1001
|
Abstract
Adenosine diphosphate (ADP) plays a crucial role in hemostasis and thrombosis, and its receptors are potential targets for antithrombotic drugs. Two G-protein-coupled P2 receptors contribute to platelet aggregation: the P2Y1 receptor initiates aggregation through mobilization of calcium stores, whereas the P2Y12 receptor coupled to adenylyl cyclase inhibition is essential for a full aggregation response to ADP and the stabilization of aggregates. The latter is defective in certain patients with a selective congenital deficiency of aggregation to ADP. It is also the target of the antithrombotic drug clopidogrel and of adenosine triphosphate analogues and other compounds currently under evaluation. In addition, the P2X1 ionotropic receptor is present in platelets, but its role is not yet completely known. Studies in P2Y1-knockout mice and experimental thrombosis models using selective P2Y1 antagonists have shown that the P2Y1 receptor, like the P2Y12 receptor, is a potential target for new antithrombotic drugs.
Collapse
Affiliation(s)
- C Gachet
- Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang-Alsace, Strasbourg, France.
| |
Collapse
|
1002
|
Turner NA, Moake JL, McIntire LV. Blockade of adenosine diphosphate receptors P2Y(12) and P2Y(1) is required to inhibit platelet aggregation in whole blood under flow. Blood 2001; 98:3340-5. [PMID: 11719372 DOI: 10.1182/blood.v98.12.3340] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using heparinized whole blood and flow conditions, it was shown that adenosine 5'-diphosphate (ADP) receptors P2Y(12) and P2Y(1) are both important in direct shear-induced platelet aggregation and platelet aggregation subsequent to initial adhesion onto von Willebrand factor (vWf)-collagen. In the viscometer, whole blood was subjected to shear rates of 750, 1500, and 3000 s(-1) for 30 seconds at room temperature. The extent of aggregation was determined by flow cytometry. The P2Y(12) antagonist AR-C69 931MX (ARMX) reduced shear-induced aggregation at these rates by 56%, 54%, and 16%, respectively, compared to control samples. Adenosine 3',5'-diphosphate (A3P5P; P2Y(1) antagonist) inhibited shear-induced aggregation by 40%, 30% and 29%, respectively, compared to control samples. Blockade of both ADP receptors at 3000 s(-1) with ARMX plus A3P5P further reduced the platelet aggregation by 41% compared to the addition of ARMX alone (57% compared to control samples). Using a parallel-plate flow chamber, whole blood was perfused over bovine collagen type 1 at a wall shear rate of 3000 s(-1) for 60 seconds. Platelet deposition was quantified with epifluorescence video microscopy and digital image processing. Blockade of P2Y(12) alone or blockade of P2Y(1) alone did not reduce thrombus formation on vWf-collagen. In contrast, blockade of both P2Y(12) and P2Y(1) reduced platelet deposition by 72%. These results indicate that combinations of antagonists of the ADP receptors P2Y(12) and P2Y(1) are effective inhibitors of direct shear-induced platelet aggregation and of platelet aggregation subsequent to initial adhesion under flow conditions. Inhibitors of these pathways are potentially useful as antiarterial thrombotic agents.
Collapse
Affiliation(s)
- N A Turner
- Department of Bioengineering, Rice University, Houston, TX 77251, USA
| | | | | |
Collapse
|
1003
|
Patel K, Barnes A, Camacho J, Paterson C, Boughtflower R, Cousens D, Marshall F. Activity of diadenosine polyphosphates at P2Y receptors stably expressed in 1321N1 cells. Eur J Pharmacol 2001; 430:203-10. [PMID: 11711032 DOI: 10.1016/s0014-2999(01)01401-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The selectivities of the diadenosine polyphosphates (Ap(n)As, n=2-6) at the human P2Y(1), P2Y(2), P2Y(4), P2Y(6) and P2Y(11) receptors stably expressed in 1321N1 human astrocytoma cells was determined using a Fluorescence Imaging Plate Reader (FLIPR) to measure intracellular Ca(2+) mobilisation. The rank order of agonist potencies at P2Y(1) were: ADP>P(1),P(3)-diadenosine triphosphate (Ap(3)A)>P(1),P(3)-diadenosine hexaphosphate (Ap(6)A)=P(1),P(3)-diadenosine diphosphate (Ap(2)A)>>P(1),P(3)-diadenosine pentaphosphate (Ap(5)A). P(1),P(3)-diadenosine tetraphosphate (Ap(4)A) was inactive up to 1 mM. The rank order of agonist potencies at P2Y(2) were: UTP>Ap(4)A>>Ap(6)A>Ap(5)A>Ap(3)A>>Ap(2)A. The Ap(4)A concentration response curve appeared to be bi-phasic. At P2Y(4) all the Ap(n)As tested were inactive as agonists. At P2Y(6), only Ap(3)A and Ap(5)A showed significant agonist activity. At P2Y(11), only Ap(4)A showed significant agonist activity. Ap(n)As were inactive as antagonists of the P2Y(1), P2Y(2), P2Y(4), P2Y(6) and P2Y(11) receptors. At P2Y(4), however, the Ap(n)As potentiated the UTP response.
Collapse
Affiliation(s)
- K Patel
- Department of Molecular Pharmacology, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Hertfordshire, SG1 2NY, Stevenage, UK.
| | | | | | | | | | | | | |
Collapse
|
1004
|
Communi D, Gonzalez NS, Detheux M, Brézillon S, Lannoy V, Parmentier M, Boeynaems JM. Identification of a novel human ADP receptor coupled to G(i). J Biol Chem 2001; 276:41479-85. [PMID: 11546776 DOI: 10.1074/jbc.m105912200] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned and expressed a novel human G-protein-coupled receptor closely related to the human P2Y(12) receptor. It corresponds to the orphan receptor called GPR86. GPR86 proved to be a G(i)-coupled receptor displaying a high affinity for ADP, similar to the P2Y(12) receptor and can therefore be tentatively called P2Y(13). In 1321N1 cells, the P2Y(13) receptor coupled to the phosphoinositide pathway only when coexpressed with Galpha(16). Inositol trisphosphate formation was stimulated equipotently by nanomolar concentrations of ADP and 2MeSADP, whereas 2MeSATP and ATP were inactive. In CHO-K1 cells expressing the P2Y(13) receptor, ADP and 2MeSADP had a biphasic effect on the forskolin-stimulated accumulation of cAMP: inhibition at nanomolar concentrations and potentiation at micromolar levels. In the same cells, ADP and 2MeSADP also stimulated the phosphorylation of Erk1 and Erk2, in a pertussis toxin-sensitive way. The tissue distribution of P2Y(13) was investigated by reverse transcriptase-polymerase chain reaction, and the predominant signals were obtained in spleen and brain. Although these can be discriminated by tissue distribution and some pharmacological features, the P2Y(12) and P2Y(13) receptors form a subgroup of related P2Y subtypes that is structurally different from the other P2Y subtypes but share coupling to G(i) and a high affinity for ADP.
Collapse
Affiliation(s)
- D Communi
- Institute of Interdisciplinary Research, School of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
1005
|
Quinn MJ, Topol EJ. Common variations in platelet glycoproteins: pharmacogenomic implications. Pharmacogenomics 2001; 2:341-52. [PMID: 11722284 DOI: 10.1517/14622416.2.4.341] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Atherosclerosis and its complications are the result of complex interactions between the environment and genetic factors. Platelets play an important role in this disease process and antiplatelet agents are an essential part of its treatment. However, individual response to antiplatelet therapy is variable and agents that are safe and effective in one individual may be ineffective or harmful in another. It is likely that genetic factors are involved in this variance as platelet, and platelet-associated proteins are highly polymorphic. Up to 30% of natural variation in platelet reactivity is related to genetic inheritance. Rare inherited defects of platelet function due to the absence or reduced surface expression of platelet adhesion receptors have long been recognised. These cause minor bleeding defects and are usually clinically apparent. Antiplatelet agents should be avoided in these situations. The importance of the more common genetic variations or polymorphisms, which result in minor changes in the expressed protein and are often clinically silent, is unknown. Investigations are ongoing into the role of this variation in platelet physiology. A number of polymorphisms in platelet surface glycoproteins have received particular attention; the (A1/2) polymorphism resulting in conformational change at the amino terminus of the beta-3 chain of the platelet fibrinogen receptor glycoprotein (GP) IIb/IIIa and polymorphisms in the platelet collagen (GPIa/IIa and GPVI) and von Willebrand receptors (GPIb-IX). The (A2) allele has been associated with resistance to the antiplatelet agent aspirin and increased platelet responsiveness. The GPIa polymorphism has been associated with increased surface expression of GPIa and increased platelet adhesion to collagen. Recently, conflicting reports of the association of these polymorphisms with coronary artery disease (CAD) and its complications have been described. Mutations have also been identified in other platelet surface receptors including the recently identified G(i)-linked platelet adenosine diphosphate (ADP) receptor (P2Y(12)), targeted by the antiplatelet agents ticlopidine and clopidogrel. These discoveries have stimulated interest in the role of genetic factors in platelet physiology. In this article, the current knowledge of the influence of genetic make-up on antiplatelet therapy is discussed.
Collapse
Affiliation(s)
- M J Quinn
- Department of Cardiovascular Medicine, Desk F 25, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
1006
|
Fuse I, Higuchi W, Uesugi Y, Aizawa Y. Reply to Cattaneo and Lecchi. Br J Haematol 2001. [DOI: 10.1046/j.1365-2141.2001.03115-4.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
1007
|
Hechler B, Toselli P, Ravanat C, Gachet C, Ravid K. Mpl ligand increases P2Y1 receptor gene expression in megakaryocytes with no concomitant change in platelet response to ADP. Mol Pharmacol 2001; 60:1112-20. [PMID: 11641440 DOI: 10.1124/mol.60.5.1112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The P2Y(1) receptor is responsible for the initiation of platelet aggregation in response to ADP and plays a key role in thrombosis. Although this receptor is expressed early in the platelet lineage, the regulation of its expression during megakaryocyte differentiation is unknown. In the mouse megakaryocytic cell line Y10/L8057, we detected P2Y(1) mRNA of three sizes (2.5, 4.4, and 7.4 kb). These cells have previously been shown to respond to Mpl ligand, the pivotal regulator of megakaryocytopoiesis, by increasing their expression of differentiation markers. Mpl ligand enhanced levels of P2Y(1) mRNAs in Y10/L8057 cells and this effect was selective: the same cytokine did not increase levels of A2a adenosine receptor mRNA. Although Mpl ligand did not affect the short half-lives of the P2Y(1) mRNAs, it enhanced transcription of the P2Y(1) gene. It also increased cell size and the number of cell surface P2Y(1) receptors, but not P2Y(1) receptor density. Injection of Mpl ligand into mice up-regulated P2Y(1) receptor mRNAs in megakaryocytes, as shown by in situ hybridization. However, platelets isolated from these mice did not exhibit a higher P2Y(1) receptor density or increased reactivity to ADP. This correlates with the finding that Mpl ligand increases GPIIb mRNA in megakaryocytes but not the density of the protein per platelet. Thus, the enhancement of P2Y(1) receptor expression induced by Mpl ligand in megakaryocytes may be an integral feature of their differentiation, whereas clinical use of this compound might not be associated with platelet hyper-reactivity to ADP.
Collapse
Affiliation(s)
- B Hechler
- Department of Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
1008
|
Fleischhauer JC, Mitchell CH, Peterson-Yantorno K, Coca-Prados M, Civan MM. PGE(2), Ca(2+), and cAMP mediate ATP activation of Cl(-) channels in pigmented ciliary epithelial cells. Am J Physiol Cell Physiol 2001; 281:C1614-23. [PMID: 11600425 DOI: 10.1152/ajpcell.2001.281.5.c1614] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Purines regulate intraocular pressure. Adenosine activates Cl(-) channels of nonpigmented ciliary epithelial cells facing the aqueous humor, enhancing secretion. Tamoxifen and ATP synergistically activate Cl(-) channels of pigmented ciliary epithelial (PE) cells facing the stroma, potentially reducing net secretion. The actions of nucleotides alone on Cl(-) channel activity of bovine PE cells were studied by electronic cell sorting, patch clamping, and luciferin/luciferase ATP assay. Cl(-) channels were activated by ATP > UTP, ADP, and UDP, but not by 2-methylthio-ATP, all at 100 microM. UTP triggered ATP release. The second messengers Ca(2+), prostaglandin (PG)E(2), and cAMP activated Cl(-) channels without enhancing effects of 100 microM ATP. Buffering intracellular Ca(2+) activity with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'- tetraacetic acid or blocking PGE(2) formation with indomethacin inhibited ATP-triggered channel activation. The Rp stereoisomer of 8-bromoadenosine 3',5'-cyclic monophosphothioate inhibited protein kinase A activity but mimicked 8-bromoadenosine 3',5'-cyclic monophosphate. We conclude that nucleotides can act at >1 P2Y receptor to trigger a sequential cascade involving Ca(2+), PGE(2), and cAMP. cAMP acts directly on Cl(-) channels of PE cells, increasing stromal release and potentially reducing net aqueous humor formation and intraocular pressure.
Collapse
Affiliation(s)
- J C Fleischhauer
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
1009
|
Franke H, Krügel U, Schmidt R, Grosche J, Reichenbach A, Illes P. P2 receptor-types involved in astrogliosis in vivo. Br J Pharmacol 2001; 134:1180-9. [PMID: 11704637 PMCID: PMC1573045 DOI: 10.1038/sj.bjp.0704353] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. In the nucleus accumbens (NAc) of rats, the involvement of P2X and P2Y receptors in the generation of astrogliosis in vivo, was investigated by local application of their respective ligands. The agonists used had selectivities for P2X1,3 (alpha,beta-methylene adenosine 5'-triphosphate; alpha,beta-meATP), P2Y1,12 (adenosine 5'-O-(2-thiodiphosphate; ADP-beta-S) and P2Y2,4,6 receptors (uridine 5'-O-(3-thiotriphosphate; UTP-gamma-S). Pyridoxalphosphate-6-azophenyl-2,4-disulphonic acid (PPADS) was used as a non-selective antagonist. The astroglial reaction was studied by means of immunocytochemical double-labelling with antibodies to glial fibrillary acidic protein (GFAP) and 5-bromo-2'-deoxyuridine (BrdU). 2. The agonist-induced changes in comparison to the artificial cerebrospinal fluid (aCSF)-treated control side reveal a strong mitogenic potency of ADP-beta-S and alpha,beta-meATP, whereas UTP-gamma-S was ineffective. The P2 receptor antagonist PPADS decreased the injury-induced proliferation when given alone and in addition inhibited all agonist effects. 3. The observed morphogenic changes included hypertrophy of astrocytes, elongation of astrocytic processes and up-regulation of GFAP. A significant increase of both GFAP-immunoreactivity (IR) and GFA-protein content (by using Western blotting) was found after microinfusion of alpha,beta-meATP or ADP-beta-S. In contrast, UTP-gamma-S failed to increase the GFAP-IR. The morphogenic effects were also inhibited by pre-treatment with PPADS. 4. A double immunofluorescence approach with confocal laser scanning microscopy showed the localisation of P2X3 and P2Y1 receptors on the GFAP-labelled astrocytes. 5. In conclusion, the data suggest that P2Y (P2Y1 or P2Y12) receptor subtypes are involved in the generation of astrogliosis in the NAc of rats, with a possible minor contribution of P2X receptor subtypes.
Collapse
Affiliation(s)
- H Franke
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
1010
|
Cattaneo M, Lecchi A. Patients with congenital abnormality of platelet aggregation induced by Ca(2+) ionophores may have a defect of the platelet P2Y(12) receptor for ADP. Br J Haematol 2001; 115:485-7. [PMID: 11703355 DOI: 10.1046/j.1365-2141.2001.03115-3.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
1011
|
Moore DJ, Chambers JK, Wahlin JP, Tan KB, Moore GB, Jenkins O, Emson PC, Murdock PR. Expression pattern of human P2Y receptor subtypes: a quantitative reverse transcription-polymerase chain reaction study. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1521:107-19. [PMID: 11690642 DOI: 10.1016/s0167-4781(01)00291-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The diverse biological actions of extracellular nucleotides in tissues and cells are mediated by two distinct classes of P2 receptor, P2X and P2Y. The G protein-coupled P2Y receptors comprise at least six mammalian subtypes (P2Y(1,2,4,6,11,12)), all of which have been cloned from human tissues, as well as other species. The P2Y receptor subtypes differ in their pharmacological selectivity for various adenosine and uridine nucleotides, which overlap in some cases. Data concerning the mRNA expression patterns of five P2Y receptors (P2Y(1,2,4,6,11)) in different human tissues and cells are currently quite limited, while P2Y mRNA distribution in the human brain has not previously been studied. In this study, we have addressed this deficiency in receptor expression data by using a quantitative reverse transcription-polymerase chain reaction approach to measure the precise mRNA expression pattern of each P2Y receptor subtype in a number of human peripheral tissues and brain regions, from multiple individuals, as well as numerous human cell lines and primary cells. All five P2Y receptors exhibited widespread yet subtype-selective mRNA expression profiles throughout the human tissues, brain regions and cells used. Our extensive expression data indicate the many potentially important roles of P2Y receptors throughout the human body, and will help in elucidating the physiological function of each receptor subtype in a wide variety of human systems.
Collapse
Affiliation(s)
- D J Moore
- Neurobiology Programme, The Babraham Institute, Cambridege, UK.
| | | | | | | | | | | | | | | |
Collapse
|
1012
|
Nakahashi TK, Kambayashi J, Nakamura T, Le SN, Yoshitake M, Tandon NN, Sun B. Platelets in nonresponders to epinephrine stimulation showed reduced response to ADP. Thromb Res 2001; 104:127-35. [PMID: 11672756 DOI: 10.1016/s0049-3848(01)00354-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It has been reported that platelets from some healthy donors did not respond to epinephrine (Epi). To identify the cause for the lack of response, we examined the alpha(2) adrenoceptor in the platelets and their signal transduction pathways. No differences in the genomic (-2076 to 1526 bp) and coding region of alpha(2A) adrenoceptor complementary DNA (cDNA) were found between the responders (R) and nonresponders (NR). No expression of alpha(2B) or alpha(2C) adrenoceptor was detected in platelets. When UK14,304 was used to induce platelet aggregation, similar effect to Epi was observed between R and NR, and any involvement of the alpha(1) and beta adrenoceptor was ruled out. Radioligand binding assay showed similar number of alpha(2) binding sites between the two groups (139+/-25/platelet vs. 145+/-37/platelets). However, platelets from NR showed a weaker response to adenosine diphosphate (ADP, 52.3+/-17.8% vs. 80.5+/-8.7% from R, P<.01). In the presence of P2Y(1) antagonist adenosine 3',5'-diphosphosulfate (A3P5PS), ADP failed to induce platelet aggregation in NR (7.8+/-4.7% vs. 64.7+/-11.2% in R, P<.01). Addition of SQ22,536 to inhibit adenylyl cyclase did not convert NR to R. These observations demonstrate that there is an impaired platelet responsiveness to ADP as well as to Epi in NR, due to a difference in downstream of the signal transduction pathway but independent of adenylyl cyclase inhibition.
Collapse
Affiliation(s)
- T K Nakahashi
- Vascular Biology and Thrombosis, Maryland Research Laboratories, Otsuka Maryland Research Institutes, LLC, Rockville, MD 20850, USA
| | | | | | | | | | | | | |
Collapse
|
1013
|
Atkinson BT, Stafford MJ, Pears CJ, Watson SP. Signalling events underlying platelet aggregation induced by the glycoprotein VI agonist convulxin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5242-8. [PMID: 11606185 DOI: 10.1046/j.0014-2956.2001.02448.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have investigated the role of secretion and intracellular signalling events in aggregation induced by the glycoprotein (GP)VI-selective snake venom toxin convulxin and by collagen. We demonstrate that aggregation induced by threshold concentrations of convulxin undergoes synergy with ADP acting via the P2Y12 receptor whereas there is no synergy via the P2Y1 receptor or with thromboxanes. On the other hand, apyrase, the P2Y12 receptor antagonist, AR-C67085, and indomethacin only marginally inhibit aggregation induced by convulxin. In comparison, these inhibitors severely attenuate the response to collagen. In order to investigate whether the weak inhibitory action against convulxin is due to release of agonists other than ADP from dense granules, experiments were performed on murine platelets deficient in this organelle (pearl mice platelets). A slightly greater reduction in aggregation induced by convulxin was observed in pearl platelets than in the presence of inhibitors of ADP, but a maximal response was still attained. Importantly, inhibition of protein kinase C further reduced the response to convulxin in pearl platelets demonstrating a direct role for the kinase in aggregation. Chelation of intracellular Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N,N',N'-tetraacetic acid (acetoxymethyl)ester (BAPTA-AM) abolished aggregation induced by convulxin under all conditions. Activation of phospholipase C by convulxin was potentiated by ADP acting through the P2Y12 receptor. In conclusion, we show that Ca2+ and protein kinase C, but not release of the secondary agonists ADP and thromboxane A2, are required for full aggregation induced by convulxin, whereas the response induced by collagen shows a much greater dependence on secretion of secondary agonists.
Collapse
Affiliation(s)
- B T Atkinson
- Department of Pharmacology, University of Oxford, UK.
| | | | | | | |
Collapse
|
1014
|
Kauffenstein G, Bergmeier W, Eckly A, Ohlmann P, Léon C, Cazenave JP, Nieswandt B, Gachet C. The P2Y(12) receptor induces platelet aggregation through weak activation of the alpha(IIb)beta(3) integrin--a phosphoinositide 3-kinase-dependent mechanism. FEBS Lett 2001; 505:281-90. [PMID: 11566191 DOI: 10.1016/s0014-5793(01)02824-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
High concentrations of adenosine-5'-diphosphate ADP are able to induce partial aggregation without shape change of P2Y(1) receptor-deficient mouse platelets through activation of the P2Y(12) receptor. In the present work we studied the transduction pathways selectively involved in this phenomenon. Flow cytometric analyses using R-phycoerythrin-conjugated JON/A antibody (JON/A-PE), an antibody which recognizes activated mouse alpha(IIb)beta(3) integrin, revealed a low level activation of alpha(IIb)beta(3) in P2Y(1) receptor-deficient platelets in response to 100 microM ADP or 1 microM 2MeS-ADP. Adrenaline induced no such activation but strongly potentiated the effect of ADP in a dose-dependent manner. Global phosphorylation of (32)P-labeled platelets showed that P2Y(12)-mediated aggregation was not accompanied by an increase in the phosphorylation of myosin light chain (P(20)) or pleckstrin (P(47)) and was not affected by the protein kinase C (PKC) inhibitor staurosporine. On the other hand, two unrelated phosphoinositide 3-kinase inhibitors, wortmannin and LY294002, inhibited this aggregation. Our results indicate that (i) the P2Y(12) receptor is able to trigger a P2Y(1) receptor-independent inside-out signal leading to alpha(IIb)beta(3) integrin activation and platelet aggregation, (ii) ADP and adrenaline use different signaling pathways which synergize to activate the alpha(IIb)beta(3) integrin, and (iii) the transduction pathway triggered by the P2Y(12) receptor is independent of PKC but dependent on phosphoinositide 3-kinase.
Collapse
Affiliation(s)
- G Kauffenstein
- INSERM U.311, Etablissement Français du Sang-Alsace, 10 rue Spielmann, 67065 Strasbourg Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
1015
|
Kim HS, Barak D, Harden TK, Boyer JL, Jacobson KA. Acyclic and cyclopropyl analogues of adenosine bisphosphate antagonists of the P2Y1 receptor: structure-activity relationships and receptor docking. J Med Chem 2001; 44:3092-108. [PMID: 11543678 PMCID: PMC9370770 DOI: 10.1021/jm010082h] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The activation of P2Y1 receptors in platelets contributes to platelet aggregation, and selective antagonists are sought as potential antithrombotic agents. We reported (Kim et al. J. Med. Chem. 2000, 43, 746-755) that acyclic analogues of adenine nucleotides, containing two phosphate groups on a symmetrically branched aliphatic chain, attached at the 9-position of adenine, are moderately potent P2Y1 receptor antagonists. In this study we have varied the chain structure, to include asymmetric substitution, olefinic, and cyclopropyl groups. These antagonists inhibited the stimulation of phospholipase C in turkey erythrocyte membranes induced by 30 nM 2-MeS-ADP in the micromolar range. In the series of symmetrically branched aliphatic groups substituted with two phosphate groups, the optimal antagonist potency occurred with the 2-methylpropyl group. A 2-chloro-N(6)-methyladenine derivative, 2-[2-(2-chloro-6-methylaminopurin-9-yl)methyl]propane-1,3-bisoxy(diammoniumphosphate) (7), was a full antagonist at the P2Y1 receptor with an IC(50) value of 0.48 microM. Esterification of one of the phosphate groups or substitution with O-acetyl greatly reduced the antagonist potency at the P2Y1 receptor. Removal of a methylene group of 7 or inclusion of an olefinic or cyclopropyl group also reduced potency. A pair of enantiomeric glycerol derivatives demonstrated a 5-fold stereoselectivity for the S-isomer. Stereoisomerically defined analogues of 7 containing a cyclopropyl group in place of the branched carbon were less potent than 7 as antagonists, with IC(50) values of 2-3 microM. No agonist activity was observed for these analogues. A new rhodopsin-based molecular model of the P2Y1 receptor indicated that the optimal docked orientation of the two monophosphate moieties relative to the adenine N(6) (compared to a rigid, bicyclic analogue) was consistent with the dependence of antagonist potency on chain length. The 3'-phosphate was predicted to occupy a restricted space, deeper in the binding cleft than the 5'-phosphate location. In summary, modification of the flexible spacer chain linking bisphosphate groups to the adenine moiety provided many moderately potent antagonists.
Collapse
Affiliation(s)
| | | | | | | | - Kenneth A. Jacobson
- Address correspondence to Dr. Kenneth A. Jacobson, Chief, Molecular Recognition Section, Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC, Bethesda, MD 20892-0810. Tel: (301) 496-9024. Fax: (301) 480-8422.
| |
Collapse
|
1016
|
Lee DK, Nguyen T, Lynch KR, Cheng R, Vanti WB, Arkhitko O, Lewis T, Evans JF, George SR, O'Dowd BF. Discovery and mapping of ten novel G protein-coupled receptor genes. Gene 2001; 275:83-91. [PMID: 11574155 DOI: 10.1016/s0378-1119(01)00651-5] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We report the identification, cloning and tissue distributions of ten novel human genes encoding G protein-coupled receptors (GPCRs) GPR78, GPR80, GPR81, GPR82, GPR93, GPR94, GPR95, GPR101, GPR102, GPR103 and a pseudogene, psi GPR79. Each novel orphan GPCR (oGPCR) gene was discovered using customized searches of the GenBank high-throughput genomic sequences database with previously known GPCR-encoding sequences. The expressed genes can now be used in assays to determine endogenous and pharmacological ligands. GPR78 shared highest identity with the oGPCR gene GPR26 (56% identity in the transmembrane (TM) regions). psi GPR79 shared highest sequence identity with the P2Y(2) gene and contained a frame-shift truncating the encoded receptor in TM5, demonstrating a pseudogene. GPR80 shared highest identity with the P2Y(1) gene (45% in the TM regions), while GPR81, GPR82 and GPR93 shared TM identities with the oGPCR genes HM74 (70%), GPR17 (30%) and P2Y(5) (40%), respectively. Two other novel GPCR genes, GPR94 and GPR95, encoded a subfamily with the genes encoding the UDP-glucose and P2Y(12) receptors (sharing >50% identities in the TM regions). GPR101 demonstrated only distant identities with other GPCR genes and GPR102 shared identities with GPR57, GPR58 and PNR (35-42% in the TM regions). GPR103 shared identities with the neuropeptide FF 2, neuropeptide Y2 and galanin GalR1 receptors (34-38% in the TM regions). Northern analyses revealed GPR78 mRNA expression in the pituitary and placenta and GPR81 expression in the pituitary. A search of the GenBank databases with the GPR82 sequence retrieved an identical sequence in an expressed sequence tag (EST) partially encoding GPR82 from human colonic tissue. The GPR93 sequence retrieved an identical, human EST sequence from human primary tonsil B-cells and an EST partially encoding mouse GPR93 from small intestinal tissue. GPR94 was expressed in the frontal cortex, caudate putamen and thalamus of brain while GPR95 was expressed in the human prostate and rat stomach and fetal tissues. GPR101 revealed mRNA transcripts in caudate putamen and hypothalamus. GPR103 mRNA signals were detected in the cortex, pituitary, thalamus, hypothalamus, basal forebrain, midbrain and pons.
Collapse
Affiliation(s)
- D K Lee
- Department of Pharmacology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1017
|
Grobben B, Claes P, Van Kolen K, Roymans D, Fransen P, Sys SU, Slegers H. Agonists of the P2Y(AC)-receptor activate MAP kinase by a ras-independent pathway in rat C6 glioma. J Neurochem 2001; 78:1325-38. [PMID: 11579141 DOI: 10.1046/j.1471-4159.2001.00524.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously shown that an ecto-NPPase modulates the ATP- and ADP-mediated P2Y(AC)-receptor activation in rat C6 glioma. In the present study, 2MeSADP and Ap(3)A induced no detectable PI turnover and were identified as specific agonists of the P2Y(AC)-receptor with EC(50) values of 250 +/- 37 pM and 1 +/- 0.5 microM, respectively. P2Y(AC)-receptor stimulation increased MAP kinase (ERK1/2) activation that returned to the basal level 4 h after stimulation and was correlated with a gradual desensitization of the P2Y(AC)-purinoceptor. The purinoceptor antagonists DIDS and RB2 blocked MAP kinase activation. An IP(3)-independent Ca(2+)-influx was observed after P2Y(AC)-receptor activation. Inhibition of this influx by Ca(2+)-chelation, did not affect MAP kinase activation. Pertussis toxin, toxin B, selective PKC-inhibitors and a specific MEK-inhibitor inhibited the 2MeSADP- and Ap(3)A-induced MAP kinase activation. In addition, transfection with dominant negative RhoA(Asn19) rendered C6 cells insensitive to P2Y(AC)-receptor-mediated MAP kinase activation whereas dominant negative ras was without effect. Immunoprecipitation experiments indicated a significant increase in the phosphorylation of raf-1 after P2Y(AC)-receptor activation. We may conclude that P2Y(AC)-purinoceptor agonists activate MAP kinase through a G(i)-RhoA-PKC-raf-MEK-dependent, but ras- and Ca(2+)-independent cascade.
Collapse
Affiliation(s)
- B Grobben
- Department of Biochemistry, Cellular Biochemistry, Universiteit Antwerpen, Universitaire Instelling Antwerpen, Wilrijk, Belgium
| | | | | | | | | | | | | |
Collapse
|
1018
|
Abstract
Platelet aggregation is initiated by receptor activation coupled to intracellular signaling leading to activation of integrin alphaIIbbeta3. Recent advances in the study of platelet receptors for collagen, von Willebrand factor, thrombin, and adenosine diphosphate are providing new insights into the mechanisms of platelet aggregation.
Collapse
Affiliation(s)
- B Savage
- The Roon Research Center for Arteriosclerosis and Thrombosis, Division of Experimental Hemostasis and Thrombosis, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
1019
|
Shigemoto-Mogami Y, Koizumi S, Tsuda M, Ohsawa K, Kohsaka S, Inoue K. Mechanisms underlying extracellular ATP-evoked interleukin-6 release in mouse microglial cell line, MG-5. J Neurochem 2001; 78:1339-49. [PMID: 11579142 DOI: 10.1046/j.1471-4159.2001.00514.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microglia play various important roles in the CNS via the synthesis of cytokines. The ATP-evoked production of interleukin-6 (IL-6) and its intracellular signals were examined using a mouse microglial cell line, MG-5. ATP, but not its metabolites, produced IL-6 in a concentration-dependent manner. Although ATP activated two mitogen-activated protein kinases, i.e. p38 and extracellular signal-regulated protein kinase, only p38 was involved in the IL-6 induction. However, the activation of p38 was not sufficient for the IL-6 induction because 2'- and 3'-O-(4-benzoylbenzoyl) ATP, an agonist to P2X7 receptors, failed to produce IL-6 despite the fact that it activated p38. Unlike in other cytokines in microglial cells, P2Y rather than P2X7 receptors seem to have a major role in the IL-6 production by the cells. The ATP-evoked IL-6 production was attenuated by Gö6976, an inhibitor of Ca(2+)-dependent protein kinase C (PKC). The P2Y receptor responsible for these responses was insensitive to pertussis toxin (PTX) and was linked to phospholipase C. Taken together, ATP acting on PTX-insensitive P2Y receptors activates p38 and Ca(2+)-dependent PKC, thereby resulting in the mRNA expression and release of IL-6 in MG-5. This is a novel pathway for the induction of cytokines in microglia.
Collapse
Affiliation(s)
- Y Shigemoto-Mogami
- Division of Pharmacology, National Institute of Health Sciences, Setagaya, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
1020
|
Claes P, Grobben B, Van Kolen K, Roymans D, Slegers H. P2Y(AC)(-)-receptor agonists enhance the proliferation of rat C6 glioma cells through activation of the p42/44 mitogen-activated protein kinase. Br J Pharmacol 2001; 134:402-8. [PMID: 11564659 PMCID: PMC1572964 DOI: 10.1038/sj.bjp.0704271] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Extracellularly added P(1),P(3)-di(adenosine-5') triphosphate (Ap(3)A), P(1),P(4)-di(adenosine-5') tetraphosphate (Ap(4)A), ATP, ADP, AMP and adenosine are growth inhibitory for rat C6 glioma cells. Analysis of nucleotide hydrolysis and the use of nucleotidase inhibitors demonstrated that the latter inhibition is due to hydrolysis of the nucleotides to adenosine. 2. Agonists of the P2Y(AC)(-)-receptor enhance the growth of C6 cells if their hydrolysis to adenosine is inhibited by pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). In these conditions, the potency to stimulate cell growth parallels the ranking of the receptor agonists, i.e. 2-methylthioadenosine-5'-diphosphate (2MeSADP)>Ap(3)A>Ap(4)A. ATP and ADP are still hydrolysed in the presence of PPADS and have no proliferative effect on C6 cells. 3. The enhanced growth is due to a P2Y(AC)(-)-receptor-mediated activation of p42/44 mitogen-activated protein kinase (MAPK) as shown by immunoblotting and protein kinase assays for active MAPK and the use of the MAPK/extracellular signal-regulated kinase kinase (MEK) inhibitor PD98059. 4. The UTP-induced enhancement of the growth of C6 cells is due to activation of MAPK by a PPADS sensitive nucleotide receptor. 5. In conclusion, the effect of nucleotides on the growth of C6 cells is determined by ecto-nucleotidases and by activation of nucleotide receptors. Hydrolysis of nucleotides to adenosine induces growth inhibition while inhibition of the hydrolysis of agonists of the P2Y(AC)(-)-receptor enhances cell growth by activation of MAPK.
Collapse
Affiliation(s)
- Patrik Claes
- Department of Biochemistry, Cellular Biochemistry, University of Antwerp, Belgium
| | - Bert Grobben
- Department of Biochemistry, Cellular Biochemistry, University of Antwerp, Belgium
| | - Kristof Van Kolen
- Department of Biochemistry, Cellular Biochemistry, University of Antwerp, Belgium
| | - Dirk Roymans
- Department of Biochemistry, Cellular Biochemistry, University of Antwerp, Belgium
| | - Herman Slegers
- Department of Biochemistry, Cellular Biochemistry, University of Antwerp, Belgium
- Author for correspondence:
| |
Collapse
|
1021
|
Hirsch E, Bosco O, Tropel P, Laffargue M, Calvez R, Altruda F, Wymann M, Montrucchio G. Resistance to thromboembolism in PI3Kgamma-deficient mice. FASEB J 2001; 15:2019-21. [PMID: 11511514 DOI: 10.1096/fj.00-0810fje] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Platelet aggregation and subsequent thrombosis are the major cause of ischemic diseases such as heart attack and stroke. ADP, acting via G protein-coupled receptors (GPCRs), is an important signal in thrombus formation and involves activation of phosphoinositide 3-kinases (PI3K). When platelets from mice lacking the G protein-activated PI3Kgamma isoform were stimulated with ADP, aggregation was impaired. Collagen or thrombin, however, evoked a normal response. ADP stimulation of PI3Kgamma-deficient platelets resulted in decreased PKB/Akt phosphorylation and alpha(IIb)beta(3) fibrinogen receptor activation. These effects did not influence bleeding time but protected PI3Kgamma-null mice from death caused by ADP-induced platelet-dependent thromboembolic vascular occlusion. This result demonstrates an unsuspected, well-defined role for PI3Kgamma downstream of ADP and suggests that pharmacological targeting of PI3Kgamma has a potential use as antithrombotic therapy.
Collapse
Affiliation(s)
- E Hirsch
- Dipartimento di Genetica, Biologia e Biochimica, Università di Torino, Via Santina 5 bis, 10126 Turin, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
1022
|
Abstract
Binding of fibrinogen to GPIIb-IIIa on agonist-stimulated platelets results in platelet aggregation, presumably by crosslinking adjacent activated platelets. Although unactivated platelets express numerous copies of GPIIb-IIIa on their surface, spontaneous, and potentially deleterious, platelet aggregation is prevented by tightly regulating the fibrinogen binding activity of GPIIb-IIIa. Preliminary evidence suggests that it is the submembranous actin or actin-associated proteins that constrains GPIIb-IIIa in a low affinity state and that relief of this constraint by initiating actin filament turnover enables GPIIb-IIIa to bind fibrinogen. Two regions of the fibrinogen alpha chain that contain an RGD motif, as well as the carboxyl-terminus of the fibrinogen gamma chain, represent potential binding sites for GPIIb-IIIa in the fibrinogen molecule. However, ultrastructural studies using purified fibrinogen and GPIIb-IIIa, and studies using recombinant fibrinogen in which the RGD and relevant gamma chain motifs were mutated indicate that sequences located at the carboxyl-terminal end of the gamma chain mediates fibrinogen binding to GPIIb-IIIa. There is evidence that fibrinogen itself binds to regions in the amino terminal portions of both GPIIb and GPIIIa and that the sites interacting with the fibrinogen gamma chain and with RGD-containing peptides are spatially distinct. Nonetheless, there appears to be allosteric linkage between these sites, accounting for the ability of RGD-containing peptides to inhibit platelet aggregation and arterial thrombosis.
Collapse
Affiliation(s)
- J S Bennett
- Hematology-Oncology Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
1023
|
Jantzen HM, Milstone DS, Gousset L, Conley PB, Mortensen RM. Impaired activation of murine platelets lacking G alpha(i2). J Clin Invest 2001; 108:477-83. [PMID: 11489941 PMCID: PMC209362 DOI: 10.1172/jci12818] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The intracellular signaling pathways by which G protein-coupled receptors on the platelet surface initiate aggregation, a critical process for hemostasis and thrombosis, are not well understood. In particular, the contribution of the G(i) pathway has not been directly addressed. We have investigated the activation of platelets from mice in which the gene for the predominant platelet G alpha(i) subtype, G alpha(i2), has been disrupted. In intact platelets from G alpha(i2)-deficient mice, the inhibition of adenylyl cyclase by ADP was found to be partially impaired compared with wild-type platelets. Moreover, both ADP-dependent platelet aggregation and the activation of the integrin alpha IIb beta 3 (GPIIb-IIIa) were strongly reduced in platelets from G alpha(i2)-deficient mice. In addition, G alpha(i2)-deficient platelets displayed impaired activation at low thrombin concentrations. This defect was mimicked by blocking the adenylyl cyclase--coupled platelet ADP receptor (P2Y(12)) on wild-type platelets with a selective antagonist. These observations suggest that G alpha(i2) is involved in the inhibition of platelet adenylyl cyclase in vivo and is a critical component of the signaling pathway for integrin activation by ADP, resulting in platelet aggregation. In addition, thrombin-dependent activation of mouse platelets is mediated, at least in part, by secreted ADP acting on the G alpha(i2)-linked ADP receptor.
Collapse
Affiliation(s)
- H M Jantzen
- COR Therapeutics Inc., South San Francisco, California 94080, USA.
| | | | | | | | | |
Collapse
|
1024
|
Barnard EA, Simon J. An elusive receptor is finally caught: P2Y(12'), an important drug target in platelets. Trends Pharmacol Sci 2001; 22:388-91. [PMID: 11478981 DOI: 10.1016/s0165-6147(00)01759-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite intensive research, the nucleotide P2 receptor that is involved in the aggregation and activation of platelets by ADP has remained elusive. However, now two research groups have independently identified a new platelet receptor of unexpected structure, P2Y(12), that acts with the P2Y(1) receptor to form the site of ADP activation and explains the multiple transduction mechanisms observed in response to ADP in platelets. Recent evidence also suggests that a third component, ATP action on the P2X(1) receptor ion channel, contributes to platelet activation.
Collapse
Affiliation(s)
- E A Barnard
- Dept of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, UK CB2 1QJ.
| | | |
Collapse
|
1025
|
Fukui M, Nakagawa T, Minami M, Satoh M. Involvement of beta2-adrenergic and mu-opioid receptors in antinociception produced by intracerebroventricular administration of alpha,beta-methylene-ATP. JAPANESE JOURNAL OF PHARMACOLOGY 2001; 86:423-8. [PMID: 11569616 DOI: 10.1254/jjp.86.423] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study examined what kind of receptors are involved in the antinociception produced by intracerebroventricular (i.c.v.) administration of a,beta-methylene-ATP using antagonists at adrenergic, serotonin or opioid receptors. Antinociceptive effect of alpha,beta-methylene-ATP (10 nmol/rat) was significantly attenuated by subcutaneous pretreatment with propranolol and naloxone, but not phentolamine or methysergide, at a dose of 10 mg/kg. I.c.v. pretreatment with propranolol (100 nmol/rat), butoxamine (100 nmol/rat), ICI-I 18,551 (100 nmol/rat) and naloxone (30 nmol/rat) significantly attenuated the antinociceptive effect of alpha,beta-methylene-ATP. However, i.c.v. pretreatment with atenolol (100 nmol/rat), naltrindole (30 nmol/rat) or nor-binaltorphimine (30 nmol/rat) did not show any significant effects. These results suggest that supraspinal beta2-adrenergic and mu-opioid receptors are involved in the antinociceptive effect of i.c.v. administered alpha,beta-methylene-ATP.
Collapse
MESH Headings
- Adenosine Triphosphate/administration & dosage
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/antagonists & inhibitors
- Adenosine Triphosphate/pharmacology
- Adrenergic alpha-Antagonists/administration & dosage
- Adrenergic alpha-Antagonists/pharmacology
- Adrenergic beta-2 Receptor Antagonists
- Adrenergic beta-Antagonists/administration & dosage
- Adrenergic beta-Antagonists/pharmacology
- Analgesics/administration & dosage
- Analgesics/antagonists & inhibitors
- Analgesics/pharmacology
- Animals
- Dose-Response Relationship, Drug
- Injections, Intraventricular
- Injections, Subcutaneous
- Male
- Narcotic Antagonists/administration & dosage
- Narcotic Antagonists/pharmacology
- Nociceptors/physiology
- Pain Measurement/drug effects
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, beta-2/physiology
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/physiology
- Receptors, Serotonin/physiology
- Serotonin Antagonists/administration & dosage
- Serotonin Antagonists/pharmacology
- Time Factors
Collapse
Affiliation(s)
- M Fukui
- Department of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | | | |
Collapse
|
1026
|
Sadee W, Hoeg E, Lucas J, Wang D. Genetic variations in human G protein-coupled receptors: implications for drug therapy. AAPS PHARMSCI 2001; 3:E22. [PMID: 11741273 PMCID: PMC2751017 DOI: 10.1208/ps030322] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Numerous genes encode G protein-coupled receptors (GPCRs)-a main molecular target for drug therapy. Estimates indicate that the human genome contains approximately 600 GPCR genes. This article addresses therapeutic implications of sequence variations in GPCR genes. A number of inactivating and activating receptor mutations have been shown to cause a variety of (mostly rare) genetic disorders. However, pharmacogenetic and pharmacogenomic studies on GPCRs are scarce, and therapeutic relevance of variant receptor alleles often remains unclear. Confounding factors in assessing the therapeutic relevance of variant GPCR alleles include 1) interaction of a single drug with multiple closely related receptors, 2) poorly defined binding pockets that can accommodate drug ligands in different orientations or at alternative receptor domains, 3) possibility of multiple receptor conformations with distinct functions, and 4) multiple signaling pathways engaged by a single receptor. For example, antischizophrenic drugs bind to numerous receptors, several of which might be relevant to therapeutic outcome. Without knowing accurately what role a given receptor subtype plays in clinical outcome and how a sequence variation affects drug-induced signal transduction, we cannot predict the therapeutic relevance of a receptor variant. Genome-wide association studies with single nucleotide polymorphisms could identify critical target receptors for disease susceptibility and drug efficacy or toxicity.
Collapse
Affiliation(s)
- W Sadee
- Department of Biopharmaceutical Sciences, University of California San Francisco, San Francisco CA 94143-0446, USA.
| | | | | | | |
Collapse
|
1027
|
Scarborough RM, Laibelman AM, Clizbe LA, Fretto LJ, Conley PB, Reynolds EE, Sedlock DM, Jantzen H. Novel tricyclic benzothiazolo[2,3-c]thiadiazine antagonists of the platelet ADP receptor (P2Y(12)). Bioorg Med Chem Lett 2001; 11:1805-8. [PMID: 11459636 DOI: 10.1016/s0960-894x(01)00313-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel non-nucleoside tricyclic platelet ADP receptor (P2Y(12)) antagonists have been discovered that bind reversibly and with high affinity to the platelet receptor. Condensation of various 2-aminobenzothiazoles with chlorosulfonylacetyl chloride affords these novel tricyclic heterocycles, which are novel and unpredicted products of this reaction.
Collapse
Affiliation(s)
- R M Scarborough
- COR Therapeutics, Inc., Departments of Medicinal Chemistry and Biology, 94080, South San Francisco, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
1028
|
Greco NJ, Tonon G, Chen W, Luo X, Dalal R, Jamieson GA. Novel structurally altered P(2X1) receptor is preferentially activated by adenosine diphosphate in platelets and megakaryocytic cells. Blood 2001; 98:100-7. [PMID: 11418468 DOI: 10.1182/blood.v98.1.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Experimental and clinical data suggest the presence of multiple types of adenosine diphosphate (ADP) receptors, one coupled to ligand-gated cation channels (P(2X)) and others coupled to G-protein-coupled (P(2Y)) receptors. This report identifies cDNA for a structurally altered P(2X1)-like receptor in megakaryocytic cell lines (Dami and CMK 11-5) and platelets that, when transfected into nonresponsive 1321 cells, confers a specific sensitivity to ADP with the pharmacologic rank order of ADP > > ATP > > > alpha,beta-methylene-ATP as measured by Ca(++) influx. This receptor (P(2X1del)) contains a deletion of 17 amino acids (PALLREAENFTLFIKNS) that includes an NFT consensus sequence for N-linked glycosylation. Glycosylated forms of the P(2X1del) and P(2X1wt) receptors were indistinguishable electrophoretically by Western blot or by immunoprecipitation using available antihuman and antirat antibodies. These results indicate that the expression of the P(2X1del) receptor results in an influx of Ca(++) induced by ADP. Expression of P(2X1del) receptor homomeric subunits is sufficient to express a receptor preferentially activated by ADP and suggests that this altered form, alone or in combination with P(2X1wt) receptors, is a component of an ADP-activated ion channel.
Collapse
MESH Headings
- Adenosine Diphosphate/pharmacology
- Blood Platelets/metabolism
- Calcium Signaling/drug effects
- Dose-Response Relationship, Drug
- Humans
- Megakaryocytes/metabolism
- Polymerase Chain Reaction
- Receptors, Purinergic/drug effects
- Receptors, Purinergic/genetics
- Receptors, Purinergic/metabolism
- Receptors, Purinergic P2/drug effects
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2X
- Sequence Homology, Nucleic Acid
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- N J Greco
- Platelet Biology and the Product Development Departments, American Red Cross, Rockville, MD, USA.
| | | | | | | | | | | |
Collapse
|
1029
|
Olorundare OE, Peyruchaud O, Albrecht RM, Mosher DF. Assembly of a fibronectin matrix by adherent platelets stimulated by lysophosphatidic acid and other agonists. Blood 2001; 98:117-24. [PMID: 11418470 DOI: 10.1182/blood.v98.1.117] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are agonists of the endothelial differentiation gene (Edg) family of G-protein-coupled receptors. LPA and S1P are generated by platelet activation during blood coagulation. Both lipids induce assembly of exogenous fibronectin (FN) by fibroblasts. This study examined whether LPA and S1P stimulate binding and assembly of fluoresceinated FN (FITC-FN) by adherent platelets. LPA enhanced deposition of FITC-FN into linear arrays overlying platelet surfaces and on edges of platelets adherent to FN or vitronectin (VN). Deposition was greater when platelets were adherent to FN than to VN and was elicited by platelet agonists with the following order of potency: thrombin > LPA = ADP (adenosine diphosphate) > S1P. The linear pattern of FITC-FN deposition was different from the more diffuse pattern of Alexa-fibrinogen (Alexa-FGN) binding to adherent platelets. FITC-FN was deposited by adherent platelets that had dense arrays of cytoskeletal actin when stained with rhodamine-phalloidin. The 70-kd N-terminal fragment of FN or L8 monoclonal antibody to a self-association domain of FN abolished deposition of FITC-FN but had no effect on binding of Alexa-FGN. Conversely, integrilin did not attenuate deposition of FITC-FN but abolished binding of Alexa-FGN. RGDS (Arg-Gly-Asp-Ser) or antibodies to alpha5beta1 or alphaIIbbeta3 integrins caused a partial decrease in LPA-induced deposition of FITC-FN. Correlative electron microscopy with anti-FITC coupled to gold beads revealed linear arrays on platelet surfaces associated with less than 20-nm-diameter filaments. These observations demonstrate that LPA, thrombin, ADP, and S1P induce adherent platelets to bind and assemble FN and suggest that platelets may contribute to early deposition of FN matrix after vascular injury.
Collapse
Affiliation(s)
- O E Olorundare
- Department of Medicine, University of Wisconsin, Madison 53706, USA
| | | | | | | |
Collapse
|
1030
|
Linden J. Molecular approach to adenosine receptors: receptor-mediated mechanisms of tissue protection. Annu Rev Pharmacol Toxicol 2001; 41:775-87. [PMID: 11264476 DOI: 10.1146/annurev.pharmtox.41.1.775] [Citation(s) in RCA: 507] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Adenosine accumulation during ischemia and inflammation protects tissues from injury. In ischemic tissues adenosine accumulates due to inhibition of adenosine kinase, and in inflamed tissues adenosine is formed from adenine nucleotides that are released from many cells including platelets, mast cells, nerves, and endothelium. Nucleotides are rapidly converted to adenosine by a family of ecto-nucleotidases including CD39 and CD73. Activation of A(1) and possibly A(3) adenosine receptors (ARs) protects heart and other tissues by preconditioning through a pathway including protein kinase C and mitochondrial K(ATP) channels. Activation of A(2A) receptors limits reperfusion injury by inhibiting inflammatory processes in neutrophils, platelets, macrophages and T cells. Adenosine produces proinflammatory responses mediated by receptors that vary among species; A(3) and A(2B) receptors mediate degranulation of rodent and human or canine mast cells, respectively. Novel adenosine receptor subtype-selective ligands have recently been developed. These include MRS1754 (A(2B) blocker), MRS1220 (A(3) blocker), MRE 3008F20 (human A(3) blocker), MRS1523 (rat A(3) blocker), and ATL146e (A(2A) agonist). These new pharmacologic tools will help investigators to sort out how adenosine protects tissues from injury and to identify new therapeutic agents that hold promise for the treatment of inflammatory and ischemic diseases.
Collapse
Affiliation(s)
- J Linden
- Department of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia 22908, USA.
| |
Collapse
|
1031
|
Affiliation(s)
- D Woulfe
- Departments of Medicine and Pharmacology and the Center for Experimental Therapeutics, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
1032
|
Foster CJ, Prosser DM, Agans JM, Zhai Y, Smith MD, Lachowicz JE, Zhang FL, Gustafson E, Monsma FJ, Wiekowski MT, Abbondanzo SJ, Cook DN, Bayne ML, Lira SA, Chintala MS. Molecular identification and characterization of the platelet ADP receptor targeted by thienopyridine antithrombotic drugs. J Clin Invest 2001; 107:1591-8. [PMID: 11413167 PMCID: PMC200194 DOI: 10.1172/jci12242] [Citation(s) in RCA: 315] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
ADP plays a critical role in modulating thrombosis and hemostasis. ADP initiates platelet aggregation by simultaneous activation of two G protein-coupled receptors, P2Y1 and P2Y12. Activation of P2Y1 activates phospholipase C and triggers shape change, while P2Y12 couples to Gi to reduce adenylyl cyclase activity. P2Y12 has been shown to be the target of the thienopyridine drugs, ticlopidine and clopidogrel. Recently, we cloned a human orphan receptor, SP1999, highly expressed in brain and platelets, which responded to ADP and had a pharmacological profile similar to that of P2Y12. To determine whether SP1999 is P2Y12, we generated SP1999-null mice. These mice appear normal, but they exhibit highly prolonged bleeding times, and their platelets aggregate poorly in responses to ADP and display a reduced sensitivity to thrombin and collagen. These platelets retain normal shape change and calcium flux in response to ADP but fail to inhibit adenylyl cyclase. In addition, oral clopidogrel does not inhibit aggregation responses to ADP in these mice. These results demonstrate that SP1999 is indeed the elusive receptor, P2Y12. Identification of the target receptor of the thienopyridine drugs affords us a better understanding of platelet function and provides tools that may lead to the discovery of more effective antithrombotic therapies.
Collapse
Affiliation(s)
- C J Foster
- Department of Central Nervous System and Cardiovascular Pharmacology, Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1033
|
Nieswandt B, Bergmeier W, Eckly A, Schulte V, Ohlmann P, Cazenave JP, Zirngibl H, Offermanns S, Gachet C. Evidence for cross-talk between glycoprotein VI and Gi-coupled receptors during collagen-induced platelet aggregation. Blood 2001; 97:3829-35. [PMID: 11389023 DOI: 10.1182/blood.v97.12.3829] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Collagen-induced platelet aggregation is a complex process and involves synergistic action of integrins, immunoglobulin (Ig)-like receptors, G-protein-coupled receptors and their ligands, most importantly collagen itself, thromboxane A(2) (TXA(2)), and adenosine diphosphate (ADP). The precise role of each of these receptor systems in the overall processes of activation and aggregation, however, is still poorly defined. Among the collagen receptors expressed on platelets, glycoprotein (GP) VI has been identified to play a crucial role in collagen-induced activation. GPVI is associated with the FcRgamma chain, which serves as the signal transducing unit of the receptor complex. It is well known that clustering of GPVI by highly specific agonists results in platelet activation and irreversible aggregation, but it is unclear whether collagen has the same effect on the receptor. This study shows that platelets from Galphaq-deficient mice, despite their severely impaired response to collagen, normally aggregate on clustering of GPVI, suggesting this not to be the principal mechanism by which collagen activates platelets. On the other hand, dimerization of GPVI by a monoclonal antibody (JAQ1), which by itself did not induce aggregation, provided a sufficient stimulus to potentiate platelet responses to Gi-coupled, but not Gq-coupled, agonists. The combination of JAQ1 and adrenaline or ADP, but not serotonin, resulted in alpha(IIb)beta(3)-dependent aggregation that occurred without intracellular calcium mobilization and shape change in the absence of Galphaq or the P2Y(1) receptor. Together, these results provide evidence for a cross-talk between (dimerized) GPVI and Gi-coupled receptors during collagen-induced platelet aggregation. (Blood. 2001;97:3829-3835)
Collapse
Affiliation(s)
- B Nieswandt
- Department of Molecular Oncology, General Surgery, Witten/Herdecke University, Arrenbergerstrasse 20, 42117 Wuppertal, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
1034
|
Jin J, Tomlinson W, Kirk IP, Kim YB, Humphries RG, Kunapuli SP. The C6-2B glioma cell P2Y(AC) receptor is pharmacologically and molecularly identical to the platelet P2Y(12) receptor. Br J Pharmacol 2001; 133:521-8. [PMID: 11399669 PMCID: PMC1572816 DOI: 10.1038/sj.bjp.0704114] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
P2Y receptor activation in many cell types leads to phospholipase C activation and accumulation of inositol phosphates, while in blood platelets, C6-2B glioma cells, and in B10 microvascular endothelial cells a P2Y receptor subtype, which couples to inhibition of adenylyl cyclase, historically termed P2Y(AC), (P2T(AC) or P(2T) in platelets) has been identified. Recently, this receptor has been cloned and designated P2Y(12) in keeping with current P2 receptor nomenclature. Three selective P(2T) receptor antagonists, with a range of affinities, inhibited ADP-induced aggregation of washed human or rat platelets, in a concentration-dependent manner, with a rank order of antagonist potency (pIC(50), human: rat) of AR-C78511 (8.5 : 9.1)>AR-C69581 (6.2 : 6.0)>AR-C70300 (5.4 : 5.1). However, these compounds had no effect on ADP-induced platelet shape change. All three antagonists had no significant effect on the ADP-induced inositol phosphate formation in 1321N1 astrocytoma cells stably expressing the P2Y(1) receptor, when used at concentrations that inhibit platelet aggregation. These antagonists also blocked ADP-induced inhibition of adenylyl cyclase in rat platelets and C6-2B cells with identical rank orders of potency and overlapping concentration - response curves. RT - PCR and nucleotide sequence analyses revealed that the C6-2B cells express the P2Y(12) mRNA. These data demonstrate that the P2Y(AC) receptor in C6-2B cells is pharmacologically identical to the P2T(AC) receptor in rat platelets.
Collapse
Affiliation(s)
- Jianguo Jin
- Department of Physiology, Temple University Medical School, Philadelphia, Pennsylvania, PA, U.S.A
| | - Wendy Tomlinson
- Discovery BioScience Department, AstraZeneca R&D Charnwood, Loughborough
| | - Ian P Kirk
- Discovery BioScience Department, AstraZeneca R&D Charnwood, Loughborough
| | - Young B Kim
- Department of Physiology, Temple University Medical School, Philadelphia, Pennsylvania, PA, U.S.A
| | - Robert G Humphries
- Discovery BioScience Department, AstraZeneca R&D Charnwood, Loughborough
| | - Satya P Kunapuli
- Department of Physiology, Temple University Medical School, Philadelphia, Pennsylvania, PA, U.S.A
- Department of Pharmacology, Temple University Medical School, Philadelphia, Pennsylvania, PA, U.S.A
- Sol Sherry Thrombosis Research Center, Temple University Medical School, Philadelphia, Pennsylvania, PA, U.S.A
- Author for correspondence: .
| |
Collapse
|
1035
|
Boarder MR, White PJ, Roberts JR, Webb TE. Regulation of vascular endothelial cells and vascular smooth muscle cells by multiple P2Y receptor subtypes. Drug Dev Res 2001. [DOI: 10.1002/ddr.1186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
1036
|
Jung SM, Moroi M. Platelet collagen receptor integrin alpha2beta1 activation involves differential participation of ADP-receptor subtypes P2Y1 and P2Y12 but not intracellular calcium change. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3513-22. [PMID: 11422381 DOI: 10.1046/j.1432-1327.2001.02252.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In agonist-induced platelet activation, the collagen platelet receptor integrin alpha2beta1 is activated to high-affinity states through ADP involvement [Jung, S.M. & Moroi, M. (2000) J. Biol. Chem. 275, 8016-8026]. Here we determined the ADP-receptor subtypes involved and their relative contributions to alpha2beta1 activation (assessed by soluble-collagen binding) using the P2Y12 antagonist AR-C69931MX and P2Y1 antagonists adenosine 3',5'-diphosphate (Ado(3,5)PP) and adenosine 3'-phosphate 5'-phosphosulfate (AdoPPS). All three inhibited alpha2beta1 activation induced by low or high ADP, low thrombin, or low collagen-related peptide (CRP) concentrations; however, AR-C69931MX was markedly more inhibitory than the P2Y1 antagonists, suggesting the greater contribution of P2Y12. Inhibition patterns by various combinations of AR-C69931MX, AdoPPS, and wortmannin suggested that P2Y1 and P2Y12 mediate alpha2beta1 activation through different pathways, with possible involvement of phosphoinositide 3-kinase in both. Low concentrations of the acetoxy-methyl derivative of 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetra-acetic acid (calcium chelator) markedly decreased alpha2beta1 activation by low thrombin or CRP, but did not affect that by low or high ADP. Measurements of intracellular Ca2+ level (fluorimetric method) and alpha2beta1 activation (soluble-collagen binding) in the same platelet preparation indicated that alpha2beta1 activation via ADP receptors was independent of intracellular Ca2+ release. Our data indicate that integrin alpha2beta1 activation by ADP occurs through an inside-out signaling mechanism involving differential contributions by P2Y1 and P2Y12 wherein each contributes to some portion of the activation, with the stronger contribution of P2Y12. Furthermore, intracellular Ca2+ increase is not directly related to integrin alpha2beta1 activation, meaning that it is separate from the calcium mobilization pathways that these two ADP receptors are involved in.
Collapse
Affiliation(s)
- S M Jung
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, Japan.
| | | |
Collapse
|
1037
|
Warny M, Aboudola S, Robson SC, Sévigny J, Communi D, Soltoff SP, Kelly CP. P2Y(6) nucleotide receptor mediates monocyte interleukin-8 production in response to UDP or lipopolysaccharide. J Biol Chem 2001; 276:26051-6. [PMID: 11349132 DOI: 10.1074/jbc.m102568200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Extracellular nucleotides are autocrine and paracrine cellular mediators that signal through P2 nucleotide receptors. Monocytic cells express several P2Y receptors but the role of these G protein-coupled receptors in monocytes is not known. Here, we present evidence that P2Y(6) regulates chemokine production and release in monocytes. We find that UDP, a selective P2Y(6) agonist, stimulates interleukin (IL)-8 release in human THP-1 monocytic cells whereas other nucleotides are relatively inactive. P2 receptor antagonists or P2Y(6) antisense oligonucleotides inhibit IL-8 release induced by UDP. Furthermore, UDP specifically activated IL-8 production in astrocytoma 1321N1 cells transfected with human P2Y(6). Since lipopolysaccharide has been suggested to activate P2 receptors via nucleotide release, we tested whether IL-8 production stimulated by lipopolysaccharide might result from P2Y(6) activation. P2 antagonists or apyrase, an enzyme which hydrolyzes nucleotides including UDP, inhibit IL-8 production induced by lipopolysaccharide but not by other stimuli. Furthermore, IL-8 gene expression activated by lipopolysaccharide is enhanced by P2Y(6) overexpression and inhibited by P2Y(6) antisense oligonucleotides. Thus, UDP activates IL-8 production via P2Y(6) in monocytic cells. Furthermore, lipopolysaccharide mediates IL-8 production at least in part by autocrine P2Y(6) activation. These findings indicate a novel role for P2Y(6) in innate immune defenses.
Collapse
Affiliation(s)
- M Warny
- Gastroenterology Divison, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
1038
|
Savi P, Labouret C, Delesque N, Guette F, Lupker J, Herbert JM. P2y(12), a new platelet ADP receptor, target of clopidogrel. Biochem Biophys Res Commun 2001; 283:379-83. [PMID: 11327712 DOI: 10.1006/bbrc.2001.4816] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The binding characteristics of (33)P-2MeS-ADP, a stable analogue of ADP, were determined on CHO cells transfected with the human P2Y(12) receptor, a novel purinergic receptor. These transfected CHO cells displayed a strong affinity for (33)P-2MeS-ADP, the binding characteristics of which corresponded in all points to those observed on platelets. In particular, this receptor recognised purines with the following order of potency: 2MeS-ADP = 2MeS-ATP > ADP = ATPgammaS = ATP >> UTP, a binding profile which is similar to that obtained in platelets. The binding of (33)P-2MeS-ADP was antagonised by pCMPS but not by MRS2179 and FSBA, antagonists of P2Y(1) and aggregin, respectively. Moreover, the binding of (33)P-2MeS-ADP to these cells was strongly and irreversibly inhibited by the active metabolite of clopidogrel with a potency which was consistent with that observed for this compound on platelets. Like in platelets, 2MeS-ADP induced adenylyl cyclase down-regulation in these P2Y(12) transfected CHO cells, an effect which was absent in the corresponding non-transfected cells. As already shown in platelets, the active metabolite of clopidogrel antagonised 2MeS-ADP-induced inhibition of adenylyl cyclase on transfected cells. Our results confirm that P2Y(12) is the previously called "platelet P2t(AC)" receptor and show that this receptor is antagonised by the active metabolite of clopidogrel.
Collapse
Affiliation(s)
- P Savi
- Cardiovascular/Thrombosis Research Department, Sanofi-Synthélabo, 195 Route d'Espagne, Toulouse, 31036, France
| | | | | | | | | | | |
Collapse
|
1039
|
Laitinen JT, Uri A, Raidaru G, Miettinen R. [(35)S]GTPgammaS autoradiography reveals a wide distribution of G(i/o)-linked ADP receptors in the nervous system: close similarities with the platelet P2Y(ADP) receptor. J Neurochem 2001; 77:505-18. [PMID: 11299313 DOI: 10.1046/j.1471-4159.2001.00265.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
No G(i)-linked P2Y receptors have been cloned to date but the presence of such receptors is thought to be restricted to platelets and certain clonal cell lines. Using the functional approach of [(35)S]guanosine 5'-[gamma-thio]-triphosphate autoradiography, we uncovered the widespread presence of such receptors in the CNS. Under conditions in which the prominent signal due to tonic adenosine receptor activity is masked, ADP and ATP stimulated G-protein activity in multiple grey and white matter regions. Localization in the grey matter suggests inhibitory auto-/heteroreceptor function. In the white matter, activated G proteins appeared as 'hot spots' (presumed oligodendrocyte progenitors) with scattered distribution along the main fibre tracts. Responses to ATP were diminished under conditions that inhibited degradation, suggesting that prior conversion to ADP explained agonist action. Uracil nucleotides were ineffective but 2-methylthio-ADP activated G proteins approximately 500-fold more potently than ADP, although both were similarly degraded. Throughout the brain, ADP-dependent G-protein activity was reversed by 2-hexylthio-AdoOC(O)Asp(2), a non-phosphate ATP analogue, whereas selective P2Y(1) receptor antagonists proved ineffective. A similar receptor was also disclosed from the adrenal medulla. These data witness a hitherto unrecognized abundance of G(i/o)-linked ADP receptors in the nervous system. Biochemical and pharmacological behaviour suggests striking similarities to the elusive platelet P2Y(ADP) receptor.
Collapse
Affiliation(s)
- J T Laitinen
- Department of Physiology, University of Kuopio, Finland Institute of Chemical Physics, Tartu University, Estonia Department of Neuroscience and Neurology, University and University Hospital of Kuopio, Finland.
| | | | | | | |
Collapse
|
1040
|
Jarvis G. P2Y(12) - the hare catches up with the tortoise! Trends Pharmacol Sci 2001; 22:111. [PMID: 11239566 DOI: 10.1016/s0165-6147(00)01656-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
1041
|
Ramakrishnan V, DeGuzman F, Bao M, Hall SW, Leung LL, Phillips DR. A thrombin receptor function for platelet glycoprotein Ib-IX unmasked by cleavage of glycoprotein V. Proc Natl Acad Sci U S A 2001; 98:1823-8. [PMID: 11172035 PMCID: PMC29341 DOI: 10.1073/pnas.98.4.1823] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycoprotein (GP) V is a major substrate cleaved by the protease thrombin during thrombin-induced platelet activation. Previous analysis of platelets from GP V-null mice suggested a role for GP V as a negative modulator of platelet activation by thrombin. We now report the mechanism by which thrombin activates GP V -/- platelets. We show that proteolytically inactive forms of thrombin induce robust stimulatory responses in GP V null mouse platelets, via the platelet GP Ib--IX--V complex. Because proteolytically inactive thrombin can activate wild-type mouse and human platelets after treatment with thrombin to cleave GP V, this mechanism is involved in thrombin-induced platelet aggregation. Platelet activation through GP Ib-IX depends on ADP secretion, and specific inhibitors demonstrate that the recently cloned P2Y(12) ADP receptor (G(i)-coupled ADP receptor) is involved in this pathway, and that the P2Y(1) receptor (G(q)-coupled ADP receptor) may play a less significant role. Thrombosis was generated in GP V null mice only in response to catalytically inactive thrombin, whereas thrombosis occurred in both genotypes (wild type and GP V null) in response to active thrombin. These data support a thrombin receptor function for the platelet membrane GP Ib--IX--V complex, and describe a novel thrombin signaling mechanism involving an initiating proteolytic event followed by stimulation of the GP Ib--IX via thrombin acting as a ligand, resulting in platelet activation.
Collapse
Affiliation(s)
- V Ramakrishnan
- COR Therapeutics, Inc., South San Francisco, CA 94080, USA.
| | | | | | | | | | | |
Collapse
|
1042
|
|
1043
|
Morelli A, Ferrari D, Bolognesi G, Rizzuto R, Virgilio FD. Proapoptotic plasma membrane pore: P2X7 receptor. Drug Dev Res 2001. [DOI: 10.1002/ddr.1160] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
1044
|
Boeynaems JM, Robaye B, Janssens R, Suarez-Huerta N, Communi D. Overview of P2Y receptors as therapeutic targets. Drug Dev Res 2001. [DOI: 10.1002/ddr.1114] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|