "mix-and-detection" manner, screen the FEN1 inhibitors, and even discriminate tumor cells from normal cells, offering a new platform for disease diagnosis and drug discovery.
Collapse
Affiliation(s)
- Yue-Ying Li
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China; Henan Institute of Medical and Pharmaceutical Sciences & BGI College, Zhengzhou University, Zhengzhou, 450052, China
| | - Su Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Ting-Ting Pan
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
57
|
Zhao Q, Xiong S, Cai H, He X, Shi X. Expression and Significance of the Long Non-Coding RNA APTR in the Occurrence and Development of Lung Adenocarcinoma. J Environ Pathol Toxicol Oncol 2025; 44:11-20. [PMID: 39462445 DOI: 10.1615/jenvironpatholtoxicoloncol.2024053394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
As one of the three major malignant tumors, lung adenocarcinoma (LUAD), with its rapid progression and high mortality rate, has become the most dangerous factor endangering human health. This study aims to explore new potential molecular targets, explore the regulatory role of lncRNA APTR in LUAD, and provide a more theoretical basis for the selection of LUAD therapeutic targets. The expression of APTR in LUAD was detected by PCR experiments, and the relationship between APTR and patients' clinical conditions and prognosis was analyzed by chi-square test, multifactor Cox regression, and Kaplan-Meier. The interaction between APTR and miR-298 and the regulation of LUAD cellular activities by APTR/miR-298 were explored by the luciferase reporter gene system. APTR expression was found to be upregulated in LUAD tissues and cells, and the expression of APTR was revealed to be substantially linked with lymph node metastases and TNM stage. High expression of LUAD also predicted a poor prognosis for patients. Downregulation of APTR expression significantly inhibited the activities of LUAD cells. In addition, APTR targeted miR-298 and negatively regulated miR-298 expression. The inhibitory effect of APTR knockdown on LUAD cell activity was also reversed after transfection with miR-298 inhibitor. Increasing expression of APTR is associated with patients' poor prognosis, APTR targets miR-298 and promotes LUAD cellular activity through negative regulation of miR-298.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Shi Xiong
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Hourong Cai
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Xiaofeng He
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University
| | - Xiaoming Shi
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| |
Collapse
|
58
|
Weniger MA, Seifert M, Küppers R. B Cell Differentiation and the Origin and Pathogenesis of Human B Cell Lymphomas. Methods Mol Biol 2025; 2865:1-30. [PMID: 39424718 DOI: 10.1007/978-1-0716-4188-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Immunoglobulin (IG) gene remodeling by V(D)J recombination plays a central role in the generation of normal B cells, and somatic hypermutation and class switching of IG genes are key processes during antigen-driven B cell differentiation in the germinal center reaction. However, errors of these processes are involved in the development of B cell lymphomas. IG locus-associated translocations of proto-oncogenes are a hallmark of many B cell malignancies. Additional transforming events include inactivating mutations in various tumor suppressor genes and also latent infection of B cells with viruses, such as Epstein-Barr virus. Most B cell lymphomas require B cell antigen receptor expression, and in several instances chronic antigenic stimulation plays a role in lymphoma development and/or sustaining tumor growth. Often, survival and proliferation signals provided by other cells in the microenvironment are a further critical factor in lymphoma development and pathophysiology. Most B cell malignancies derive from germinal center B cells, most likely due to the high proliferative activity of these B cells and aberrant mutations caused by their naturally active mutagenic processes.
Collapse
Affiliation(s)
- Marc A Weniger
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany
| | - Marc Seifert
- Department of Haematology, Oncology and Clinical Immunology, Heinrich Heine University, Medical School, Düsseldorf, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany.
| |
Collapse
|
59
|
Roddy GW, Kohli D, Niknam P, Omer ME, Chowdhury UR, Anderson KJ, Pacheco Marrero JM, Rinkoski TA, Fautsch MP. Subconjunctival Administration of an Adeno-Associated Virus Expressing Stanniocalcin-1 Provides Sustained Intraocular Pressure Reduction in Mice. OPHTHALMOLOGY SCIENCE 2025; 5:100590. [PMID: 39328825 PMCID: PMC11426120 DOI: 10.1016/j.xops.2024.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/28/2024]
Abstract
Purpose To investigate subconjunctival administration of a single-stranded, adeno-associated virus, serotype 2, engineered to express stanniocalcin-1 with a FLAG tag (ssAAV2-STC-1-FLAG) as a novel sustained (IOP) lowering agent with a reduced ocular surface side effect profile. Design In vivo preclinical investigation in mice. Subjects C57BL/6J, DBA/2J, prostaglandin F (FP) receptor knockout mice. Methods Normotensive C57BL/6J mice were treated with a subconjunctival injection of ssAAV2-STC-1-FLAG (2 μL; 6 × 109 viral genomes [VGs]) in 1 eye and the same volume and concentration of ssAAV2-green fluorescent protein (GFP) or the same volume of phosphate-buffered saline in the fellow eye. Ocular hypertensive DBA/2J mice were subconjunctivally injected with 6 × 109 VGs of ssAAV2-STC-1-FLAG or ssAAV2-GFP. Steroid-mediated ocular hypertension was induced in C57BL/6J mice with weekly injections of dexamethasone into the conjunctival fornix, and mice were then injected subconjunctivally with 6 × 109 VGs of ssAAV2-STC-1-FLAG or ssAAV2-GFP. Prostaglandin F receptor knockout mice were injected subconjunctivally with 6 × 109 VGs of ssAAV2-STC-1-FLAG or phosphate-buffered saline. An identical vector was constructed without the FLAG tag (ssAAV2-STC-1) and evaluated in normotensive C57BL/6J mice. Intraocular pressure was assessed using the Tonolab tonometer for all experiments. Tumor necrosis factor alpha (TNFα), a marker of ocular surface inflammation, was compared between subconjunctivally delivered ssAAV2-STC-1-FLAG and other treatments including daily topical latanoprost. Main Outcome Measures Intraocular pressure assessment. Results Subconjunctival delivery of ssAAV2-STC-1-FLAG significantly reduced IOP for 10 weeks post injection in normotensive mice. Maximal IOP reduction was seen at week 3 postinjection (17.4%; 17.1 ± 0.8 vs. 14.1 ± 0.8 mmHg, P < 0.001). After the IOP-lowering effect had waned, a second injection restored the ocular hypotensive effect. Subconjunctivally delivered ssAAV2-STC-1-FLAG lowered IOP in DBA/2J mice (16.9%; 17.8 ± 2.0 vs. 14.8 ± 0.9 mmHg, P < 0.001) and steroid-mediated ocular hypertensive mice (20.0%; 19.0 ± 0.6 vs. 15.2 ± 0.7 mmHg, P < 0.001) over the experimental period. This construct also reduced IOP to a similar extent in wild-type (15.9%) and FP receptor knockout (15.7%) mice compared with the fellow eye. A related construct also lowered IOP without the FLAG tag in a similar manner. Reduction in conjunctival TNFα was seen when comparing subconjunctivally delivered ssAAV2-STC-1-FLAG to daily topical latanoprost. Conclusions Subconjunctival delivery of the STC-1 transgene with a vector system may represent a novel treatment strategy for sustained IOP reduction and improved ocular tolerability that also avoids the daily dosing requirements of currently available medications. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Gavin W. Roddy
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, 55905
| | - Darrell Kohli
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, 55905
| | - Parvin Niknam
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, 55905
| | - Mohammed E. Omer
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, 55905
| | | | | | | | - Tommy A. Rinkoski
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, 55905
| | | |
Collapse
|
60
|
Derman ID, Moses JC, Rivera T, Ozbolat IT. Understanding the cellular dynamics, engineering perspectives and translation prospects in bioprinting epithelial tissues. Bioact Mater 2025; 43:195-224. [PMID: 39386221 PMCID: PMC11462153 DOI: 10.1016/j.bioactmat.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
The epithelium is one of the important tissues in the body as it plays a crucial barrier role serving as a gateway into and out of the body. Most organs in the body contain an epithelial tissue component, where the tightly connected, organ-specific epithelial cells organize into cysts, invaginations, or tubules, thereby performing distinct to endocrine or exocrine secretory functions. Despite the significance of epithelium, engineering functional epithelium in vitro has remained a challenge due to it is special architecture, heterotypic composition of epithelial tissues, and most importantly, difficulty in attaining the apico-basal and planar polarity of epithelial cells. Bioprinting has brought a paradigm shift in fabricating such apico-basal polarized tissues. In this review, we provide an overview of epithelial tissues and provide insights on recapitulating their cellular arrangement and polarization to achieve epithelial function. We describe the different bioprinting techniques that have been successful in engineering polarized epithelium, which can serve as in vitro models for understanding homeostasis and studying diseased conditions. We also discuss the different attempts that have been investigated to study these 3D bioprinted engineered epithelium for preclinical use. Finally, we highlight the challenges and the opportunities that need to be addressed for translation of 3D bioprinted epithelial tissues towards paving way for personalized healthcare in the future.
Collapse
Affiliation(s)
- Irem Deniz Derman
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Joseph Christakiran Moses
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Taino Rivera
- Biomedical Engineering Department, Penn State University, University Park, PA, 16802, USA
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Biomedical Engineering Department, Penn State University, University Park, PA, 16802, USA
- Materials Research Institute, Penn State University, University Park, PA, 16802, USA
- Cancer Institute, Penn State University, University Park, PA, 16802, USA
- Neurosurgery Department, Penn State University, University Park, PA, 16802, USA
- Department of Medical Oncology, Cukurova University, Adana, 01330, Turkey
| |
Collapse
|
61
|
Emamalipour M, Shamdani S, Mansoori B, Uzan G, Naserian S. The implications of the TNFα-TNFR2 immune checkpoint signaling pathway in cancer treatment: From immunoregulation to angiogenesis. Int J Cancer 2025; 156:7-19. [PMID: 39140321 DOI: 10.1002/ijc.35130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Despite the tremendous advances that have been made in biomedical research, cancer remains one of the leading causes of death worldwide. Several therapeutic approaches have been suggested and applied to treat cancer with impressive results. Immunotherapy based on targeting immune checkpoint signaling pathways proved to be one of the most efficient. In this review article, we will focus on the recently discovered TNFα-TNFR2 signaling pathway, which controls the immunological and pro-angiogenic properties of many immunoregulatory and pro-angiogenic cells such as endothelial progenitor cells (EPCs), mesenchymal stem cells (MSCs), and regulatory T cells (Tregs). Due to their biological properties, these cells can play a major role in cancer progression and metastasis. Therefore, we will discuss the advantages and disadvantages of an anti-TNFR2 treatment that could carry two faces under one hood. It interrupts the immunosuppressive and pro-angiogenic behaviors of the above-mentioned cells and interferes with tumor growth and survival.
Collapse
Affiliation(s)
| | - Sara Shamdani
- CellMedEx, Saint Maur Des Fossés, France
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, Pennsylvania, USA
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| | - Sina Naserian
- CellMedEx, Saint Maur Des Fossés, France
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| |
Collapse
|
62
|
Jiao F, Meng L, Du K, Li X. The autophagy-lysosome pathway: a potential target in the chemical and gene therapeutic strategies for Parkinson's disease. Neural Regen Res 2025; 20:139-158. [PMID: 38767483 PMCID: PMC11246151 DOI: 10.4103/nrr.nrr-d-23-01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/06/2023] [Indexed: 05/22/2024] Open
Abstract
Parkinson's disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such as α-synuclein in neurons. As one of the major intracellular degradation pathways, the autophagy-lysosome pathway plays an important role in eliminating these proteins. Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance of α-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson's disease. Moreover, multiple genes associated with the pathogenesis of Parkinson's disease are intimately linked to alterations in the autophagy-lysosome pathway. Thus, this pathway appears to be a promising therapeutic target for treatment of Parkinson's disease. In this review, we briefly introduce the machinery of autophagy. Then, we provide a description of the effects of Parkinson's disease-related genes on the autophagy-lysosome pathway. Finally, we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy-lysosome pathway and their applications in Parkinson's disease.
Collapse
Affiliation(s)
- Fengjuan Jiao
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Lingyan Meng
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Kang Du
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Xuezhi Li
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong Province, China
| |
Collapse
|
63
|
Tanaka T, Chung HL. Exploiting fly models to investigate rare human neurological disorders. Neural Regen Res 2025; 20:21-28. [PMID: 38767473 PMCID: PMC11246155 DOI: 10.4103/nrr.nrr-d-23-01847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 03/02/2024] [Indexed: 05/22/2024] Open
Abstract
Rare neurological diseases, while individually are rare, collectively impact millions globally, leading to diverse and often severe neurological symptoms. Often attributed to genetic mutations that disrupt protein function or structure, understanding their genetic basis is crucial for accurate diagnosis and targeted therapies. To investigate the underlying pathogenesis of these conditions, researchers often use non-mammalian model organisms, such as Drosophila (fruit flies), which is valued for their genetic manipulability, cost-efficiency, and preservation of genes and biological functions across evolutionary time. Genetic tools available in Drosophila, including CRISPR-Cas9, offer a means to manipulate gene expression, allowing for a deep exploration of the genetic underpinnings of rare neurological diseases. Drosophila boasts a versatile genetic toolkit, rapid generation turnover, and ease of large-scale experimentation, making it an invaluable resource for identifying potential drug candidates. Researchers can expose flies carrying disease-associated mutations to various compounds, rapidly pinpointing promising therapeutic agents for further investigation in mammalian models and, ultimately, clinical trials. In this comprehensive review, we explore rare neurological diseases where fly research has significantly contributed to our understanding of their genetic basis, pathophysiology, and potential therapeutic implications. We discuss rare diseases associated with both neuron-expressed and glial-expressed genes. Specific cases include mutations in CDK19 resulting in epilepsy and developmental delay, mutations in TIAM1 leading to a neurodevelopmental disorder with seizures and language delay, and mutations in IRF2BPL causing seizures, a neurodevelopmental disorder with regression, loss of speech, and abnormal movements. And we explore mutations in EMC1 related to cerebellar atrophy, visual impairment, psychomotor retardation, and gain-of-function mutations in ACOX1 causing Mitchell syndrome. Loss-of-function mutations in ACOX1 result in ACOX1 deficiency, characterized by very-long-chain fatty acid accumulation and glial degeneration. Notably, this review highlights how modeling these diseases in Drosophila has provided valuable insights into their pathophysiology, offering a platform for the rapid identification of potential therapeutic interventions. Rare neurological diseases involve a wide range of expression systems, and sometimes common phenotypes can be found among different genes that cause abnormalities in neurons or glia. Furthermore, mutations within the same gene may result in varying functional outcomes, such as complete loss of function, partial loss of function, or gain-of-function mutations. The phenotypes observed in patients can differ significantly, underscoring the complexity of these conditions. In conclusion, Drosophila represents an indispensable and cost-effective tool for investigating rare neurological diseases. By facilitating the modeling of these conditions, Drosophila contributes to a deeper understanding of their genetic basis, pathophysiology, and potential therapies. This approach accelerates the discovery of promising drug candidates, ultimately benefiting patients affected by these complex and understudied diseases.
Collapse
Affiliation(s)
- Tomomi Tanaka
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
| | - Hyung-Lok Chung
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
64
|
Jin Y, Wang Y, Yang R, Fang W, Zhang K, Liu M, Wang Y, Yang M, Fu Q. Multilayered hydrogel scaffold construct with native tissue matched elastic modulus: A regenerative microenvironment for urethral scar-free healing. Biomaterials 2025; 312:122711. [PMID: 39088911 DOI: 10.1016/j.biomaterials.2024.122711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
The unsuitable deformation stimulus, harsh urine environment, and lack of a regenerative microenvironment (RME) prevent scaffold-based urethral repair and ultimately lead to irreversible urethral scarring. The researchers clarify the optimal elastic modulus of the urethral scaffolds for urethral repair and design a multilayered PVA hydrogel scaffold for urethral scar-free healing. The inner layer of the scaffold has self-healing properties, which ensures that the wound effectively resists harsh urine erosion, even when subjected to sutures. In addition, the scaffold's outer layer has an extracellular matrix-like structure that synergizes with adipose-derived stem cells to create a favorable RME. In vivo experiments confirm successful urethral scar-free healing using the PVA multilayered hydrogel scaffold. Further mechanistic study shows that the PVA multilayer hydrogel effectively resists the urine-induced inflammatory response and accelerates the transition of urethral wound healing to the proliferative phase by regulating macrophage polarization, thus providing favorable conditions for urethral scar-free healing. This study provides mechanical criteria for the fabrication of urethral tissue-engineered scaffolds, as well as important insights into their design.
Collapse
Affiliation(s)
- Yangwang Jin
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Ying Wang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Ranxing Yang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Wenzhuo Fang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Kaile Zhang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Meng Liu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Yuhui Wang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Ming Yang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China.
| | - Qiang Fu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China.
| |
Collapse
|
65
|
Sun L, Wang F, Wang X, Zhang F, Ma S, Lv J. SATB1 mediated tumor colonization and β-catenin nuclear localization are associated with colorectal cancer progression. Cancer Biol Ther 2024; 25:2320307. [PMID: 38385627 PMCID: PMC10885174 DOI: 10.1080/15384047.2024.2320307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/14/2024] [Indexed: 02/23/2024] Open
Abstract
Colorectal cancer (CRC) is a malignancy with high incidence and poor prognosis. It is urgent to identify valuable biomarkers for early diagnosis and potent therapeutic targets. It has been reported that SATB1 is associated with the malignant progression in CRC. To explore the role of SATB1 in CRC progression and the underlying mechanism, we evaluated the expression of SATB1 in the paired CRC tissues with immunohistochemistry. The results showed that the expression of SATB1 in lymph node metastasis was higher than that in primary lesion, and that in distant organ metastasis was higher than that in primary lesion. The retrospective analysis showed that patients with high expression of SATB1 had a significantly worse prognosis than those with negative and moderate expression. In vitro experiments that employing SATB1 over-expressing and depleted CRC cell lines confirmed that SATB1 contributes to cell proliferation and colonization, while inhibiting cell motility. Furthermore, the tissue immunofluorescence assay, Co-IP and Western blot were conducted to reveal that SATB1 induced translocation of β-catenin and formed a protein complex with it in the nuclei. In conclusion, SATB1 mediated tumor colonization and β-catenin nuclear localization are associated with the malignant progression and poor prognosis of CRC.
Collapse
Affiliation(s)
- Luan Sun
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Feng Wang
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| | - Xufei Wang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Feiying Zhang
- The second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Sujuan Ma
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jinghuan Lv
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
66
|
Palecki J, Bhasin A, Bernstein A, Mille PJ, Tester WJ, Kelly WK, Zarrabi KK. T-Cell redirecting bispecific antibodies: a review of a novel class of immuno-oncology for advanced prostate cancer. Cancer Biol Ther 2024; 25:2356820. [PMID: 38801069 PMCID: PMC11135853 DOI: 10.1080/15384047.2024.2356820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Novel T-cell immunotherapies such as bispecific T-cell engagers (BiTEs) are emerging as promising therapeutic strategies for prostate cancer. BiTEs are engineered bispecific antibodies containing two distinct binding domains that allow for concurrent binding to tumor-associated antigens (TAAs) as well as immune effector cells, thus promoting an immune response against cancer cells. Prostate cancer is rich in tumor associated antigens such as, but not limited to, PSMA, PSCA, hK2, and STEAP1 and there is strong biologic rationale for employment of T-cell redirecting BiTEs within the prostate cancer disease space. Early generation BiTE constructs employed in clinical study have demonstrated meaningful antitumor activity, but challenges related to drug delivery, immunogenicity, and treatment-associated adverse effects limited their success. The ongoing development of novel BiTE constructs continues to address these barriers and to yield promising results in terms of efficacy and safety. This review will highlight some of most recent developments of BiTE therapies for patients with advanced prostate cancer and the evolving data surrounding BiTE constructs undergoing clinical evaluation.
Collapse
Affiliation(s)
- Julia Palecki
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Amman Bhasin
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Andrew Bernstein
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Patrick J. Mille
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - William J. Tester
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Wm. Kevin Kelly
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Kevin K. Zarrabi
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| |
Collapse
|
67
|
Peng C, Li X, Yao Y, Nie Y, Fan L, Zhu C. MiR-135b-5p promotes cetuximab resistance in colorectal cancer by regulating FOXN3. Cancer Biol Ther 2024; 25:2373497. [PMID: 38967961 PMCID: PMC11229718 DOI: 10.1080/15384047.2024.2373497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/06/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Despite advances in targeted therapies, primary and acquired resistance make the treatment of colorectal cancer (CRC) a pressing issue to be resolved. According to reports, the development of CRC is linked to miRNA dysregulation. Multiple studies have demonstrated that miR-135b-5p has an aberrant expression level between CRC tissues and adjacent tissues. However, it is unclear whether there is a correlation between miR-135b-5p and cetuximab (CTx) resistance in CRC. Use the GEO database to measure miR-135b-5p expression in CRC. Additionally, RT-qPCR was applied to ascertain the production level of miR-135b-5p in three human CRC cells and NCM460 cells. The capacity of cells to migrate and invade was examined utilizing the wound-healing and transwell assays, while the CCK-8 assay served for evaluating cell viability, as well as colony formation assays for proliferation. The expected target protein of miR-135b-5p in CRC cell cetuximab resistance has been investigated using western blot. Suppression of miR-135b-5p could increase the CTx sensitivity of CTx-resistant CRC cells, as manifested by the attenuation of proliferation, migration, and invasion ability. Mechanistic studies revealed miR-135b-5p regulates the epithelial-to-mesenchymal transition (EMT) process and Wnt/β-catenin signaling pathway through downgulating FOXN3. In short, knockdowning miR-135b-5p could increase FOXN3 expression in CRC cells, promote the EMT process, and simultaneously activate the Wnt/β-catenin signaling pathway to elevate CTx resistance in CRC cells.
Collapse
Affiliation(s)
- Chun Peng
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaoqing Li
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuhui Yao
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yu Nie
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lingyao Fan
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chuandong Zhu
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
68
|
Lan C, Fang G, Qiu C, Li X, Yang F, Yang Y. Inhibition of DYRK1A attenuates vascular remodeling in pulmonary arterial hypertension via suppressing STAT3/Pim-1/NFAT pathway. Clin Exp Hypertens 2024; 46:2297642. [PMID: 38147409 DOI: 10.1080/10641963.2023.2297642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by progressive vascular remodeling caused by the excessive proliferation and survival of pulmonary artery smooth muscle cells (PASMCs). Dual-specificity tyrosine regulated kinase 1A (DYRK1A) is a pleiotropic kinase involved in the regulation of multiple biological functions, including cell proliferation and survival. However, the role and underlying mechanisms of DYRK1A in PAH pathogenesis remain unclear. We found that DYRK1A was upregulated in PASMCs in response to hypoxia, both in vivo and in vitro. Inhibition of DYRK1A by harmine significantly attenuated hypoxia-induced pulmonary hypertension and pulmonary artery remodeling. Mechanistically, we found that DYRK1A promoted pulmonary arterial remodeling by enhancing the proliferation and survival of PASMCs through activating the STAT3/Pim-1/NFAT pathway, because STAT3 gain-of-function via adeno-associated virus serotype 2 (AAV2) carrying the constitutively active form of STAT3 (STAT3C) nearly abolished the protective effect of harmine on PAH. Collectively, our results reveal a significant role for DYRK1A in pulmonary arterial remodeling and suggest it as a drug target with translational potential for the treatment of PAH.
Collapse
Affiliation(s)
- Cong Lan
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Guangyao Fang
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Chenming Qiu
- Department of Burn and Plastic Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Xiuchuan Li
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Fengyuan Yang
- Department of Nephrology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yongjian Yang
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
69
|
Wang Y, Peng L, Wang F. M6A-mediated molecular patterns and tumor microenvironment infiltration characterization in nasopharyngeal carcinoma. Cancer Biol Ther 2024; 25:2333590. [PMID: 38532632 DOI: 10.1080/15384047.2024.2333590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
N6-methyladenosine (m6A) is the most predominant RNA epigenetic regulation in eukaryotic cells. Numerous evidence revealed that m6A modification exerts a crucial role in the regulation of tumor microenvironment (TME) cell infiltration in several tumors. Nevertheless, the potential role and mechanism of m6A modification in nasopharyngeal carcinoma (NPC) remains unknown. mRNA expression data and clinical information from GSE102349, and GSE53819 datasets obtained from Gene Expression Omnibus (GEO) was used for differential gene expression and subsequent analysis. Consensus clustering was used to identify m6A-related molecular patterns of 88 NPC samples based on prognostic m6A regulators using Univariate Cox analysis. The TME cell-infiltrating characteristics of each m6A-related subclass were explored using single-sample gene set enrichment (ssGSEA) algorithm and CIBERSORT algotithm. DEGs between two m6A-related subclasses were screened using edgeR package. The prognostic signature and predicated nomogram were constructed based on the m6A-related DEGs. The cell infiltration and expression of prognostic signature in NPC was determined using immunohistochemistry (IHC) analysis. Chi-square test was used to analysis the significance of difference of the categorical variables. And survival analysis was performed using Kaplan-Meier plots and log-rank tests. The NPC samples were divided into two m6A-related subclasses. The TME cell-infiltrating characteristics analyses indicated that cluster 1 is characterized by immune-related and metabolism pathways activation, better response to anit-PD1 and anti-CTLA4 treatment and chemotherapy. And cluster 2 is characterized by stromal activation, low expression of HLA family and immune checkpoints, and a worse response to anti-PD1 and anti-CTLA4 treatment and chemotherapy. Furthermore, we identified 1558 DEGs between two m6A-related subclasses and constructed prognostic signatures to predicate the progression-free survival (PFS) for NPC patients. Compared to non-tumor samples, REEP2, TMSB15A, DSEL, and ID4 were upregulated in NPC samples. High expression of REEP2 and TMSB15A showed poor survival in NPC patients. The interaction between REEP2, TMSB15A, DSEL, ID4, and m6A regulators was detected. Our finding indicated that m6A modification plays an important role in the regulation of TME heterogeneity and complexity.
Collapse
Affiliation(s)
- Yong Wang
- Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lisha Peng
- Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Feng Wang
- Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
70
|
Guo R, Wei Y, Du Y, Liu L, Zhang H, Ren R, Sun R, Zhang T, Xiong X, Zhao L, Wang H, Guo X, Zhu X. EX527, a sirtuins 1 inhibitor, sensitizes T-cell leukemia to death receptor-mediated apoptosis by downregulating cellular FLICE inhibitory protein. Cancer Biol Ther 2024; 25:2402588. [PMID: 39286953 PMCID: PMC11409494 DOI: 10.1080/15384047.2024.2402588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/22/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Death receptor-mediated extrinsic apoptosis system had been developed as a promising therapeutic strategy in clinical oncology, such as TRAIL therapy. However, multiple studies have demonstrated that TRAIL resistance is the biggest problem for disappointing clinical trials despite preclinical success. Targeting cellular FLICE inhibitory protein (cFLIP) is one strategy of combinatorial therapies to overcome resistance to DR-mediated apoptosis due to its negative regulator of extrinsic apoptosis. E × 527 (Selisistat) is a specific inhibitor of SIRT1 activity with safe and well tolerance in clinical trials. Here, we show that E × 527 could strengthen significantly activation of rhFasL-mediated apoptotic signaling pathway and increased apoptotic rate of T leukemia cells with high expression of cFLIP. Mechanically, Inhibition of SIRT1 by E × 527 increased polyubiquitination level of cFLIP via increasing acetylation of Ku70, which could promote proteosomal degradation of cFLIP protein. It implied that combinatorial therapies of E × 527 plus TRAIL may have a potential as a novel clinical application for TRAIL-resistant hematologic malignancies.
Collapse
Affiliation(s)
- Rongqi Guo
- Department of Clinical Laboratory, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| | - Yihui Wei
- Henan Red Cross Blood Center, Xinxiang, China
| | - Yating Du
- Department of Clinical Laboratory, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| | - Luyue Liu
- Departments of Laboratory Medicine, Zhoukou Central Hospital, Zhoukou, China
| | - Haoqi Zhang
- Department of Microbiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ruiying Ren
- Department of Clinical Laboratory, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| | - Ruili Sun
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| | - Tingting Zhang
- Department of Microbiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiwen Xiong
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lijun Zhao
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| | - Hongfei Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| | - Xiaofang Guo
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang Medical University, Xinxiang, China
- Department of Microbiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiaofei Zhu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
71
|
Jiang J, Shi S, Zhang W, Li C, Sun L, Ge Q, Li X. Circ_RPPH1 facilitates progression of breast cancer via miR-1296-5p/TRIM14 axis. Cancer Biol Ther 2024; 25:2360768. [PMID: 38816350 PMCID: PMC11141472 DOI: 10.1080/15384047.2024.2360768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/23/2024] [Indexed: 06/01/2024] Open
Abstract
Circular RNA Ribonuclease P RNA Component H1 (circ_RPPH1) and microRNA (miRNA) miR-1296-5p play a crucial role in breast cancer (BC), but the molecular mechanism is vague. Evidence showed that miR-1296-5p can activate tripartite motif-containing 14 (TRIM14). Clinical indications of eighty BC patients were collected and the circ_RPPH1 expression was detected using real-time quantitative PCR. MCF-7 and MDA-MB-231 cells were transfected with overexpression or knockdown of circ_RPPH1, miR-1296-5p, or TRIM14. Cell counting kit-8, cell cloning formation, wound healing, Transwell, and flow cytometry assays were performed to investigate the malignant phenotype of BC. The dual-luciferase reporter gene analyses were applied to reveal the interaction between these target genes. Subcutaneous tumorigenic model mice were established with circ_RPPH1 overexpression MDA-MB-231 cells in vivo; the tumor weight and volume, levels of miR-1296-5 and TRIM14 mRNA were measured. Western blot and immunohistochemistry were used to detect TRIM14 in cells and mice. Circ_RPPH1 levels were notably higher in BC patients and have been found to promote cell proliferation, invasion, and migration of BC cells. Circ_RPPH1 altered cell cycle and hindered apoptosis. Circ_RPPH1 knockdown or miR-1296-5p overexpression inhibited the malignant phenotype of BC. Furthermore, miR-1296-5p knockdown reversed circ_RPPH1's promotion effects on BC. Interestingly, TRIM14 overexpression counteracts the inhibitory effects of miR-1296-5p overexpression and circ_RPPH1 silencing on BC. Moreover, in BC tumor-bearing mice, circ_RPPH1 overexpression led to increased TRIM14 expression and facilitated tumor growth. Circ_RPPH1 enhanced BC progression through miR-1296-5p/TRIM14 axis, indicating its potential as a biomarker and therapeutic target in BC.
Collapse
Affiliation(s)
- Jing Jiang
- Department of Breast Surgery, Ningbo, Zhejiang, China
| | - Shenghong Shi
- Department of Breast Surgery, Ningbo, Zhejiang, China
| | - Wei Zhang
- Department of Breast Surgery, Ningbo, Zhejiang, China
| | - Chao Li
- Department of Breast Surgery, Ningbo, Zhejiang, China
| | - Long Sun
- Department of Breast Surgery, Ningbo, Zhejiang, China
| | - Qidong Ge
- Department of Breast Surgery, Ningbo, Zhejiang, China
| | - Xujun Li
- Department of Breast Surgery, Ningbo, Zhejiang, China
| |
Collapse
|
72
|
Rauf S, Ullah S, Abid MA, Ullah A, Khan G, Khan AU, Ahmad G, Ijaz M, Ahmad S, Faisal S. A computational study of gene expression patterns in head and neck squamous cell carcinoma using TCGA data. Future Sci OA 2024; 10:2380590. [PMID: 39140365 PMCID: PMC11326450 DOI: 10.1080/20565623.2024.2380590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/03/2023] [Indexed: 08/15/2024] Open
Abstract
Aim: Head and Neck squamous cell carcinoma (HNSCC) is the second most prevalent cancer in Pakistan. Methods: Gene expression data from TCGA and GETx for normal genes to analyze Differentially Expressed Genes (DEGs). Data was further investigated using the Enrichr tool to perform Gene Ontology (GO). Results: Our analysis identified most significantly differentially expressed genes and explored their established cellular functions as well as their potential involvement in tumor development. We found that the highly expressed Keratin family and S100A9 genes. The under-expressed genes KRT4 and KRT13 provide instructions for the production of keratin proteins. Conclusion: Our study suggests that factors such as poor oral hygiene and smokeless tobacco can result in oral stress and cellular damage and cause cancer.
Collapse
Affiliation(s)
- Saqib Rauf
- Institute of Integrative Biosciences, CECOS University Peshawar, 25000, Pakistan
- Centre for Omics Sciences, Islamia College Peshawar, 25000, Pakistan
| | - Sami Ullah
- Centre for Omics Sciences, Islamia College Peshawar, 25000, Pakistan
| | | | - Asad Ullah
- Institute of Biotechnology & Genetic Engineering, University of Agriculture Peshawar, 25000, Pakistan
| | - Gullzar Khan
- Centre for Omics Sciences, Islamia College Peshawar, 25000, Pakistan
| | - Ainee Urooj Khan
- Institute of Integrative Biosciences, CECOS University Peshawar, 25000, Pakistan
| | - Gulzar Ahmad
- Institute of Biotechnology & Genetic Engineering, University of Agriculture Peshawar, 25000, Pakistan
| | - Muhammad Ijaz
- Institute of Integrative Biosciences, CECOS University Peshawar, 25000, Pakistan
| | - Sidra Ahmad
- Institute of Biotechnology & Genetic Engineering, University of Agriculture Peshawar, 25000, Pakistan
| | - Sulaiman Faisal
- Institute of Integrative Biosciences, CECOS University Peshawar, 25000, Pakistan
| |
Collapse
|
73
|
Zhang J, Deng YT, Liu J, Gan L, Jiang Y. Role of transforming growth factor-β1 pathway in angiogenesis induced by chronic stress in colorectal cancer. Cancer Biol Ther 2024; 25:2366451. [PMID: 38857055 PMCID: PMC11168221 DOI: 10.1080/15384047.2024.2366451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Chronic stress can induce stress-related hormones; norepinephrine (NE) is considered to have the highest potential in cancer. NE can stimulate the expression of hypoxia-inducible factor-1α (HIF-1α), which is associated with vascular endothelial growth factor (VEGF) secretion and tumor angiogenesis. However, the underlying mechanisms are poorly understood. METHODS Tumor-bearing mice were subjected to chronic restraint stress and treated with normal saline, human monoclonal VEGF-A neutralizing antibody bevacizumab, or β-adrenergic receptor (β-AR) antagonist (propranolol). Tumor growth and vessel density were also evaluated. Human colorectal adenocarcinoma cells were treated with NE, propranolol, or the inhibitor of transforming growth factor-β (TGF-β) receptor Type I kinase (Ly2157299) in vitro. TGF-β1 in mouse serum and cell culture supernatants was quantified using ELISA. The expression of HIF-1α was measured using Real time-PCR and western blotting. Cell migration and invasion were tested. RESULTS Chronic restraint stress attenuated the efficacy of bevacizumab and promoted tumor growth and angiogenesis in a colorectal tumor model. Propranolol blocked this effect and inhibited TGF-β1 elevation caused by chronic restraint stress or NE. NE upregulated HIF-1α expression, which was reversed by propranolol or Ly2157299. Propranolol and Ly2157199 blocked NE-stimulated cancer cell migration and invasion. CONCLUSIONS Our results demonstrate the effect of NE on tumor angiogenesis and the critical role of TGF-β1 signaling during this process. In addition, β-AR/TGF-β1 signaling/HIF-1α/VEGF is a potential signaling pathway. This study also indicates that psychosocial stress might be a risk factor which weakens the efficacy of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yao-Tiao Deng
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Jie Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Lu Gan
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yu Jiang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
74
|
Chen Z, Xie H, Liu J, Zhao J, Huang R, Xiang Y, Wu H, Tian D, Bian E, Xiong Z. Roles of TRPM channels in glioma. Cancer Biol Ther 2024; 25:2338955. [PMID: 38680092 PMCID: PMC11062369 DOI: 10.1080/15384047.2024.2338955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Gliomas are the most common type of primary brain tumor. Despite advances in treatment, it remains one of the most aggressive and deadly tumor of the central nervous system (CNS). Gliomas are characterized by high malignancy, heterogeneity, invasiveness, and high resistance to radiotherapy and chemotherapy. It is urgent to find potential new molecular targets for glioma. The TRPM channels consist of TRPM1-TPRM8 and play a role in many cellular functions, including proliferation, migration, invasion, angiogenesis, etc. More and more studies have shown that TRPM channels can be used as new therapeutic targets for glioma. In this review, we first introduce the structure, activation patterns, and physiological functions of TRPM channels. Additionally, the pathological mechanism of glioma mediated by TRPM2, 3, 7, and 8 and the related signaling pathways are described. Finally, we discuss the therapeutic potential of targeting TRPM for glioma.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, The First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu, P. R. China
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Han Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - JiaJia Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Ruixiang Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Yufei Xiang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Haoyuan Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Dasheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Erbao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhang Xiong
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, The First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu, P. R. China
| |
Collapse
|
75
|
Sehgal M, Nayak SP, Sahoo S, Somarelli JA, Jolly MK. Mutually exclusive teams-like patterns of gene regulation characterize phenotypic heterogeneity along the noradrenergic-mesenchymal axis in neuroblastoma. Cancer Biol Ther 2024; 25:2301802. [PMID: 38230570 PMCID: PMC10795782 DOI: 10.1080/15384047.2024.2301802] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024] Open
Abstract
Neuroblastoma is the most frequent extracranial pediatric tumor and leads to 15% of all cancer-related deaths in children. Tumor relapse and therapy resistance in neuroblastoma are driven by phenotypic plasticity and heterogeneity between noradrenergic (NOR) and mesenchymal (MES) cell states. Despite the importance of this phenotypic plasticity, the dynamics and molecular patterns associated with these bidirectional cell-state transitions remain relatively poorly understood. Here, we analyze multiple RNA-seq datasets at both bulk and single-cell resolution, to understand the association between NOR- and MES-specific factors. We observed that NOR-specific and MES-specific expression patterns are largely mutually exclusive, exhibiting a "teams-like" behavior among the genes involved, reminiscent of our earlier observations in lung cancer and melanoma. This antagonism between NOR and MES phenotypes was also associated with metabolic reprogramming and with immunotherapy targets PD-L1 and GD2 as well as with experimental perturbations driving the NOR-MES and/or MES-NOR transition. Further, these "teams-like" patterns were seen only among the NOR- and MES-specific genes, but not in housekeeping genes, possibly highlighting a hallmark of network topology enabling cancer cell plasticity.
Collapse
Affiliation(s)
- Manas Sehgal
- Department of Bioengineering, Indian Institute of Science, Bangalore, India
| | - Sonali Priyadarshini Nayak
- Department of Bioengineering, Indian Institute of Science, Bangalore, India
- Max Planck School Matter to Life, University of Göttingen, Göttingen, Germany
| | - Sarthak Sahoo
- Department of Bioengineering, Indian Institute of Science, Bangalore, India
| | | | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
76
|
Du Q, Zhang M, Gao A, He T, Guo M. Epigenetic silencing ZSCAN23 promotes pancreatic cancer growth by activating Wnt signaling. Cancer Biol Ther 2024; 25:2302924. [PMID: 38226836 PMCID: PMC10793710 DOI: 10.1080/15384047.2024.2302924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most malignant tumor. Zinc finger and SCAN domain-containing protein 23 (ZSCAN23) is a new member of the SCAN domain family. The expression regulation and biological function remain to be elucidated. In this study, we explored the epigenetic regulation and the function of ZSCAN23 in PDAC. ZSCAN23 was methylated in 60.21% (171/284) of PDAC and its expression was regulated by promoter region methylation. The expression of ZSCAN23 inhibited cell proliferation, colony formation, migration, invasion, and induced apoptosis and G1/S phase arrest. ZSCAN23 suppressed Panc10.05 cell xenograft growth in mice. Mechanistically, ZSCAN23 inhibited Wnt signaling by interacting with myosin heavy chain 9 (MYH9) in pancreatic cancer cells. ZSCAN23 is frequently methylated in PDAC and may serve as a detective marker. ZSCAN23 suppresses PDAC cell growth both in vitro and in vivo.
Collapse
Affiliation(s)
- Qian Du
- Department of Gastroenterology and Hepatology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Meiying Zhang
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Aiai Gao
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Tao He
- Department of Pathology, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, People's Republic of China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Key Laboratory of Kidney Diseases, the First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
77
|
Lin L, Wen J, Xu T, Si Y. TM4SF4 is a diagnostic biomarker accelerating progression of papillary thyroid cancer via AKT pathway. Cancer Biol Ther 2024; 25:2424570. [PMID: 39497261 DOI: 10.1080/15384047.2024.2424570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
The incidence of papillary thyroid cancer (PTC) has been steadily rising, though the underlying mechanism remains unclear. This study aims to elucidate the biological role of TM4SF4 in the PTC progression. Our differential expression analysis indicated that TM4SF4 was significantly upregulated in PTC, which was corroborated in both our local cohort and the data from Human Protein Atlas. Additionally, clinical characteristics analysis and receiver operating characteristic curves (ROC) demonstrated that TM4SF4 served as a significant diagnostic marker for PTC. Correlation and enrichment analysis of TM4SF4-related partners suggested that it was involved in cell junction and cohesion processes. Furthermore, immune infiltration analysis revealed a positive correlation between TM4SF4 expression and the immune activation in PTC. Importantly, in vitro experiments demonstrated that TM4SF4 downregulation suppressed the proliferation and metastasis of PTC cell lines while inducing apoptosis. We further discovered that the AKT activator SC79 was able to reverse the malignant behaviors suppression caused by TM4SF4 knockdown, suggesting that TM4SF4 may promote PTC progression via the AKT pathway. In conclusion, our study highlights the oncogenic role of TM4SF4 in PTC and identifies it as a novel biomarker for diagnosis and treatment.
Collapse
Affiliation(s)
- Lizhi Lin
- Department of Surgery, Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jialiang Wen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Tiansheng Xu
- Department of Anorectal Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, PR China
| | - Yuhao Si
- Department of Anorectal Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, PR China
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| |
Collapse
|
78
|
Xiong D, Xu Y, Wang H, Ye Y. Amino-truncated NOV expression and its correlation with clinicopathologic features, prognosis, metastasis, and chemoresistance in bladder cancer. Cancer Biol Ther 2024; 25:2386753. [PMID: 39097778 PMCID: PMC11299625 DOI: 10.1080/15384047.2024.2386753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 06/20/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024] Open
Abstract
Nephroblastoma, an overexpressed gene (NOV) protein, plays an important role in proliferation, differentiation, angiogenesis, adhesion, invasion and tumorigenesis, but the function of amino-truncated NOV is different. This study is to investigate the role of amino-truncated NOV in the progression of bladder cancer. Using immunohistochemistry and Western blot analysis, we detected the amino-truncated NOV in bladder cancer, and statistical analysis was performed to estimate the association between the expression of amino-truncated NOV and the patient's prognosis by SPSS 19.0. With transduction of amino-truncated NOV, we evaluated alteration for proliferation, migration, invasion and chemoresistance in bladder cancer cells, as well as some proteins related to Wnt/β-catenin pathway and epithelial-mesenchymal transition. The truncated variant of the NOV protein was located in a nucleus other than the cytoplasm and highly expressed in bladder cancer, which was also linked to higher pathological grade and positive lymph node metastasis as well as recurrence. The exact sequence of this truncated protein was confirmed, and it was a 26-kDa splicing. The truncated NOV protein found in bladder cancer was cut at the 187th amino acid of the full-length protein. It was also involved in bladder cancer progression and chemoresistance through a mechanism involving epithelial-mesenchymal transition (EMT) and the Wnt/β-catenin signaling pathway. Our findings provide experimental evidence that the nuclear NOV protein expression is a potential biomarker in the prognostic evaluation of bladder cancer and enhanced amino-truncated NOV expression is potentially important for bladder cancer cell invasion, metastasis and chemoresistance during progression.
Collapse
Affiliation(s)
- Dan Xiong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Yafei Xu
- Department of Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Hongbo Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yunlin Ye
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
79
|
Xu B, Yang L, Yang L, Al-Maamari A, Zhang J, Song H, Wang M, Su S, Song Z. Role of glutaminyl-peptide cyclotransferase in breast cancer doxorubicin sensitivity. Cancer Biol Ther 2024; 25:2321767. [PMID: 38417050 PMCID: PMC10903679 DOI: 10.1080/15384047.2024.2321767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 02/18/2024] [Indexed: 03/01/2024] Open
Abstract
Doxorubicin (DOX) is one of the most effective and widely used chemotherapeutic drugs. However, DOX resistance is a critical risk problem for breast cancer treatment. Previous studies have demonstrated that metadherin (MTDH) involves in DOX resistance in breast cancer, but the exact mechanism remains unclear. In this study, we found that glutaminyl-peptide cyclotransferase (QPCT) was a MTDH DOX resistance-related downstream gene in breast cancer. Elevated expression of QPCT was found in the GEPIA database, breast cancer tissue, and breast cancer cells. Clinical data showed that QPCT expression was positively associated with poor prognosis in DOX-treated patients. Overexpression of QPCT could promote the proliferation, invasion and migration, and reduce DOX sensitivity in MCF-7 and MDA-MB-231 cells. Mechanistically, MTDH positively regulates the expressions of NF-κB (p65) and QPCT, and NF-κB (p65) directly regulates the expression of QPCT. Therefore, MTDH/NF-κB (p65)/QPCT signal axis was proposed. Collectively, our findings delineate the mechanism by which the MTDH/NF-κB (p65) axis regulate QPCT signaling and suggest that this complex may play an essential role in breast cancer progression and affect DOX sensitivity.
Collapse
Affiliation(s)
- Bin Xu
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Liu Yang
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lixian Yang
- Department of Breast Surgery, Xingtai People’s Hospital, Xingtai, Hebei, China
| | - Ahmed Al-Maamari
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jingyu Zhang
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Heng Song
- Department of Radiotherapy, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Meiqi Wang
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Suwen Su
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhenchuan Song
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
80
|
Guo F, Wen W, Mi Z, Long C, Shi Q, Yang M, Zhao J, Ma R. NRSN2 promotes the malignant behavior of HPV-transfected laryngeal carcinoma cells through AMPK/ULK1 pathway mediated autophagy activation. Cancer Biol Ther 2024; 25:2334463. [PMID: 38569536 PMCID: PMC10993921 DOI: 10.1080/15384047.2024.2334463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
Neurensin-2 (NRSN2) performs a pro-carcinogenic function in multiple cancers. However, the function of NRSN2 in HPV-infected laryngeal carcinoma (LC) remains unclear. HPV transfection was performed in LC cells. The mRNA and protein levels were monitored using RT-qPCR, immunoblotting, and IF. Cell viability and proliferation were found using the CCK-8 assay and Edu staining. Cell invasion, migration, and apoptosis were probed using the Transwell, wound healing, and flow cytometry, respectively. The autophagosome was observed using TEM. NRSN2 was overexpressed in HPV-transfected LC cells. Inhibition of NRSN2 restrained the autophagy and malignant behavior of HPV-transfected LC cells. Meanwhile, the inhibition of AMPK/ULK1 pathway limited the increased autophagy of HPV-transfected LC cells caused by NRSN2 overexpression. Furthermore, NRSN2 knockdown inhibits autophagy by suppressing AMPK/ULK1 pathway, thereby restraining the malignant behavior of HPV-transfected LC cells. Our research confirmed that HPV transfection increased the autophagy and malignant behavior of LC cells by regulating the NRSN2-mediated activation of the AMPK/ULK1 pathway, offering a new target for cure of LC.
Collapse
Affiliation(s)
- Fan Guo
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Wulin Wen
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
- Otolaryngology Department, The First People’s Hospital of Yinchuan, Otolaryngology Head and Neck Surgery Hospital, Yinchuan, Ningxia, P.R. China
| | - Zhipeng Mi
- The Second Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Chao Long
- The Second Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Qiangyou Shi
- Department of Otolaryngology Head and Neck Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, Gansu, P.R. China
| | - Meihua Yang
- The Second Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Jia Zhao
- The Second Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Ruixia Ma
- Otolaryngology Department, The First People’s Hospital of Yinchuan, Otolaryngology Head and Neck Surgery Hospital, Yinchuan, Ningxia, P.R. China
| |
Collapse
|
81
|
Dang X, Chen X, Liang Z, Dai Z, Ding W, Song J, Fu J. P4HA2 promotes tumor progression and is transcriptionally regulated by SP1 in colorectal cancer. Cancer Biol Ther 2024; 25:2361594. [PMID: 38857058 PMCID: PMC11168210 DOI: 10.1080/15384047.2024.2361594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
P4HA2 has been implicated in various malignant tumors; however, its expression and functional role in colorectal cancer (CRC) remain poorly elucidated. This study aims to investigate the involvement of P4HA2 in CRC metastasis and progression, uncovering the underlying mechanisms. In colorectal cancer (CRC), P4HA2 exhibited overexpression, and elevated levels of P4HA2 expression were associated with an unfavorable prognosis. Functional assays demonstrated P4HA2's regulation of cell proliferation, and epithelial-mesenchymal transition (EMT) both in vitro and in vivo. Additionally, the AGO1 expression was correlated with P4HA2, and depletion of AGO1 reversed the proliferation and EMT function induced by P4HA2. Chromatin immunoprecipitation (ChIP) and luciferase assays suggested that the transcription factor SP1 binds to the promoter sequence of P4HA2, activating its expression in CRC. This study unveiled SP1 as a transcriptional regulator of P4HA2 in CRC and AGO1 is a probable target of P4HA2. In conclusion, P4HA2 emerges as a potential prognostic biomarker and promising therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Xuening Dang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaojian Chen
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Zhonglin Liang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Zhujiang Dai
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Wenjun Ding
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Jinglue Song
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Jihong Fu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| |
Collapse
|
82
|
Liu S, Xu T, Chen X, Tang L, Li L, Zhang L, Yang Y, Huang J. TP53AIP1 induce autophagy via the AKT/mTOR signaling pathway in the breast cancer cells. Cancer Biol Ther 2024; 25:2398297. [PMID: 39223776 PMCID: PMC11376407 DOI: 10.1080/15384047.2024.2398297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Breast cancer ranks the first in the incidence of female cancer and is the most common cancer threatening the life and health of women worldwide.Tumor protein p53-regulated apoptosis-inducing protein 1 (TP53AIP1) is a pro-apoptotic gene downstream of p53. However, the role of TP53AIP1 in BC needs to be investigated. In vitro and in vivo experiments were conducted to assess the biological functions and associated mechanisms. Several bioinformatics analyses were made, CCK8 assay, wound healing, transwell assays, colony formation assay, EDU, flow cytometry, Immunofluorescence, qRT-PCR and Western-blotting were performed. In our study, we discovered that BC samples had low levels of TP53AIP1 expression, which correlated with a lower survival rate in BC patients. When TP53AIP1 was up-regulated, it caused a decrease in cell proliferation, migration, and invasion. It also induced epithelial-to-mesenchymal transition (EMT) and protective autophagy. Furthermore, the over-expression of TP53AIP1 suppressed tumor growth when tested in vivo. We also noticed that TP53AIP1 up-regulation resulted in decreased levels of phosphorylation in AKT and mTOR, suggesting a mechanistic role. In addition, we performed functional rescue experiments where the activation of AKT was able to counteract the impact of TP53AIP1 on the survival and autophagy in breast cancer cell lines. This suggests that TP53AIP1 acts as an oncogene by controlling the AKT/mTOR pathway. These findings reveal TP53AIP1 as a gene that suppresses tumor growth and triggers autophagy through the AKT/mTOR pathway in breast cancer cells. As a result, TP53AIP1 presents itself as a potential target for novel therapeutic approaches in treating breast cancer.
Collapse
Affiliation(s)
- Shutian Liu
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Ting Xu
- School of Nursing, Chongqing College of Humanities, Science and Technology, Chongqing, China
| | - Xi Chen
- Pathology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Tang
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Longjiang Li
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Li Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yongqiang Yang
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Jiayi Huang
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
83
|
Ren J, Zhao S, Lai J. Role and mechanism of COL3A1 in regulating the growth, metastasis, and drug sensitivity in cisplatin-resistant non-small cell lung cancer cells. Cancer Biol Ther 2024; 25:2328382. [PMID: 38530094 DOI: 10.1080/15384047.2024.2328382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/05/2024] [Indexed: 03/27/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is among the most difficult malignancies to treat. Type III collagen (COL3A1) can affect the progression and chemoresistance development of NSCLC. We herein explored the mechanism that drives COL3A1 dysregulation in NSCLC. Potential RNA-binding proteins (RBPs) and transcription factors (TFs) that could bind to COL3A1 were searched by bioinformatics. mRNA expression was detected by quantitative PCR. Protein expression was evaluated using immunoblotting and immunohistochemistry. The effects of the variables were assessed by gauging cell growth, invasiveness, migratory capacity, apoptosis, and cisplatin (DDP) sensitivity. The direct YY1/COL3A1 relationship was confirmed by ChIP and luciferase reporter experiments. Xenograft experiments were done to examine COL3A1's function in DDP efficacy. COL3A1 showed enhanced expression in DDP-resistant NSCLC. In H460/DDP and A549/DDP cells, downregulation of COL3A1 exerted inhibitory functions in cell growth, invasiveness, and migration, as well as promoting effects on cell DDP sensitivity and apoptosis. Mechanistically, ELAV-like RNA binding protein 1 (ELAVL1) enhanced the mRNA stability and expression of COL3A1, and Yin Yang 1 (YY1) promoted the transcription and expression of COL3A1. Furthermore, upregulation of COL3A1 reversed ELAVL1 inhibition- or YY1 deficiency-mediated functions in DDP-resistant NSCLC cells. Additionally, COL3A1 downregulation enhanced the anti-tumor efficacy of DDP in vivo. Our investigation demonstrates that COL3A1 upregulation, induced by both RBP ELAVL1 and TF YY1, exerts important functions in phenotypes of NSCLC cells with DDP resistance, offering an innovative opportunity in the treatment of drug-resistant NSCLC.
Collapse
Affiliation(s)
- Jiankun Ren
- Nursing School, Hebi Polytechnic, Hebi City, China
| | - Songwei Zhao
- Nursing School, Hebi Polytechnic, Hebi City, China
| | - Junyu Lai
- Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
84
|
Zhang K, Zheng X, Sun Y, Feng X, Wu X, Liu W, Gao C, Yan Y, Tian W, Wang Y. TOP2A modulates signaling via the AKT/mTOR pathway to promote ovarian cancer cell proliferation. Cancer Biol Ther 2024; 25:2325126. [PMID: 38445610 PMCID: PMC10936659 DOI: 10.1080/15384047.2024.2325126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Ovarian cancer (OC) is a form of gynecological malignancy that is associated with worse patient outcomes than any other cancer of the female reproductive tract. Topoisomerase II α (TOP2A) is commonly regarded as an oncogene that is associated with malignant disease progression in a variety of cancers, its mechanistic functions in OC have yet to be firmly established. We explored the role of TOP2A in OC through online databases, clinical samples, in vitro and in vivo experiments. And initial analyses of public databases revealed high OC-related TOP2A expression in patient samples that was related to poorer prognosis. This was confirmed by clinical samples in which TOP2A expression was elevated in OC relative to healthy tissue. Kaplan-Meier analyses further suggested that higher TOP2A expression levels were correlated with worse prognosis in OC patients. In vitro, TOP2A knockdown resulted in the inhibition of OC cell proliferation, with cells entering G1 phase arrest and undergoing consequent apoptotic death. In rescue assays, TOP2A was confirmed to regulate cell proliferation and cell cycle through AKT/mTOR pathway activity. Mouse model experiments further affirmed the key role that TOP2A plays as a driver of OC cell proliferation. These data provide strong evidence supporting TOP2A as an oncogenic mediator and prognostic biomarker related to OC progression and poor outcomes. At the mechanistic level, TOP2A can control tumor cell growth via AKT/mTOR pathway modulation. These preliminary results provide a foundation for future research seeking to explore the utility of TOP2A inhibitor-based combination treatment regimens in platinum-resistant recurrent OC patients.
Collapse
Affiliation(s)
- Kaiwen Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xingyu Zheng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yiqing Sun
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinyu Feng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xirong Wu
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenlu Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Gao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ye Yan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenyan Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
85
|
Eryilmaz IE, Egeli U, Cecener G. Association between the apoptotic effect of Cabazitaxel and its pro-oxidant efficacy on the redox adaptation mechanisms in prostate cancer cells with different resistance phenotypes. Cancer Biol Ther 2024; 25:2329368. [PMID: 38485703 PMCID: PMC10950270 DOI: 10.1080/15384047.2024.2329368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/07/2024] [Indexed: 03/19/2024] Open
Abstract
Redox adaptation causes poor prognosis by adapting cancer cells to excessive oxidative stress. Previously, we introduced an oxidative stress-resistant metastatic prostate cancer (mPC) model (LNCaP-HPR) that redox adaptation reduced the effect of Cabazitaxel (Cab), the last taxane-derivative for metastatic castration-resistant PC (mCRPC). Whereas, we investigated for the first time whether there is an association between the altered apoptotic effect and pro-oxidant efficacy of Cab on the redox adaptation in PC cells with different phenotypes, including LNCaP mPC, LNCaP-HPR, C4-2 mCRPC, and RWPE-1 cells. Cab was shown pro-oxidant efficacy proportionally with the apoptotic effect, more prominent in the less aggressive LNCaP cells, by increasing the endogenous ROS, mitochondrial damage, and inhibiting nuclear ROS scavengers, p-Nrf2 and HIF-1α. However, the pro-oxidant and apoptotic effect was lower in the LNCaP-HPR and C4-2 cells, indicating that the drug sensitivity of the cells adapted to survive with more ROS was reduced via altered regulation of redox adaptation. Additionally, unlike LNCaP, Cab caused an increase in the p-NF-κB activation, suggesting that the p-NF-κB might accompany maintaining survival with the increased ROS in the aggressive PC cells. Moreover, the cytotoxic and apoptotic effects of Cab were less on RWPE-1 cells compared to LNCaP but were closer to those on the more aggressive LNCaP-HPR and C4-2 cells, except for the changing pro-oxidant effect of Cab. Consequently, this study indicates the variable pro-oxidant effects of Cab on redox-sensitive proteins, which could be a target for improving Cab's apoptotic effect more in aggressive PC cells.
Collapse
Affiliation(s)
- Isil Ezgi Eryilmaz
- Faculty of Medicine, Medical Biology Department, Bursa Uludag University, Bursa, Turkey
| | - Unal Egeli
- Faculty of Medicine, Medical Biology Department, Bursa Uludag University, Bursa, Turkey
| | - Gulsah Cecener
- Faculty of Medicine, Medical Biology Department, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
86
|
Rughetti A, Bharti S, Savai R, Barmpoutsi S, Weigert A, Atre R, Siddiqi F, Sharma R, Khabiya R, Hirani N, Baig MS. Imperative role of adaptor proteins in macrophage toll-like receptor signaling pathways. Future Sci OA 2024; 10:2387961. [PMID: 39248050 PMCID: PMC11385170 DOI: 10.1080/20565623.2024.2387961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/30/2024] [Indexed: 09/10/2024] Open
Abstract
Macrophages are integral part of the body's defense against pathogens and serve as vital regulators of inflammation. Adaptor molecules, featuring diverse domains, intricately orchestrate the recruitment and transmission of inflammatory responses through signaling cascades. Key domains involved in macrophage polarization include Toll-like receptors (TLRs), Src Homology2 (SH2) and other small domains, alongside receptor tyrosine kinases, crucial for pathway activation. This review aims to elucidate the enigmatic role of macrophage adaptor molecules in modulating macrophage activation, emphasizing their diverse roles and potential therapeutic and investigative avenues for further exploration.
Collapse
Affiliation(s)
- Aurelia Rughetti
- Laboratory of Tumor Immunology & Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome "Sapienza", Rome, Italy
| | - Shreya Bharti
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rajkumar Savai
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, D-35390, Germany
- Max Planck Institute for Heart & Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, D-61231, Germany
- Institute of Biochemistry, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, D-60590, Germany
| | - Spyridoula Barmpoutsi
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, D-35390, Germany
- Max Planck Institute for Heart & Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, D-61231, Germany
| | - Andreas Weigert
- Institute of Biochemistry, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, D-60590, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, D-60323, Germany
| | - Rajat Atre
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Faaiza Siddiqi
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rahul Sharma
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rakhi Khabiya
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Nik Hirani
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH164TJ, UK
| | - Mirza S Baig
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| |
Collapse
|
87
|
Wang YY, Ye LH, Zhao AQ, Gao WR, Dai N, Yin Y, Zhang X. M6A modification regulates tumor suppressor DIRAS1 expression in cervical cancer cells. Cancer Biol Ther 2024; 25:2306674. [PMID: 38372700 PMCID: PMC10878024 DOI: 10.1080/15384047.2024.2306674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/14/2024] [Indexed: 02/20/2024] Open
Abstract
DIRAS family GTPase 1 (DIRAS1) has been reported as a potential tumor suppressor in other human cancer. However, its expression pattern and role in cervical cancer remain unknown. Knockdown of DIRAS1 significantly promoted the proliferation, growth, migration, and invasion of C33A and SiHa cells cultured in vitro. Overexpression of DIRAS1 significantly inhibited the viability and motility of C33A and SiHa cells. Compared with normal cervical tissues, DIRAS1 mRNA levels were significantly lower in cervical cancer tissues. DIRAS1 protein expression was also significantly reduced in cervical cancer tissues compared with para-cancerous tissues. In addition, DIRAS1 expression level in tumor tissues was significantly negatively correlated with the pathological grades of cervical cancer patients. DNA methylation inhibitor (5-Azacytidine) and histone deacetylation inhibitor (SAHA) resulted in a significant increase in DIRAS1 mRNA levels in C33A and SiHa cells, but did not affect DIRAS1 protein levels. FTO inhibitor (FB23-2) significantly down-regulated intracellular DIRAS1 mRNA levels, but significantly up-regulated DIRAS1 protein levels. Moreover, the down-regulation of METTL3 and METTL14 expression significantly inhibited DIRAS1 protein expression, whereas the down-regulation of FTO and ALKBH5 expression significantly increased DIRAS1 protein expression. In conclusion, DIRAS1 exerts a significant anti-oncogenic function and its expression is significantly downregulated in cervical cancer cells. The m6A modification may be a key mechanism to regulate DIRAS1 mRNA stability and protein translation efficiency in cervical cancer.
Collapse
Affiliation(s)
- Yu-Yan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Lian-Hua Ye
- Department of Internal Medicine, Zigong Fourth People’s Hospital, Zigong, Sichuan, China
| | - An-Qi Zhao
- Department of Obstetrics and Gynecology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei-Ran Gao
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ning Dai
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yu Yin
- Operating Rooms, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xin Zhang
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
88
|
Lani R, Thariq IM, Suhaimi NS, Hassandarvish P, Abu Bakar S. From defense to offense: Modulating toll-like receptors to combat arbovirus infections. Hum Vaccin Immunother 2024; 20:2306675. [PMID: 38263674 DOI: 10.1080/21645515.2024.2306675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024] Open
Abstract
Arboviruses are a significant threat to global public health, with outbreaks occurring worldwide. Toll-like receptors (TLRs) play a crucial role in the innate immune response against these viruses by recognizing pathogen-associated molecular patterns and initiating an inflammatory response. Significantly, TLRs commonly implicated in the immune response against viral infections include TLR2, TLR4, TLR6, TLR3, TLR7, and TLR8; limiting or allowing them to replicate and spread within the host. Modulating TLRs has emerged as a promising approach to combat arbovirus infections. This review summarizes recent advances in TLR modulation as a therapeutic target in arbovirus infections. Studies have shown that the activation of TLRs can enhance the immune response against arbovirus infections, leading to increased viral clearance and protection against disease. Conversely, inhibition of TLRs can reduce the excessive inflammation and tissue damage associated with arbovirus infection. Modulating TLRs represents a potential therapeutic strategy to combat arbovirus infections.
Collapse
Affiliation(s)
- Rafidah Lani
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ilya Maisarah Thariq
- Tropical Infectious Diseases Research and Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nuramira Syazreen Suhaimi
- Tropical Infectious Diseases Research and Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Pouya Hassandarvish
- Tropical Infectious Diseases Research and Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sazaly Abu Bakar
- Tropical Infectious Diseases Research and Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
89
|
Wang X, Zhang Z, Cao X. Salidroside inhibited the proliferation of gastric cancer cells through up-regulating tumor suppressor miR-1343-3p and down-regulating MAP3K6/MMP24 signal molecules. Cancer Biol Ther 2024; 25:2322206. [PMID: 38436092 PMCID: PMC10913707 DOI: 10.1080/15384047.2024.2322206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Salidroside inhibited the proliferation of cancer cell. Nevertheless, the mechanism has not been completely clarified. The purpose of the study is to explore the mechanisms of salidroside against gastric cancer. To analyze the changes of microRNA (miRNA) in gastric cancer cells under the treatment of salidroside, the miRNA expression was analyzed by using RNA-seq in cancer cells for 24 h after salidroside treatment. The differentially expressed miRNAs were clustered and their target genes were analyzed. Selected miRNA and target mRNA genes were further verified by q-PCR. The expressions of target genes in cancer cells were detected by immunohistochemistry. Cancer cell apoptotic index was significantly increased after salidroside treatment. The proliferation of gastric cancer cells were blocked at S-phase cell cycle. The expression of 44 miRNAs changed differentially after salidroside treatment in cancer cells. Bioinformatic analysis showed that there were 1384 target mRNAs corresponding to the differentially expressed miRNAs. Surprisingly, salidroside significantly up-regulated the expression of tumor suppressor miR-1343-3p, and down-regulated the expression of MAP3K6, STAT3 and MMP24-related genes. Salidroside suppressed the growth of gastric cancer by inducing the cancer cell apoptosis, arresting the cancer cell cycle and down-regulating the related signal transduction pathways. miRNAs are expressed differentially in gastric cancer cells after salidroside treatment, playing important roles in regulating proliferation and metastasis. Salidroside may suppress the growth of gastric cancer by up-regulating the expression of the tumor suppressor miR-1343-3p and down-regulating the expression of MAP3K6 and MMP24 signal molecules.
Collapse
Affiliation(s)
- Xiaoping Wang
- Department of Medicine, KeyLaboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi, P.R. China
| | - Zhendong Zhang
- Department of Medicine, KeyLaboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi, P.R. China
| | - Xiaolan Cao
- Department of Medicine, KeyLaboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi, P.R. China
| |
Collapse
|
90
|
Jiang G, Zhou X, Hu Y, Tan X, Wang D, Yang L, Zhang Q, Liu S. The antipsychotic drug pimozide promotes apoptosis through the RAF/ERK pathway and enhances autophagy in breast cancer cells. Cancer Biol Ther 2024; 25:2302413. [PMID: 38356266 PMCID: PMC10878017 DOI: 10.1080/15384047.2024.2302413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024] Open
Abstract
The antipsychotic drug pimozide has been demonstrated to inhibit cancer. However, the precise anti-cancer mechanism of pimozide remains unclear. The purpose of this study was to investigate the effects of pimozide on human MCF-7 and MDA-MB-231 breast cancer cell lines, and the potential involvement in the RAF/ERK signaling. The effects of pimozide on cells were examined by 4,5-dimethylthiazol-2-yl-3,5-diphenylformazan, wound healing, colony formation, transwell assays, and caspase activity assay. Flow cytometry and acridine orange and ethidium bromide staining were performed to assess changes in cells. Transmission electron microscopy and monodansylcadaverine staining were used to observe autophagosomes. The cyclic adenosine monophosphate was evaluated using the FRET system. Immunohistochemistry, immunofluorescence, RNA interference, and western blot investigated the expression of proteins. Mechanistically, we focus on the RAF1/ERK signaling. We detected pimozide was docked to RAF1 by Schrodinger software. Pimozide down-regulated the phosphorylation of RAF1, ERK 1/2, Bcl-2, and Bcl-xl, up-regulated Bax, and cleaved caspase-9 to induce apoptosis. Pimozide might promote autophagy by up-regulating cAMP. The enhancement of autophagy increased the conversion of LC3-I to LC3-II and down-regulated p62 expression. But mTOR signaling was not involved in promoting autophagy. The knockdown of RAF1 expression induced autophagy and apoptosis in breast cancer cells, consistent with the results of pimozide or sorafenib alone. Blocked autophagy by chloroquine resulted in the impairment of pimozide-induced apoptosis. These data showed that pimozide inhibits breast cancer by regulating the RAF/ERK signaling pathway and might activate cAMP-induced autophagy to promote apoptosis and it may be a potential drug for breast cancer treatment.
Collapse
Affiliation(s)
- Ge Jiang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Department of Biology, Life Science and Technology College, Dalian University, Dalian, Liaoning, China
| | - Xingzhi Zhou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Ye Hu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Xiaoyu Tan
- Department of Clinical Laboratory, Xin Hua Hospital Affiliated to Dalian University, Dalian, China
| | - Dan Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Lina Yang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Qinggao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Shuangping Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| |
Collapse
|
91
|
Nath P, Alfarsi LH, El-Ansari R, Masisi BK, Erkan B, Fakroun A, Ellis IO, Rakha EA, Green AR. The amino acid transporter SLC7A11 expression in breast cancer. Cancer Biol Ther 2024; 25:2291855. [PMID: 38073087 PMCID: PMC10761065 DOI: 10.1080/15384047.2023.2291855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Breast cancer (BC), characterized by its diverse molecular profiles and clinical outcomes, presents a significant challenge in the development of effective therapeutic strategies. Metabolic reprogramming, a defining characteristic of cancer, has emerged as a promising target for novel therapies. SLC7A11, an amino acid transporter that facilitates cysteine uptake in exchange for glutamate, plays a crucial role in sustaining the altered metabolism of cancer cells. This study delves into the comprehensive analysis of SLC7A11 at the genomic, transcriptomic, and protein levels in extensive BC datasets to elucidate its potential role in different BC subtypes. SLC7A11 gene copy number and mRNA expression were evaluated using the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort (n = 1,980) and Breast Cancer Gene Expression Miner (n = 4,712). SLC7A11 protein was assessed using immunohistochemistry in a large BC cohort (n = 1,981). Additionally, The Cancer Genome Atlas (TCGA) dataset was used to explore SLC7A11 DNA methylation patterns using MethSurv (n = 782) and association of SLC7A11 mRNA expression with immune infiltrates using TIMER (n = 1,100). High SLC7A11 mRNA and SLC7A11 protein expression were significantly associated with high tumor grade (p ≤ .02), indicating a potential role in cancer progression. Interestingly, SLC7A11 copy number gain was observed in HER2+ tumors (p = .01), suggesting a subtype-specific association. In contrast, SLC7A11 mRNA expression was higher in the basal-like/triple-negative (TN; p < .001) and luminal B tumors (p = .02), highlighting its differential expression across BC subtypes. Notably, high SLC7A11 protein expression was predominantly observed in Estrogen Receptor (ER)-negative and Triple Negative (TN) BC, suggesting a role in these aggressive subtypes. Further analysis revealed that SLC7A11 was positively correlated with other amino acid transporters and enzymes associated with glutamine metabolism, implying a coordinated role in metabolic regulation. Additionally, SLC7A11 gene expression was positively associated with neutrophil and macrophage infiltration, suggesting a potential link between SLC7A11 and tumor immunity. Our findings suggest that SLC7A11 plays a significant role in BC metabolism, demonstrating differential expression across subtypes and associations with poor patient outcomes. Further functional studies are warranted to elucidate the precise mechanisms by which SLC7A11 contributes to BC progression and to explore its potential as a therapeutic target.
Collapse
Affiliation(s)
- Preyanka Nath
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Lutfi H. Alfarsi
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Rokaya El-Ansari
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Brendah K. Masisi
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Busra Erkan
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Ali Fakroun
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Ian O. Ellis
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
- Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Emad A. Rakha
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
- Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Andrew R. Green
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK
| |
Collapse
|
92
|
Yan Z, Zhong Z, Shi C, Feng M, Feng X, Liu T. The prognostic marker KRT81 is involved in suppressing CD8 + T cells and predicts immunotherapy response for triple-negative breast cancer. Cancer Biol Ther 2024; 25:2355705. [PMID: 38778753 PMCID: PMC11123506 DOI: 10.1080/15384047.2024.2355705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Triple-negative breast Cancer (TNBC) is an aggressive subtype lacking estrogen, progesterone, and HER2 receptors. Known for limited targeted therapies, it poses challenges and requires personalized treatment strategies. Differential analysis revealed a significant decrease in keratin 81 (KRT81) expression in non-TNBC samples and an increase in TNBC samples, lower KRT81 expression correlated with better TNBC patient outcomes. It emerged as an independent predictive factor for TNBC, with associations found between its expression and clinically relevant features. We further developed a nomogram for survival probability assessment based on Cox regression results, demonstrating its accuracy through calibration curves. Gene annotation analysis indicated that KRT81 is involved in immune-related pathways and tumor cell adhesion. KRT81 is associated with immune cell infiltration of Follicular helper T cells (Tfh) and CD8 + T cells, suggesting its potential impact on the immunological microenvironment. The study delved into KRT81's predictive value for immunotherapy responses, high expression of KRT81 was associated with greater potential for immune evasion. Single-cell RNA sequencing analysis pinpointed KRT81 expression within a specific malignant subtype which was a risk factor for TNBC. Furthermore, KRT81 promoted TNBC cell proliferation, migration, invasion, and adhesion was confirmed by gene knockout or overexpression assay. Co-culture experiments further indicated KRT81's potential role in inhibiting CD8 + T cells, and correlation analysis implied KRT81 was highly correlated with immune checkpoint CD276, providing insights into its involvement in the immune microenvironment via CD276. In conclusion, this comprehensive study positions KRT81 as a promising prognostic marker for predicting tumor progression and immunotherapy responses in TNBC.
Collapse
Affiliation(s)
- Zhideng Yan
- Department of General Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Zhihui Zhong
- Center of Stem Cell and Regenerative Medicine, Gaozhou People’s Hospital, Gaozhou, Guangdong, China
| | - Chuanke Shi
- Department of General Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Muyin Feng
- Department of Pathology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People’s Hospital, Gaozhou, Guangdong, China
| | - Tong Liu
- Department of General Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| |
Collapse
|
93
|
Xing P, Chen Z, Zhu W, Lin B, Quan M. NRF3 suppresses the malignant progression of TNBC by promoting M1 polarization of macrophages via ROS/HMGB1 axis. Cancer Biol Ther 2024; 25:2416221. [PMID: 39443820 PMCID: PMC11509002 DOI: 10.1080/15384047.2024.2416221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer. Due to its lack of targeted therapy options, TNBC remains a significant clinical challenge. In this study, we investigated the role of nuclear respiratory factor 3 (NRF3) and high-mobility group box 1 (HMGB1) in the progression of TNBC. METHODS The study analyzed NRF3's clinical expression, differentially expressed genes (DEGs), and immune infiltration in TNBC using the TCGA database and bioinformatics tools. Cellular functions of MDA-MB-468 and Hs578t cells were evaluated through MTT, colony formation, transwell, flow cytometry, and western blotting. The regulatory function of NRF3 in TNBC cell lines was assessed using Immunofluorescence, Immunohistochemistry, qRT-PCR, CHIP, luciferase assay, and ELISA. Moreover, a xenograft model was established to investigate the role of NRF3 in TNBC in vivo. RESULTS Low expression of NRF3 in TNBC tumors was associated with unfavorable prognosis and transcripts from tumors with higher NRF3 levels were enriched in oxidative stress and immune-related pathways. The subsequent gain- and loss-functional experiments indicated that NRF3 overexpression significantly suppressed malignant phenotypes, MAPK/ERK signaling pathways, and epithelial-mesenchymal transition (EMT), whereas it promoted reactive oxygen species (ROS) levels in TNBC. Further mechanistic exploration showed that NRF3 inhibited TNBC cell function by regulating oxidative stress-related genes to inhibit the MAPK/ERK signaling pathway by promoting the release of HMGB1 via ROS, thereby promoting M1 macrophage polarization. CONCLUSION NRF3 promotes M1 macrophage polarization through the ROS/HMGB1 axis, thereby inhibiting the malignant progression of TNBC. It is expected to become a therapeutic biomarker for TNBC.
Collapse
Affiliation(s)
- Ping Xing
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
- Department of Surgical Oncology, Enze Hospital, Taizhou Enze Medical Center, Taizhou, Zhejiang, China
| | - Zhenzhen Chen
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Wenbo Zhu
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
- Department of Surgical Oncology, Enze Hospital, Taizhou Enze Medical Center, Taizhou, Zhejiang, China
| | - Bangyi Lin
- Department of Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Mingming Quan
- Department of Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
94
|
Dong SY, Ding S, Meng Z, Zou B. The clinicopathological and prognostic significance of PSMD14 in cancers based on bioinformatics and meta-analysis. Future Sci OA 2024; 10:2409054. [PMID: 39392083 PMCID: PMC11486200 DOI: 10.1080/20565623.2024.2409054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Aim: To evaluate the clinic-pathological features and prognostic value regarding PSMD14 in cancers.Materials & methods: Literature was gathered from public databases until 22 June 2023 to analyze data on survival rates and clinicopathological characteristics associated with PSMD14. TCGA and GEO data were also utilized for validation.Results: Eight reports on seven types of tumors showed that high PSMD14 expression was linked to poorer overall survival and disease-free survival. PSMD14 expression also correlated with larger tumor size, differentiation and metastasis, as well as the effectiveness of various chemotherapy drugs.Conclusion: PSMD14 could serve as a potential biomarker of poor prognosis in cancers, including lung cancer, head and neck squamous cell carcinoma, ovarian cancer, breast cancer and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Shu-Yi Dong
- Department of Oral & Maxillofacial Surgery, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, Shandong, P. R. China
- Key Laboratory of Oral Maxillofacial-Head & Neck medical biology of Shandong Province, Liaocheng People's Hospital, Liaocheng, Shandong, P. R. China
| | - Shuxin Ding
- Department of Oral & Maxillofacial Surgery, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, Shandong, P. R. China
- Key Laboratory of Oral Maxillofacial-Head & Neck medical biology of Shandong Province, Liaocheng People's Hospital, Liaocheng, Shandong, P. R. China
| | - Zhen Meng
- Department of Oral & Maxillofacial Surgery, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, Shandong, P. R. China
- Key Laboratory of Oral Maxillofacial-Head & Neck medical biology of Shandong Province, Liaocheng People's Hospital, Liaocheng, Shandong, P. R. China
| | - Bo Zou
- Department of Oral & Maxillofacial Surgery, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, Shandong, P. R. China
- Key Laboratory of Oral Maxillofacial-Head & Neck medical biology of Shandong Province, Liaocheng People's Hospital, Liaocheng, Shandong, P. R. China
| |
Collapse
|
95
|
Yao R, Xie C, Xia X. Recent progress in mRNA cancer vaccines. Hum Vaccin Immunother 2024; 20:2307187. [PMID: 38282471 PMCID: PMC10826636 DOI: 10.1080/21645515.2024.2307187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/16/2024] [Indexed: 01/30/2024] Open
Abstract
The research and development of messenger RNA (mRNA) cancer vaccines have gradually overcome numerous challenges through the application of personalized cancer antigens, structural optimization of mRNA, and the development of alternative RNA-based vectors and efficient targeted delivery vectors. Clinical trials are currently underway for various cancer vaccines that encode tumor-associated antigens (TAAs), tumor-specific antigens (TSAs), or immunomodulators. In this paper, we summarize the optimization of mRNA and the emergence of RNA-based expression vectors in cancer vaccines. We begin by reviewing the advancement and utilization of state-of-the-art targeted lipid nanoparticles (LNPs), followed by presenting the primary classifications and clinical applications of mRNA cancer vaccines. Collectively, mRNA vaccines are emerging as a central focus in cancer immunotherapy, offering the potential to address multiple challenges in cancer treatment, either as standalone therapies or in combination with current cancer treatments.
Collapse
Affiliation(s)
- Ruhui Yao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunyuan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
96
|
Ma D, Liu S, Liu K, Kong L, Xiao L, Xin Q, Jiang C, Wu J. MDFI promotes the proliferation and tolerance to chemotherapy of colorectal cancer cells by binding ITGB4/LAMB3 to activate the AKT signaling pathway. Cancer Biol Ther 2024; 25:2314324. [PMID: 38375821 PMCID: PMC10880501 DOI: 10.1080/15384047.2024.2314324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal cancers. Single-cell RNA sequencing (scRNA-seq) and protein-protein interactions (PPIs) have enabled the systematic study of CRC. In our research, the activation of the AKT pathway in CRC was analyzed by KEGG using single-cell sequencing data from the GSE144735 dataset. The correlation and PPIs of MDFI and ITGB4/LAMB3 were examined. The results were verified in the TCGA and CCLE and further tested by coimmunoprecipitation experiments. The effect of MDFI on the AKT pathway via ITGB4/LAMB3 was validated by knockdown and lentiviral overexpression experiments. The effect of MDFI on oxaliplatin/fluorouracil sensitivity was probed by colony formation assay and CCK8 assay. We discovered that MDFI was positively associated with ITGB4/LAMB3. In addition, MDFI was negatively associated with oxaliplatin/fluorouracil sensitivity. MDFI upregulated the AKT pathway by directly interacting with LAMB3 and ITGB4 in CRC cells, and enhanced the proliferation of CRC cells via the AKT pathway. Finally, MDFI reduced the sensitivity of CRC cells to oxaliplatin and fluorouracil. In conclusion, MDFI promotes the proliferation and tolerance to chemotherapy of colorectal cancer cells, partially through the activation of the AKT signaling pathway by the binding to ITGB4/LAMB3. Our findings provide a possible molecular target for CRC therapy.
Collapse
Affiliation(s)
- Ding Ma
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuwen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Kua Liu
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Lingkai Kong
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Lingjun Xiao
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan City, Shandong Province, China
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan City, Shandong Province, China
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan City, Shandong Province, China
| |
Collapse
|
97
|
Raza S, Siddiqui JA, Srivastava A, Chattopadhyay N, Sinha RA, Chakravarti B. Autophagy as a Therapeutic Target in Breast Tumors: The Cancer stem cell perspective. AUTOPHAGY REPORTS 2024; 3:27694127.2024.2358648. [PMID: 39006309 PMCID: PMC7616179 DOI: 10.1080/27694127.2024.2358648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/16/2024] [Indexed: 07/16/2024]
Abstract
Breast cancer is a heterogeneous disease, with a subpopulation of tumor cells known as breast cancer stem cells (BCSCs) with self-renewal and differentiation abilities that play a critical role in tumor initiation, progression, and therapy resistance. The tumor microenvironment (TME) is a complex area where diverse cancer cells reside creating a highly interactive environment with secreted factors, and the extracellular matrix. Autophagy, a cellular self-digestion process, influences dynamic cellular processes in the tumor TME integrating diverse signals that regulate tumor development and heterogeneity. Autophagy acts as a double-edged sword in the breast TME, with both tumor-promoting and tumor-suppressing roles. Autophagy promotes breast tumorigenesis by regulating tumor cell survival, migration and invasion, metabolic reprogramming, and epithelial-mesenchymal transition (EMT). BCSCs harness autophagy to maintain stemness properties, evade immune surveillance, and resist therapeutic interventions. Conversely, excessive, or dysregulated autophagy may lead to BCSC differentiation or cell death, offering a potential avenue for therapeutic exploration. The molecular mechanisms that regulate autophagy in BCSCs including the mammalian target of rapamycin (mTOR), AMPK, and Beclin-1 signaling pathways may be potential targets for pharmacological intervention in breast cancer. This review provides a comprehensive overview of the relationship between autophagy and BCSCs, highlighting recent advancements in our understanding of their interplay. We also discuss the current state of autophagy-targeting agents and their preclinical and clinical development in BCSCs.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Anubhav Srivastava
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| | - Bandana Chakravarti
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| |
Collapse
|
98
|
Johnson SS, Liu D, Ewald JT, Robles-Planells C, Pulliam C, Christensen KA, Bayanbold K, Wels BR, Solst SR, O’Dorisio MS, Menda Y, Spitz DR, Fath MA. Auranofin inhibition of thioredoxin reductase sensitizes lung neuroendocrine tumor cells (NETs) and small cell lung cancer (SCLC) cells to sorafenib as well as inhibiting SCLC xenograft growth. Cancer Biol Ther 2024; 25:2382524. [PMID: 39054566 PMCID: PMC11275529 DOI: 10.1080/15384047.2024.2382524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
Thioredoxin Reductase (TrxR) functions to recycle thioredoxin (Trx) during hydroperoxide metabolism mediated by peroxiredoxins and is currently being targeted using the FDA-approved anti-rheumatic drug, auranofin (AF), to selectively sensitize cancer cells to therapy. AF treatment decreased TrxR activity and clonogenic survival in small cell lung cancer (SCLC) cell lines (DMS273 and DMS53) as well as the H727 atypical lung carcinoid cell line. AF treatment also significantly sensitized DMS273 and H727 cell lines in vitro to sorafenib, an FDA-approved multi-kinase inhibitor that depleted intracellular glutathione (GSH). The pharmacokinetic, pharmacodynamic, and safety profile of AF was examined in nude mice with DMS273 xenografts administered AF intraperitoneally at 2 mg/kg or 4 mg/kg (IP) once (QD) or twice daily (BID) for 1-5 d. Plasma levels of AF were 10-20 μM (determined by mass spectrometry of gold), and the optimal inhibition of TrxR activity was obtained at 4 mg/kg once daily, with no effect on glutathione peroxidase 1 activity. This AF treatment extended for 14 d, inhibited TrxR (>75%), and resulted in a significant prolongation of median overall survival from 19 to 23 d (p = .04, N = 30 controls, 28 AF). In this experiment, there were no observed changes in animal bodyweight, complete blood counts (CBCs), bone marrow toxicity, blood urea nitrogen, or creatinine. These results support the hypothesis that AF effectively inhibits TrxR both in vitro and in vivo in SCLC, sensitizes NETs and SCLC to sorafenib, and could be repurposed as an adjuvant therapy with targeted agents that induce disruptions in thiol metabolism.
Collapse
Affiliation(s)
- Spenser S. Johnson
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | - Dijie Liu
- Department Pediatrics, University of Iowa Hospitals and Clinics, IA, USA
| | - Jordan T. Ewald
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | | | - Casey Pulliam
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | - Keegan A. Christensen
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | - Khaliunaa Bayanbold
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | - Brian R. Wels
- State Hygienic Laboratory, University of Iowa, IA, USA
| | - Shane R. Solst
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | - M. Sue O’Dorisio
- Department Pediatrics, University of Iowa Hospitals and Clinics, IA, USA
| | - Yusuf Menda
- Department of Radiology, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, IA, USA
| | - Douglas R. Spitz
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | - Melissa A. Fath
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| |
Collapse
|
99
|
Niu Q, Ye S, Zhao L, Qian Y, Liu F. The role of liver cancer stem cells in hepatocellular carcinoma metastasis. Cancer Biol Ther 2024; 25:2321768. [PMID: 38393655 PMCID: PMC10896152 DOI: 10.1080/15384047.2024.2321768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/18/2024] [Indexed: 02/25/2024] Open
Abstract
Metastasis accounts for the vast majority of cancer deaths; however, this complex process has yet to be fully explained. To form metastases, cancer cells must undergo a series of steps, known as the "Metastatic cascade", each of which requires a specific functional transformation. Cancer stem cells (CSCs) play a vital role in tumor metastasis, but their dynamic behavior and regulatory mechanisms have not been fully elucidated. Based on the "Metastatic cascade" theory, this review summarizes the effect of liver CSCs on the metastatic biological programs that underlie the dissemination and metastatic growth of cancer cells. Liver CSCs have the capacity to initiate distant organ metastasis via EMT, and the microenvironment transformation that supports the ability of these cells to disseminate, evade immune surveillance, dormancy, and regenerate metastasis. Understanding the heterogeneity and traits of liver CSCs in these processes is critical for developing strategies to prevent and treat metastasis of advanced hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Qinghui Niu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Susu Ye
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liu Zhao
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanzhi Qian
- School Hospital, Qingdao University of Science and Technology, Qingdao, China
| | - Fengchao Liu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
100
|
Guo X, Song J, Liu M, Ou X, Guo Y. The interplay between the tumor microenvironment and tumor-derived small extracellular vesicles in cancer development and therapeutic response. Cancer Biol Ther 2024; 25:2356831. [PMID: 38767879 PMCID: PMC11110713 DOI: 10.1080/15384047.2024.2356831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
The tumor microenvironment (TME) plays an essential role in tumor cell survival by profoundly influencing their proliferation, metastasis, immune evasion, and resistance to treatment. Extracellular vesicles (EVs) are small particles released by all cell types and often reflect the state of their parental cells and modulate other cells' functions through the various cargo they transport. Tumor-derived small EVs (TDSEVs) can transport specific proteins, nucleic acids and lipids tailored to propagate tumor signals and establish a favorable TME. Thus, the TME's biological characteristics can affect TDSEV heterogeneity, and this interplay can amplify tumor growth, dissemination, and resistance to therapy. This review discusses the interplay between TME and TDSEVs based on their biological characteristics and summarizes strategies for targeting cancer cells. Additionally, it reviews the current issues and challenges in this field to offer fresh insights into comprehending tumor development mechanisms and exploring innovative clinical applications.
Collapse
Affiliation(s)
- Xuanyu Guo
- The Affiliated Hospital, Southwest Medical University, Luzhou, PR China
| | - Jiajun Song
- Department of Clinical Laboratory Medicine, the Affiliated Hospital, Southwest Medical University, Luzhou, PR China
| | - Miao Liu
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, PR China
| | - Xinyi Ou
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, PR China
| | - Yongcan Guo
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, PR China
| |
Collapse
|