1001
|
Abstract
The pathology of Alzheimer's disease (AD) shows a significant correlation between beta-amyloid peptide (AbetaP) conformation and the clinical severity of dementia. For many years, efforts have been focused on the development of inhibitors of beta-amyloid (Abeta) formation and its related neurotoxic effects. The author has developed a new concept showing that site-directed antibodies may modulate formation of Abeta. The performance of anti-Abeta antibodies in transgenic mice models of AD showed that they are delivered to the central nervous system (CNS), preventing in vivo formation of Abeta. Moreover, these antibodies dissolve Abeta plaques and protect the mice from learning difficulties and age-related memory deficits. Experimental active immunisation with Abeta (1-42) in humans has been stopped in Phase II of their clinical trials. However, several new preparations, able to provide antibodies against Abeta by either active or passive routes, have been formulated and at least one of these is likely to reach clinical testing. These data support the hypothesis that AbetaP plays a central role in AD and antibodies which modulate Abeta conformation may lead to immunotherapy of the disease.
Collapse
Affiliation(s)
- Beka Solomon
- Department of Molecular Microbiology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel.
| |
Collapse
|
1002
|
Gold M. Tau therapeutics for Alzheimer's disease: the promise and the challenges. J Mol Neurosci 2002; 19:331-4. [PMID: 12540060 DOI: 10.1385/jmn:19:3:329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The pathological diagnosis of Alzheimer's disease (AD) depends on the presence of plaques consisting of the beta-amyloid peptide as well as neurofibrillary tangles consisting of paired helical filaments (PHFs) of the tau (tau) protein. The role of each type of pathology in the pathogenesis and progression of AD remains unclear. Previous hypotheses suggested that these two processes were independent, whereas more recent data suggest that there may be a bidirectional interaction between these two pathological processes. The identification of the neurotoxic effects of beta-amyloid and the discovery of mutations responsible for early-onset Alzheimer's disease (EOAD) and their linkage to beta-amyloid overproduction, has made the amyloid hypothesis of AD the predominant influence for therapeutic targets. Several approaches have emerged from preclinical testing and have entered early phases of clinical developments. The recent identification of tau mutations and their linkage to progressive neurodegenerative disorders provides a counterbalancing influence on the search for therapeutic targets for AD. Therapeutic approaches that are targeted to either beta-amyloid or tau share certain features at the level of pharmacology and will face many of the same challenges as they progress through drug development paradigms. The aim of this article is to provide a brief overview of some of the commonalities and the challenges faced by tau-related therapeutic strategies. The issues discussed in this article are not exhaustively dealt with in either scope or detail.
Collapse
Affiliation(s)
- Michael Gold
- Global Clinical Research and Development, CNS/Analgesia, Johnson & Johnson Pharmaceutical Research and Development, Titusville, NJ 08560, USA.
| |
Collapse
|
1003
|
Lau LF, Seymour PA, Sanner MA, Schachter JB. Cdk5 as a drug target for the treatment of Alzheimer's disease. J Mol Neurosci 2002; 19:267-73. [PMID: 12540052 DOI: 10.1385/jmn:19:3:267] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2002] [Accepted: 10/28/2002] [Indexed: 11/11/2022]
Abstract
Cyclin-dependent kinase-5 (cdk5) is suggested to play a role in tau phosphorylation and contribute to the pathogenesis of Alzheimer's disease (AD). One of its activators, p25, is dramatically increased in AD brains where p25 and cdk5 are colocalized with neurofibrillary tangles. Several animal models have shown a correlation of p25/cdk5 activities with tau phosphorylation. Overexpression of p25/cdk5 in nueronal cultures not only leads to tau phosphorylation but also cytoskeletal abnormalities and neurodegeneration. Therefore, cdk5 kinase inhibitors are potential therapeutic agents for the treatment of AD. Availability of potent, selective, brain permeable cdk5 inhibitors and relevant animal models in which their efficacy can be treated will be critical in the development of these inhibitors.
Collapse
Affiliation(s)
- Lit-Fui Lau
- CNS Discovery, Pfizer Global Research and Development, Groton, CT 06340, USA.
| | | | | | | |
Collapse
|
1004
|
Hernández F, Borrell J, Guaza C, Avila J, Lucas JJ. Spatial learning deficit in transgenic mice that conditionally over-express GSK-3beta in the brain but do not form tau filaments. J Neurochem 2002; 83:1529-33. [PMID: 12472906 DOI: 10.1046/j.1471-4159.2002.01269.x] [Citation(s) in RCA: 270] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Deregulation of glycogen synthase kinase-3 (GSK-3) activity in neurones has been postulated as a key feature in Alzheimer's disease (AD) pathogenesis. This was further supported by our recent characterization of transgenic mice that conditionally over-express GSK-3beta in hippocampal and cortical neurones. These mice, designated Tet/GSK-3beta, showed many of the biochemical and cellular aspects of AD neuropathology such as tau hyperphosphorylation and somatodendritic localization, decreased nuclear beta-catenin, neuronal death and reactive gliosis. Tet/GSK-3beta mice, however, did not show tau filament formation up to the latest tested age of 3 months at least. Here we report spatial learning deficits of Tet/GSK-3beta mice in the Morris water maze. In parallel, we also measured the increase in GSK-3 activity while further exploring the possibility of tau filament formation in aged mice. We found a significant increase in GSK-3 activity in the hippocampus of Tet/GSK-3beta mice whereas no tau fibrils could be found even in very old mice. These data reinforce the hypothesis of GSK-3 deregulation in AD pathogenesis, and suggest that Tet/GSK-3beta mice can be used as an AD model and, most remarkably, can be used to test the therapeutic potential of the selective GSK-3 inhibitors that are currently under development. Additionally, these experiments suggest that destabilization of microtubules and alteration of intracellular metabolic pathways contribute to AD pathogenesis independent of toxicity triggered by the aberrant tau deposits.
Collapse
Affiliation(s)
- Félix Hernández
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | | | | | | | | |
Collapse
|
1005
|
Sahara N, Lewis J, DeTure M, McGowan E, Dickson DW, Hutton M, Yen SH. Assembly of tau in transgenic animals expressing P301L tau: alteration of phosphorylation and solubility. J Neurochem 2002; 83:1498-508. [PMID: 12472903 DOI: 10.1046/j.1471-4159.2002.01241.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Transgenic mice (JNPL3), which develop neurofibrillary degeneration and express four-repeat human tau with P301L missense mutation, were characterized biochemically to determine whether the development of aggregated tau from soluble tau involves an intermediate stage. Homogenates from mice of different ages were separated into buffer-soluble (S1), sarkosyl- and salt-extractable (S2) and sarkosyl-insoluble pellet (P3) fractions, and analyzed for human tau distribution, phosphorylation and filament formation. S1 and S2 fractions contained 50-60-kDa tau whereas the S2 fraction also had 64-kDa tau. The level of tau in the P3 fraction increased in an age-dependent manner and correlated positively with the soluble tau concentration. The P3 fraction from 2.5-6.5-month-old mice contained 64- and 50-60-kDa tau, whereas that from 8.5-month and older transgenic animals contained mostly 64-kDa and higher molecular weight tau. The S2 and P3 fractions contained comparable amounts of 64-kDa tau. The 64-kDa tau was predominantly human, and phosphorylated at multiple sites: Thr181, Ser202/Thr205, Thr212, Thr231, Ser262, Ser396/Ser404, Ser409 and Ser422. Most of these sites were phosphorylated to a lesser extent in S2 than in P3 fractions. Tau polymers were detected in P3 fractions from 3-month and older female JNPL3 mice, but not in non-transgenic controls. The results suggest that tau in S2 represents an intermediate from which insoluble tau is derived, and that phosphorylation may play a role in filament formation and/or stabilization.
Collapse
Affiliation(s)
- Naruhiko Sahara
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | | | | | | | | | | | | |
Collapse
|
1006
|
Abstract
Aggregation and increased phosphorylation of tau at selected sites ("hyperphosphorylation") are histopathological hallmarks of Alzheimer's disease (AD). However, it is not known whether the tau pathology has a primary role during neuronal degeneration. To determine the role of tau hyperphosphorylation in AD, pseudohyperphosphorylated tau (PHP-tau) that simulates disease-like permanent, high stoichiometric tau phosphorylation and mimics structural and functional aspects of hyperphosphorylated tau was expressed in neural cells. In differentiated PC12 cells, PHP-tau exhibited reduced microtubule interaction and failed to stabilize the microtubule network compared with exogenously expressed wild-type tau (wt-tau). During longer culture, PHP-tau exerted a cytotoxic effect, whereas wt-tau was neutral. PHP-tau-mediated cytotoxicity was associated with an induction of apoptotic cell death as characterized by chromatin condensation, DNA fragmentation, and caspase-3 activation in the absence of detectable protein aggregates. Furthermore, PHP-tau expression specifically sensitized the cells for other apoptotic stimuli (colchicine and staurosporine). Herpes simplex virus-mediated overexpression of PHP-tau induced degeneration associated with an induction of apoptotic mechanisms also in terminally differentiated human CNS model neurons. Partially pseudophosphorylated constructs caused an intermediate toxicity. The data provide evidence for a neurotoxic "gain of function" of soluble tau during AD as a result of structural changes that are induced by a cumulative, high stoichiometric tau phosphorylation. PHP-tau-expressing cells and organisms could provide a useful system to identify mechanisms that contribute to tau-mediated toxicity.
Collapse
|
1007
|
Selkoe DJ. Deciphering the genesis and fate of amyloid β-protein yields novel therapies for Alzheimer disease. J Clin Invest 2002. [DOI: 10.1172/jci0216783] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
1008
|
Abstract
Research on the molecular pathogenesis of Alzheimer's disease (AD) has made great strides over the last decade. This progress is the result of protein chemical analysis of two extracellular and intracellular fibrillary lesions in AD brain conducted during the 1980s, which identified beta-amyloid protein (A beta) and tau as their major components, respectively. Linkage analysis of familial AD identified four responsible genes: three causative genes (beta-amyloid precursor protein, presenilin 1, and presenilin 2) and one susceptibility gene (apolipoprotein E epsilon 4). All those genes causing and predisposing to AD exhibit a common phenotype: an increased production of A beta 42, a longer, more amyloidogenic A beta species, and/or its enhanced deposition. This observation was substantiated when presenilins were shown to be directly involved in A beta production. Whereas A beta deposition is relatively specific for AD, tau deposition is observed in various neurodegenerative diseases and is assumed to be intimately associated with neuronal loss. The genetic analysis of frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) revealed the presence of mutations in the tau gene in affected members. Thus, tau can lead to intracellular tau deposits and neuronal loss, although the mechanism remains to be clarified. Taken together, A beta might exert neurotoxicity through tau, leading to neuronal loss in the AD brain.
Collapse
|
1009
|
Takahashi RH, Milner TA, Li F, Nam EE, Edgar MA, Yamaguchi H, Beal MF, Xu H, Greengard P, Gouras GK. Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1869-79. [PMID: 12414533 PMCID: PMC1850783 DOI: 10.1016/s0002-9440(10)64463-x] [Citation(s) in RCA: 545] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A central question in Alzheimer's disease concerns the mechanism by which beta-amyloid contributes to neuropathology, and in particular whether intracellular versus extracellular beta-amyloid plays a critical role. Alzheimer transgenic mouse studies demonstrate brain dysfunction, as beta-amyloid levels rise, months before the appearance of beta-amyloid plaques. We have now used immunoelectron microscopy to determine the subcellular site of neuronal beta-amyloid in normal and Alzheimer brains, and in brains from Alzheimer transgenic mice. We report that beta-amyloid 42 localized predominantly to multivesicular bodies of neurons in normal mouse, rat, and human brain. In transgenic mice and human Alzheimer brain, intraneuronal beta-amyloid 42 increased with aging and beta-amyloid 42 accumulated in multivesicular bodies within presynaptic and especially postsynaptic compartments. This accumulation was associated with abnormal synaptic morphology, before beta-amyloid plaque pathology, suggesting that intracellular accumulation of beta-amyloid plays a crucial role in Alzheimer's disease.
Collapse
Affiliation(s)
- Reisuke H Takahashi
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1010
|
Bu B, Klunemann H, Suzuki K, Li J, Bird T, Jin LW, Vincent I. Niemann-Pick disease type C yields possible clue for why cerebellar neurons do not form neurofibrillary tangles. Neurobiol Dis 2002; 11:285-97. [PMID: 12505421 DOI: 10.1006/nbdi.2002.0551] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It is unknown why cerebellar neurons resist neurofibrillary tangle (NFT) formation. In Niemann-Pick disease Type C (NPC), NFT-mediated neurodegeneration occurs throughout brain, but the cerebellum degenerates conspicuously without NFT. To understand why, we have studied markers of NFT pathogenesis in cerebellum from 17 NPC cases, all having abundant NFT in forebrain. Remarkably, we found that NPC cerebella display several early markers of NFT formation, i.e., hyperphosphorylated tau and an array of cell cycle regulators, suggesting that cerebellar neurons in NPC undergo similar modifications as other neurons that develop NFT. However, cerebellar neurons are deficient in tau, the building block of NFT, and this may be one reason for their inability to form NFT. Even without NFT, cerebellar neurodegeneration may be triggered by the inappropriate activation of the cell cycle cdc2 kinase, and the npc-1 murine model provides an opportunity to test this hypothesis.
Collapse
Affiliation(s)
- Bitao Bu
- Department of Pathology, University of Washington, Seattle, 98195, USA
| | | | | | | | | | | | | |
Collapse
|
1011
|
Selkoe DJ. Deciphering the genesis and fate of amyloid beta-protein yields novel therapies for Alzheimer disease. J Clin Invest 2002; 110:1375-81. [PMID: 12438432 PMCID: PMC151820 DOI: 10.1172/jci16783] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Dennis J Selkoe
- Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Harvard Institutes of Medicine, Boston, Massachusetts 02115, USA.
| |
Collapse
|
1012
|
Affiliation(s)
- John Hardy
- Laboratory of Neurogenetics, NIA/NIH, Building 10, 6C103, Bethesda, MD 20892, USA.
| |
Collapse
|
1013
|
Affiliation(s)
- H Michael Tucker
- Department of Physiology, Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone, Lexington 40536-0230, USA.
| | | |
Collapse
|
1014
|
Abstract
Multiple lines of evidence implicate lysosomes in a variety of pathogenic events that produce neurodegeneration. Genetic mutations that cause specific enzyme deficiencies account for more than 40 lysosomal storage disorders. These mostly pre-adult diseases are associated with abnormal brain development and mental retardation. Such disorders are characterized by intracellular deposition and protein aggregation, events also found in age-related neurodegenerative diseases including (i) Alzheimer's disease and related tauopathies (ii) Lewy body disorders and synucleinopathies such as Parkinson's disease, and (iii) Huntington's disease and other polyglutamine expansion disorders. Of particular interest for this review is evidence that alterations to the lysosomal system contribute to protein deposits associated with different types of age-related neurodegeneration. Lysosomes are in fact highly susceptible to free radical oxidative stress in the aging brain, leading to the gradual loss of their processing capacity over the lifespan of an individual. Several studies point to this lysosomal disturbance as being involved in amyloidogenic processing, formation of paired helical filaments, and the aggregation of alpha-synuclein and mutant huntingtin proteins. Most notably, experimentally induced lysosomal dysfunction, both in vitro and in vivo, recapitulates important pathological features of age-related diseases including the link between protein deposition and synaptic loss.
Collapse
Affiliation(s)
- Ben A Bahr
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-2092, USA.
| | | |
Collapse
|
1015
|
Affiliation(s)
- David M Holtzman
- Department of Neurology, Center for the Study of Nervous System Injury, Alzheimer's Disease Research Center, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO 63110, USA.
| |
Collapse
|
1016
|
Urbanc B, Cruz L, Le R, Sanders J, Ashe KH, Duff K, Stanley HE, Irizarry MC, Hyman BT. Neurotoxic effects of thioflavin S-positive amyloid deposits in transgenic mice and Alzheimer's disease. Proc Natl Acad Sci U S A 2002; 99:13990-5. [PMID: 12374847 PMCID: PMC137824 DOI: 10.1073/pnas.222433299] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2002] [Indexed: 11/18/2022] Open
Abstract
Despite extensive deposition of putatively neurotoxic amyloid-beta (Abeta) protein in the brain, it has not been possible to demonstrate an association of Abeta deposits with neuronal loss in Alzheimer's disease (AD), and neuronal loss is minimal in transgenic mouse models of AD. Using triple immunostaining confocal microscopy and analyzing the images with the cross-correlation density map method from statistical physics, we directly compared Abeta deposition, Abeta morphology, and neuronal architecture. We found dramatic, focal neuronal toxicity associated primarily with thioflavin S-positive fibrillar Abeta deposits in both AD and PSAPP mice. These results, along with computer simulations, suggest that Abeta develops neurotoxic properties in vivo when it adopts a fibrillar beta-pleated sheet conformation.
Collapse
Affiliation(s)
- B Urbanc
- Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
1017
|
Abstract
In its earliest clinical phase, Alzheimer's disease characteristically produces a remarkably pure impairment of memory. Mounting evidence suggests that this syndrome begins with subtle alterations of hippocampal synaptic efficacy prior to frank neuronal degeneration, and that the synaptic dysfunction is caused by diffusible oligomeric assemblies of the amyloid beta protein.
Collapse
Affiliation(s)
- Dennis J Selkoe
- Center for Neurologic Diseases, Brigham and Women's Hospital, and the Harvard Center for Neurodegeneration and Repair, Boston, MA 02115, USA.
| |
Collapse
|
1018
|
Abstract
There are no significantly effective therapeutic or prophylactic agents for Alzheimer's disease (AD), the leading cause of age-related dementia. AD is characterised pathologically by plaque-like deposits of beta-amyloid in the brain as well as cytoskeletal ("neurofibrillary") alterations within nerve cells. A novel immunisation strategy directed at the beta-amyloid abnormalities underlying plaque pathology has recently been proposed for AD. This approach is supported by experimental studies utilising beta-amyloid as an immunogen, or antibodies to beta-amyloid, in transgenic experimental models that develop plaque pathology but not neurofibrillary alterations or severe neurodegeneration. Behavioural abnormalities in these mice related to deficits in spatial working memory were also ameliorated by immunisation with beta-amyloid. The promise of this novel approach to AD treatment and/or prevention has led to initial human trials utilising beta-amyloid as an immunogen.
Collapse
Affiliation(s)
- James C Vickers
- Discipline of Pathology, University of Tasmania, GPO Box 252-29, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
1019
|
Abstract
Oxidative stress is a ubiquitously observed hallmark of neurodegenerative disorders. Neuronal cell dysfunction and cell death due to oxidative stress may causally contribute to the pathogenesis of progressive neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, as well as acute syndromes of neurodegeneration, such as ischaemic and haemorrhagic stroke. Neuroprotective antioxidants are considered a promising approach to slowing the progression and limiting the extent of neuronal cell loss in these disorders. The clinical evidence demonstrating that antioxidant compounds can act as protective drugs in neurodegenerative disease, however, is still relatively scarce. In the following review, the available data from clinical, animal and cell biological studies regarding the role of antioxidant neuroprotection in progressive neurodegenerative disease will be summarised, focussing particularly on Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. The general complications in developing potent neuroprotective antioxidant drugs directed against these long-term degenerative conditions will also be discussed. The major challenges for drug development are the slow kinetics of disease progression, the unsolved mechanistic questions concerning the final causalities of cell death, the necessity to attain an effective permeation of the blood-brain barrier and the need to reduce the high concentrations currently required to evoke protective effects in cellular and animal model systems. Finally, an outlook as to which direction antioxidant drug development and clinical practice may be leading to in the near future will be provided.
Collapse
Affiliation(s)
- Bernd Moosmann
- Center for Neuroscience and Aging, The Burnham Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
1020
|
Auld DS, Kornecook TJ, Bastianetto S, Quirion R. Alzheimer's disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol 2002; 68:209-45. [PMID: 12450488 DOI: 10.1016/s0301-0082(02)00079-5] [Citation(s) in RCA: 472] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is the most common form of degenerative dementia and is characterized by progressive impairment in cognitive function during mid- to late-adult life. Brains from AD patients show several distinct neuropathological features, including extracellular beta-amyloid-containing plaques, intracellular neurofibrillary tangles composed of abnormally phosphorylated tau, and degeneration of cholinergic neurons of the basal forebrain. In this review, we will present evidence implicating involvement of the basal forebrain cholinergic system in AD pathogenesis and its accompanying cognitive deficits. We will initially discuss recent results indicating a link between cholinergic mechanisms and the pathogenic events that characterize AD, notably amyloid-beta peptides. Following this, animal models of dementia will be discussed in light of the relationship between basal forebrain cholinergic hypofunction and cognitive impairments in AD. Finally, past, present, and future treatment strategies aimed at alleviating the cognitive symptomatology of AD by improving basal forebrain cholinergic function will be addressed.
Collapse
Affiliation(s)
- Daniel S Auld
- Douglas Hospital Research Centre, 6875 Blvd Lasalle, Verdun, Que, Canada H4H 1R3
| | | | | | | |
Collapse
|
1021
|
Abstract
In this review the authors discuss the possible neuropathological role of intracellular amyloid-beta accumulation in Alzheimer's disease (AD) pathology. There is abundant evidence that at early stages of the disease, prior to A-beta amyloid plaque formation, A-beta peptides accumulate intraneuronally in the cerebral cortex and the hippocampus. The experimental evidence would indicate that intracellular amyloid-beta could originate both by intracellular biosynthesis and also from the uptake of amyloidogenic peptides from the extracellular milieu. Herein the aspects of the possible impact of intracellular amyloid-beta in human AD pathology are discussed, as well as recent observations from a rat transgenic model with a phenotype of intracellular accumulation of A-beta fragments in neurons of the hippocampus and cortex, without plaque formation. In this model, the intracellular amyloid-beta phenotype is accompanied by increased MAPK/ERK activity and tau hyperphosphorylation. Finally, the authors discuss the hypothesis that, prior to plaque formation, intracellular A-beta accumulation induces biochemical and pathological changes in the brain at the cellular level priming neurons to further cytotoxic attack of extracellular amyloidogenic peptides.
Collapse
Affiliation(s)
- Valentina Echeverria
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
1022
|
Abstract
In the C57BL/Wld(S) mouse, a dominant mutation dramatically delays Wallerian degeneration in injury and disease, possibly by influencing multi-ubiquitination. Studies on this mouse show that axons and synapses degenerate by active and regulated mechanisms that are akin to apoptosis. Axon loss contributes to neurological symptoms in disorders as diverse as multiple sclerosis, stroke, traumatic brain and spinal cord injury, peripheral neuropathies and chronic neurodegenerative diseases, but it has been largely neglected in neuroprotective strategies. Defects in axonal transport, myelination or oxygenation could trigger such mechanisms of active axon degeneration. Understanding how these diverse insults might initiate an axon-degeneration process could lead to new therapeutic interventions.
Collapse
Affiliation(s)
- Michael P Coleman
- Center for Molecular Medicine (ZMMK) and Institute for Genetics, University of Cologne, Zuelpicher Strasse 47, Germany.
| | | |
Collapse
|
1023
|
Lahiri DK, Farlow MR, Greig NH, Sambamurti K. Current drug targets for Alzheimer's disease treatment. Drug Dev Res 2002. [DOI: 10.1002/ddr.10081] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
1024
|
Masliah E, Hansen LA, Rockenstein E, Hashimoto M. Progress in the development of new treatments for combined Alzheimer's and Parkinson's diseases. Drug Dev Res 2002. [DOI: 10.1002/ddr.10082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
1025
|
Mohajeri MH, Saini K, Schultz JG, Wollmer MA, Hock C, Nitsch RM. Passive immunization against beta-amyloid peptide protects central nervous system (CNS) neurons from increased vulnerability associated with an Alzheimer's disease-causing mutation. J Biol Chem 2002; 277:33012-7. [PMID: 12068009 DOI: 10.1074/jbc.m203193200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To characterize the effects of the familial Alzheimer's disease-causing Swedish mutations of amyloid precursor protein (SwAPP) on the vulnerability of central nervous system neurons, we induced epileptic seizures in transgenic mice expressing SwAPP. The transgene expression did not change the seizure threshold, but consistently more neurons degenerated in brains of SwAPP mice as compared with wild-type littermates. The degenerating neurons were stained both by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling and by Gallyas silver impregnation. A susceptible population of neurons accumulated intracellular Abeta and immunoreacted with antibodies against activated caspase-3. To demonstrate that increased Abeta levels mediated the increased vulnerability, we infused antibodies against Abeta and found a significant reduction in neuronal loss that was paralleled by decreased brain levels of Abeta. Because the SwAPP mice exhibited no amyloid plaques at the age of these experiments, transgenic overproduction of Abeta in brain rendered neurons susceptible to damage much earlier than the onset of amyloid plaque formation. Our data underscore the possibility that Abeta is toxic, that it increases the vulnerability of neurons to excitotoxic events produced by seizures, and that lowering Abeta by passive immunization can protect neurons from Abeta-related toxicity.
Collapse
Affiliation(s)
- M Hasan Mohajeri
- Division of Psychiatry Research, University of Zurich, August Forel Strasse 1, 8008 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
1026
|
Abstract
One of the most surprising discoveries of the past decade (at least in the field of neurodegeneration) was that protein misfolding underlies several seemingly disparate neurological diseases. Animal models were crucial to this discovery. In this article, we will discuss the CAG repeat diseases, the tauopathies and Parkinson disease, highlighting how mouse and fly models have contributed to our understanding of pathogenesis. In each case, we will stress what has been learned about the role of protein clearance and the questions that remain about how misfolded proteins acquire their toxicity.
Collapse
Affiliation(s)
- Huda Y Zoghbi
- Depts of Pediatrics, Neurology, and Molecular and Human Genetics, and Howard Hughes Medical Institute, Baylor College of Medicine, 77030, Houston, TX, USA
| | | |
Collapse
|
1027
|
Kirkitadze MD, Bitan G, Teplow DB. Paradigm shifts in Alzheimer's disease and other neurodegenerative disorders: the emerging role of oligomeric assemblies. J Neurosci Res 2002; 69:567-77. [PMID: 12210822 DOI: 10.1002/jnr.10328] [Citation(s) in RCA: 456] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disorder characterized by amyloid deposition in the cerebral neuropil and vasculature. These amyloid deposits comprise predominantly fragments and full-length (40 or 42 residue) forms of the amyloid beta-protein (Abeta) organized into fibrillar assemblies. Compelling evidence indicates that factors that increase overall Abeta production or the ratio of longer to shorter forms, or which facilitate deposition or inhibit elimination of amyloid deposits, cause AD or are risk factors for the disease. In vitro studies have demonstrated that fibrillar Abeta has potent neurotoxic effects on cultured neurons. In vivo experiments in non-human primates have demonstrated that Abeta fibrils directly cause pathologic changes, including tau hyperphosphorylation. In concert with histologic studies revealing a lack of tissue injury in areas of the neuropil in which non-fibrillar deposits were found, these data suggested that fibril assembly was a prerequisite for Abeta-mediated neurotoxicity in vivo. Recently, however, both in vitro and in vivo studies have revealed that soluble, oligomeric forms of Abeta also have potent neurotoxic activities, and in fact, may be the proximate effectors of the neuronal injury and death occurring in AD. A paradigm shift is thus emerging that necessitates the reevaluation of the relative importance of polymeric (fibrillar) vs. oligomeric assemblies in the pathobiology of AD. In addition to AD, an increasing number of neurodegenerative disorders, including Parkinson's disease, familial British dementia, familial amyloid polyneuropathy, amyotrophic lateral sclerosis, and prion diseases, are associated with abnormal protein assembly processes. The archetypal features of the assembly-dependent neuropathogenetic effects of Abeta may thus be of relevance not only to AD but to these other disorders as well.
Collapse
|
1028
|
Abstract
The amyloid beta-protein (Abeta) deposited in Alzheimer's disease (AD), the most common form of dementia in the elderly, is a secreted proteolytic product of the amyloid beta-protein precursor (APP). Generation of Abeta from the APP requires two sequential proteolytic events, beta-secretase cleavage to generate the amino terminus, followed by gamma-secretase cleavage to generate the carboxyl terminus. Because this process is a central event in the pathogenesis of AD, gamma-secretase is believed to be an excellent therapeutic target. Gamma-secretase activity has been demonstrated to be membrane-associated, with the cleavage site primarily determined by the location of the substrate with respect to the membrane. It has also been shown that this unusual proteolytic activity not only occurs for APP, but also for proteins involved in morphogenic processes or cell proliferation and differentiation such as Notch and ErbB4. Thus far, all gamma-secretase substrates are involved in some form of nuclear signaling. These recent findings have important implications for the development of pharmacological interventions that target gamma-secretase.
Collapse
|
1029
|
Dodart JC, Mathis C, Bales KR, Paul SM. Does my mouse have Alzheimer's disease? GENES, BRAIN, AND BEHAVIOR 2002; 1:142-55. [PMID: 12884970 DOI: 10.1034/j.1601-183x.2002.10302.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Small animal models that manifest many of the characteristic neuropathological and behavioral features of Alzheimer's disease (AD) have been developed and have proven of great value for studying the pathogenesis of this disorder at the molecular, cellular and behavioral levels. The great progress made in our understanding of the genetic factors that either cause or contribute to the risk of developing AD has prompted many laboratories to create transgenic (tg) mice that overexpress specific genes which cause familial forms of the disease. Several of these tg mice display neuropathological and behavioral features of AD including amyloid beta-peptide (A beta) and amyloid deposits, neuritic plaques, gliosis, synaptic alterations and signs of neurodegeneration as well as memory impairment. Despite these similarities, important differences in neuropathology and behavior between these tg mouse models and AD have also been observed, and to date no perfect animal model has emerged. Moreover, ascertaining which elements of the neuropathological and behavioral phenotype of these various strains of tg mice are relevant to that observed in AD continues to be a challenge. Here we provide a critical review of the AD-like neuropathology and behavioral phenotypes of several well-known and utilized tg mice that express human APP transgenes.
Collapse
Affiliation(s)
- J C Dodart
- Neuroscience Discovery Research, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| | | | | | | |
Collapse
|
1030
|
Michaelis ML, Chen Y, Hill S, Reiff E, Georg G, Rice A, Audus K. Amyloid peptide toxicity and microtubule-stabilizing drugs. J Mol Neurosci 2002; 19:101-5. [PMID: 12212764 DOI: 10.1007/s12031-002-0018-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2001] [Accepted: 10/16/2001] [Indexed: 11/26/2022]
Abstract
Based on microtubule (MT) disruption observed in primary neurons exposed to fibrillar amyloid peptides (A beta), we tested the potential protective effect of MT-stabilizing drugs such as Taxol against A beta-induced disruption of the cytoskeleton. Although Taxol was strongly protective, the fact that it does not cross the blood brain barrier (BBB) led us to synthesize and test other agents with MT-stabilizing properties and possible penetration into the brain. Our studies have thus far demonstrated that several MT-stabilizing agents, including some with structures quite different from that of Taxol, showed significant protective effects. However, not all agents that promoted MT-assembly were protective, suggesting additional mechanisms are involved in the actions of the drugs. A small number of neuroprotective compounds appear to have potential to enter the brain and thus might be tested to see if they slow progression of neurodegeneration in an appropriate animal model of Alzheimer's disease.
Collapse
Affiliation(s)
- Mary L Michaelis
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence 66045, USA.
| | | | | | | | | | | | | |
Collapse
|
1031
|
Abstract
Dementia, defined as progressive cognitive decline, is a feature of a wide variety of genetic disorders. For example, a search of "dementia" in the Online Mendelian Inheritance in Man (www.ncbi.nlm.nih.gov/Omim) reveals 162 entries. Therefore this article cannot be encyclopedic and will be necessarily restricted to more prevalent or illustrative etiologies of familial dementia in adults. These disorders also have in common an initial and primarily dementing clinical presentation. Thus, this article is limited to: familial Alzheimer's disease (AD) and related amyloid angiopathies, frontotemporal dementias (FTD) and related tauopathies, familial prion diseases, British and Danish familial dementias, and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL).
Collapse
Affiliation(s)
- Peter Hedera
- Department of Neurology, Vanderbilt University, Nashville, Tennesse, USA
| | | |
Collapse
|
1032
|
Rosso SM, van Swieten JC. New developments in frontotemporal dementia and parkinsonism linked to chromosome 17. Curr Opin Neurol 2002; 15:423-8. [PMID: 12151838 DOI: 10.1097/00019052-200208000-00004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The identification of tau mutations in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) has revealed invaluable information regarding the role of the tau protein in neurodegenerative disease. Over the past year several new mutations have been identified, and experimental studies have provided further insight into the mechanism of neurodegeneration due to tau mutations and possible interactions with amyloid pathology. RECENT FINDINGS Extensive clinical and pathological variation is seen in patients with different types of mutation, as well as in patients with the same mutation. Mutations may be found in patients with frontotemporal dementia (FTD), parkinsonism, progressive supranuclear palsy and corticobasal degeneration, justifying mutation analysis in familial cases of these disorders. Genetic heterogeneity exists in frontotemporal dementia, because a number of FTDP-17 families have neither tau mutations nor tau pathology. Genetic linkage has been found in familial FTD (chromosome 3), FTD with amyotrophic lateral sclerosis (9q21-q22), and FTD with inclusion body myopathy (9q13.3-p12). Tau deposits may consist of mainly mutated protein, or of mutated and wild-type protein in equal amounts, depending on the mutation. Recent animal studies show that amyloid-beta deposition may accelerate formation of neurofibrillary tangles. SUMMARY Hopefully, the identification of responsible genetic defects and associated proteins will be helpful in improving our understanding of the role of the tau protein in the common neurodegenerative process of frontotemporal degeneration.
Collapse
Affiliation(s)
- Sonia M Rosso
- Department of Neurology, Erasmus Medical Centre, University Hospital-Dijkzigt, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | | |
Collapse
|
1033
|
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 2002; 297:353-6. [PMID: 12130773 DOI: 10.1126/science.1072994] [Citation(s) in RCA: 9974] [Impact Index Per Article: 453.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It has been more than 10 years since it was first proposed that the neurodegeneration in Alzheimer's disease (AD) may be caused by deposition of amyloid beta-peptide (Abeta) in plaques in brain tissue. According to the amyloid hypothesis, accumulation of Abeta in the brain is the primary influence driving AD pathogenesis. The rest of the disease process, including formation of neurofibrillary tangles containing tau protein, is proposed to result from an imbalance between Abeta production and Abeta clearance.
Collapse
Affiliation(s)
- John Hardy
- Laboratories of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA
| | | |
Collapse
|
1034
|
Abstract
Familial conformational diseases occur when a mutation alters the conformation of a protein resulting in abnormal intermolecular interactions, protein aggregation, and consequent tissue damage. The molecular mechanisms of conformational disease are best understood for the serine protease inhibitor (serpin) superfamily of proteins. The serpinopathies include alpha(1)-antitrypsin (SERPINA1) deficiency and the newly characterized familial encephalopathy with neuroserpin inclusion bodies (FENIB) resulting from mutations in the neuroserpin (SERPINI1) gene. This review discusses how insights gained from the study of the serpins may be used to guide our research into other common diseases such as Alzheimer disease, Huntington disease, and Parkinson disease.
Collapse
Affiliation(s)
- Damian C Crowther
- University of Cambridge Neurology Unit, Cambridge Institute for Medical Research, Cambridge, UK
| |
Collapse
|
1035
|
Dominguez DI, De Strooper B. Novel therapeutic strategies provide the real test for the amyloid hypothesis of Alzheimer's disease. Trends Pharmacol Sci 2002; 23:324-30. [PMID: 12119153 DOI: 10.1016/s0165-6147(02)02038-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The amyloid and tangle cascade hypothesis is the dominant explanation for the pathogenesis of Alzheimer's disease (AD). A complete knowledge of the metabolic pathways leading to beta-amyloid (A beta) production and clearance in vivo and of the pathological events that lead to fibril formation and deposition into plaques is crucial for the development of an 'anti-amyloid' therapeutic strategy. Important advances in this respect have been achieved recently, revealing new candidate drug targets. Among the most promising potential treatments are beta- and gamma-secretase inhibitors, A beta vaccination, Cu-Zn chelators, cholesterol-lowering drugs and non-steroidal anti-inflammatory drugs. Now, the major question is whether these drugs will work in the clinic.
Collapse
Affiliation(s)
- Diana Ines Dominguez
- Centre for Human Genetics, VIB4 and K.U. Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | |
Collapse
|
1036
|
Wong PC, Cai H, Borchelt DR, Price DL. Genetically engineered mouse models of neurodegenerative diseases. Nat Neurosci 2002; 5:633-9. [PMID: 12085093 DOI: 10.1038/nn0702-633] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent research has significantly advanced our understanding of the molecular mechanisms of neurodegenerative diseases, including Alzheimer's disease (AD) and motor neuron disease. Here we emphasize the use of genetically engineered mouse models that are instrumental for understanding why AD is a neuronal disease, and for validating attractive therapeutic targets. In motor neuron diseases, Cu/Zn superoxide dismutase and survival motor neuron mouse models are useful in testing disease mechanisms and therapeutic strategies for amyotrophic lateral sclerosis (ALS) and spinal motor atrophy, respectively, but the mechanisms that account for selective motor neuron loss remain uncertain. We anticipate that, in the future, therapies based on understanding disease mechanisms will be identified and tested in mouse model systems.
Collapse
Affiliation(s)
- Philip C Wong
- Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, Maryland 21205-2196, USA.
| | | | | | | |
Collapse
|
1037
|
Xu G, Gonzales V, Borchelt DR. Abeta deposition does not cause the aggregation of endogenous tau in transgenic mice. Alzheimer Dis Assoc Disord 2002; 16:196-201. [PMID: 12218652 DOI: 10.1097/00002093-200207000-00011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In Alzheimer disease, the extracellular deposition of beta-amyloid (Abeta) in the brain is accompanied by the intracellular accumulation of aggregated forms of hyperphosphorylated tau. In developing animal models of AD, the authors and others have been able to reproduce extracellular amyloid pathology in the brains of mice by expressing mutant amyloid precursor proteins (APP). The co-expression of APP with mutant presenilin leads to a dramatic acceleration in Abeta deposition, leading to very high amyloid burdens in mice. In the current study, the authors have examined whether the brains of mice with high burdens of amyloid deposition also contain aggregated forms of tau, using a cellulose acetate filter trap assay. Although discrete accumulations of phosphorylated tau immunoreactivity were apparent in neurites proximal to cored deposits of Abeta, little if any of this tau was in a SDS-resistant state of aggregation. By contrast, the brains of AD patients contained large amounts of aggregated tau. Overall, this study demonstrates that, in mice, deposition of Abeta does not cause endogenous tau to aggregate.
Collapse
Affiliation(s)
- Guilian Xu
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
1038
|
Abstract
Models of neurodegenerative disorders are challenging the classical defining role of tangles in neurotoxicity. In flies, tau overexpression is sufficient to cause neuronal death without the formation of fibrillar aggregates. This parallels observations in models of polyglutamine disorders and suggests that aggregated protein might not be the toxic species responsible for neuronal dysfunction and cell death.
Collapse
Affiliation(s)
- Rohan de Silva
- Reta Lila Weston Institute of Neurological Studies, Royal Free & University College Medical School, Windeyer Building, 46 Cleveland Street, London W1T 4JF, UK
| | | |
Collapse
|
1039
|
Sambamurti K, Greig NH, Lahiri DK. Advances in the cellular and molecular biology of the beta-amyloid protein in Alzheimer's disease. Neuromolecular Med 2002; 1:1-31. [PMID: 12025813 DOI: 10.1385/nmm:1:1:1] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2001] [Accepted: 10/10/2001] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is a progressive senile dementia characterized by deposition of a 4 kDa peptide of 39-42 residues known as amyloid beta-peptide (Abeta) in the form of senile plaques and the microtubule associated protein tau as paired helical filaments. Genetic studies have identified mutations in the Abeta precursor protein (APP) as the key triggers for the pathogenesis of AD. Other genes such as presenilins 1 and 2 (PS1/2) and apolipoprotein E (APOE) also play a critical role in increased Abeta deposition. Several biochemical and molecular studies using transfected cells and transgenic animals point to mechanisms by which Abeta is generated and aggregated to trigger the neurodegeneration that may cause AD. Three important enzymes collectively known as "secretases" participate in APP processing. An enzymatic activity, beta-secretase, cleaves APP on the amino side of Abeta producing a large secreted derivative, sAPPbeta, and an Abeta-bearing membrane-associated C-terminal derivative, CTFbeta, which is subsequently cleaved by the second activity, gamma-secretase, to release Abeta. Alternatively, a third activity, alpha-secretase, cleaves APP within Abeta to the secreted derivative sAPPalpha and membrane-associated CTFalpha. The predominant secreted APP derivative is sAPPalpha in most cell-types. Most of the secreted Abeta is 40 residues long (Abeta40) although a small percentage is 42 residues in length (Abeta42). However, the longer Abeta42 aggregates more readily and was therefore considered to be the pathologically important form. Advances in our understanding of APP processing, trafficking, and turnover will pave the way for better drug discovery for the eventual treatment of AD. In addition, APP gene regulation and its interaction with other proteins may provide useful drug targets for AD. The emerging knowledge related to the normal function of APP will help in determining whether or not the AD associated changes in APP metabolism affect its function. The present review summarizes our current understanding of APP metabolism and function and their relationship to other proteins involved in AD.
Collapse
Affiliation(s)
- Kumar Sambamurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.
| | | | | |
Collapse
|
1040
|
|
1041
|
Abstract
A broad range of neurodegenerative disorders is characterized by neuronal damage that may be caused by toxic, aggregation-prone proteins. As genes are identified for these disorders and cell culture and animal models are developed, it has become clear that a major effect of mutations in these genes is the abnormal processing and accumulation of misfolded protein in neuronal inclusions and plaques. Increased understanding of the cellular mechanisms for disposal of abnormal proteins and of the effects of toxic protein accumulation on neuronal survival may allow the development of rational, effective treatment for these disorders.
Collapse
Affiliation(s)
- J Paul Taylor
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
1042
|
Maiorini AF, Gaunt MJ, Jacobsen TM, McKay AE, Waldman LD, Raffa RB. Potential novel targets for Alzheimer pharmacotherapy: I. Secretases. J Clin Pharm Ther 2002; 27:169-83. [PMID: 12081630 DOI: 10.1046/j.1365-2710.2002.00415.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The prevailing major theory of Alzheimer's disease (AD) is that insoluble amyloid beta-peptide (Abeta) found in the cerebral plaques characteristic of the disease is causative or is at least a contributing factor. According to this theory, inhibition of aberrant Abeta production should prevent or at least limit the extent of AD pathophysiology. As three 'secretase' enzymes (alpha, beta and gamma) catalyse the proteolytic cleavage of amyloid precursor protein (APP) (the precursor protein of Abeta), one or more secretases have become targets for potential novel AD pharmacotherapy. Secretase inhibitors have been designed and are in various stages of development. The clinical trials of these compounds will, if positive, result in drugs with dramatically better clinical efficacy or, if negative, will force a reassessment of the theory about the role of Abeta in AD.
Collapse
Affiliation(s)
- A F Maiorini
- Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
1043
|
Conrad C, Vianna C, Freeman M, Davies P. A polymorphic gene nested within an intron of the tau gene: implications for Alzheimer's disease. Proc Natl Acad Sci U S A 2002; 99:7751-6. [PMID: 12032355 PMCID: PMC124341 DOI: 10.1073/pnas.112194599] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A previously undescribed gene, Saitohin (STH), has been discovered in the intron between exons 9 and 10 of the human tau gene. STH is an intronless gene that encodes a 128-aa protein with no clear homologs. The tissue expression of STH is similar to tau, a gene that is implicated in many neurodegenerative disorders. In humans, a single nucleotide polymorphism that results in an amino acid change (Q7R) has been identified in STH and was used in a case control study. The Q7R polymorphism appears to be over-represented in the homozygous state in late onset Alzheimer's disease subjects.
Collapse
Affiliation(s)
- Chris Conrad
- Department of Pathology, F526, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
1044
|
Jackson GR, Wiedau-Pazos M, Sang TK, Wagle N, Brown CA, Massachi S, Geschwind DH. Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 2002; 34:509-19. [PMID: 12062036 DOI: 10.1016/s0896-6273(02)00706-7] [Citation(s) in RCA: 363] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pathologic alterations in the microtubule-associated protein tau have been implicated in a number of neurodegenerative disorders, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and frontotemporal dementia (FTD). Here, we show that tau overexpression, in combination with phosphorylation by the Drosophila glycogen synthase kinase-3 (GSK-3) homolog and wingless pathway component (Shaggy), exacerbated neurodegeneration induced by tau overexpression alone, leading to neurofibrillary pathology in the fly. Furthermore, manipulation of other wingless signaling molecules downstream from shaggy demonstrated that components of the Wnt signaling pathway modulate neurodegeneration induced by tau pathology in vivo but suggested that tau phosphorylation by GSK-3beta differs from canonical Wnt effects on beta-catenin stability and TCF activity. The genetic system we have established provides a powerful reagent for identification of novel modifiers of tau-induced neurodegeneration that may serve as future therapeutic targets.
Collapse
Affiliation(s)
- George R Jackson
- Neurogenetics Program, Department of Neurology, University of California-Los Angeles, School of Medicine, 710 Westwood Plaza, 90095, USA.
| | | | | | | | | | | | | |
Collapse
|
1045
|
Vafai SB, Stock JB. Protein phosphatase 2A methylation: a link between elevated plasma homocysteine and Alzheimer's Disease. FEBS Lett 2002; 518:1-4. [PMID: 11997007 DOI: 10.1016/s0014-5793(02)02702-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tau hyperphosphorylation is a central event in the development of Alzheimer's Disease (AD). Protein phosphatase 2A (PP2A) heterotrimer formation is necessary for efficient dephosphorylation of the tau protein. S-Adenosylmethionine-dependent carboxyl methylation is essential for the assembly of PP2A heterotrimers. Epidemiological evidence indicates that elevated plasma homocysteine is an independent risk factor for AD. Homocysteine is a key intermediate in the methyl cycle and elevated plasma homocysteine results in a global decrease in cellular methylation. We propose that the PP2A methylation system is the link relating elevated plasma homocysteine to AD.
Collapse
Affiliation(s)
- Scott B Vafai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | | |
Collapse
|
1046
|
Bian F, Nath R, Sobocinski G, Booher RN, Lipinski WJ, Callahan MJ, Pack A, Wang KKW, Walker LC. Axonopathy, tau abnormalities, and dyskinesia, but no neurofibrillary tangles in p25-transgenic mice. J Comp Neurol 2002; 446:257-66. [PMID: 11932941 DOI: 10.1002/cne.10186] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neurofibrillary tangles, one of the pathologic hallmarks of Alzheimer's disease (AD), are composed of abnormally polymerized tau protein. The hyperphosphorylation of tau alters its normal cellular function and is thought to promote the formation of neurofibrillary tangles. Growing evidence suggests that cyclin-dependent kinase 5 (cdk5) plays a role in tau phosphorylation, but the function of the enzyme in tangle formation remains uncertain. In AD, cdk5 is constitutively activated by p25, a highly stable, 25kD protein thought to be increased in the AD brain. To test the hypothesis that p25/cdk5 interactions promote neurofibrillary pathology, we created transgenic mouse lines that overexpress the human p25 protein specifically in neurons. Mice with high transgenic p25 expression have augmented cdk5 activity and develop severe hindlimb semiparalysis and mild forelimb dyskinesia beginning at approximately 3 months of age. Immunohistochemical and ultrastructural analyses showed widespread axonal degeneration with focal accumulation of tau in various regions of the brain and, to a lesser extent, the spinal cord. However, there was no evidence of neurofibrillary tangles in neuronal somata or axons, nor were paired helical filaments evident ultrastructurally. These studies confirm that p25 overexpression can lead to tau abnormalities and axonal degeneration in vivo but do not support the hypothesis that p25-related induction of cdk5 is a primary event in the genesis of neurofibrillary tangles.
Collapse
Affiliation(s)
- Feng Bian
- CNS Pharmacology, Pfizer Global Research and Development, Ann Arbor Laboratories, 2800 Plymouth Road, Ann Arbor, MI 48105, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
1047
|
Abstract
Many genetically altered mice have been designed to help understand the role of specific gene mutations in the pathogenesis of Alzheimer's disease (AD) based on the realization that specific mutations in the genes for amyloid precursor protein--the presenilins and tau--are associated with early-onset familial AD or, in the case of tau mutations, other neurodegenerative diseases with neurofibrillary tangles. However, attempts to reproduce the neuropathology of AD in the mouse have been frustrating. Transgenic designs emphasizing amyloid precursor protein produced mice that develop amyloid plaques, but neurodegeneration and neurofibrillary tangles failed to form. Strategies emphasizing tau resulted in increased phosphorylation of tau and tangle formation, although amyloid plaques were absent. Nevertheless, crossing transgenic animals expressing mutated tau and amyloid precursor protein has produced a mouse that closely recapitulates the neuropathology of AD. A review of the various murine models, their role in understanding the pathogenesis of AD and their use in testing therapeutic regimens, is provided.
Collapse
Affiliation(s)
- James A Richardson
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
1048
|
Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 2002; 416:535-9. [PMID: 11932745 DOI: 10.1038/416535a] [Citation(s) in RCA: 3286] [Impact Index Per Article: 149.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although extensive data support a central pathogenic role for amyloid beta protein (Abeta) in Alzheimer's disease, the amyloid hypothesis remains controversial, in part because a specific neurotoxic species of Abeta and the nature of its effects on synaptic function have not been defined in vivo. Here we report that natural oligomers of human Abeta are formed soon after generation of the peptide within specific intracellular vesicles and are subsequently secreted from the cell. Cerebral microinjection of cell medium containing these oligomers and abundant Abeta monomers but no amyloid fibrils markedly inhibited hippocampal long-term potentiation (LTP) in rats in vivo. Immunodepletion from the medium of all Abeta species completely abrogated this effect. Pretreatment of the medium with insulin-degrading enzyme, which degrades Abeta monomers but not oligomers, did not prevent the inhibition of LTP. Therefore, Abeta oligomers, in the absence of monomers and amyloid fibrils, disrupted synaptic plasticity in vivo at concentrations found in human brain and cerebrospinal fluid. Finally, treatment of cells with gamma-secretase inhibitors prevented oligomer formation at doses that allowed appreciable monomer production, and such medium no longer disrupted LTP, indicating that synaptotoxic Abeta oligomers can be targeted therapeutically.
Collapse
Affiliation(s)
- Dominic M Walsh
- Department of Neurology, Harvard Medical School and Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
1049
|
Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 2002; 156:1051-63. [PMID: 11901170 PMCID: PMC2173473 DOI: 10.1083/jcb.200108057] [Citation(s) in RCA: 660] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the effect of microtubule-associated tau protein on trafficking of vesicles and organelles in primary cortical neurons, retinal ganglion cells, and neuroblastoma cells. Tau inhibits kinesin-dependent transport of peroxisomes, neurofilaments, and Golgi-derived vesicles into neurites. Loss of peroxisomes makes cells vulnerable to oxidative stress and leads to degeneration. In particular, tau inhibits transport of amyloid precursor protein (APP) into axons and dendrites, causing its accumulation in the cell body. APP tagged with yellow fluorescent protein and transfected by adenovirus associates with vesicles moving rapidly forward in the axon (approximately 80%) and slowly back (approximately 20%). Both movements are strongly inhibited by cotransfection with fluorescently tagged tau (cyan fluorescent protein-tau) as seen by two-color confocal microscopy. The data suggests a linkage between tau and APP trafficking, which may be significant in Alzheimer's disease.
Collapse
Affiliation(s)
- K Stamer
- Max-Planck-Unit for Structural Molecular Biology, 22607 Hamburg, Germany
| | | | | | | | | |
Collapse
|
1050
|
Rank KB, Pauley AM, Bhattacharya K, Wang Z, Evans DB, Fleck TJ, Johnston JA, Sharma SK. Direct interaction of soluble human recombinant tau protein with Abeta 1-42 results in tau aggregation and hyperphosphorylation by tau protein kinase II. FEBS Lett 2002; 514:263-8. [PMID: 11943163 DOI: 10.1016/s0014-5793(02)02376-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report here that aggregated beta-amyloid (Abeta) 1-42 promotes tau aggregation in vitro in a dose-dependent manner. When Abeta-mediated aggregated tau was used as a substrate for tau protein kinase II (TPK II), an 8-fold increase in the rate of TPK II-mediated tau phosphorylation was observed. The extent of TPK II-dependent tau phosphorylation increased as a function of time and Abeta 1-42 concentration, and hyperphosphorylated tau was found to be decorated with an Alzheimer's disease-related phosphoepitope (P-Thr-231). In HEK 293 cells co-expressing CT-100 amyloid precursor protein and tau, the release of Abeta 1-42 from these cells was impaired. Taken together, these in vitro results suggest that Abeta 1-42 promotes both tau aggregation and hyperphosphorylation.
Collapse
Affiliation(s)
- Kenneth B Rank
- Protein Science, 7240-267-117, Pharmacia Corporation, Kalamazoo, MI 49007, USA
| | | | | | | | | | | | | | | |
Collapse
|