951
|
Zarin AA, Behmanesh M, Tavallaei M, Shohrati M, Ghanei M. Overexpression of transforming growth factor (TGF)-beta1 and TGF-beta3 genes in lung of toxic-inhaled patients. Exp Lung Res 2010; 36:284-91. [PMID: 20497023 DOI: 10.3109/01902140903578868] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Iraq frequently used toxic inhalants during the war with Iran, exposing over 100,000 people to chemical reagents. Bronchiolitis obliterans (BO) is a major pulmonary disease caused by exposure to harmful gases. Recently defect in clearance of apoptotic cells (efferocytosis) has been suggested as a mechanism that leads to several lung diseases. Transforming growth factor (TGF)-beta, a cytokine produced by efferocytotic macrophages, suppresses the inflammation and enhances the regeneration of tissue. In this study, the authors compared the expression of these 3 isoforms of TGF-beta at mRNA level in lung biopsies of Iranian victims of chemical gases with lung biopsies of control healthy volunteers. Semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) technique was used to examine the expression level of TGF-beta isoforms using glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene as an internal control. The results indicated that that levels of TGF-beta1 and TGF-beta3 mRNAs were significantly higher in chemical gas-injured patients than noninjured group (P < .05). Therefore, the authors speculate that TGF-beta1 and TGFbeta3, but not TGF-beta2, secretion is a result of efficient efferocytosis in chemically injured patients, playing a protective role by improving airway remodeling and lung homeostasis in this group. These properties of TGF-beta are consistent with long-time survival of chemical-injured people suffering from BO.
Collapse
Affiliation(s)
- Aref Arzan Zarin
- Department of Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
952
|
Ravichandran KS. Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J Exp Med 2010; 207:1807-17. [PMID: 20805564 PMCID: PMC2931173 DOI: 10.1084/jem.20101157] [Citation(s) in RCA: 426] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 07/12/2010] [Indexed: 01/17/2023] Open
Abstract
Everyday we turnover billions of cells. The quick, efficient, and immunologically silent disposal of the dying cells requires a coordinated orchestration of multiple steps, through which phagocytes selectively recognize and engulf apoptotic cells. Recent studies have suggested an important role for soluble mediators released by apoptotic cells that attract phagocytes ("find-me" signals). New information has also emerged on multiple receptors that can recognize phosphatidylserine, the key "eat-me" signal exposed on the surface of apoptotic cells. This perspective discusses recent exciting progress, gaps in our understanding, and the conflicting issues that arise from the newly acquired knowledge.
Collapse
Affiliation(s)
- Kodi S Ravichandran
- Center for Cell Clearance, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
953
|
Zhang Y, Kim HJ, Yamamoto S, Kang X, Ma X. Regulation of interleukin-10 gene expression in macrophages engulfing apoptotic cells. J Interferon Cytokine Res 2010; 30:113-22. [PMID: 20187777 DOI: 10.1089/jir.2010.0004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Apoptosis and the rapid clearance of apoptotic cells (ACs) by professional or nonprofessional phagocytes are normal and coordinated processes that ensure controlled cell growth and stress response with nonpathological outcomes. Uptake of ACs by phagocytes is thought to suppress autoimmune responses through the release of anti-inflammatory cytokines such as interleukin-10 (IL-10), transforming growth factor-beta (TGF-beta), and inhibition of proinflammatory cytokines. The production of pro- and anti-inflammatory cytokines by phagocytes is highly regulated as part of an intrinsic mechanism to prevent inflammatory and autoimmune reactions in a physiological state. Production of IL-10 by phagocytes during clearance of ACs is critical to ensuring cellular homeostasis and suppression of autoimmunity. The molecular mechanism whereby IL-10 production is induced by ACs is only beginning to be understood. This review summarizes our recent work in this aspect of an essential physiological and homeostatic process.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065-4805, USA
| | | | | | | | | |
Collapse
|
954
|
Elliott MR, Ravichandran KS. Clearance of apoptotic cells: implications in health and disease. ACTA ACUST UNITED AC 2010; 189:1059-70. [PMID: 20584912 PMCID: PMC2894449 DOI: 10.1083/jcb.201004096] [Citation(s) in RCA: 402] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recent advances in defining the molecular signaling pathways that regulate the phagocytosis of apoptotic cells have improved our understanding of this complex and evolutionarily conserved process. Studies in mice and humans suggest that the prompt removal of dying cells is crucial for immune tolerance and tissue homeostasis. Failed or defective clearance has emerged as an important contributing factor to a range of disease processes. This review addresses how specific molecular alterations of engulfment pathways are linked to pathogenic states. A better understanding of the apoptotic cell clearance process in healthy and diseased states could offer new therapeutic strategies.
Collapse
Affiliation(s)
- Michael R Elliott
- Center for Cell Clearance and the Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
955
|
Lu H, Zhao X, Wang W, Yin H, Xu J, Bai X, Du Y. Inhibition effect on tobacco mosaic virus and regulation effect on calreticulin of oligochitosan in tobacco by induced Ca2+ influx. Carbohydr Polym 2010. [DOI: 10.1016/j.carbpol.2010.04.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
956
|
Implication of the CD47 pathway in autoimmune diabetes. J Autoimmun 2010; 35:23-32. [DOI: 10.1016/j.jaut.2010.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 12/18/2009] [Accepted: 01/10/2010] [Indexed: 12/23/2022]
|
957
|
Elliott DA, Weickert CS, Garner B. Apolipoproteins in the brain: implications for neurological and psychiatric disorders. CLINICAL LIPIDOLOGY 2010; 51:555-573. [PMID: 21423873 PMCID: PMC3058497 DOI: 10.2217/clp.10.37] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The brain is the most lipid-rich organ in the body and, owing to the impermeable nature of the blood-brain barrier, lipid and lipoprotein metabolism within this organ is distinct from the rest of the body. Apolipoproteins play a well-established role in the transport and metabolism of lipids within the CNS; however, evidence is emerging that they also fulfill a number of functions that extend beyond lipid transport and are critical for healthy brain function. The importance of apolipoproteins in brain physiology is highlighted by genetic studies, where apolipoprotein gene polymorphisms have been identified as risk factors for several neurological diseases. Furthermore, the expression of brain apolipoproteins is significantly altered in several brain disorders. The purpose of this article is to provide an up-to-date assessment of the major apolipoproteins found in the brain (ApoE, ApoJ, ApoD and ApoA-I), covering their proposed roles and the factors influencing their level of expression. Particular emphasis is placed on associations with neurological and psychiatric disorders.
Collapse
Affiliation(s)
- David A Elliott
- Prince of Wales Medical Research Institute, Randwick, Sydney, NSW 2031, Australia
| | - Cyndi Shannon Weickert
- Prince of Wales Medical Research Institute, Randwick, Sydney, NSW 2031, Australia
- Schizophrenia Research Institute, Sydney, NSW, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Brett Garner
- Prince of Wales Medical Research Institute, Randwick, Sydney, NSW 2031, Australia
- School of Biological Sciences, Faculty of Science, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
958
|
Yang Y, Friggeri A, Banerjee S, Bdeir K, Cines DB, Liu G, Abraham E. Urokinase-type plasminogen activator inhibits efferocytosis of neutrophils. Am J Respir Crit Care Med 2010; 182:1516-23. [PMID: 20656938 DOI: 10.1164/rccm.201003-0452oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Phagocytosis of apoptotic cells, also called efferocytosis, plays an essential role in the resolution of inflammation. Urokinase-type plasminogen activator (uPA) is a multifunctional protein that has been implicated in inflammatory conditions, including pneumonia and severe infection, which are often accompanied by the development of acute lung injury. However, the role of uPA in modulating efferocytosis of apoptotic neutrophils has not been defined. OBJECTIVES To characterize the role of uPA in regulation of efferocytosis and to delineate the underlying mechanisms involved in this process. METHODS In vitro and in vivo phagocytosis, immunoprecipitation, and Western blotting assays. MEASUREMENTS AND MAIN RESULTS The phagocytosis of apoptotic neutrophils by macrophages was significantly inhibited by uPA. Mutant uPA lacking the growth factor domain and catalytically inactive uPA had similar inhibitory effects on efferocytosis, as did wild-type uPA. In contrast, absence of the kringle domain abrogated the ability of uPA to diminish efferocytosis. Both the α(V)β₃ integrin and vitronectin seemed to be involved in the inhibition of efferocytosis by uPA. Incubation of macrophages with uPA also diminished activation of the small GTPase Rac-1, which normally occurs during ingestion of apoptotic neutrophils. Under in vivo conditions in the lungs, uPA decreased the uptake of apoptotic neutrophils by alveolar macrophages. CONCLUSIONS Our data demonstrate a novel role for uPA in which it is able to diminish the uptake of apoptotic neutrophils by macrophages under both in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Yanping Yang
- Department of Medicine, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | | | | | |
Collapse
|
959
|
A mechanism of release of calreticulin from cells during apoptosis. J Mol Biol 2010; 401:799-812. [PMID: 20624402 DOI: 10.1016/j.jmb.2010.06.064] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 06/25/2010] [Accepted: 06/30/2010] [Indexed: 11/21/2022]
Abstract
Calreticulin (CRT) is an endoplasmic reticulum (ER) chaperone responsible for glycoprotein folding and Ca(2+) homeostasis. CRT also has extracellular functions, e.g. tumor and apoptotic cell recognition and wound healing, but the mechanism of CRT extracellular release is unknown. Cytosolic localization of CRT is determined by signal peptide and subsequent retrotranslocation of CRT into the cytoplasm. Here, we show that under apoptotic stress conditions, the cytosolic concentration of CRT increases and associates with phosphatidylserine (PS) in a Ca(2)(+)-dependent manner. PS distribution is regulated by aminophospholipid translocase (APLT), which maintains PS on the cytosolic side of the cell membrane. APLT is sensitive to redox modifications of its SH groups by reactive nitrogen species. During apoptosis, both CRT expression and the concentration of nitric oxide (NO) increase. By using S-nitroso-l-cysteine-ethyl-ester, an intracellular NO donor and inhibitor of APLT, we showed that PS and CRT externalization occurred together in an S-nitrosothiol-dependent and caspase-independent manner. Furthermore, the CRT and PS are relocated as punctate clusters on the cell surface. Thus, CRT induced nitrosylation and its externalization with PS could explain how CRT acts as a bridging molecule during apoptotic cell clearance.
Collapse
|
960
|
Wang X, Li W, Zhao D, Liu B, Shi Y, Chen B, Yang H, Guo P, Geng X, Shang Z, Peden E, Kage-Nakadai E, Mitani S, Xue D. Caenorhabditis elegans transthyretin-like protein TTR-52 mediates recognition of apoptotic cells by the CED-1 phagocyte receptor. Nat Cell Biol 2010; 12:655-64. [PMID: 20526330 PMCID: PMC2896453 DOI: 10.1038/ncb2068] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 04/27/2010] [Indexed: 11/09/2022]
Abstract
During apoptosis, dying cells are swiftly removed by phagocytes. It is not fully understood how apoptotic cells are recognized by phagocytes. Here we report the identification and characterization of the Caenorhabditis elegans ttr-52 gene, which encodes a transthyretin-like protein and is required for efficient cell corpse engulfment. The TTR-52 protein is expressed in, and secreted from, C. elegans endoderm and clusters around apoptotic cells. Genetic analysis indicates that TTR-52 acts in the cell corpse engulfment pathway mediated by CED-1, CED-6 and CED-7 and affects clustering of the phagocyte receptor CED-1 around apoptotic cells. TTR-52 recognizes surface-exposed phosphatidylserine (PtdSer) in vivo and binds to both PtdSer and the extracellular domain of CED-1 in vitro. TTR-52 is therefore the first bridging molecule identified in C. elegans that mediates recognition of apoptotic cells by crosslinking the PtdSer 'eat me' signal with the phagocyte receptor CED-1.
Collapse
Affiliation(s)
- Xiaochen Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
- National Institute of Biological Sciences, #7 Sciences Park Road, Zhongguancun Life Sciences Park, Beijing, 102206, P.R. China
| | - Weida Li
- National Institute of Biological Sciences, #7 Sciences Park Road, Zhongguancun Life Sciences Park, Beijing, 102206, P.R. China
| | - Dongfeng Zhao
- National Institute of Biological Sciences, #7 Sciences Park Road, Zhongguancun Life Sciences Park, Beijing, 102206, P.R. China
| | - Bin Liu
- National Institute of Biological Sciences, #7 Sciences Park Road, Zhongguancun Life Sciences Park, Beijing, 102206, P.R. China
| | - Yong Shi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Baohui Chen
- National Institute of Biological Sciences, #7 Sciences Park Road, Zhongguancun Life Sciences Park, Beijing, 102206, P.R. China
| | - Hengwen Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Pengfei Guo
- National Institute of Biological Sciences, #7 Sciences Park Road, Zhongguancun Life Sciences Park, Beijing, 102206, P.R. China
| | - Xin Geng
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Zhihong Shang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Erin Peden
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Eriko Kage-Nakadai
- Department of Physiology, Tokyo Women’s Medical University, School of Medicine, and CREST, JST, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women’s Medical University, School of Medicine, and CREST, JST, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Ding Xue
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
961
|
Tsai RK, Rodriguez PL, Discher DE. Self inhibition of phagocytosis: the affinity of 'marker of self' CD47 for SIRPalpha dictates potency of inhibition but only at low expression levels. Blood Cells Mol Dis 2010; 45:67-74. [PMID: 20299253 PMCID: PMC2878922 DOI: 10.1016/j.bcmd.2010.02.016] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Accepted: 01/19/2010] [Indexed: 12/20/2022]
Abstract
Phagocytes engulf foreign cells but not 'self' in part because self cells express CD47 as a ligand for signal regulatory protein SIRPalpha, which inhibits phagocytosis. Motivated by reports of upregulation of CD47 on both normal and cancerous stem cells [1: Jaiswal et al., 2009] and also by polymorphisms in SIRPalpha [2: Takenaka et al., 2007], we show here that inhibition of engulfment correlates with affinity of CD47 for SIRPalpha - but only at low levels of CD47. One common human polymorph of SIRPalpha is studied and binds more strongly to human-CD47 than to mouse-CD47 (K(d) approximately 0.12 microM and 6.9 microM, respectively) and does not bind sheep red blood cells (RBCs) - which are well-established targets of human macrophages; in comparison, a common mouse polymorph of SIRPalpha binds with similar affinity to human and mouse CD47 (K(d) approximately 0.22 microM). Using immunoglobulin (IgG)-opsonized particles with varying levels of either human- or mouse-CD47, the effective inhibition constants K(i) for blocking phagocytosis are then determined with both human- and mouse-derived macrophages. Only human phagocytes show significant differences in man versus mouse K(i)'s and only at CD47 levels below normal densities for RBCs. While phospho-signaling through human-SIRPalpha shows similar trends, consistent again with the affinity differences, saturating levels of CD47 (>K(i)) can signal and inhibit phagocytosis regardless of man versus mouse. Quantitative analyses here prompt more complete characterizations of both CD47 levels and SIRPalpha polymorphisms when attempting to study in vivo effects of these key proteins in innate immunity.
Collapse
Affiliation(s)
- Richard K Tsai
- Biophysical Engineering Lab, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
962
|
Chvanov M, Petersen OH, Tepikin AV. Pharmacologically directed cell disposal: labeling damaged cells for phagocytosis as a strategy against acute pancreatitis. Mol Interv 2010; 10:80-5. [PMID: 20368368 DOI: 10.1124/mi.10.2.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Michael Chvanov
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK.
| | | | | |
Collapse
|
963
|
Jaiswal S, Chao MP, Majeti R, Weissman IL. Macrophages as mediators of tumor immunosurveillance. Trends Immunol 2010; 31:212-9. [PMID: 20452821 PMCID: PMC3646798 DOI: 10.1016/j.it.2010.04.001] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 03/01/2010] [Accepted: 04/02/2010] [Indexed: 12/21/2022]
Abstract
Tumor immunosurveillance is a well-established mechanism for regulation of tumor growth. In this regard, most studies have focused on the role of T- and NK-cells as the critical immune effector cells. However, macrophages play a major role in the recognition and clearance of foreign, aged, and damaged cells. Macrophage phagocytosis is negatively regulated via the receptor SIRPalpha upon binding to CD47, a ubiquitously expressed protein. We recently showed that CD47 is up-regulated in myeloid leukemia and migrating hematopoietic progenitors, and that the level of protein expression correlates with the ability to evade phagocytosis. These results implicate macrophages in the immunosurveillance of hematopoietic cells and leukemias. The ability of macrophages to phagocytose tumor cells might be exploited therapeutically by blocking the CD47-SIRPalpha interaction.
Collapse
Affiliation(s)
- Siddhartha Jaiswal
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford Cancer Center, and Ludwig Center at Stanford, USA.
| | | | | | | |
Collapse
|
964
|
Adams DH, Ju C, Ramaiah SK, Uetrecht J, Jaeschke H. Mechanisms of immune-mediated liver injury. Toxicol Sci 2010; 115:307-21. [PMID: 20071422 PMCID: PMC2871750 DOI: 10.1093/toxsci/kfq009] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 01/04/2010] [Indexed: 12/11/2022] Open
Abstract
Hepatic inflammation is a common finding during a variety of liver diseases including drug-induced liver toxicity. The inflammatory phenotype can be attributed to the innate immune response generated by Kupffer cells, monocytes, neutrophils, and lymphocytes. The adaptive immune system is also influenced by the innate immune response leading to liver damage. This review summarizes recent advances in specific mechanisms of immune-mediated hepatotoxicity and its application to drug-induced liver injury. Basic mechanisms of activation of lymphocytes, macrophages, and neutrophils and their unique mechanisms of recruitment into the liver vasculature are discussed. In particular, the role of adhesion molecules and various inflammatory mediators in this process are explored. In addition, the authors describe mechanisms of liver cell damage by these inflammatory cells and critically evaluate the functional significance of each cell type for predictive and idiosyncratic drug-induced liver injury. It is expected that continued advances in our understanding of immune mechanisms of liver injury will lead to an earlier detection of the hepatotoxic potential of drugs under development and to an earlier identification of susceptible individuals at risk for predictive and idiosyncratic drug toxicities.
Collapse
Affiliation(s)
- David H. Adams
- Center for Liver Research, Institute of Biomedical Research, University of Birmingham, Birmingham B15 2TH, UK
| | - Cynthia Ju
- Department of Pharmaceutical Sciences, University of Colorado, Denver, Colorado 80045
| | - Shashi K. Ramaiah
- Biomarker and Clinical Pathology Lead, Pfizer-Drug Safety Research and Development, St Louis, Missouri 63017
| | - Jack Uetrecht
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, M5S 3M2 Canada
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
965
|
Incorporation of podoplanin into HIV released from HEK-293T cells, but not PBMC, is required for efficient binding to the attachment factor CLEC-2. Retrovirology 2010; 7:47. [PMID: 20482880 PMCID: PMC2885308 DOI: 10.1186/1742-4690-7-47] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 05/19/2010] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Platelets are associated with HIV in the blood of infected individuals and might modulate viral dissemination, particularly if the virus is directly transmitted into the bloodstream. The C-type lectin DC-SIGN and the novel HIV attachment factor CLEC-2 are expressed by platelets and facilitate HIV transmission from platelets to T-cells. Here, we studied the molecular mechanisms behind CLEC-2-mediated HIV-1 transmission. RESULTS Binding studies with soluble proteins indicated that CLEC-2, in contrast to DC-SIGN, does not recognize the viral envelope protein, but a cellular factor expressed on kidney-derived 293T cells. Subsequent analyses revealed that the cellular mucin-like membranous glycoprotein podoplanin, a CLEC-2 ligand, was expressed on 293T cells and incorporated into virions released from these cells. Knock-down of podoplanin in 293T cells by shRNA showed that virion incorporation of podoplanin was required for efficient CLEC-2-dependent HIV-1 interactions with cell lines and platelets. Flow cytometry revealed no evidence for podoplanin expression on viable T-cells and peripheral blood mononuclear cells (PBMC). Podoplanin was also not detected on HIV-1 infected T-cells. However, apoptotic bystander cells in HIV-1 infected cultures reacted with anti-podoplanin antibodies, and similar results were obtained upon induction of apoptosis in a cell line and in PBMCs suggesting an unexpected link between apoptosis and podoplanin expression. Despite the absence of detectable podoplanin expression, HIV-1 produced in PBMC was transmitted to T-cells in a CLEC-2-dependent manner, indicating that T-cells might express an as yet unidentified CLEC-2 ligand. CONCLUSIONS Virion incorporation of podoplanin mediates CLEC-2 interactions of HIV-1 derived from 293T cells, while incorporation of a different cellular factor seems to be responsible for CLEC-2-dependent capture of PBMC-derived viruses. Furthermore, evidence was obtained that podoplanin expression is connected to apoptosis, a finding that deserves further investigation.
Collapse
|
966
|
Yan Q, Murphy-Ullrich JE, Song Y. Structural insight into the role of thrombospondin-1 binding to calreticulin in calreticulin-induced focal adhesion disassembly. Biochemistry 2010; 49:3685-94. [PMID: 20337411 PMCID: PMC2943676 DOI: 10.1021/bi902067f] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Thrombospondin-1 (TSP1) binding to calreticulin (CRT) on the cell surface stimulates association of CRT with LDL receptor-related protein (LRP1) to signal focal adhesion disassembly and engagement of cellular activities. The structural basis for this phenomenon is unknown. We studied the binding thermodynamics of the TSP1-CRT complex and the conformational changes in CRT induced by binding to TSP1 with combined binding free energy analysis, molecular dynamics simulation, and anisotropic network model restrained molecular dynamics simulation. Results showed that mutations of Lys 24 and Lys 32 in TSP1 to Ala and of amino acids 24-26 and 32-34 in CRT to Ala significantly weakened the binding of TSP1 and CRT, which is consistent with experimental results. Upon validation of the calculated binding affinity changes of the TSP1-CRT complex by mutations in key residues in TSP1 and CRT with the experimental results, we performed conformational analyses to understand the role of TSP1 binding to CRT in the induction of conformational changes in CRT. Conformational analyses showed that TSP1 binding to CRT resulted in a more "open" conformation and a significant rotational change for the CRT N-domain with respect to the CRT P-domain, which could expose the potential binding site(s) in CRT for binding to LRP1 to signal focal adhesion disassembly. Results offer structural insight into the role of TSP1 binding to CRT in CRT-induced focal adhesion disassembly.
Collapse
Affiliation(s)
- Qi Yan
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama 35294
| | | | - Yuhua Song
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
967
|
van Delft MF, Smith DP, Lahoud MH, Huang DC, Adams JM. Apoptosis and non-inflammatory phagocytosis can be induced by mitochondrial damage without caspases. Cell Death Differ 2010; 17:821-32. [PMID: 19911005 PMCID: PMC3005563 DOI: 10.1038/cdd.2009.166] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A central issue regarding vertebrate apoptosis is whether caspase activity is essential, particularly for its crucial biological outcome: non-inflammatory clearance of the dying cell. Caspase-9 is required for the proteolytic cascade unleashed by the mitochondrial outer membrane permeabilization (MOMP) regulated by the Bcl-2 protein family. However, despite the severely blunted apoptosis in cells from Casp9(-/-) mice, some organs with copious apoptosis, such as the thymus, appear unaffected. To address this paradox, we investigated how caspase-9 loss affects apoptosis and clearance of mouse fibroblasts and thymocytes. Although Casp9(-/-) cells were initially refractory to apoptotic insults, they eventually succumbed to slower caspase-independent cell death. Furthermore, in gamma-irradiated mice, the dying Casp9(-/-) thymocytes were efficiently cleared, without apparent inflammation. Notably, MOMP proceeded normally, and the impaired mitochondrial function, revealed by diminished mitochondrial membrane potential (DeltaPsi(m)), committed cells to die, as judged by loss of clonogenicity. Upon the eventual full collapse of DeltaPsi(m), presumably reflecting failure of respiration, intact dying Casp9(-/-) cells unexpectedly exposed the prototypic 'eat-me' signal phosphatidylserine, which allowed their recognition and engulfment by phagocytes without overt inflammation. Hence, caspase-9-induced proteolysis accelerates apoptosis, but impaired mitochondrial integrity apparently triggers a default caspase-independent program of cell death and non-inflammatory clearance. Thus, caspases appear dispensable for some essential biological functions of apoptosis.
Collapse
Affiliation(s)
- Mark F. van Delft
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Darrin P. Smith
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Mireille H. Lahoud
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - David C.S. Huang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Jerry M. Adams
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| |
Collapse
|
968
|
Zitvogel L, Kepp O, Senovilla L, Menger L, Chaput N, Kroemer G. Immunogenic tumor cell death for optimal anticancer therapy: the calreticulin exposure pathway. Clin Cancer Res 2010; 16:3100-4. [PMID: 20421432 DOI: 10.1158/1078-0432.ccr-09-2891] [Citation(s) in RCA: 302] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In response to some chemotherapeutic agents such as anthracyclines and oxaliplatin, cancer cells undergo immunogenic apoptosis, meaning that their corpses are engulfed by dendritic cells and that tumor cell antigens are presented to tumor-specific CD8(+) T cells, which then control residual tumor cells. One of the peculiarities of immunogenic apoptosis is the early cell surface exposure of calreticulin (CRT), a protein that usually resides in the lumen of the endoplasmic reticulum (ER). When elicited by anthracyclines or oxaliplatin, the CRT exposure pathway is activated by pre-apoptotic ER stress and the phosphorylation of the eukaryotic translation initiation factor eIF2alpha by the kinase PERK, followed by caspase-8-mediated proteolysis of the ER-sessile protein BAP31, activation of the pro-apoptotic proteins Bax and Bak, anterograde transport of CRT from the ER to the Golgi apparatus and exocytosis of CRT-containing vesicles, finally resulting in CRT translocation onto the plasma membrane surface. Interruption of this complex pathway abolishes CRT exposure, annihilates the immunogenicity of apoptosis, and reduces the immune response elicited by anticancer chemotherapies. We speculate that human cancers that are incapable of activating the CRT exposure pathway are refractory to the immune-mediated component of anticancer therapies.
Collapse
|
969
|
Ma Y, Kepp O, Ghiringhelli F, Apetoh L, Aymeric L, Locher C, Tesniere A, Martins I, Ly A, Haynes NM, Smyth MJ, Kroemer G, Zitvogel L. Chemotherapy and radiotherapy: cryptic anticancer vaccines. Semin Immunol 2010; 22:113-24. [PMID: 20403709 DOI: 10.1016/j.smim.2010.03.001] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Accepted: 03/15/2010] [Indexed: 02/07/2023]
Abstract
An attractive, yet hitherto unproven concept predicts that the promotion of tumor regression should elicit the host's immune response against residual tumor cells to achieve an optimal therapeutic effect. In a way, chemo- or radiotherapy must trigger "danger signals" emitted from immunogenic cell death and hence elicit "danger associated molecular patterns" to stimulate powerful anticancer immune responses. Here, based on the recent experimental and clinical evidence, we will discuss the molecular identity of the multiple checkpoints that dictate the success of "immunogenic chemotherapy" at the levels of the drug, of the tumor cell and of the host immune system.
Collapse
Affiliation(s)
- Yuting Ma
- INSERM, U805, F-94805 Villejuif, France; Institut Gustave Roussy, F-94805 Villejuif, France; Université Paris-Sud, F-94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
970
|
Yancey PG, Blakemore J, Ding L, Fan D, Overton CD, Zhang Y, Linton MF, Fazio S. Macrophage LRP-1 controls plaque cellularity by regulating efferocytosis and Akt activation. Arterioscler Thromb Vasc Biol 2010; 30:787-95. [PMID: 20150557 PMCID: PMC2845445 DOI: 10.1161/atvbaha.109.202051] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The balance between apoptosis susceptibility and efferocytosis of macrophages is central to plaque remodeling and inflammation. LRP-1 and its ligand, apolipoprotein E, have been implicated in efferocytosis and apoptosis in some cell types. We investigated the involvement of the macrophage LRP-1/apolipoprotein E axis in controlling plaque apoptosis and efferocytosis. Method and Results- LRP-1(-/-) macrophages displayed nearly 2-fold more TUNEL positivity compared to wild-type cells in the presence of DMEM alone or with either lipopolysaccharide or oxidized low-density lipoprotein. The survival kinase, phosphorylated Akt, was barely detectable in LRP-1(-/-) cells, causing decreased phosphorylated Bad and increased cleaved caspase-3. Regardless of the apoptotic stimulation and degree of cell death, LRP-1(-/-) macrophages displayed enhanced inflammation with increased IL-1 beta, IL-6, and tumor necrosis factor-alpha expression. Efferocytosis of apoptotic macrophages was reduced by 60% in LRP-1(-/-) vs wild-type macrophages despite increased apolipoprotein E expression by both LRP-1(-/-) phagocytes and wild-type apoptotic cells. Compared to wild-type macrophage lesions, LRP-1(-/-) lesions had 5.7-fold more necrotic core with more dead cells not associated with macrophages. CONCLUSIONS Macrophage LRP-1 deficiency increases cell death and inflammation by impairing phosphorylated Akt activation and efferocytosis. Increased apolipoprotein E expression in LRP-1(-/-) macrophages suggests that the LRP-1/apolipoprotein E axis regulates the balance between apoptosis and efferocytosis, thereby preventing necrotic core formation.
Collapse
Affiliation(s)
- Patricia G. Yancey
- Atherosclerosis Research Unit, Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville TN 37232-6300
| | - John Blakemore
- Atherosclerosis Research Unit, Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville TN 37232-6300
| | - Lei Ding
- Atherosclerosis Research Unit, Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville TN 37232-6300
| | - Daping Fan
- Atherosclerosis Research Unit, Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville TN 37232-6300
| | - Cheryl D. Overton
- Atherosclerosis Research Unit, Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville TN 37232-6300
- Department of Pathology, Vanderbilt University Medical Center, Nashville TN 37232-6300
| | - Youmin Zhang
- Atherosclerosis Research Unit, Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville TN 37232-6300
| | - MacRae F. Linton
- Atherosclerosis Research Unit, Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville TN 37232-6300
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville TN 37232-6300
| | - Sergio Fazio
- Atherosclerosis Research Unit, Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville TN 37232-6300
- Department of Pathology, Vanderbilt University Medical Center, Nashville TN 37232-6300
| |
Collapse
|
971
|
Cross-presentation by dendritic cells from live cells induces protective immune responses in vivo. Blood 2010; 115:4412-20. [PMID: 20308597 DOI: 10.1182/blood-2009-11-255935] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cross-presentation is an essential mechanism that allows dendritic cells (DCs) to efficiently present exogenous antigens to CD8(+) T cells. Among cellular antigen sources, apoptotic cells are commonly considered as the best for cross-presentation by DCs. However, the potential of live cells as a source of antigen has been overlooked. Here we explored whether DCs were able to capture and cross-present antigens from live cells. DCs internalized cytosolic and membrane material into vesicles from metabolically labeled live cells. Using time-lapse confocal microscopy in whole spleens, we showed that DCs internalized material from live cells in vivo. After ovalbumin uptake from live cells, DCs cross-primed ovalbumin-specific naive OT-I CD8(+) T cells in vitro. Injected into mice previously transferred with naive OT-I T cells, they also cross-primed in vivo, even in the absence of endogenous DCs able to present the epitope in the recipient mice. Interestingly, DCs induced stronger natural CD8(+) T-cell responses and protection against a lethal tumor challenge after capture of antigens from live melanoma cells than from apoptotic melanoma cells. The potential for cross-presentation from live cells uncovers a new type of cellular intercommunication and must be taken into account for induction of tolerance or immunity against self, tumors, grafts, or pathogens.
Collapse
|
972
|
Sonnemann J, Gressmann S, Becker S, Wittig S, Schmudde M, Beck JF. The histone deacetylase inhibitor vorinostat induces calreticulin exposure in childhood brain tumour cells in vitro. Cancer Chemother Pharmacol 2010; 66:611-6. [PMID: 20221600 DOI: 10.1007/s00280-010-1302-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 02/22/2010] [Indexed: 12/22/2022]
Abstract
PURPOSE It has recently been recognised that anticancer chemotherapy can elicit an immunogenic form of apoptosis characterised by the exposure of calreticulin (CRT) on the surface of dying tumour cells, entailing an immune response that contributes to the therapeutic outcome. CRT exposure has been found to be induced by anthracyclins and oxaliplatin, but not by other proapoptotic antineoplastic agents including etoposide, camptothecin and cisplatin. In this study, we examined the histone deacetylase inhibitor vorinostat for its capability to stimulate CRT exposure in tumour cells. METHODS Childhood tumour cells, i.e. the brain tumour cell lines PFSK and DAOY and the Ewing's sarcoma cell line CADO-ES-1, were treated with vorinostat, and CRT exposure was determined by flow cytometric analysis of CRT immunofluorescence. Combination effects of vorinostat/TRAIL and vorinostat/bortezomib were also assessed. RESULTS Vorinostat treatment induced CRT exposure in PFSK and DAOY cells, but not in caspase-8-deficient CADO-ES-1 cells. CRT exposure could be prevented by the pan-caspase inhibitor z-VAD-fmk and by brefeldin A, an inhibitor of Golgi-mediated transport. CONCLUSION Vorinostat has the capacity to elicit CRT exposure, suggesting its usefulness as immunogenic antitumour agent.
Collapse
Affiliation(s)
- Jürgen Sonnemann
- Department of Paediatric Haematology and Oncology, University Children's Hospital Jena, Jena, Germany.
| | | | | | | | | | | |
Collapse
|
973
|
Kozmar A, Greenlee-Wacker MC, Bohlson SS. Macrophage response to apoptotic cells varies with the apoptotic trigger and is not altered by a deficiency in LRP expression. J Innate Immun 2010; 2:248-59. [PMID: 20375555 PMCID: PMC2956015 DOI: 10.1159/000295790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 11/17/2009] [Indexed: 11/19/2022] Open
Abstract
Rapid engulfment of apoptotic cells in the absence of inflammation is required for maintenance of normal tissue homeostasis. The low-density lipoprotein receptor-related protein-1 (LRP/CD91) is a receptor mediating interactions between macrophages and apoptotic cells, but recent reports have challenged the requirement of this surface protein in this process. To explore the role of LRP in the recognition of apoptotic cells, target cells were generated with two distinct inducers of apoptotic cell death, etoposide and actinomycin-D. Jurkat T cells rendered apoptotic with etoposide exposed phosphatidylserine (PtdSer) and triggered engulfment by murine bone marrow-derived macrophages (BMDM), however they failed to suppress lipopolysaccharide-driven inflammatory cytokine secretion or, correspondingly, NF kappaB-dependent or TNFalpha promoter-driven transcriptional activity in transfected RAW264.7 macrophages. In contrast, induction of apoptosis in either Jurkat cells or HeLa epithelial cells with actinomycin-D resulted in diminution of proinflammatory signaling from RAW264.7 cells and BMDM. Treatment of actinomycin-treated Jurkat cells with Q-VD-OPh, an irreversible inhibitor of caspase activity, blocked apoptosis, as assessed by the inhibition of PtdSer exposure; however, the cells maintained anti-inflammatory activity. Anti-inflammatory signaling mediated by actinomycin-treated cells was not affected by a macrophage-specific deletion in LRP. Moreover, the presence of LRP on macrophages did not alter the efficiency of engulfment of apoptotic cells in vitro or in vivo. These data demonstrate that the method of induction of apoptosis of target cells influences subsequent macrophage responsiveness, and that LRP is not required for engulfment of apoptotic cells regardless of the method of induction.
Collapse
Affiliation(s)
- Ana Kozmar
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Ind., USA
| | - Mallary C. Greenlee-Wacker
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Ind., USA
| | - Suzanne S. Bohlson
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Ind., USA
- Department of Microbiology and Immunology, Indiana University School of Medicine – South Bend, South Bend, Ind., USA
| |
Collapse
|
974
|
Van Duyn Graham L, Sweetwyne MT, Pallero MA, Murphy-Ullrich JE. Intracellular calreticulin regulates multiple steps in fibrillar collagen expression, trafficking, and processing into the extracellular matrix. J Biol Chem 2010; 285:7067-78. [PMID: 20044481 PMCID: PMC2844156 DOI: 10.1074/jbc.m109.006841] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 12/29/2009] [Indexed: 12/19/2022] Open
Abstract
Calreticulin (CRT), a chaperone and Ca(2+) regulator, enhances wound healing, and its expression correlates with fibrosis in animal models, suggesting that CRT regulates production of the extracellular matrix. However, direct regulation of collagen matrix by CRT has not been previously demonstrated. We investigated the role of CRT in the regulation of fibrillar collagen expression, secretion, processing, and deposition in the extracellular matrix by fibroblasts. Mouse embryonic fibroblasts deficient in CRT (CRT(-/-) MEFs) have reduced transcript levels of fibrillar collagen I and III and less soluble collagen as compared with wild type MEFs. Correspondingly, fibroblasts engineered to overexpress CRT have increased collagen type I transcript and protein. Collagen expression appears to be regulated by endoplasmic reticulum (ER) calcium levels and intracellular CRT, because thapsigargin treatment reduced collagen expression, whereas addition of exogenous recombinant CRT had no effect. CRT(-/-) MEFs exhibited increased ER retention of collagen, and collagen and CRT were co-immunoprecipitated from isolated cell lysates, suggesting that CRT is important for trafficking of collagen through the ER. CRT(-/-) MEFs also have reduced type I procollagen processing and deposition into the extracellular matrix. The reduced collagen matrix deposition is partly a consequence of reduced fibronectin matrix formation in the CRT-deficient cells. Together, these data show that CRT complexes with collagen in cells and that CRT plays critical roles at multiple stages of collagen expression and processing. These data identify CRT as an important regulator of collagen and suggest that intracellular CRT signaling plays an important role in tissue remodeling and fibrosis.
Collapse
Affiliation(s)
| | - Mariya T. Sweetwyne
- Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019
| | | | | |
Collapse
|
975
|
Junker A, Krumbholz M, Eisele S, Mohan H, Augstein F, Bittner R, Lassmann H, Wekerle H, Hohlfeld R, Meinl E. MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. ACTA ACUST UNITED AC 2010; 132:3342-52. [PMID: 19952055 DOI: 10.1093/brain/awp300] [Citation(s) in RCA: 452] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We established microRNA profiles from active and inactive multiple sclerosis lesions. Using laser capture microdissection from multiple sclerosis lesions to pool single cells and in vitro cultures, we assigned differentially expressed microRNA to specific cell types. Astrocytes contained all 10 microRNA that were most strongly upregulated in active multiple sclerosis lesions, including microRNA-155, which is known to modulate immune responses in different ways but so far had not been assigned to central nervous system resident cells. MicroRNA-155 was expressed in human astrocytes in situ, and further induced with cytokines in human astrocytes in vitro. This was confirmed with astrocyte cultures from microRNA-155-|-lacZ mice. We matched microRNA upregulated in phagocytically active multiple sclerosis lesions with downregulated protein coding transcripts. This converged on CD47, which functions as a 'don't eat me' signal inhibiting macrophage activity. Three microRNA upregulated in active multiple sclerosis lesions (microRNA-34a, microRNA-155 and microRNA-326) targeted the 3'-untranslated region of CD47 in reporter assays, with microRNA-155 even at two distinct sites. Our findings suggest that microRNA dysregulated in multiple sclerosis lesions reduce CD47 in brain resident cells, releasing macrophages from inhibitory control, thereby promoting phagocytosis of myelin. This mechanism may have broad implications for microRNA-regulated macrophage activation in inflammatory diseases.
Collapse
Affiliation(s)
- Andreas Junker
- Institute for Clinical Neuroimmunology, Ludwig Maximilians University, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
976
|
Interaction of proteinase 3 with its associated partners: implications in the pathogenesis of Wegener's granulomatosis. Curr Opin Rheumatol 2010; 22:1-7. [DOI: 10.1097/bor.0b013e3283331594] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
977
|
Poon IKH, Hulett MD, Parish CR. Molecular mechanisms of late apoptotic/necrotic cell clearance. Cell Death Differ 2009; 17:381-97. [PMID: 20019744 DOI: 10.1038/cdd.2009.195] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phagocytosis serves as one of the key processes involved in development, maintenance of tissue homeostasis, as well as in eliminating pathogens from an organism. Under normal physiological conditions, dying cells (e.g., apoptotic and necrotic cells) and pathogens (e.g., bacteria and fungi) are rapidly detected and removed by professional phagocytes such as macrophages and dendritic cells (DCs). In most cases, specific receptors and opsonins are used by phagocytes to recognize and bind their target cells, which can trigger the intracellular signalling events required for phagocytosis. Depending on the type of target cell, phagocytes may also release both immunomodulatory molecules and growth factors to orchestrate a subsequent immune response and wound healing process. In recent years, evidence is growing that opsonins and receptors involved in the removal of pathogens can also aid the disposal of dying cells at all stages of cell death, in particular plasma membrane-damaged cells such as late apoptotic and necrotic cells. This review provides an overview of the molecular mechanisms and the immunological outcomes of late apoptotic/necrotic cell removal and highlights the striking similarities between late apoptotic/necrotic cell and pathogen clearance.
Collapse
Affiliation(s)
- I K H Poon
- John Curtin School of Medical Research, Australian National University, Canberra, 2601, Australia
| | | | | |
Collapse
|
978
|
Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol 2009; 10:36-46. [PMID: 19960040 DOI: 10.1038/nri2675] [Citation(s) in RCA: 846] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A key event in atherosclerosis is a maladaptive inflammatory response to subendothelial lipoproteins. A crucial aspect of this response is a failure to resolve inflammation, which normally involves the suppression of inflammatory cell influx, effective clearance of apoptotic cells and promotion of inflammatory cell egress. Defects in these processes promote the progression of atherosclerotic lesions into dangerous plaques, which can trigger atherothrombotic vascular disease, the leading cause of death in industrialized societies. In this Review I provide an overview of these concepts, with a focus on macrophage death and defective apoptotic cell clearance, and discuss new therapeutic strategies designed to boost inflammation resolution in atherosclerosis.
Collapse
Affiliation(s)
- Ira Tabas
- Department of Medicine, Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA.
| |
Collapse
|
979
|
Colton CA. Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 2009; 4:399-418. [PMID: 19655259 PMCID: PMC2773116 DOI: 10.1007/s11481-009-9164-4] [Citation(s) in RCA: 680] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 06/30/2009] [Indexed: 01/14/2023]
Abstract
The immune response in the brain has been widely investigated and while many studies have focused on the proinflammatory cytotoxic response, the brain's innate immune system demonstrates significant heterogeneity. Microglia, like other tissue macrophages, participate in repair and resolution processes after infection or injury to restore normal tissue homeostasis. This review examines the mechanisms that lead to reduction of self-toxicity and to repair and restructuring of the damaged extracellular matrix in the brain. Part of the resolution process involves switching macrophage functional activation to include reduction of proinflammatory mediators, increased production and release of anti-inflammatory cytokines, and production of cytoactive factors involved in repair and reconstruction of the damaged brain. Two partially overlapping and complimentary functional macrophage states have been identified and are called alternative activation and acquired deactivation. The immunosuppressive and repair processes of each of these states and how alternative activation and acquired deactivation participate in chronic neuroinflammation in the brain are discussed.
Collapse
Affiliation(s)
- Carol A Colton
- Division of Neurology, Duke University Medical Center, Durham, 27710 NC, USA.
| |
Collapse
|
980
|
Villagomez M, Szabo E, Podcheko A, Feng T, Papp S, Opas M. Calreticulin and focal-contact-dependent adhesion. Biochem Cell Biol 2009; 87:545-56. [PMID: 19767819 DOI: 10.1139/o09-016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell adhesion is regulated by a variety of Ca2+-regulated pathways that depend on Ca2+-binding proteins. One such protein is calreticulin, an ER-resident protein. Calreticulin signalling from within the ER can affect processes outside the ER, such as expression of several adhesion-related genes, most notably vinculin and fibronectin. In addition, changes in the expression level of calreticulin strongly affect tyrosine phosphorylation of cellular proteins, which is known to affect many adhesion-related functions. While calreticulin has been localized to cellular compartments other than the ER, it appears that only the ER-resident calreticulin affects focal-contact-dependent adhesion. In contrast, calreticulin residing outside the ER may be involved in contact disassembly and other adhesion phenomena. Here, we review the role of calreticulin in focal contact initiation, stabilization, and turnover. We propose that calreticulin may regulate cell-substratum adhesion by participating in an "ER-to-nucleus" signalling and in parallel "ER-to-cell surface" signalling based on posttranslational events.
Collapse
Affiliation(s)
- Maria Villagomez
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, ON M5S 1A8, Canada
| | | | | | | | | | | |
Collapse
|
981
|
Gold LI, Eggleton P, Sweetwyne MT, Van Duyn LB, Greives MR, Naylor SM, Michalak M, Murphy-Ullrich JE. Calreticulin: non-endoplasmic reticulum functions in physiology and disease. FASEB J 2009; 24:665-83. [PMID: 19940256 DOI: 10.1096/fj.09-145482] [Citation(s) in RCA: 311] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Calreticulin (CRT), when localized to the endoplasmic reticulum (ER), has important functions in directing proper conformation of proteins and glycoproteins, as well as in homeostatic control of cytosolic and ER calcium levels. There is also steadily accumulating evidence for diverse roles for CRT localized outside the ER, including data suggesting important roles for CRT localized to the outer cell surface of a variety of cell types, in the cytosol, and in the extracellular matrix (ECM). Furthermore, the addition of exogenous CRT rescues numerous CRT-driven functions, such as adhesion, migration, phagocytosis, and immunoregulatory functions of CRT-null cells. Recent studies show that topically applied CRT has diverse and profound biological effects that enhance cutaneous wound healing in animal models. This evidence for extracellular bioactivities of CRT has provided new insights into this classically ER-resident protein, despite a lack of knowledge of how CRT exits from the ER to the cell surface or how it is released into the extracellular milieu. Nonetheless, it has become clear that CRT is a multicompartmental protein that regulates a wide array of cellular responses important in physiological and pathological processes, such as wound healing, the immune response, fibrosis, and cancer.-Gold, L. I., Eggleton, P., Sweetwyne, M. T., Van Duyn, L. B., Greives, M. R., Naylor, S.-M., Michalak, M., Murphy-Ullrich, J. E. Calreticulin: non-endoplamic reticulum functions in physiology and disease.
Collapse
Affiliation(s)
- Leslie I Gold
- Departments of Medicine and Pathology, New York, University School of Medicine, 550 First Ave., NB16S13 New York, NY 10016 USA.
| | | | | | | | | | | | | | | |
Collapse
|
982
|
Immunological factors relating to the antitumor effect of temozolomide chemoimmunotherapy in a murine glioma model. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 17:143-53. [PMID: 19889936 DOI: 10.1128/cvi.00292-09] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we investigated the potential of combined treatment with temozolomide (TMZ) chemotherapy and tumor antigen-pulsed dendritic cells (DCs) and the underlying immunological factors of TMZ chemoimmunotherapy with an intracranial GL26 glioma animal model. The combined treatment enhanced the tumor-specific immune responses and prolonged the survival more effectively than either single therapy in GL26 tumor-bearing animals. Apoptosis was induced in the tumors of the animals by the treatment with TMZ. Calreticulin (CRT) surface exposure was detected by immunofluorescence staining of TMZ-treated GL26 cells. TMZ chemotherapy increased tumor antigen cross-priming from tumor cells, leading to cross-priming of tumor antigen-specific CD4(+) T cells and CD8(+) T cells. This chemotherapy appeared to suppress the frequency of CD4(+) CD25(+) regulatory T cells (Treg). Moreover, this combined therapy resulted in an increase in the tumor infiltration of CD4(+) and CD8(+) T cells. Collectively, the findings of this study provide evidence that the combination of TMZ chemotherapy and treatment with DC-based vaccines leads to the enhancement of antitumor immunity through increased tumor-specific immune responses via the cross-priming of apoptotic tumor cell death mediated by CRT exposure and, in part, the suppression of Treg. Therefore, CRT exposure, regulatory T cells, and cross-priming by TMZ chemotherapy may be immunological factors related to the enhancement of the antitumor effects of chemoimmunotherapy in an experimental brain tumor model.
Collapse
|
983
|
Nakanishi Y, Henson PM, Shiratsuchi A. Pattern recognition in phagocytic clearance of altered self. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 653:129-38. [PMID: 19799116 DOI: 10.1007/978-1-4419-0901-5_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cells that are unnecessary or harmful to our body emerge in substantial numbers throughout our life. Such "unwanted" cells need to be promptly and selectively removed for tissue homeostasis to be maintained. Most of those cells are induced to undergo physiologic cell death, i.e., apoptosis, and subsequently eliminated by phagocytosis. Target selectivity in this phagocytosis reaction comes from the specific cell-cell interaction between phagocytes and dying cells. The surface structure of apoptotic cells is altered during the death pathway so that they become pattern recognizable as "altered self" by phagocytes, and such surface structures are sometimes called ACAMPs for apoptotic cell-associated molecular patterns. ACAMPs arise either from the exofacial exposure of endogenous molecules or the modification of preexisting surface molecules. Pattern-recognizing phagocytosis receptors present at the surface of phagocytes specifically bind, either directly or indirectly with an aid of bridge molecules, to ACAMPs and transmit signals to induce phagocytosis of bound apoptotic cells. Phagocytes often evoke subsequent actions, rather than simply digesting engulfed apoptotic cells, for a finer tuning of tissue homeostasis. In contrast, precise mechanisms and consequences of cells undergoing nonapoptotic death, i.e., necrosis or autophagy-related death, are less well understood.
Collapse
Affiliation(s)
- Yoshinobu Nakanishi
- Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan.
| | | | | |
Collapse
|
984
|
Pardo J, Gálvez EM, Koskinen A, Simon MM, Lobigs M, Regner M, Müllbacher A. Caspase-dependent inhibition of mousepox replication by gzmB. PLoS One 2009; 4:e7512. [PMID: 19838298 PMCID: PMC2759507 DOI: 10.1371/journal.pone.0007512] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 09/30/2009] [Indexed: 01/11/2023] Open
Abstract
Background Ectromelia virus is a natural mouse pathogen, causing mousepox. The cytotoxic T (Tc) cell granule serine-protease, granzyme B, is important for its control, but the underlying mechanism is unknown. Using ex vivo virus immune Tc cells, we have previously shown that granzyme B is able to activate several independent pro-apoptotic pathways, including those mediated by Bid/Bak/Bax and caspases-3/-7, in target cells pulsed with Tc cell determinants. Methods and Findings Here we analysed the physiological relevance of those pro-apoptotic pathways in ectromelia infection, by incubating ectromelia-immune ex vivo Tc cells from granzyme A deficient (GzmB+ Tc cells) or granzyme A and granzyme B deficient (GzmA×B−/− Tc cell) mice with ectromelia-infected target cells. We found that gzmB-induced apoptosis was totally blocked in ectromelia infected or peptide pulsed cells lacking caspases-3/-7. However ectromelia inhibited only partially apoptosis in cells deficient for Bid/Bak/Bax and not at all when both pathways were operative suggesting that the virus is able to interfere with apoptosis induced by gzmB in case not all pathways are activated. Importantly, inhibition of viral replication in vitro, as seen with wild type cells, was not affected by the lack of Bid/Bak/Bax but was significantly reduced in caspase-3/-7-deficient cells. Both caspase dependent processes were strictly dependent on gzmB, since Tc cells, lacking both gzms, neither induced apoptosis nor reduced viral titers. Significance Out findings present the first evidence on the biological importance of the independent gzmB-inducible pro-apoptotic pathways in a physiological relevant virus infection model.
Collapse
Affiliation(s)
- Julián Pardo
- Departamento Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Fundación Aragón I+D (ARAID), Gobierno de Aragón, Spain
- * E-mail: (JP); (MR); (AM)
| | | | - Aulikki Koskinen
- Viral Immunology Group, Division of Immunology and Genetics, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Markus M. Simon
- Metschnikoff Laboratory, Max-Planck Institute for Immunobiology, Freiburg, Germany
| | - Mario Lobigs
- Molecular Virology Group, Division of Immunology and Genetics, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Matthias Regner
- Viral Immunology Group, Division of Immunology and Genetics, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (JP); (MR); (AM)
| | - Arno Müllbacher
- Viral Immunology Group, Division of Immunology and Genetics, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (JP); (MR); (AM)
| |
Collapse
|
985
|
Caenorhabditis elegans myotubularin MTM-1 negatively regulates the engulfment of apoptotic cells. PLoS Genet 2009; 5:e1000679. [PMID: 19816564 PMCID: PMC2751444 DOI: 10.1371/journal.pgen.1000679] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 09/07/2009] [Indexed: 12/25/2022] Open
Abstract
During programmed cell death, apoptotic cells are recognized and rapidly engulfed by phagocytes. Although a number of genes have been identified that promote cell corpse engulfment, it is not well understood how phagocytosis of apoptotic cells is negatively regulated. Here we have identified Caenorhabditis elegans myotubularin MTM-1 as a negative regulator of cell corpse engulfment. Myotubularins (MTMs) constitute a large, highly conserved family of lipid phosphatases. MTM gene mutations are associated with various human diseases, but the cellular functions of MTM proteins are not clearly defined. We found that inactivation of MTM-1 caused significant reduction in cell corpses in strong loss-of-function mutants of ced-1, ced-6, ced-7, and ced-2, but not in animals deficient in the ced-5, ced-12, or ced-10 genes. In contrast, overexpression of MTM-1 resulted in accumulation of cell corpses. This effect is dependent on the lipid phosphatase activity of MTM-1. We show that loss of mtm-1 function accelerates the clearance of cell corpses by promoting their internalization. Importantly, the reduction of cell corpses caused by mtm-1 RNAi not only requires the activities of CED-5, CED-12, and CED-10, but also needs the functions of the phosphatidylinositol 3-kinases (PI3Ks) VPS-34 and PIKI-1. We found that MTM-1 localizes to the plasma membrane in several known engulfing cell types and may modulate the level of phosphatidylinositol 3-phosphate (PtdIns(3)P) in vivo. We propose that MTM-1 negatively regulates cell corpse engulfment through the CED-5/CED-12/CED-10 module by dephosphorylating PtdIns(3)P on the plasma membrane. Clearance of dead cells is crucial for normal animal development. Cell corpses are recognized, engulfed, and removed by phagocytic cells. However, the mechanisms that regulate phagocytosis are still not well understood, especially the ways in which the process is inhibited (negatively regulated). We screened the nematode worm Caenorhabditis elegans for negative regulators of cell corpse engulfment and identified myotubularin MTM-1. Myotubularins (MTMs) are a family of highly conserved enzymes that remove phosphate groups from membrane lipids. Mutations in human MTM genes are associated with various severe diseases including X-linked myotubular myopathy and Charcot-Marie-Tooth disease, but the normal functions of MTMs are unknown. In this study, we found that MTM-1 inhibits cell corpse engulfment through a series of evolutionarily conserved signaling molecules (the bipartite GEF (CED-5/DOCK180-CED-12/ELMO) and the GTPase CED-10/Rac). The negative regulatory effect of MTM-1 requires both its lipid phosphatase activity and the function of another group of enzymes called PI3-kinases. We propose that MTM-1 acts through Rac GTPase CED-10 by dephosphorylating the lipid PtdIns(3)P on the plasma membrane. We have identified a negative regulatory mechanism of cell corpse engulfment and a previously unknown cellular function of MTM-1, which may provide further insights into the basis of human MTM-related diseases.
Collapse
|
986
|
Sato H, Azuma Y, Higai K, Matsumoto K. Altered expression of glycoproteins on the cell surface of Jurkat cells during etoposide-induced apoptosis: shedding and intracellular translocation of glycoproteins. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1790:1198-205. [PMID: 19524015 DOI: 10.1016/j.bbagen.2009.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 05/27/2009] [Accepted: 05/30/2009] [Indexed: 11/23/2022]
Abstract
BACKGROUND The glycoproteins on the cell surface are altered during apoptosis and play an important role in phagocytic clearance of apoptotic cells. METHODS We classified Jurkat cells treated with etoposide as viable and early apoptotic cells, late apoptotic cells or secondary necrotic cells based on propidium iodide staining and scattered grams and estimated the expression levels of glycoproteins on the cell surface. RESULTS The cell surface expression levels of intercellular adhesion molecules (ICAM)-2 and -3 on the apoptotic cells were markedly lower, while those of calnexin, calreticulin, and lysosome-associated membrane proteins (LAMP)-1 and -2 were significantly higher compared to non-apoptotic cells. These decreases in ICAM-2 and -3 on the apoptotic cell surface were reduced in the presence of metalloproteinase inhibitors and caspase inhibitors, respectively. Confocal microscopic analysis revealed that calnexin and calreticulin were assembled around fragmented nuclei of blebbed apoptotic cells. CONCLUSIONS These results suggest that alteration of glycoproteins on the cell surface during apoptosis is associated with shedding and intracellular translocation of glycoproteins.
Collapse
Affiliation(s)
- Hirotaka Sato
- Department of Clinical Chemistry, School of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 247-8510, Japan
| | | | | | | |
Collapse
|
987
|
Watts JC, Huo H, Bai Y, Ehsani S, Won AH, Shi T, Daude N, Lau A, Young R, Xu L, Carlson GA, Williams D, Westaway D, Schmitt-Ulms G. Interactome analyses identify ties of PrP and its mammalian paralogs to oligomannosidic N-glycans and endoplasmic reticulum-derived chaperones. PLoS Pathog 2009; 5:e1000608. [PMID: 19798432 PMCID: PMC2749441 DOI: 10.1371/journal.ppat.1000608] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 09/08/2009] [Indexed: 02/04/2023] Open
Abstract
The physiological environment which hosts the conformational conversion of the cellular prion protein (PrP(C)) to disease-associated isoforms has remained enigmatic. A quantitative investigation of the PrP(C) interactome was conducted in a cell culture model permissive to prion replication. To facilitate recognition of relevant interactors, the study was extended to Doppel (Prnd) and Shadoo (Sprn), two mammalian PrP(C) paralogs. Interestingly, this work not only established a similar physiological environment for the three prion protein family members in neuroblastoma cells, but also suggested direct interactions amongst them. Furthermore, multiple interactions between PrP(C) and the neural cell adhesion molecule, the laminin receptor precursor, Na/K ATPases and protein disulfide isomerases (PDI) were confirmed, thereby reconciling previously separate findings. Subsequent validation experiments established that interactions of PrP(C) with PDIs may extend beyond the endoplasmic reticulum and may play a hitherto unrecognized role in the accumulation of PrP(Sc). A simple hypothesis is presented which accounts for the majority of interactions observed in uninfected cells and suggests that PrP(C) organizes its molecular environment on account of its ability to bind to adhesion molecules harboring immunoglobulin-like domains, which in turn recognize oligomannose-bearing membrane proteins.
Collapse
Affiliation(s)
- Joel C. Watts
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Hairu Huo
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Yu Bai
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Sepehr Ehsani
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Amy Hye Won
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Tujin Shi
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Nathalie Daude
- Alberta Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Agnes Lau
- Alberta Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Rebecca Young
- McLaughlin Research Institute, Great Falls, Montana, United States of America
| | - Lei Xu
- McLaughlin Research Institute, Great Falls, Montana, United States of America
| | - George A. Carlson
- McLaughlin Research Institute, Great Falls, Montana, United States of America
| | - David Williams
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - David Westaway
- Alberta Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Gerold Schmitt-Ulms
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
988
|
Lawrence DW, King SB, Frazier WA, Koenig JM. Decreased CD47 expression during spontaneous apoptosis targets neutrophils for phagocytosis by monocyte-derived macrophages. Early Hum Dev 2009; 85:659-63. [PMID: 19815354 PMCID: PMC2800099 DOI: 10.1016/j.earlhumdev.2009.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 08/27/2009] [Accepted: 09/08/2009] [Indexed: 12/22/2022]
Abstract
BACKGROUND Neutrophils (PMN) are the primary leukocyte responders during acute inflammation. After migrating into the tissues, PMN undergo programmed cell death (apoptosis) and are subsequently removed via phagocytosis by resident macrophages during the resolution phase. Efficient phagocytosis of apoptotic neutrophils is necessary for successful resolution. CD47 plays a critical role in mediating the phagocytic response, although its role in the phagocytosis of apoptotic PMN is incompletely understood. AIMS In the present study we tested the hypotheses that CD47 modulates the targeting of apoptotic PMN for phagocytosis, and that this process is altered in neonatal PMN. STUDY DESIGN Adult and neonatal PMN were examined for their expression of CD47. To investigate CD47-mediated functions, apoptotic adult and neonatal PMN were co-cultured with monocyte-derived macrophages (MDM) and the phagocytic index was determined using a flow cytometry-based assay. RESULTS We observed lower basal surface CD47 levels on neonatal vs. adult PMN. In both groups, spontaneous apoptosis led to decreased surface and total cellular CD47 expression. Adult and neonatal MDM ingested apoptotic neonatal target PMN more avidly than apoptotic adult target PMN. Masking of surface CD47 on PMN with a monoclonal antibody enhanced MDM phagocytic activity. CONCLUSIONS Our results suggest that age-dependent expression of CD47 on PMN may account for differences in their ingestion by macrophages and in the resolution of inflammation.
Collapse
Affiliation(s)
- Donald W. Lawrence
- Department of Pediatrics, Division of Neonatology, Saint Louis University School of Medicine, Saint Louis, MO 63104
| | | | - William A. Frazier
- Department of Biochemistry and Molecular Biophysics, Washington University, Saint Louis, MO 63110
| | - Joyce M. Koenig
- Department of Pediatrics, Division of Neonatology, Saint Louis University School of Medicine, Saint Louis, MO 63104, Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO 63104,CORRESPONDENCE: Joyce M. Koenig, MD, Department of Pediatrics, Edward A. Doisy Research Center, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, MO 63104 Phone: (314) 977-9291 Fax: (314) 977-9105
| |
Collapse
|
989
|
Down-regulation of platelet surface CD47 expression in Escherichia coli O157:H7 infection-induced thrombocytopenia. PLoS One 2009; 4:e7131. [PMID: 19771158 PMCID: PMC2740826 DOI: 10.1371/journal.pone.0007131] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 08/24/2009] [Indexed: 11/19/2022] Open
Abstract
Background Platelet depletion is a key feature of hemolytic uremic syndrome (HUS) caused by Shiga toxin-producing Escherichia coli (STEC) infection. The mechanism underlying STEC-induced platelet depletion, however, is not completely understood. Methodology/Principal Findings Here we demonstrated for the first time that platelet surface expression of CD47 was significantly decreased in C57BL6 mice treated with concentrated culture filtrates (CCF) from STEC O157:H7. STEC O157:H7 CCF treatment also led to a sharp drop of platelet counts. The reduction of cell surface CD47 was specific for platelets but not for neutrophil, monocytes and red blood cells. Down-regulation of platelet surface CD47 was also observed in isolated human platelets treated with O157:H7 CCF. Platelet surface CD47 reduction by O157:H7 CCF could be blocked by anti-TLR4 antibody but not anti-CD62 antibody. Down-regulation of platelet surface CD47 was positively correlated with platelet activation and phagocytosis by human monocyte-derived macrophages. Furthermore, the enhanced phagocytosis process of O157:H7 CCF-treated platelets was abolished by addition of soluble CD47 recombinants. Conclusions/Significance Our results suggest that platelet CD47 down-regulation may be a novel mechanism underneath STEC-induced platelet depletion, and that the interactions between CD47 and its receptor, signal regulatory protein α (SIRPα), play an essential role in modulating platelet homeostasis.
Collapse
|
990
|
Locher C, Rusakiewicz S, Tesnière A, Ghiringhelli F, Apetoh L, Kroemer G, Zitvogel L. Witch Hunt against Tumor Cells Enhanced by Dendritic Cells. Ann N Y Acad Sci 2009; 1174:51-60. [DOI: 10.1111/j.1749-6632.2009.04940.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
991
|
Bourazopoulou E, Kapsogeorgou EK, Routsias JG, Manoussakis MN, Moutsopoulos HM, Tzioufas AG. Functional expression of the alpha 2-macroglobulin receptor CD91 in salivary gland epithelial cells. J Autoimmun 2009; 33:141-6. [DOI: 10.1016/j.jaut.2009.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 06/22/2009] [Accepted: 06/30/2009] [Indexed: 01/22/2023]
|
992
|
Tabib A, Krispin A, Trahtemberg U, Verbovetski I, Lebendiker M, Danieli T, Mevorach D. Thrombospondin-1-N-terminal domain induces a phagocytic state and thrombospondin-1-C-terminal domain induces a tolerizing phenotype in dendritic cells. PLoS One 2009; 4:e6840. [PMID: 19721725 PMCID: PMC2733053 DOI: 10.1371/journal.pone.0006840] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 07/22/2009] [Indexed: 11/19/2022] Open
Abstract
In our previous study, we have found that thrombospondin-1 (TSP-1) is synthesized de novo upon monocyte and neutrophil apoptosis, leading to a phagocytic and tolerizing phenotype of dendritic cells (DC), even prior to DC-apoptotic cell interaction. Interestingly, we were able to show that heparin binding domain (HBD), the N-terminal portion of TSP-1, was cleaved and secreted simultaneously in a caspase- and serine protease- dependent manner. In the current study we were interested to examine the role of HBD in the clearance of apoptotic cells, and whether the phagocytic and tolerizing state of DCs is mediated by the HBD itself, or whether the entire TSP-1 is needed. Therefore, we have cloned the human HBD, and compared its interactions with DC to those with TSP-1. Here we show that rHBD by itself is not directly responsible for immune paralysis and tolerizing phenotype of DCs, at least in the monomeric form, but has a significant role in rendering DCs phagocytic. Binding of TSP-1-C-terminal domain on the other hand induces a tolerizing phenotype in dendritic cells.
Collapse
Affiliation(s)
- Adi Tabib
- The Laboratory for Cellular and Molecular Immunology, Rheumatology Research Unit, and The Protein Expression and Protein Purification Facilities, Hebrew University and Hadassah University Medical Center, Jerusalem, Israel
- * E-mail:
| | - Alon Krispin
- The Laboratory for Cellular and Molecular Immunology, Rheumatology Research Unit, and The Protein Expression and Protein Purification Facilities, Hebrew University and Hadassah University Medical Center, Jerusalem, Israel
- * E-mail:
| | - Uriel Trahtemberg
- The Laboratory for Cellular and Molecular Immunology, Rheumatology Research Unit, and The Protein Expression and Protein Purification Facilities, Hebrew University and Hadassah University Medical Center, Jerusalem, Israel
| | - Inna Verbovetski
- The Laboratory for Cellular and Molecular Immunology, Rheumatology Research Unit, and The Protein Expression and Protein Purification Facilities, Hebrew University and Hadassah University Medical Center, Jerusalem, Israel
| | - Mario Lebendiker
- Wolfson Centre for Applied Structural Biology, Hebrew University and Hadassah University Medical Center, Jerusalem, Israel
| | - Tsafi Danieli
- Wolfson Centre for Applied Structural Biology, Hebrew University and Hadassah University Medical Center, Jerusalem, Israel
| | - Dror Mevorach
- The Laboratory for Cellular and Molecular Immunology, Rheumatology Research Unit, and The Protein Expression and Protein Purification Facilities, Hebrew University and Hadassah University Medical Center, Jerusalem, Israel
| |
Collapse
|
993
|
Borges VM, Vandivier RW, McPhillips KA, Kench JA, Morimoto K, Groshong SD, Richens TR, Graham BB, Muldrow AM, Van Heule L, Henson PM, Janssen WJ. TNFalpha inhibits apoptotic cell clearance in the lung, exacerbating acute inflammation. Am J Physiol Lung Cell Mol Physiol 2009; 297:L586-95. [PMID: 19648283 DOI: 10.1152/ajplung.90569.2008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Efficient removal of apoptotic cells is essential for resolution of inflammation. Failure to clear dying cells can exacerbate lung injury and lead to persistent inflammation and autoimmunity. Here we show that TNFalpha blocks apoptotic cell clearance by alveolar macrophages and leads to proinflammatory responses in the lung. Compared with mice treated with intratracheal TNFalpha or exogenous apoptotic cells, mice treated with the combination of TNFalpha plus apoptotic cells demonstrated reduced apoptotic cell clearance from the lungs and increased recruitment of inflammatory leukocytes to the air spaces. Treatment with intratracheal TNFalpha had no effect on the removal of exogenous apoptotic cells from the lungs of TNFalpha receptor-1 (p55) and -2 (p75) double mutant mice and no effect on leukocyte recruitment. Bronchoalveolar lavage from mice treated with TNFalpha plus apoptotic cells contained increased levels of proinflammatory cytokines IL-6, KC, and MCP-1, but exhibited no change in levels of anti-inflammatory cytokines IL-10 and TGF-beta. Administration of TNFalpha plus apoptotic cells during LPS-induced lung injury augmented neutrophil accumulation and proinflammatory cytokine production. These findings suggest that the presence of TNFalpha in the lung can alter the response of phagocytes to apoptotic cells leading to inflammatory cell recruitment and proinflammatory mediator production.
Collapse
Affiliation(s)
- Valeria M Borges
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
994
|
Jaiswal S, Jamieson CHM, Pang WW, Park CY, Chao MP, Majeti R, Traver D, van Rooijen N, Weissman IL. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 2009; 138:271-85. [PMID: 19632178 PMCID: PMC2775564 DOI: 10.1016/j.cell.2009.05.046] [Citation(s) in RCA: 1217] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 03/04/2009] [Accepted: 05/21/2009] [Indexed: 12/19/2022]
Abstract
Macrophages clear pathogens and damaged or aged cells from the blood stream via phagocytosis. Cell-surface CD47 interacts with its receptor on macrophages, SIRPalpha, to inhibit phagocytosis of normal, healthy cells. We find that mobilizing cytokines and inflammatory stimuli cause CD47 to be transiently upregulated on mouse hematopoietic stem cells (HSCs) and progenitors just prior to and during their migratory phase, and that the level of CD47 on these cells determines the probability that they are engulfed in vivo. CD47 is also constitutively upregulated on mouse and human myeloid leukemias, and overexpression of CD47 on a myeloid leukemia line increases its pathogenicity by allowing it to evade phagocytosis. We conclude that CD47 upregulation is an important mechanism that provides protection to normal HSCs during inflammation-mediated mobilization, and that leukemic progenitors co-opt this ability in order to evade macrophage killing.
Collapse
Affiliation(s)
- Siddhartha Jaiswal
- Ludwig Center at Stanford, Stanford Cancer Center, Department of Pathology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
995
|
Chen Y, Khanna S, Goodyear CS, Park YB, Raz E, Thiel S, Grönwall C, Vas J, Boyle DL, Corr M, Kono DH, Silverman GJ. Regulation of dendritic cells and macrophages by an anti-apoptotic cell natural antibody that suppresses TLR responses and inhibits inflammatory arthritis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:1346-59. [PMID: 19564341 PMCID: PMC2713016 DOI: 10.4049/jimmunol.0900948] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although natural Abs (NAbs) are present from birth, little is known about what drives their selection and whether they have housekeeping functions. The prototypic T15-NAb, first identified because of its protective role in infection, is representative of a special type of NAb response that specifically recognizes and forms complexes with apoptotic cells and which promotes cell-corpse engulfment by phagocytes. We now show that this T15-NAb IgM-mediated clearance process is dependent on the recruitment of C1q and mannose-binding lectin, which have known immune modulatory activities that also provide "eat me" signals for enhancing phagocytosis. Further investigation revealed that the addition of T15-NAb significantly suppressed in vitro LPS-induced TNF-alpha and IL-6 secretion by the macrophage-like cell line, RAW264.7, as well as TLR3-, TLR4-, TLR7-, and TLR9-induced maturation and secretion of a range of proinflammatory cytokines and chemokines by bone marrow-derived conventional dendritic cells. Significantly, high doses of this B-1 cell produced NAb also suppressed in vivo TLR-induced proinflammatory responses. Although infusions of apoptotic cells also suppressed such in vivo inflammatory responses and this effect was associated with the induction of high levels of IgM antiapoptotic cell Abs, apoptotic cell treatment was not effective at suppressing such TLR responses in B cell-deficient mice. Moreover, infusions of T15-NAb also efficiently inhibited both collagen-induced arthritis and anti-collagen II Ab-mediated arthritis. These studies identify and characterize a previously unknown regulatory circuit by which a NAb product of innate-like B cells aids homeostasis by control of fundamental inflammatory pathways.
Collapse
Affiliation(s)
- Yifang Chen
- Laboratory of B Cell Immunobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
996
|
Smagur J, Guzik K, Bzowska M, Kuzak M, Zarebski M, Kantyka T, Walski M, Gajkowska B, Potempa J. Staphylococcal cysteine protease staphopain B (SspB) induces rapid engulfment of human neutrophils and monocytes by macrophages. Biol Chem 2009; 390:361-71. [PMID: 19284294 DOI: 10.1515/bc.2009.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract Circulating neutrophils and monocytes constitute the first line of antibacterial defence, which is responsible for the phagocytosis and killing of microorganisms. Previously, we have described that the staphylococcal cysteine proteinase staphopain B (SspB) cleaves CD11b on peripheral blood phagocytes, inducing the rapid development of features of atypical cell death in protease-treated cells. Here, we report that exposure of phagocytes to SspB critically impairs their antibacterial functions. Specifically, SspB blocks phagocytosis of Staphylococcus aureus by both neutrophils and monocytes, represses their chemotactic activity and induces extensive, nonphlogistic clearance of SspB-treated cells by macrophages. The proteinase also cleaves CD31, a major repulsion ('do not-eat-me') signal, on the surface of neutrophils. We suggest that both proteolytic degradation of repulsion signals and induction of 'eat-me' signals on the surface of leukocytes are responsible for the observed intensive phagocytosis of SspB-treated neutrophils by human monocyte-derived macrophages. Collectively, this may lead to the depletion of functional neutrophils at the site of infection, thus facilitating staphylococcal colonisation and spreading.
Collapse
Affiliation(s)
- Jan Smagur
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-386 Krakow, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
997
|
Hurwitz ME, Vanderzalm PJ, Bloom L, Goldman J, Garriga G, Horvitz HR. Abl kinase inhibits the engulfment of apoptotic [corrected] cells in Caenorhabditis elegans. PLoS Biol 2009; 7:e99. [PMID: 19402756 PMCID: PMC2672617 DOI: 10.1371/journal.pbio.1000099] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 03/16/2009] [Indexed: 12/16/2022] Open
Abstract
The engulfment of apoptotic cells is required for normal metazoan development and tissue remodeling. In Caenorhabditis elegans, two parallel and partially redundant conserved pathways act in cell-corpse engulfment. One pathway includes the adaptor protein CED-2 CrkII and the small GTPase CED-10 Rac, and acts to rearrange the cytoskeleton of the engulfing cell. The other pathway includes the receptor tyrosine kinase CED-1 and might recruit membranes to extend the surface of the engulfing cell. Although many components required for engulfment have been identified, little is known about inhibition of engulfment. The tyrosine kinase Abl regulates the actin cytoskeleton in mammals and Drosophila in multiple ways. For example, Abl inhibits cell migration via phosphorylation of CrkII. We tested whether ABL-1, the C. elegans ortholog of Abl, inhibits the CED-2 CrkII-dependent engulfment of apoptotic cells. Our genetic studies indicate that ABL-1 inhibits apoptotic cell engulfment, but not through CED-2 CrkII, and instead acts in parallel to the two known engulfment pathways. The CED-10 Rac pathway is also required for proper migration of the distal tip cells (DTCs) during the development of the C. elegans gonad. The loss of ABL-1 function partially restores normal DTC migration in the CED-10 Rac pathway mutants. We found that ABI-1 the C. elegans homolog of mammalian Abi (Abl interactor) proteins, is required for engulfment of apoptotic cells and proper DTC migration. Like Abl, Abi proteins are cytoskeletal regulators. ABI-1 acts in parallel to the two known engulfment pathways, likely downstream of ABL-1. ABL-1 and ABI-1 interact physically in vitro. We propose that ABL-1 opposes the engulfment of apoptotic cells by inhibiting ABI-1 via a pathway that is distinct from the two known engulfment pathways. Cell death or apoptosis is a normal part of animal development, as is the engulfment and removal of dead cells by other cells. In the nematode Caenorhabditis elegans, ten highly conserved proteins have been characterized previously for their roles in engulfment and in cell migration, both of which involve the formation of cellular extensions. Little is known, however, about how engulfment is inhibited. In mammals, the tyrosine kinase Abl, which regulates the actin cytoskeleton and which when misexpressed causes two types of leukemia, prevents the CrkII protein from facilitating cell migration. CrkII functions in engulfment in C. elegans and mammals. We tested whether the C. elegans homolog of Abl, ABL-1, could inhibit engulfment. We found that ABL-1 functions as an inhibitor of apoptotic cell engulfment and cell migration. However, our analysis further showed that ABL-1 does not function by inhibiting other known engulfment proteins, including C. elegans CrkII. Our data indicate that ABL-1 blocks ABI-1, the C. elegans homolog of the mammalian and Drosophila Abl-interactor (Abi) cytoskeletal-regulatory proteins. We propose that ABL-1 acts via ABI-1 to inhibit a newly identified pathway during cell corpse engulfment and cell migration. We show thatC. elegans Abl (ABL-1) inhibits the engulfment of apoptotic cells via a newly defined pathway that includes theC. elegans homolog of the cytoskeletal regulator Abl-interactor.
Collapse
Affiliation(s)
- Michael E Hurwitz
- Howard Hughes Medical Institute (HHMI), Department of Biology, MIT, Cambridge, Massachusetts, United States of America
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts, United States of America
| | - Pamela J Vanderzalm
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Laird Bloom
- Howard Hughes Medical Institute (HHMI), Department of Biology, MIT, Cambridge, Massachusetts, United States of America
| | - Julia Goldman
- Howard Hughes Medical Institute (HHMI), Department of Biology, MIT, Cambridge, Massachusetts, United States of America
| | - Gian Garriga
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - H. Robert Horvitz
- Howard Hughes Medical Institute (HHMI), Department of Biology, MIT, Cambridge, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
998
|
CD47 promotes both phosphatidylserine-independent and phosphatidylserine-dependent phagocytosis of apoptotic murine thymocytes by non-activated macrophages. Biochem Biophys Res Commun 2009; 387:58-63. [PMID: 19559673 DOI: 10.1016/j.bbrc.2009.06.121] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 06/23/2009] [Indexed: 11/23/2022]
Abstract
The ubiquitously expressed cell surface glycoprotein CD47 on host cells can inhibit phagocytosis of unopsonized or opsonized viable host target cells. Here we studied the role of target cell CD47 in macrophage uptake of viable or apoptotic murine thymocytes. As expected, IgG-opsonized viable CD47(-/-) thymocytes were taken up more efficiently than equally opsonized Wt thymocytes. However IgG-opsonized apoptotic thymocytes from Wt and CD47(-/-) mice were taken up equally. Although uptake of apoptotic thymocytes by non-activated bone marrow-derived macrophages was phosphatidylserine (PS)-independent, while uptake by non-activated resident peritoneal macrophages was PS-dependent, both macrophage populations showed a reduced uptake of non-opsonized apoptotic CD47(-/-) thymocytes, as compared with the uptake of apoptotic Wt thymocytes. This difference was only seen with non-activated macrophages, and not with beta-1,3-glucan-activated macrophages. CD47 promoted binding of thymocytes to macrophages, which did not require F-actin polymerization. CD47 became clustered on apoptotic thymocytes, both co-localized with or separated from, clustered PS and cholesterol-rich GM-1 domains. Thus, CD47 does not inhibit, but rather support, both PS-independent and PS-dependent uptake of apoptotic cells in the murine system. This mechanism only comes into play in non-activated macrophages.
Collapse
|
999
|
D'mello V, Singh S, Wu Y, Birge RB. The urokinase plasminogen activator receptor promotes efferocytosis of apoptotic cells. J Biol Chem 2009; 284:17030-17038. [PMID: 19383607 PMCID: PMC2719341 DOI: 10.1074/jbc.m109.010066] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 04/17/2009] [Indexed: 11/06/2022] Open
Abstract
The urokinase receptor (uPAR), expressed on the surface of many cell types, coordinates plasmin-mediated cell surface proteolysis for matrix remodeling and promotes cell adhesion by acting as a binding protein for vitronectin. There is great clinical interest in uPAR in the cancer field as numerous reports have demonstrated that up-regulation of the uPA system is correlated with malignancy of various carcinomas. Using both stable cell lines overexpressing uPAR and transient gene transfer, here we provide evidence for a non-reported role of uPAR in the phagocytosis of apoptotic cells, a process that has recently been termed efferocytosis. When uPAR was expressed in human embryonic kidney cells, hamster melanoma cells, or breast cancer cells (BCCs), there was a robust enhancement in the efferocytosis of apoptotic cells. uPAR-expressing cells failed to stimulate engulfment of viable cells, suggesting that uPAR enhances recognition of one or more determinant on the surface of the apoptotic cell. uPAR-mediated engulfment was not inhibited by expression of mutant beta5 integrin, nor was alphavbeta5 integrin-mediated engulfment modulated by cleavage of uPAR by phosphatidylinositol-specific phospholipase C. Further, we found that the more aggressive BCCs had a higher phagocytic capacity that correlated with uPAR expression and cleavage of membrane-associated uPAR in MDA-MB231 BCCs significantly impaired phagocytic activity. Because efferocytosis is critical for the resolution of inflammation and production of anti-inflammatory cytokines, overexpression of uPAR in tumor cells may promote a tolerogenic microenvironment that favors tumor progression.
Collapse
Affiliation(s)
- Veera D'mello
- From the Departments of Biochemistry and Molecular Biology, Newark, New Jersey 07103
| | - Sukhwinder Singh
- From the Departments of Biochemistry and Molecular Biology, Newark, New Jersey 07103; Pathology and Laboratory Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103
| | - Yi Wu
- From the Departments of Biochemistry and Molecular Biology, Newark, New Jersey 07103
| | - Raymond B Birge
- From the Departments of Biochemistry and Molecular Biology, Newark, New Jersey 07103.
| |
Collapse
|
1000
|
Caberoy NB, Zhou Y, Li W. Can phage display be used as a tool to functionally identify endogenous eat-me signals in phagocytosis? ACTA ACUST UNITED AC 2009; 14:653-61. [PMID: 19531662 DOI: 10.1177/1087057109335679] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Removal of apoptotic cells and cellular debris by phagocytosis is essential for development, tissue homeostasis, and resolution of inflammation. Eat-me signals control the initiation of phagocytosis, holding a key to the understanding of phagocyte biology. Because of a lack of functional cloning strategy, eat-me signals are conventionally identified and characterized on a case-by-case basis. The feasibility of functional cloning of eat-me signals by phage display is investigated by characterizing the biological behavior of T7 phages displaying 2 well-known eat-me signals: growth arrest-specific gene 6 (Gas6) and milk fat globule-EGF8 (MFG-E8). Gas6-phage binds to all 3 known Gas6 receptors: Mer, Axl, and Tyro3 receptor tyrosine kinases. Gas6-phage and MFG-E8-phage are capable of binding to phagocytes and nonphagocytes. However, both phages stimulate phage uptake only in phagocytes, including macrophages, microglia, and retinal pigment epithelium cells, but not in nonphagocytes. Furthermore, functional phage selection by phagocytosis in phagocytes enriches both Gas6-phage and MFG-E8-phage, suggesting that phage display can be used as a tool to functionally identify unknown eat-me signals from phage display cDNA library.
Collapse
Affiliation(s)
- Nora B Caberoy
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|