951
|
Murchie EH, Pinto M, Horton P. Agriculture and the new challenges for photosynthesis research. THE NEW PHYTOLOGIST 2009; 181:532-52. [PMID: 19140947 DOI: 10.1111/j.1469-8137.2008.02705.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A rising human population and changing patterns of land use mean that world food production rates will need to be increased by at least 50% by 2050, a massive rise in harvestable yield per hectare of the major crops such as rice (Oryza sativa) and wheat (Triticum aestivum). Combinations of breeding for improved morphology-related traits such as harvest index and increased inputs of water and fertilizer, which have sustained yield increases since the 1960s, will be neither sufficient nor sustainable. An important limiting factor will be the capacity to produce sufficient biomass during favourable growing periods. Here we analyse this problem in the context of increasing the efficiency of conversion of solar energy into biomass, that is, leaf and canopy photosynthesis. Focussing on crops carrying out C3 photosynthesis, we analyse the evidence for 'losses' in the process of conversion of solar energy into crop biomass and we explore novel mechanisms of improving biomass production rates, which have arisen from recent research into the fundamental primary processes of photosynthesis and carbohydrate metabolism. We show that there are several lines of evidence that these processes are not fully optimized for maximum yield. We put forward the hypothesis that the chloroplast itself should be given greater prominence as a sensor, processor and integrator of highly variable environmental signals to allow a more efficient transduction of energy supply into biomass production.
Collapse
Affiliation(s)
- E H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK.
| | | | | |
Collapse
|
952
|
Weltmeier F, Rahmani F, Ehlert A, Dietrich K, Schütze K, Wang X, Chaban C, Hanson J, Teige M, Harter K, Vicente-Carbajosa J, Smeekens S, Dröge-Laser W. Expression patterns within the Arabidopsis C/S1 bZIP transcription factor network: availability of heterodimerization partners controls gene expression during stress response and development. PLANT MOLECULAR BIOLOGY 2009; 69:107-19. [PMID: 18841482 PMCID: PMC2709229 DOI: 10.1007/s11103-008-9410-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 09/22/2008] [Indexed: 05/18/2023]
Abstract
Members of the Arabidopsis group C/S1 basic leucine zipper (bZIP) transcription factor (TF) network are proposed to implement transcriptional reprogramming of plant growth in response to energy deprivation and environmental stresses. The four group C and five group S1 members form specific heterodimers and are, therefore, considered to cooperate functionally. For example, the interplay of C/S1 bZIP TFs in regulating seed maturation genes was analyzed by expression studies and target gene regulation in both protoplasts and transgenic plants. The abundance of the heterodimerization partners significantly affects target gene transcription. Therefore, a detailed analysis of the developmental and stress related expression patterns was performed by comparing promoter: GUS and transcription data. The idea that the C/S1 network plays a role in the allocation of nutrients is supported by the defined and partially overlapping expression patterns in sink leaves, seeds and anthers. Accordingly, metabolic signals strongly affect bZIP expression on the transcriptional and/or post-transcriptional level. Sucrose induced repression of translation (SIRT) was demonstrated for all group S1 bZIPs. In particular, transcription of group S1 genes strongly responds to various abiotic stresses, such as salt (AtbZIP1) or cold (AtbZIP44). In summary, heterodimerization and expression data provide a basic framework to further determine the functional impact of the C/S1 network in regulating the plant energy balance and nutrient allocation.
Collapse
Affiliation(s)
- Fridtjof Weltmeier
- Albrecht-von-Haller-Institut, Universität Göttingen, Untere Karspüle 2, D-37073 Göttingen, Germany
| | - Fatima Rahmani
- Molecular Plant Physiology, Utrecht University, Padualaan 8, Utrecht, CH 3584 The Netherlands
| | - Andrea Ehlert
- Albrecht-von-Haller-Institut, Universität Göttingen, Untere Karspüle 2, D-37073 Göttingen, Germany
| | - Katrin Dietrich
- Albrecht-von-Haller-Institut, Universität Göttingen, Untere Karspüle 2, D-37073 Göttingen, Germany
| | - Katia Schütze
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Auf der Morgenstelle 1, 72076 Tübingen, Germany
| | - Xuan Wang
- Albrecht-von-Haller-Institut, Universität Göttingen, Untere Karspüle 2, D-37073 Göttingen, Germany
| | - Christina Chaban
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Auf der Morgenstelle 1, 72076 Tübingen, Germany
| | - Johannes Hanson
- Molecular Plant Physiology, Utrecht University, Padualaan 8, Utrecht, CH 3584 The Netherlands
| | - Markus Teige
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/5, A-1030 Vienna, Austria
| | - Klaus Harter
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Auf der Morgenstelle 1, 72076 Tübingen, Germany
| | - Jesus Vicente-Carbajosa
- Centro de Biotecnología y Genómica de plantas. Departamento Biotecnología, ETSI Agrónomos, Universidad Politécnica de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Sjef Smeekens
- Molecular Plant Physiology, Utrecht University, Padualaan 8, Utrecht, CH 3584 The Netherlands
| | - Wolfgang Dröge-Laser
- Albrecht-von-Haller-Institut, Universität Göttingen, Untere Karspüle 2, D-37073 Göttingen, Germany
| |
Collapse
|
953
|
Ananieva EA, Gillaspy GE, Ely A, Burnette RN, Erickson FL. Interaction of the WD40 domain of a myoinositol polyphosphate 5-phosphatase with SnRK1 links inositol, sugar, and stress signaling. PLANT PHYSIOLOGY 2008; 148:1868-82. [PMID: 18931139 PMCID: PMC2593651 DOI: 10.1104/pp.108.130575] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 10/14/2008] [Indexed: 05/17/2023]
Abstract
In plants, myoinositol signaling pathways have been associated with several stress, developmental, and physiological processes, but the regulation of these pathways is largely unknown. In our efforts to better understand myoinositol signaling pathways in plants, we have found that the WD40 repeat region of a myoinositol polyphosphate 5-phosphatase (5PTase13; At1g05630) interacts with the sucrose nonfermenting-1-related kinase (SnRK1.1) in the yeast two-hybrid system and in vitro. Plant SnRK1 proteins (also known as AKIN10/11) have been described as central integrators of sugar, metabolic, stress, and developmental signals. Using mutants defective in 5PTase13, we show that 5PTase13 can act as a regulator of SnRK1 activity and that regulation differs with different nutrient availability. Specifically, we show that under low-nutrient or -sugar conditions, 5PTase13 acts as a positive regulator of SnRK1 activity. In contrast, under severe starvation conditions, 5PTase13 acts as a negative regulator of SnRK1 activity. To delineate the regulatory interaction that occurs between 5PTase13 and SnRK1.1, we used a cell-free degradation assay and found that 5PTase13 is required to reduce the amount of SnRK1.1 targeted for proteasomal destruction under low-nutrient conditions. This regulation most likely involves a 5PTase13-SnRK1.1 interaction within the nucleus, as a 5PTase13:green fluorescent protein was localized to the nucleus. We also show that a loss of function in 5PTase13 leads to nutrient level-dependent reduction of root growth, along with abscisic acid (ABA) and sugar insensitivity. 5ptase13 mutants accumulate less inositol 1,4,5-trisphosphate in response to sugar stress and have alterations in ABA-regulated gene expression, both of which are consistent with the known role of inositol 1,4,5-trisphosphate in ABA-mediated signaling. We propose that by forming a protein complex with SnRK1.1 protein, 5PTase13 plays a regulatory role linking inositol, sugar, and stress signaling.
Collapse
Affiliation(s)
- Elitsa A Ananieva
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | | | | | | | | |
Collapse
|
954
|
Schapire AL, Voigt B, Jasik J, Rosado A, Lopez-Cobollo R, Menzel D, Salinas J, Mancuso S, Valpuesta V, Baluska F, Botella MA. Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability. THE PLANT CELL 2008; 20:3374-88. [PMID: 19088329 PMCID: PMC2630439 DOI: 10.1105/tpc.108.063859] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 11/06/2008] [Accepted: 11/30/2008] [Indexed: 05/18/2023]
Abstract
Plasma membrane repair in animal cells uses synaptotagmin 7, a Ca(2+)-activated membrane fusion protein that mediates delivery of intracellular membranes to wound sites by a mechanism resembling neuronal Ca(2+)-regulated exocytosis. Here, we show that loss of function of the homologous Arabidopsis thaliana Synaptotagmin 1 protein (SYT1) reduces the viability of cells as a consequence of a decrease in the integrity of the plasma membrane. This reduced integrity is enhanced in the syt1-2 null mutant in conditions of osmotic stress likely caused by a defective plasma membrane repair. Consistent with a role in plasma membrane repair, SYT1 is ubiquitously expressed, is located at the plasma membrane, and shares all domains characteristic of animal synaptotagmins (i.e., an N terminus-transmembrane domain and a cytoplasmic region containing two C2 domains with phospholipid binding activities). Our analyses support that membrane trafficking mediated by SYT1 is important for plasma membrane integrity and plant fitness.
Collapse
Affiliation(s)
- Arnaldo L Schapire
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
955
|
Branco-Price C, Kaiser KA, Jang CJH, Larive CK, Bailey-Serres J. Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:743-55. [PMID: 18665916 DOI: 10.1111/j.1365-313x.2008.03642.x] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cellular oxygen deprivation (hypoxia/anoxia) requires an acclimation response that enables survival during an energy crisis. To gain new insights into the processes that facilitate the endurance of transient oxygen deprivation, the dynamics of the mRNA translation state and metabolites were quantitatively monitored in Arabidopsis thaliana seedlings exposed to a short (2 h) or prolonged (9 h) period of oxygen and carbon dioxide deprivation and following 1 h of re-aeration. Hypoxia stress and reoxygenation promoted adjustments in the levels of polyribosomes (polysomes) that were highly coordinated with cellular ATP content. A quantitative comparison of steady-state and polysomal mRNA populations revealed that over half of the cellular mRNAs were restricted from polysome complexes during the stress, with little or no change in abundance. This selective repression of translation was rapidly reversed upon reoxygenation. Comparison of the adjustment in gene transcripts and metabolites demonstrated that profiling of polysomal mRNAs strongly augments the prediction of cellular processes that are altered during cellular oxygen deprivation. The selective translation of a subset of mRNAs promotes the conservation of ATP and facilitates the transition to anaerobic metabolism during low-oxygen stress.
Collapse
|
956
|
Abstract
Plants, restricted by their environment, need to integrate a wide variety of stimuli with their metabolic activity, growth and development. Sugars, generated by photosynthetic carbon fixation, are central in coordinating metabolic fluxes in response to the changing environment and in providing cells and tissues with the necessary energy for continued growth and survival. A complex network of metabolic and hormone signaling pathways are intimately linked to diverse sugar responses. A combination of genetic, cellular and systems analyses have uncovered nuclear HXK1 (hexokinase1) as a pivotal and conserved glucose sensor, directly mediating transcription regulation, while the KIN10/11 energy sensor protein kinases function as master regulators of transcription networks under sugar and energy deprivation conditions. The involvement of disaccharide signals in the regulation of specific cellular processes and the potential role of cell surface receptors in mediating sugar signals add to the complexity. This chapter gives an overview of our current insight in the sugar sensing and signaling network and describes some of the molecular mechanisms involved.
Collapse
Affiliation(s)
- Matthew Ramon
- Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
| | - Filip Rolland
- Department of Biology, Institute of Botany and Microbiology, K.U. Leuven, Kasteelpark Arenberg 31, 3001, Heverlee, Belgium
| | - Jen Sheen
- Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
957
|
Cuellar-Ortiz SM, De La Paz Arrieta-Montiel M, Acosta-Gallegos J, Covarrubias AA. Relationship between carbohydrate partitioning and drought resistance in common bean. PLANT, CELL & ENVIRONMENT 2008; 31:1399-409. [PMID: 18643951 DOI: 10.1111/j.1365-3040.2008.01853.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Drought is a major yield constraint in common bean (Phaseolus vulgaris L.). Pulse-chase (14)C-labelling experiments were performed using Pinto Villa (drought resistant) and Canario 60 (drought sensitive) cultivars, grown under optimal irrigation and water-deficit conditions. Starch and the radioactive label incorporated into starch were measured in leaves and pods at different time points, between the initiation of pod development and the production of mature pods. The water-stress treatment induced a higher starch accumulation in the drought-resistant cultivar pods than in those of the drought-sensitive cultivar. This effect was more noticeable during the early stages of pod development. Consistently, a reduction of starch content occurred in the leaves of the drought-resistant cultivar during the grain-filling stage. Furthermore, a synchronized accumulation of sucrose was observed in immature pods of this cultivar. These data indicate that carbohydrate partitioning is affected by drought in common bean, and that the modulation of this partitioning towards seed filling has been a successful strategy in the development of drought-resistant cultivars. In addition, our results suggest that, in the drought-resistant cultivar, the efficient carbon mobilization towards the seeds in response to water limitation is favoured by a mechanism that implies a more effective sucrose transport.
Collapse
Affiliation(s)
- Sonia M Cuellar-Ortiz
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | | | | |
Collapse
|
958
|
Abstract
In higher plants, light is crucial for regulation of nitrate uptake, translocation and assimilation into organic compounds. Part of this metabolism is tightly coupled to photosynthesis because the enzymes involved, nitrite reductase and glutamate synthase, are localized to the chloroplasts and receive reducing power from photosynthetic electron transport. However, important enzymes in nitrate acquisition and reduction are localized to cellular compartments other than chloroplasts and are also up-regulated by light, i.e. transporters in cell and organellar membranes and nitrate reductase in the cytosol. This review describes the different light-dependent signalling cascades regulating nitrate metabolism at the transcriptional as well as post-transcriptional level, and how reactions in different compartments of the cell are co-ordinated. Essential players in this network are phytochrome and HY5 (long hypocotyls 5)/HYH (HY5 homologue)-dependent signalling pathways, the energy-related AMPK (AMP-activated protein kinase) protein kinase homologue SNRK1 (sucrose non-fermenting kinase 1-related kinase), chloroplastic thioredoxins and the prokaryotically originated PII protein. A complex light-dependent network of regulation emerges, which appears to be necessary for optimal nitrogen assimilation and for avoiding the accumulation of toxic intermediates and side products, such as nitrite and reactive oxygen compounds.
Collapse
|
959
|
Kasai M. Regulation of leaf photosynthetic rate correlating with leaf carbohydrate status and activation state of Rubisco under a variety of photosynthetic source/sink balances. PHYSIOLOGIA PLANTARUM 2008; 134:216-26. [PMID: 18435694 DOI: 10.1111/j.1399-3054.2008.01105.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
There is evidence suggesting that in plants changes in the photosynthetic source/sink balance are an important factor that regulates leaf photosynthetic rate through affects on the leaf carbohydrate status. However, to resolve the regulatory mechanism of leaf photosynthetic rate associated with photosynthetic source/sink balance, information, particularly on mutual relationships of experimental data that are linked with a variety of photosynthetic source/sink balances, seems to be still limited. Thus, a variety of manipulations altering the plant source/sink ratio were carried out with soybean plants, and the mutual relationships of various characteristics such as leaf photosynthetic rate, carbohydrate content and the source/sink ratio were analyzed in manipulated and non-manipulated control plants. The manipulations were removal of one-half or all pods, removal of one-third or two-third leaves, and shading of one-third or one-half leaves with soybean plants grown for 8 weeks under 10 h light (24 degrees C) and 14 h darkness (17 degrees C). It was shown that there were significant negative correlations between source/sink ratio (dry weight ratio of attached leaves to other all organs) and leaf photosynthetic rate; source/sink ratio and activation ratio (percentage of initial activity to total activity) of Rubisco in leaf extract; leaf carbohydrate (sucrose or starch) content and photosynthetic rate; carbohydrate (sucrose or starch) content and activation ratio of Rubisco; amount of protein-bound ribulose-1,5-bisphosphate (RuBP) in leaf extract and leaf photosynthetic rate; and the amount of protein-bound RuBP and activation ratio of Rubisco. In addition, there were significant positive correlations between source/sink ratio and leaf carbohydrate (sucrose or starch) content; source/sink ratio and the amount of protein-bound RuBP; carbohydrate (sucrose or starch) content and amount of protein-bound RuBP and the activation ratio of Rubisco and leaf photosynthetic rate. The plant water content, leaf chlorophyll and Rubisco contents were not affected significantly by the manipulations. There is a previous report in Arabidopsis thaliana that the amount of protein-bound RuBP in leaf extract correlates negatively with the activation ratio of Rubisco in the leaf extract. Therefore, the results obtained from the manipulation experiments indicate that there is a regulatory mechanism for the leaf photosynthetic rate that correlates negatively with leaf carbohydrate (sucrose and starch) status and positively with the activation state of Rubisco under a variety of photosynthetic source/sink balances.
Collapse
Affiliation(s)
- Minobu Kasai
- Department of Biofunctional Science, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan.
| |
Collapse
|
960
|
Baena-González E, Sheen J. Convergent energy and stress signaling. TRENDS IN PLANT SCIENCE 2008; 13:474-82. [PMID: 18701338 PMCID: PMC3075853 DOI: 10.1016/j.tplants.2008.06.006] [Citation(s) in RCA: 404] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 05/17/2023]
Abstract
Plants are constantly confronted by multiple types of stress. Despite their distinct origin and mode of perception, nutrient deprivation and most stresses have an impact on the overall energy status of the plant, leading to convergent downstream responses that include largely overlapping transcriptional patterns. The emerging view is that this transcriptome reprogramming in energy and stress signaling is partly regulated by the evolutionarily conserved energy sensor protein kinases, SNF1 (sucrose non-fermenting 1) in yeast, AMPK (AMP-activated protein kinase) in mammals and SnRK1 (SNF1-related kinase 1) in plants. Upon sensing the energy deficit associated with stress, nutrient deprivation and darkness, SnRK1 triggers extensive transcriptional changes that contribute to restoring homeostasis, promoting cell survival and elaborating longer-term responses for adaptation, growth and development.
Collapse
|
961
|
Wingler A, Roitsch T. Metabolic regulation of leaf senescence: interactions of sugar signalling with biotic and abiotic stress responses. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10 Suppl 1:50-62. [PMID: 18721311 DOI: 10.1111/j.1438-8677.2008.00086.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sugars are important signals in the regulation of plant metabolism and development. During stress and in senescing leaves, sugars often accumulate. In addition, both sugar accumulation and stress can induce leaf senescence. Infection by bacterial and fungal pathogens and attack by herbivores and gall-forming insects may influence leaf senescence via modulation of the sugar status, either by directly affecting primary carbon metabolism or by regulating steady state levels of plant hormones. Many types of biotic interactions involve the induction of extracellular invertase as the key enzyme of an apoplasmic phloem unloading pathway, resulting in a source-sink transition and an increased hexose/sucrose ratio. Induction of the levels of the phytohormones ethylene and jasmonate in biotic interactions results in accelerated senescence, whereas an increase in plant- or pathogen-derived cytokinins delays senescence and results in the formation of green islands within senescing leaves. Interactions between sugar and hormone signalling also play a role in response to abiotic stress. For example, interactions between sugar and abscisic acid (ABA) signalling may be responsible for the induction of senescence during drought stress. Cold treatment, on the other hand, can result in delayed senescence, despite sugar and ABA accumulation. Moreover, natural variation can be found in senescence regulation by sugars and in response to stress: in response to drought stress, both drought escape and dehydration avoidance strategies have been described in different Arabidopsis accessions. The regulation of senescence by sugars may be key to these different strategies in response to stress.
Collapse
Affiliation(s)
- A Wingler
- Department of Biology, University College London, Gower Street, London, UK.
| | | |
Collapse
|
962
|
Corrêa LGG, Riaño-Pachón DM, Schrago CG, dos Santos RV, Mueller-Roeber B, Vincentz M. The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS One 2008; 3:e2944. [PMID: 18698409 PMCID: PMC2492810 DOI: 10.1371/journal.pone.0002944] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 07/22/2008] [Indexed: 01/07/2023] Open
Abstract
Background Transcription factors of the basic leucine zipper (bZIP) family control important processes in all eukaryotes. In plants, bZIPs are regulators of many central developmental and physiological processes including photomorphogenesis, leaf and seed formation, energy homeostasis, and abiotic and biotic stress responses. Here we performed a comprehensive phylogenetic analysis of bZIP genes from algae, mosses, ferns, gymnosperms and angiosperms. Methodology/Principal Findings We identified 13 groups of bZIP homologues in angiosperms, three more than known before, that represent 34 Possible Groups of Orthologues (PoGOs). The 34 PoGOs may correspond to the complete set of ancestral angiosperm bZIP genes that participated in the diversification of flowering plants. Homologous genes dedicated to seed-related processes and ABA-mediated stress responses originated in the common ancestor of seed plants, and three groups of homologues emerged in the angiosperm lineage, of which one group plays a role in optimizing the use of energy. Conclusions/Significance Our data suggest that the ancestor of green plants possessed four bZIP genes functionally involved in oxidative stress and unfolded protein responses that are bZIP-mediated processes in all eukaryotes, but also in light-dependent regulations. The four founder genes amplified and diverged significantly, generating traits that benefited the colonization of new environments.
Collapse
Affiliation(s)
- Luiz Gustavo Guedes Corrêa
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- Department of Molecular Biology, University of Potsdam, Potsdam-Golm, Germany
- Cooperative Research Group, Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Diego Mauricio Riaño-Pachón
- Department of Molecular Biology, University of Potsdam, Potsdam-Golm, Germany
- GabiPD Team, Bioinformatics Group, Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Carlos Guerra Schrago
- Laboratório de Biodiversidade Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato Vicentini dos Santos
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Bernd Mueller-Roeber
- Department of Molecular Biology, University of Potsdam, Potsdam-Golm, Germany
- Cooperative Research Group, Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Michel Vincentz
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- * E-mail:
| |
Collapse
|
963
|
Tuteja N, Sopory SK. Chemical signaling under abiotic stress environment in plants. PLANT SIGNALING & BEHAVIOR 2008; 3:525-36. [PMID: 19513246 PMCID: PMC2634487 DOI: 10.4161/psb.3.8.6186] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 04/24/2008] [Indexed: 05/18/2023]
Abstract
Many chemicals are critical for plant growth and development and play an important role in integrating various stress signals and controlling downstream stress responses by modulating gene expression machinery and regulating various transporters/pumps and biochemical reactions. These chemicals include calcium (Ca(2+)), cyclic nucleotides, polyphosphoinositides, nitric oxide (NO), sugars, abscisic acid (ABA), jasmonates (JA), salicylic acid (SA) and polyamines. Ca(2+) is one of the very important ubiquitous second messengers in signal transduction pathways and usually its concentration increases in response to the stimuli including stress signals. Many Ca(2+) sensors detect the Ca(2+) signals and direct them to downstream signaling pathways by binding and activating diverse targets. cAMP or cGMP protects the cell with ion toxicity. Phosphoinositides are known to be involved both in transmission of signal across the plasma membrane and in intracellular signaling. NO activates various defense genes and acts as a developmental regulator in plants. Sugars affect the expression of many genes involved in photosynthesis, glycolysis, nitrogen metabolism, sucrose and starch metabolism, defense mechanisms and cell cycle regulation. ABA, JA, SA and polyamines are also involved in many stress responses. Cross-talk between these chemical signaling pathways is very common in plant responses to abiotic and bitotic factors. In this article we have described the role of these chemicals in initiating signaling under stress conditions mainly the abiotic stress.
Collapse
Affiliation(s)
- Narendra Tuteja
- Plant Molecular Biology Group; International Centre for Genetic Engineering and Biotechnology (ICGEB); New Delhi, India
| | | |
Collapse
|
964
|
Karve A, Rauh BL, Xia X, Kandasamy M, Meagher RB, Sheen J, Moore BD. Expression and evolutionary features of the hexokinase gene family in Arabidopsis. PLANTA 2008; 228:411-25. [PMID: 18481082 PMCID: PMC2953952 DOI: 10.1007/s00425-008-0746-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 04/24/2008] [Accepted: 04/24/2008] [Indexed: 05/17/2023]
Abstract
Arabidopsis hexokinase1 (HXK1) is a moonlighting protein that has separable functions in glucose signaling and in glucose metabolism. In this study, we have characterized expression features and glucose phosphorylation activities of the six HXK gene family members in Arabidopsis thaliana. Three of the genes encode catalytically active proteins, including a stromal-localized HXK3 protein that is expressed mostly in sink organs. We also show that three of the genes encode hexokinase-like (HKL) proteins, which are about 50% identical to AtHXK1, but do not phosphorylate glucose or fructose. Expression studies indicate that both HKL1 and HKL2 transcripts occur in most, if not all, plant tissues and that both proteins are targeted within cells to mitochondria. The HKL1 and HKL2 proteins have 6-10 amino acid insertions/deletions (indels) at the adenosine binding domain. In contrast, HKL3 transcript was detected only in flowers, the protein lacks the noted indels, and the protein has many other amino acid changes that might compromise its ability even to bind glucose or ATP. Activity measurements of HXKs modified by site-directed mutagenesis suggest that the lack of catalytic activities in the HKL proteins might be attributed to any of numerous existing changes. Sliding windows analyses of coding sequences in A. thaliana and A. lyrata ssp. lyrata revealed a differential accumulation of nonsynonymous changes within exon 8 of both HKL1 and HXK3 orthologs. We further discuss the possibility that the non-catalytic HKL proteins have regulatory functions instead of catalytic functions.
Collapse
Affiliation(s)
- Abhijit Karve
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Bradley L. Rauh
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Xiaoxia Xia
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | | | | | - Jen Sheen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Brandon d. Moore
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
965
|
Sirpiö S, Khrouchtchova A, Allahverdiyeva Y, Hansson M, Fristedt R, Vener AV, Scheller HV, Jensen PE, Haldrup A, Aro EM. AtCYP38 ensures early biogenesis, correct assembly and sustenance of photosystem II. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:639-51. [PMID: 18445132 DOI: 10.1111/j.1365-313x.2008.03532.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
AtCYP38 is a thylakoid lumen protein comprising the immunophilin domain and the phosphatase inhibitor module. Here we show the association of AtCYP38 with the photosystem II (PSII) monomer complex and address its functional role using AtCYP38-deficient mutants. The dynamic greening process of etiolated leaves failed in the absence of AtCYP38, due to specific problems in the biogenesis of PSII complexes. Also the development of leaves under short-day conditions was severely disturbed. Detailed biophysical and biochemical analysis of mature AtCYP38-deficient plants from favorable growth conditions (long photoperiod) revealed: (i) intrinsic malfunction of PSII, which (ii) occurred on the donor side of PSII and (iii) was dependent on growing light intensity. AtCYP38 mutant plants also showed decreased accumulation of PSII, which was shown not to originate from impaired D1 synthesis or assembly of PSII monomers, dimers and supercomplexes as such but rather from the incorrect fine-tuning of the oxygen-evolving side of PSII. This, in turn, rendered PSII centers extremely susceptible to photoinhibition. AtCYP38 deficiency also drastically decreased the in vivo phosphorylation of PSII core proteins, probably related to the absence of the AtCYP38 phosphatase inhibitor domain. It is proposed that during PSII assembly AtCYP38 protein guides the proper folding of D1 (and CP43) into PSII, thereby enabling the correct assembly of the water-splitting Mn(4)-Ca cluster even with high turnover of PSII.
Collapse
Affiliation(s)
- Sari Sirpiö
- Department of Biology, Plant Physiology and Molecular Biology, University of Turku, FI-20014 Turku, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
966
|
Hou X, Hu WW, Shen L, Lee LYC, Tao Z, Han JH, Yu H. Global identification of DELLA target genes during Arabidopsis flower development. PLANT PHYSIOLOGY 2008; 147:1126-42. [PMID: 18502975 PMCID: PMC2442519 DOI: 10.1104/pp.108.121301] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 05/20/2008] [Indexed: 05/19/2023]
Abstract
Gibberellin (GA) plays important roles in regulating many aspects of plant development. GA derepresses its signaling pathway by promoting the degradation of DELLA proteins, a family of nuclear growth repressors. Although the floral organ identity is established in flowers of the GA-deficient mutant ga1-3, the growth of all floral organs is severely retarded. In particular, abortive anther development in ga1-3 results in male sterility. Genetic analysis has revealed that various combinations of null mutants of DELLA proteins could gradually rescue floral organ defects in ga1-3 and that RGA is the most important DELLA protein involved in floral organ development. To elucidate the early molecular events controlled by RGA during flower development, we performed whole-genome microarray analysis to identify genes in response to the steroid-inducible activation of RGA in ga1-3 rgl2 rga 35S:RGA-GR. Although DELLA proteins were suggested as transcriptional repressors, similar numbers of genes were down-regulated or up-regulated by RGA during floral organ development. More than one-third of RGA down-regulated genes were specifically or predominantly expressed in stamens. A significant number of RGA-regulated genes are involved in phytohormone signaling or stress response. Further expression analysis through activation of RGA by steroid induction combined with cycloheximide identified eight genes as immediate targets of RGA. In situ hybridization and transgenic studies further showed that the expression pattern and function of several selected genes were consistent with the predictions from microarray analysis. These results suggest that DELLA regulation of floral organ development is modulated by multiple phytohormones and stress signaling pathways.
Collapse
Affiliation(s)
- Xingliang Hou
- Department of Biological Sciences, Faculty of Sciences , National University of Singapore, Singapore 117543
| | | | | | | | | | | | | |
Collapse
|
967
|
Vlad F, Turk BE, Peynot P, Leung J, Merlot S. A versatile strategy to define the phosphorylation preferences of plant protein kinases and screen for putative substrates. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:104-17. [PMID: 18363786 DOI: 10.1111/j.1365-313x.2008.03488.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Most signaling networks are regulated by reversible protein phosphorylation. The specificity of this regulation depends in part on the capacity of protein kinases to recognize and efficiently phosphorylate particular sequence motifs in their substrates. Sequenced plant genomes potentially encode over than 1000 protein kinases, representing 4% of the proteins, twice the proportion found in humans. This plethora of plant kinases requires the development of high-throughput strategies to identify their substrates. In this study, we have implemented a semi-degenerate peptide array screen to define the phosphorylation preferences of four kinases from Arabidopsis thaliana that are representative of the plant calcium-dependent protein kinase and Snf1-related kinase superfamily. We converted these quantitative data into position-specific scoring matrices to identify putative substrates of these kinases in silico in protein sequence databases. Our data show that these kinases display related but nevertheless distinct phosphorylation motif preferences, suggesting that they might share common targets but are likely to have specific substrates. Our analysis also reveals that a conserved motif found in the stress-related dehydrin protein family may be targeted by the SnRK2-10 kinase. Our results indicate that semi-degenerate peptide array screening is a versatile strategy that can be used on numerous plant kinases to facilitate identification of their substrates, and therefore represents a valuable tool to decipher phosphorylation-regulated signaling networks in plants.
Collapse
Affiliation(s)
- Florina Vlad
- Centre National de la Recherche Scientifique, Institut des Sciences du Végétal, UPR 2355, 1 avenue de la Terrasse, Bât. 23, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
968
|
Traverso JA, Meinnel T, Giglione C. Expanded impact of protein N-myristoylation in plants. PLANT SIGNALING & BEHAVIOR 2008; 3:501-2. [PMID: 19704499 PMCID: PMC2634443 DOI: 10.4161/psb.3.7.6039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 04/04/2008] [Indexed: 05/05/2023]
Abstract
N-MYR controls the function of the plant protein complex SnRK1, described as one of the most important plant regulatory protein in stress and energy signalling. In plant cells, N-MYR is involved in a significantly higher number of metabolic pathways than in yeast or human. Some N-myristoylated protein families are solely encountered in plant cells. This lipid modification could be involved in the control of the redox imbalances originating from different stresses in plants. This prevalence of N-MYR in such proteins is unique to the plant kingdom. We hypothesize that this expansion of the mechanism in plants improves the control of the damages induced by environmental changes.
Collapse
Affiliation(s)
- José A Traverso
- Protein Maturation and Cell Fate; ISV; UPR2355; Centre National de la Recherche Scientifique; France
| | | | | |
Collapse
|
969
|
Abstract
About 200 plant biologists convened in Keystone, Colorado, for the "Plant Hormones and Signaling" symposium, which was organized by Joanne Chory, Joe Ecker, and Mark Estelle. The meeting was run concurrently with the "Plant Innate Immunity" symposium organized by Jonathan Jones and Jane Glazebrook. In this report, we summarize the progress in plant hormones and signaling.
Collapse
Affiliation(s)
- Paula McSteen
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
970
|
Affiliation(s)
- Laurentius A. C. J. Voesenek
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, Netherlands
| |
Collapse
|
971
|
Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30:214-26. [PMID: 18439900 PMCID: PMC2674027 DOI: 10.1016/j.molcel.2008.03.003] [Citation(s) in RCA: 2970] [Impact Index Per Article: 174.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 01/21/2008] [Accepted: 03/07/2008] [Indexed: 12/17/2022]
Abstract
AMPK is a highly conserved sensor of cellular energy status that is activated under conditions of low intracellular ATP. AMPK responds to energy stress by suppressing cell growth and biosynthetic processes, in part through its inhibition of the rapamycin-sensitive mTOR (mTORC1) pathway. AMPK phosphorylation of the TSC2 tumor suppressor contributes to suppression of mTORC1; however, TSC2-deficient cells remain responsive to energy stress. Using a proteomic and bioinformatics approach, we sought to identify additional substrates of AMPK that mediate its effects on growth control. We report here that AMPK directly phosphorylates the mTOR binding partner raptor on two well-conserved serine residues, and this phosphorylation induces 14-3-3 binding to raptor. The phosphorylation of raptor by AMPK is required for the inhibition of mTORC1 and cell-cycle arrest induced by energy stress. These findings uncover a conserved effector of AMPK that mediates its role as a metabolic checkpoint coordinating cell growth with energy status.
Collapse
Affiliation(s)
- Dana M. Gwinn
- Molecular and Cell Biology Laboratory, Dulbecco Center for Cancer Research, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - David B. Shackelford
- Molecular and Cell Biology Laboratory, Dulbecco Center for Cancer Research, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Daniel F. Egan
- Molecular and Cell Biology Laboratory, Dulbecco Center for Cancer Research, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Maria M. Mihaylova
- Molecular and Cell Biology Laboratory, Dulbecco Center for Cancer Research, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Annabelle Mery
- Molecular and Cell Biology Laboratory, Dulbecco Center for Cancer Research, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Debbie S. Vasquez
- Molecular and Cell Biology Laboratory, Dulbecco Center for Cancer Research, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Benjamin E. Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Reuben J. Shaw
- Molecular and Cell Biology Laboratory, Dulbecco Center for Cancer Research, Salk Institute for Biological Studies, La Jolla, CA 92037
| |
Collapse
|
972
|
Cossegal M, Chambrier P, Mbelo S, Balzergue S, Martin-Magniette ML, Moing A, Deborde C, Guyon V, Perez P, Rogowsky P. Transcriptional and metabolic adjustments in ADP-glucose pyrophosphorylase-deficient bt2 maize kernels. PLANT PHYSIOLOGY 2008; 146:1553-70. [PMID: 18287491 PMCID: PMC2287333 DOI: 10.1104/pp.107.112698] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 02/15/2008] [Indexed: 05/09/2023]
Abstract
During the cloning of monogenic recessive mutations responsible for a defective kernel phenotype in a Mutator-induced Zea mays mutant collection, we isolated a new mutant allele in Brittle2 (Bt2), which codes for the small subunit of ADP-glucose pyrophosphorylase (AGPase), a key enzyme in starch synthesis. Reverse transcription-polymerase chain reaction experiments with gene-specific primers confirmed a predominant expression of Bt2 in endosperm, of Agpsemzm in embryo, and of Agpslzm in leaf, but also revealed considerable additional expression in various tissues for all three genes. Bt2a, the classical transcript coding for a cytoplasmic isoform, was almost exclusively expressed in the developing endosperm, whereas Bt2b, an alternative transcript coding for a plastidial isoform, was expressed in almost all tissues tested with a pattern very similar to that of Agpslzm. The phenotypic analysis showed that, at 30 d after pollination (DAP), mutant kernels were plumper than wild-type kernels, that the onset of kernel collapse took place between 31 and 35 DAP, and that the number of starch grains was greatly reduced in the mutant endosperm but not the mutant embryo. A comparative transcriptome analysis of wild-type and bt2-H2328 kernels at middevelopment (35 DAP) with the 18K GeneChip Maize Genome Array led to the conclusion that the lack of Bt2-encoded AGPase triggers large-scale changes on the transcriptional level that concern mainly genes involved in carbohydrate or amino acid metabolic pathways. Principal component analysis of (1)H nuclear magnetic resonance metabolic profiles confirmed the impact of the bt2-H2328 mutation on these pathways and revealed that the bt2-H2328 mutation did not only affect the endosperm, but also the embryo at the metabolic level. These data suggest that, in the bt2-H2328 endosperms, regulatory networks are activated that redirect excess carbon into alternative biosynthetic pathways (amino acid synthesis) or into other tissues (embryo).
Collapse
Affiliation(s)
- Magalie Cossegal
- Reproduction et Développement des Plantes, UMR 879 INRA-CNRS-ENSL-UCBL, IFR128 BioSciences Lyon-Gerland, F-69364 Lyon cedex 07, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
973
|
Usadel B, Bläsing OE, Gibon Y, Retzlaff K, Höhne M, Günther M, Stitt M. Global transcript levels respond to small changes of the carbon status during progressive exhaustion of carbohydrates in Arabidopsis rosettes. PLANT PHYSIOLOGY 2008; 146:1834-61. [PMID: 18305208 PMCID: PMC2287354 DOI: 10.1104/pp.107.115592] [Citation(s) in RCA: 262] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Accepted: 01/31/2008] [Indexed: 05/18/2023]
Abstract
The balance between the supply and utilization of carbon (C) changes continually. It has been proposed that plants respond in an acclimatory manner, modifying C utilization to minimize harmful periods of C depletion. This hypothesis predicts that signaling events are initiated by small changes in C status. We analyzed the global transcriptional response to a gradual depletion of C during the night and an extension of the night, where C becomes severely limiting from 4 h onward. The response was interpreted using published datasets for sugar, light, and circadian responses. Hundreds of C-responsive genes respond during the night and others very early in the extended night. Pathway analysis reveals that biosynthesis and cellular growth genes are repressed during the night and genes involved in catabolism are induced during the first hours of the extended night. The C response is amplified by an antagonistic interaction with the clock. Light signaling is attenuated during the 24-h light/dark cycle. A model was developed that uses the response of 22K genes during a circadian cycle and their responses to C and light to predict global transcriptional responses during diurnal cycles of wild-type and starchless pgm mutant plants and an extended night in wild-type plants. By identifying sets of genes that respond at different speeds and times during C depletion, our extended dataset and model aid the analysis of candidates for C signaling. This is illustrated for AKIN10 and four bZIP transcription factors, and sets of genes involved in trehalose signaling, protein turnover, and starch breakdown.
Collapse
Affiliation(s)
- Björn Usadel
- Metanomics GmbH, Tegler Weg 33, 10589 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
974
|
Hanson J, Hanssen M, Wiese A, Hendriks MMWB, Smeekens S. The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:935-49. [PMID: 18088315 DOI: 10.1111/j.1365-313x.2007.03385.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Translation of the transcription factor bZIP11 is repressed by sucrose in a process that involves a highly conserved peptide encoded by the 5' leaders of bZIP11 and other plant basic region leucine zipper (bZip) genes. It is likely that a specific signaling pathway operating at physiological sucrose concentrations controls metabolism via a feedback mechanism. In this paper bZIP11 target processes are identified using transiently increased nuclear bZIP11 levels and genome-wide expression analysis. bZIP11 affects the expression of hundreds of genes with proposed functions in biochemical pathways and signal transduction. The expression levels of approximately 80% of the genes tested are not affected by bZIP11 promoter-mediated overexpression of bZIP11. This suggests that <20% of the identified genes appear to be physiologically relevant targets of bZIP11. ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE2 are among the rapidly activated bZIP11 targets, whose induction is independent of protein translation. Transient expression experiments in Arabidopsis protoplasts show that the bZIP11-dependent activation of the ASPARAGINE SYNTHETASE1 gene is dependent on a G-box element present in the promoter. Increased bZIP11 expression leads to decreased proline and increased phenylalanine levels. A model is proposed in which sugar signals control amino acid levels via the bZIP11 transcription factor.
Collapse
Affiliation(s)
- Johannes Hanson
- Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
975
|
Gulino A, Lupo F, Condorelli GG, Fragalà ME, Amato ME, Scarlata G. Reversible photoswitching of stimuli-responsive Si(100) surfaces engineered with an assembled 1-cyano-1-phenyl-2-[4′-(10-undecenyloxy)phenyl]-ethylene monolayer. ACTA ACUST UNITED AC 2008. [DOI: 10.1039/b809037h] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
976
|
Loreti E, Povero G, Novi G, Solfanelli C, Alpi A, Perata P. Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. THE NEW PHYTOLOGIST 2008; 179:1004-1016. [PMID: 18537890 DOI: 10.1111/j.1469-8137.2008.02511.x] [Citation(s) in RCA: 246] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Anthocyanins are secondary metabolites, which play an important role in the physiology of plants. Both sucrose and hormones regulate anthocyanin synthesis. Here, the interplay between sucrose and plant hormones was investigated in the expression of sucrose-regulated genes coding for anthocyanin biosynthetic enzymes in Arabidopsis seedlings. The expression pattern of 14 genes involved in the anthocyanin biosynthetic pathway, including two transcription factors (PAP1, PAP2), was analysed by real-time reverse transcriptase polymerase chain reaction (RT-PCR) in Arabidopsis seedlings treated with sucrose and plant hormones. Sucrose-induction of the anthocyanin synthesis pathway was repressed by the addition of gibberellic acid (GA) whereas jasmonate (JA) and abscisic acid (ABA) had a synergic effect with sucrose. The gai mutant was less sensitive to GA-dependent repression of dihydroflavonol reductase. This would seem to prove that GAI signalling is involved in the crosstalk between sucrose and GA in wild-type Arabidopsis seedlings. Conversely, the inductive effect of sucrose was not strictly ABA mediated. Sucrose induction of anthocyanin genes required the COI1 gene, but not JAR1, which suggests a possible convergence of the jasmonate- and sucrose-signalling pathways. The results suggest the existence of a crosstalk between the sucrose and hormone signalling pathways in the regulation of the anthocyanin biosynthetic pathway.
Collapse
Affiliation(s)
- Elena Loreti
- Institute of Biology and Agricultural Biotechnology, CNR, Via del Borghetto 80, 56124, Pisa, Italy
| | - Giovanni Povero
- Plant Lab, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, I-56127 Pisa, Italy
| | - Giacomo Novi
- Department of Crop Plant Biology, University of Pisa, Via Mariscoglio 34, I-56124 Pisa, Italy
| | - Cinzia Solfanelli
- Department of Crop Plant Biology, University of Pisa, Via Mariscoglio 34, I-56124 Pisa, Italy
| | - Amedeo Alpi
- Department of Crop Plant Biology, University of Pisa, Via Mariscoglio 34, I-56124 Pisa, Italy
| | - Pierdomenico Perata
- Plant Lab, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, I-56127 Pisa, Italy
| |
Collapse
|
977
|
Abstract
Complex gene regulatory networks are composed of genes, noncoding RNAs, proteins, metabolites, and signaling components. The availability of genome-wide mutagenesis libraries; large-scale transcriptome, proteome, and metabalome data sets; and new high-throughput methods that uncover protein interactions underscores the need for mathematical modeling techniques that better enable scientists to synthesize these large amounts of information and to understand the properties of these biological systems. Systems biology approaches can allow researchers to move beyond a reductionist approach and to both integrate and comprehend the interactions of multiple components within these systems. Descriptive and mathematical models for gene regulatory networks can reveal emergent properties of these plant systems. This review highlights methods that researchers are using to obtain large-scale data sets, and examples of gene regulatory networks modeled with these data. Emergent properties revealed by the use of these network models and perspectives on the future of systems biology are discussed.
Collapse
Affiliation(s)
- Terri A. Long
- Department of Biology, Duke University, Durham, North Carolina 27708
- IGSP Center for Systems Biology, Duke University, Durham, North Carolina 27708
| | - Siobhan M. Brady
- Department of Biology, Duke University, Durham, North Carolina 27708
- IGSP Center for Systems Biology, Duke University, Durham, North Carolina 27708
| | - Philip N. Benfey
- Department of Biology, Duke University, Durham, North Carolina 27708
- IGSP Center for Systems Biology, Duke University, Durham, North Carolina 27708
| |
Collapse
|
978
|
Lee JH, Terzaghi W, Gusmaroli G, Charron JBF, Yoon HJ, Chen H, He YJ, Xiong Y, Deng XW. Characterization of Arabidopsis and rice DWD proteins and their roles as substrate receptors for CUL4-RING E3 ubiquitin ligases. THE PLANT CELL 2008; 20:152-67. [PMID: 18223036 PMCID: PMC2254929 DOI: 10.1105/tpc.107.055418] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 12/19/2007] [Accepted: 01/09/2008] [Indexed: 05/18/2023]
Abstract
A subset of WD40 proteins that contain a DWD motif (for DDB1 binding WD40) is reported to act as substrate receptors for DDB1-CUL4-ROC1 (for Damaged DNA Binding 1-Cullin 4-Regulator of Cullins 1) based E3 ubiquitin ligases in humans. Here, we report 85 Arabidopsis thaliana and 78 rice (Oryza sativa) proteins containing the conserved 16-amino acid DWD motif. We show by yeast two-hybrid and in vivo coimmunoprecipitation that 11 Arabidopsis DWD proteins directly interact with DDB1 and thus may serve as substrate receptors for the DDB1-CUL4 machinery. We further examine whether the DWD protein PRL1 (for Pleiotropic Regulatory Locus 1) may act as part of a CUL4-based E3 ligase. PRL1 directly interacts with DDB1, and prl1 and cul4cs mutants exhibited similar phenotypes, including altered responses to a variety of stimuli. Moreover, AKIN10 (for Arabidopsis SNF1 Kinase Homolog 10) was degraded more slowly in cell extracts of prl1 and cul4cs than in cell extracts of the wild type. Thus, both genetic and biochemical analyses support the conclusion that PRL1 is the substrate receptor of a CUL4-ROC1-DDB1-PRL1 E3 ligase involved in the degradation of AKIN10. This work adds a large new family to the current portfolio of plant E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Jae-Hoon Lee
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Conecticut 06520-8104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
979
|
Watkinson JI, Hendricks L, Sioson AA, Heath LS, Bohnert HJ, Grene R. Tuber development phenotypes in adapted and acclimated, drought-stressed Solanum tuberosum ssp. andigena have distinct expression profiles of genes associated with carbon metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:34-45. [PMID: 18061466 DOI: 10.1016/j.plaphy.2007.10.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Indexed: 05/10/2023]
Abstract
A drought screen identified accessions of Solanum tuberosum ssp. andigena that showed varying degrees of physiological acclimation or adaptation to repeated drought stress. The accessions also showed variable tuber phenotypes from small tubers that failed to develop in an accession that showed photosynthetic adaptation to normal tubers in an accession with a phenotype showing some degree of photosynthetic adaptation and acclimation. Using microarray data, we correlated the expression of genes associated with carbon metabolism with the tuber development phenotypes under drought. Genes associated with sucrose and starch metabolism showed responses consistent with starch deficiency in the adapted accession and normal starch deposition in the intermediate accession. Starch phosphorylase and glycogen bound starch synthase were induced in the adapted accession, which had abnormal tuber development. Genes associated with trehalose were induced in the intermediate accession with normal tuber development. Genes associated with respiration were also induced in the intermediate accession, and a pattern compatible with the existence of a 3PGA recovery pathway was revealed. Expression of thioredoxin genes also correlated with tuber development phenotypes under drought stress. The data suggest differential regulation of starch deposition in accessions of Andigena with different abilities to respond to drought stress.
Collapse
Affiliation(s)
- Jonathan I Watkinson
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | | | | | | | |
Collapse
|