1001
|
Millard EE, Srivastava K, Traub LM, Schaffer JE, Ory DS. Niemann-pick type C1 (NPC1) overexpression alters cellular cholesterol homeostasis. J Biol Chem 2000; 275:38445-51. [PMID: 10964915 DOI: 10.1074/jbc.m003180200] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Niemann-Pick type C1 (NPC1) protein is a key participant in intracellular trafficking of low density lipoprotein cholesterol, but its role in regulation of sterol homeostasis is not well understood. To characterize further the function of NPC1, we generated stable Chinese hamster ovary (CHO) cell lines overexpressing the human NPC1 protein (CHO/NPC1). NPC1 overexpression increases the rate of trafficking of low density lipoprotein cholesterol to the endoplasmic reticulum and the rate of delivery of endosomal cholesterol to the plasma membrane (PM). CHO/NPC1 cells exhibit a 1.5-fold increase in total cellular cholesterol and up to a 2.9-fold increase in PM cholesterol. This increase in PM cholesterol is closely paralleled by a 3-fold increase in de novo cholesterol synthesis. Inhibition of cholesterol synthesis results in marked redistribution of PM cholesterol to intracellular sites, suggesting an unsuspected role for NPC1 in internalization of PM cholesterol. Despite elevated total cellular cholesterol, CHO/NPC1 cells exhibit increased cholesterol synthesis, which may be attributable to both resistance to oxysterol suppression of sterol-regulated gene expression and to reduced endoplasmic reticulum cholesterol levels under basal conditions. Taken together, these studies provide important new insights into the role of NPC1 in the determination of the levels and distribution of cellular cholesterol.
Collapse
Affiliation(s)
- E E Millard
- Center for Cardiovascular Research, Department of Internal Medicine and the Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110-1010, USA
| | | | | | | | | |
Collapse
|
1002
|
Abstract
Brain tumors are among the most common forms of cancer in children and account for most cancer-related deaths in this age group. The incidence of brain tumors appears to be increasing in children, while therapeutic advances have been modest. Few genetic studies exist on pediatric brain tumors, in part because tissue from low-grade and brain stem tumors is not readily available, and also because individual centers have relatively few cases. Genetic changes in infiltrating astrocytomas involve genes in the p53 and RB pathways, and show alterations that are similar to infiltrating astrocytomas in adults. The PTC gene is mutated in a subgroup of medulloblastomas, and may lead to increased proliferation in granule cells that normally express this receptor. Further studies are needed to identify genetic alterations in pilocytic and low-grade astrocytomas, which account for 40% of brain tumors in children.
Collapse
Affiliation(s)
- W A Weiss
- Department of Neurology, University of California, San Francisco 94143-0114, USA.
| |
Collapse
|
1003
|
Xie C, Burns DK, Turley SD, Dietschy JM. Cholesterol is sequestered in the brains of mice with Niemann-Pick type C disease but turnover is increased. J Neuropathol Exp Neurol 2000; 59:1106-17. [PMID: 11138930 DOI: 10.1093/jnen/59.12.1106] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Niemann-Pick Type C (NPC) disease, the concentration of cholesterol increases with age in every tissue except the brain. This study investigates whether accumulation of cholesterol might also occur within the cells of the central nervous system (CNS), but be obscured by the simultaneous loss of sterol from myelin as neurodegeneration proceeds. At birth, when there is little myelin in the CNS, the concentration of cholesterol is significantly elevated in every region of the brain in the homozygous NPC mouse. At 7 wk of age, myelination is nearly complete. In the NPC mouse, however, there is striking neurodegeneration and a reduction in both myelin protein and myelin cholesterol. Furthermore, net loss of cholesterol from the CNS is much higher in the NPC mouse than in the control animal (2.23 versus 1.37 mg/day per kg) so that the concentration of sterol in most regions of the brain is reduced. This neurodegeneration and loss of myelin cholesterol is not prevented by deletion of either the low-density lipoprotein receptor or apolipoprotein E in the NPC animal. Thus, the cholesterol sequestration seen in every organ in NPC disease also occurs in cells of the CNS and may be etiologically related to the neurodegeneration.
Collapse
Affiliation(s)
- C Xie
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas 75390-8887, USA
| | | | | | | |
Collapse
|
1004
|
Haines N, van den Heuvel M. A directed mutagenesis screen in Drosophila melanogaster reveals new mutants that influence hedgehog signaling. Genetics 2000; 156:1777-85. [PMID: 11102373 PMCID: PMC1461372 DOI: 10.1093/genetics/156.4.1777] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Hedgehog signaling pathway has been recognized as essential for patterning processes in development of metazoan animal species. The signaling pathway is, however, not entirely understood. To start to address this problem, we set out to isolate new mutations that influence Hedgehog signaling. We performed a mutagenesis screen for mutations that dominantly suppress Hedgehog overexpression phenotypes in the Drosophila melanogaster wing. We isolated four mutations that influence Hedgehog signaling. These were analyzed in the amenable wing system using genetic and molecular techniques. One of these four mutations affects the stability of the Hedgehog expression domain boundary, also known as the organizer in the developing wing. Another mutation affects a possible Hedgehog autoregulation mechanism, which stabilizes the same boundary.
Collapse
Affiliation(s)
- N Haines
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | | |
Collapse
|
1005
|
Abstract
We describe two patients with juvenile-onset Niemann-Pick disease type C (NPC) to illustrate the variable neurologic features of this condition. One presented with hypersplenism at age 10 and was misdiagnosed with Gaucher disease. He developed complex partial seizures in his teens but remained otherwise neurologically asymptomatic until his mid 30s. At age 45, he had mild dementia and dysarthria, vertical supranuclear ophthalmoplegia, axonal sensorimotor polyneuropathy, and cerebellar ataxia. The second patient presented with rapidly progressive dystonia at age 8, and mild hepatosplenomegaly, vertical supranuclear ophthalmoplegia, severe behavioral disorder, and dementia by age 14. The diagnosis of NPC was based on deficient cholesterol esterification and excessive lysosomal filipin staining in cultured skin fibroblasts. Current notions about diagnosis and pathogenesis of NPC are reviewed.
Collapse
Affiliation(s)
- E Y Uc
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | | | |
Collapse
|
1006
|
Bhuvaneswaran C, Morris MD. Lysosome lipid storage disorder in NCTR-BALB/c mice: spleen and lung lysosomes store unesterified cholesterol but differ in their phospholipid composition. Mol Cell Biochem 2000; 214:15-22. [PMID: 11195785 DOI: 10.1023/a:1007180800941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A strain derived from a colony of BALB/c mice at the National Center for Toxicological Research, Jefferson, AR, USA (NCTR-BALB/c) suffers from an autosomal recessive disorder characterized by proliferation of secondary lysosomes with accumulation ofunesterified cholesterol in several tissues. The unesterified cholesterol content of spleens and lungs from the affected mice were elevated 8- and 3-fold respectively over age- and sex-matched controls. Postnuclear supernatants of tissue homogenates were fractionated by sucrose density gradient centrifugation and the fractions were analyzed for unesterified cholesterol, protein and marker enzyme activities for lysosomes (N-acetyl-beta-D-glucosaminidase, beta-D-glucuronidase), plasma membrane (alkaline phosphodiesterase I), endoplasmic reticulum (glucose-6-phosphatase) and mitochondria (cytochrome oxidase). The enzyme distribution profile showed that lysosomes of affected tissues floated at low density regions (density 1.05-1.08) of the gradient and contained substantial amount of tissue unesterified cholesterol. These low density lysosomes were purified about 17-fold (58% yield) from spleen and about 6-fold (32% yield) from lungs with minimal contamination by other organelles They were mostly intact as judged by high latency for N-acetyl-beta-D-glucosaminidase activity (70-100%). Lysosomes of control tissues were not found at the low density regions. The distribution profiles for other organelles were similar between affected and control tissues. Phospholipid composition of low density lysosomes were distinctly different from their respective tissue homogenates. Spleen and lung lysosomes were enriched in sphingomyelin and phosphatidylcholine respectively. The results suggest that these lysosomes acquire their low densities due to accumulation of unesterified cholesterol, the retention of which may be aided by sphingomyelin and phosphatidylcholine content of the lysosomes.
Collapse
Affiliation(s)
- C Bhuvaneswaran
- Department of Biochemistry, University of Arkansas for Medical Sciences, Little Rock 72205-7101, USA
| | | |
Collapse
|
1007
|
Takabatake T, Takahashi TC, Takabatake Y, Yamada K, Ogawa M, Takeshima K. Distinct expression of two types of Xenopus Patched genes during early embryogenesis and hindlimb development. Mech Dev 2000; 98:99-104. [PMID: 11044611 DOI: 10.1016/s0925-4773(00)00436-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Patched (Ptc) is a putative twelve transmembrane domain protein that is both a Hedgehog (Hh) receptor and transcriptional target of Hh. In this study, we isolated Xenopus Ptc cDNAs, Ptc-1 and Ptc-2, and carried out comparative analyses on their expression patterns. The putative Ptc-2 protein has a long C-terminal extension that has similarities in both length and sequence to those of Ptc-1 proteins in mouse, chick and human. In both early embryogenesis and hindlimb development, Ptc-2 expression is restricted to cells that receive a Hh signal, a pattern similar to that of Gli-1. Ptc-1, however, shows a broader distribution, mainly non-overlapping with that of Ptc-2. Despite the difference in their expression patterns, both are induced in animal cap explants synergistically by Shh and Noggin, showing a conserved regulation in their activation mechanisms.
Collapse
Affiliation(s)
- T Takabatake
- Radioisotope Research Center, Nagoya University, Furo-cho, Chikusa-ku, 464-8602, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
1008
|
Incardona JP, Lee JH, Robertson CP, Enga K, Kapur RP, Roelink H. Receptor-mediated endocytosis of soluble and membrane-tethered Sonic hedgehog by Patched-1. Proc Natl Acad Sci U S A 2000; 97:12044-9. [PMID: 11027307 PMCID: PMC17291 DOI: 10.1073/pnas.220251997] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Patched (Ptc) is the ligand-binding component of the Hedgehog (Hh) receptor complex. In the Drosophila embryo, Ptc and Hh colocalize in vesicular punctate structures. However, receptor-mediated endocytosis of Hh proteins has not been demonstrated. By using chick neural plate explants, we show that Sonic hedgehog (Shh)-responsive neural precursor cells internalize recombinant and endogenous Shh and provide direct evidence for a gradient of endogenous Shh in the ventral neural tube. Shh internalization is blocked by a monoclonal antibody whose epitope overlaps the Ptc-binding site of Shh. These findings suggest that Shh internalization is mediated by Ptc-1 and may be linked to signaling. Concordantly, transfection of mammalian cell lines with a Ptc-1 cDNA confers the ability to internalize multiple forms of Shh, including transmembrane-anchored Shh, by a dynamin-dependent process.
Collapse
Affiliation(s)
- J P Incardona
- Department of Biological Structure and Center for Developmental Biology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
1009
|
Affiliation(s)
- V M Olkkonen
- Department of Biochemistry, National Public Health Institute, Helsinki, Finland
| | | |
Collapse
|
1010
|
Abstract
ATP-binding cassette (ABC) transporters constitute a group of evolutionary highly conserved cellular transmembrane transport proteins. Recent work has implicated ABC transporters in cellular transmembrane lipid transport and hereditary diseases have been causatively linked to defective ABC transporters translocating lipid compounds. The emerging concept that a defined subset of ABC transporters is intimately involved in cellular lipid trafficking has recently been substantiated convincingly by the finding that ABCA1 plays a central role in the regulation of HDL metabolism and macrophage targeting to the RES or the vascular wall. Differentiation dependent expression of a large number of ABC transporters in monocytes/macrophages and their regulation by sterol flux render these transporter molecules potentially critical players in atherogenesis and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- G Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Germany.
| | | | | |
Collapse
|
1011
|
Michaux G, Gansmuller A, Hindelang C, Labouesse M. CHE-14, a protein with a sterol-sensing domain, is required for apical sorting in C. elegans ectodermal epithelial cells. Curr Biol 2000; 10:1098-107. [PMID: 10996790 DOI: 10.1016/s0960-9822(00)00695-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Polarised trafficking of proteins is critical for normal expression of the epithelial phenotype, but its genetic control is not understood. The regulatory gene lin-26 is essential for normal epithelial differentiation in the nematode Caenorhabditis elegans. To identify potential effectors of lin-26, we characterised mutations that result in lin-26-like phenotypes. Here, we report the phenotypic and molecular analysis of one such mutant line, che-14. RESULTS Mutations in che-14 resulted in several partially penetrant phenotypes affecting the function of most epithelial or epithelial-like cells of the ectoderm, including the hypodermis, excretory canal, vulva, rectum and several support cells. The defects were generally linked to the accumulation of vesicles or amorphous material near the apical surface, suggesting that secretion was defective. The CHE-14 protein showed similarity to proteins containing sterol-sensing domains, including Dispatched, Patched and NPC1. A fusion protein between full-length CHE-14 and the green fluorescent protein became localised to the apical surface of epithelial cells that require che-14 function. Deletions that removed the predicted transmembrane domains or extracellular loops of CHE-14 abolished apical localisation and function of the protein. CONCLUSIONS We propose that CHE-14 is involved in a novel secretory pathway dedicated to the exocytosis of lipid-modified proteins at the apical surface of certain epithelial cells. Our data raise the possibility that the primordial function of proteins containing a sterol-sensing domain is to control vesicle trafficking: CHE-14 and Dispatched in exocytosis, Patched and NPC1 in endocytosis.
Collapse
Affiliation(s)
- G Michaux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP163, 1 rue Laurent Fries, 67404, Illkirch, France
| | | | | | | |
Collapse
|
1012
|
Bailey EC, Scott MP, Johnson RL. Hedgehog signaling in animal development and human disease. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2000:211-35. [PMID: 10943312 DOI: 10.1007/978-3-662-04264-9_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- E C Bailey
- Department of Cell Biology, University of Alabama at Birmingham 35294-0005, USA
| | | | | |
Collapse
|
1013
|
Abstract
Niemann-Pick C (NPC) disease is a recessive cholesterol storage disorder characterized by severe, progressive neurodegeneration. The primary causative gene found on chromosome 18q11-12 was identified by a positional cloning approach. The NPC1 gene product is predicted to be a large polytopic glycoprotein with a cytoplasmic tail containing a dileucine endosome-targeting motif. The NPC1 protein sequence shares strong homology with a newly identified homologue, NPC1L1, and the morphogen receptor Patched. In addition, a group of five NPC1 transmembrane domains share homology with the sterol-sensing domain of proteins involved in cellular cholesterol homeostasis. Subcellular localization studies have shown NPC1 to reside in late endosomes and to transiently associate with lysosomes and the trans-Golgi network. Analysis of its topological arrangement in membranes suggests that NPC1 contains 13 transmembrane domains and three large, hydrophilic, lumenal loops. Currently, there is no direct evidence as to the function of the NPC1 protein; however, a number of observations suggest that NPC1 may be related to a family of prokaryotic efflux pumps and thus it may also act as a molecular pump.
Collapse
Affiliation(s)
- Y A Ioannou
- Department of Human Genetics, The Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, USA.
| |
Collapse
|
1014
|
Prasad A, Fischer WA, Maue RA, Henderson LP. Regional and developmental expression of the Npc1 mRNA in the mouse brain. J Neurochem 2000; 75:1250-7. [PMID: 10936208 DOI: 10.1046/j.1471-4159.2000.0751250.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Niemann-Pick type C (NP-C) disease is a fatal, autosomal recessive disorder of cholesterol metabolism that results in progressive central nervous system deterioration and premature death. Recently, a gene mutated in NP-C disease (NPC1) was identified in both human patients and in the npc(nih) mouse model. Although the function of the NPC1 gene is at present unknown, determining the pattern of its expression in the brain may facilitate identification of the mechanisms underlying the neuropathology of this disease and in identifying relevant targets for any potential therapeutic intervention. We have used in situ hybridization techniques to characterize the pattern of Npc1 mRNA expression in both the wild-type and the npc(nih) mutant mouse brain. In adult animals of both genotypes, the Npc1 mRNA was detected in the majority of neurons in nearly all regions, but at significantly higher levels in the cerebellum and in specific pontine nuclei. Analysis of Npc1 mRNA levels during development in the wild-type mouse indicated that this transcript was expressed in neurons as early as embryonic day 15 and that a significant region-specific pattern of expression was established by postnatal day 7. Our data suggest that whereas the NPC1 gene is widely expressed in neurons of the brain, the higher levels of expression in the cerebellum and pontine structures established by early postnatal ages may make these regions more susceptible to neuronal dysfunction in NP-C disease.
Collapse
Affiliation(s)
- A Prasad
- Department of Physiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | |
Collapse
|
1015
|
Watari H, Blanchette-Mackie EJ, Dwyer NK, Watari M, Burd CG, Patel S, Pentchev PG, Strauss JF. Determinants of NPC1 expression and action: key promoter regions, posttranscriptional control, and the importance of a "cysteine-rich" loop. Exp Cell Res 2000; 259:247-56. [PMID: 10942596 DOI: 10.1006/excr.2000.4976] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in the NPC1 gene cause Niemann-Pick type C disease, which is characterized by the accumulation of free cholesterol and other lipids in lysosomes. The NPC1 glycoprotein is located in a late endosomal compartment that transiently interacts with lysosomes. To identify factors regulating NPC1 expression and action, we analyzed the function of the human NPC1 promoter in human-derived ovarian, hepatic, and neuronal cells. A fragment containing the first 208 base pairs upstream from the major transcription initiation site was sufficient to drive near maximal NPC1 promoter activity. Deletion analysis revealed that sequences between base pairs -111 and -37 play an important role in controlling NPC1 transcription. Treatment of proliferating granulosa cells with 30 microM progesterone, which induces a reversible phenocopy of the cholesterol trafficking defect of Niemann-Pick type C disease, increased NPC1 mRNA levels threefold. The protein synthesis inhibitor, cycloheximide, also increased NPC1 mRNA levels, augmenting the progesterone-induced increase in NPC1 mRNA abundance. Progesterone treatment was shown to increase the mRNA half-life, but did not affect NPC1 promoter activity. Cysteine residues in a "cysteine-rich" loop predicted to reside in the intralumenal compartment of vesicles containing NPC1 were mutated, resulting in proteins that were incapable of correcting the cholesterol trafficking defect in CT60 cells, a Chinese hamster cell line in which the endogenous NPC1 gene is inactivated. Converting isoleucine 1061, also predicted to lie within the cysteine-rich loop, to a threonine residue inactivated the protein as well. The I1061T mutation is one of the most common mutations in Niemann-Pick type C disease. All of the cysteine-rich loop mutants were localized to cholesterol-engorged lysosomes in a pattern mimicking the distribution of NPC1 in progesterone-treated cells. A recombinant protein representing the cysteine-rich loop was shown to bind to a zinc-NTA agarose column. We conclude: (1) that cis elements residing in the first 111 base pairs upstream from the transcription start site are critical for transcription of the NPC1 gene; (2) that NPC1 expression is subject to posttranscriptional regulation in response to treatments that disrupt NPC1 function; and (3) that an intralumenal cysteine-rich loop with zinc-binding activity is critical to NPC1's ability to unload lysosomal cargo.
Collapse
Affiliation(s)
- H Watari
- Center for Research on Reproduction and Women's Health, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
1016
|
Incardona JP, Gaffield W, Lange Y, Cooney A, Pentchev PG, Liu S, Watson JA, Kapur RP, Roelink H. Cyclopamine inhibition of Sonic hedgehog signal transduction is not mediated through effects on cholesterol transport. Dev Biol 2000; 224:440-52. [PMID: 10926779 DOI: 10.1006/dbio.2000.9775] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclopamine is a teratogenic steroidal alkaloid that causes cyclopia by blocking Sonic hedgehog (Shh) signal transduction. We have tested whether this activity of cyclopamine is related to disruption of cellular cholesterol transport and putative secondary effects on the Shh receptor, Patched (Ptc). First, we report that the potent antagonism of Shh signaling by cyclopamine is not a general property of steroidal alkaloids with similar structure. The structural features of steroidal alkaloids previously associated with the induction of holoprosencephaly in whole animals are also associated with inhibition of Shh signaling in vitro. Second, by comparing the effects of cyclopamine on Shh signaling with those of compounds known to block cholesterol transport, we show that the action of cyclopamine cannot be explained by inhibition of intracellular cholesterol transport. However, compounds that block cholesterol transport by affecting the vesicular trafficking of the Niemann-Pick C1 protein (NPC1), which is structurally similar to Ptc, are weak Shh antagonists. Rather than supporting a direct link between cholesterol homeostasis and Shh signaling, our findings suggest that the functions of both NPC1 and Ptc involve a common vesicular transport pathway. Consistent with this model, we find that Ptc and NPC1 colocalize extensively in a vesicular compartment in cotransfected cells.
Collapse
Affiliation(s)
- J P Incardona
- Department of Biological Structure, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1017
|
Davies JP, Ioannou YA. Topological analysis of Niemann-Pick C1 protein reveals that the membrane orientation of the putative sterol-sensing domain is identical to those of 3-hydroxy-3-methylglutaryl-CoA reductase and sterol regulatory element binding protein cleavage-activating protein. J Biol Chem 2000; 275:24367-74. [PMID: 10821832 DOI: 10.1074/jbc.m002184200] [Citation(s) in RCA: 233] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Niemann-Pick C1 (NPC1) protein is predicted to be a polytopic glycoprotein, and it contains a region with extensive homology to the sterol-sensing domains (SSD) of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-R) and sterol regulatory element binding protein cleavage-activating protein (SCAP). To aid the functional characterization of NPC1, a model of NPC1 topology was evaluated by expression of epitope-tagged NPC1 proteins and investigation of epitope accessibility in selectively permeabilized cells. These results were further confirmed by expression of NPC1 and identification of glycosylated domains that are located in the lumen of the endoplasmic reticulum. Our data indicate that this glycoprotein contains 13 transmembrane domains, 3 large and 4 small luminal loops, 6 small cytoplasmic loops, and a cytoplasmic tail. Furthermore, our data show that the putative SSD of NPC1 is oriented in the same manner as those of HMG-R and SCAP, providing strong evidence that this domain is functionally important.
Collapse
Affiliation(s)
- J P Davies
- Department of Human Genetics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
1018
|
Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:95-130. [PMID: 10967355 DOI: 10.1016/s0165-0173(00)00019-9] [Citation(s) in RCA: 1451] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tau proteins belong to the family of microtubule-associated proteins. They are mainly expressed in neurons where they play an important role in the assembly of tubulin monomers into microtubules to constitute the neuronal microtubules network. Microtubules are involved in maintaining the cell shape and serve as tracks for axonal transport. Tau proteins also establish some links between microtubules and other cytoskeletal elements or proteins. Tau proteins are translated from a single gene located on chromosome 17. Their expression is developmentally regulated by an alternative splicing mechanism and six different isoforms exist in the human adult brain. Tau proteins are the major constituents of intraneuronal and glial fibrillar lesions described in Alzheimer's disease and numerous neurodegenerative disorders referred to as 'tauopathies'. Molecular analysis has revealed that an abnormal phosphorylation might be one of the important events in the process leading to their aggregation. Moreover, a specific set of pathological tau proteins exhibiting a typical biochemical pattern, and a different regional and laminar distribution could characterize each of these disorders. Finally, a direct correlation has been established between the progressive involvement of the neocortical areas and the increasing severity of dementia, suggesting that pathological tau proteins are reliable marker of the neurodegenerative process. The recent discovery of tau gene mutations in frontotemporal dementia with parkinsonism linked to chromosome 17 has reinforced the predominant role attributed to tau proteins in the pathogenesis of neurodegenerative disorders, and underlined the fact that distinct sets of tau isoforms expressed in different neuronal populations could lead to different pathologies.
Collapse
Affiliation(s)
- L Buée
- INSERM U422, Place de Verdun, 59045 cedex, Lille, France.
| | | | | | | | | |
Collapse
|
1019
|
Centripetal cholesterol flow from the extrahepatic organs through the liver is normal in mice with mutated Niemann-Pick type C protein (NPC1). J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)33436-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
1020
|
Kuwabara PE, Lee MH, Schedl T, Jefferis GS. A C. elegans patched gene, ptc-1, functions in germ-line cytokinesis. Genes Dev 2000. [DOI: 10.1101/gad.14.15.1933] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Patched (Ptc), initially identified in Drosophila, defines a class of multipass membrane proteins that control cell fate and cell proliferation. Biochemical studies in vertebrates indicate that the membrane proteins Ptc and Smoothened (Smo) form a receptor complex that binds Hedgehog (Hh) morphogens. Smo transduces the Hh signal to downstream effectors. The Caenorhabditis elegans genome encodes two Ptc homologs and one related pseudogene but does not encode obvious Hh or Smo homologs. We have analyzed ptc-1 by RNAi and mutational deletion and find that it is an essential gene, although the absence of ptc-1 has no detectable effect on body patterning or proliferation. Therefore, the C. elegans ptc-1 gene is functional despite the lack of Hh and Smo homologs. We find that the activity and expression of ptc-1 is essentially confined to the germ line and its progenitors. ptc-1 null mutants are sterile with multinucleate germ cells arising from a probable cytokinesis defect. We have also identified a surprisingly large family of PTC-related proteins containing sterol-sensing domains, including homologs of Drosophila dispatched, in C. elegans and other phyla. These results suggest that the PTC superfamily has multiple functions in animal development.
Collapse
|
1021
|
Edwards PA, Ericsson J. Sterols and isoprenoids: signaling molecules derived from the cholesterol biosynthetic pathway. Annu Rev Biochem 2000; 68:157-85. [PMID: 10872447 DOI: 10.1146/annurev.biochem.68.1.157] [Citation(s) in RCA: 344] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Compounds derived from the isoprenoid/cholesterol biosynthetic pathway have recently been shown to have novel biological activities. These compounds include certain sterols, oxysterols, farnesol, and geranylgeraniol, as well as the diphosphate derivatives of isopentenyl, geranyl, farnesyl, geranylgeranyl, and presqualene. They regulate transcriptional and post-transcriptional events that in turn affect lipid synthesis, meiosis, apoptosis, developmental patterning, protein cleavage, and protein degradation.
Collapse
Affiliation(s)
- P A Edwards
- Department of Biological Chemistry, University of California Los Angeles 90095, USA.
| | | |
Collapse
|
1022
|
Ong WY, Hu CY, Soh YP, Lim TM, Pentchev PG, Patel SC. Neuronal localization of sterol regulatory element binding protein-1 in the rodent and primate brain: a light and electron microscopic immunocytochemical study. Neuroscience 2000; 97:143-53. [PMID: 10771346 DOI: 10.1016/s0306-4522(00)00031-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sterol regulatory element binding proteins are membrane-bound transcription factors that activate expression of several genes controlling cellular cholesterol and fatty acid homeostasis. The present study aimed to investigate the in vivo expression of sterol regulatory element binding protein-1 in the normal rodent and primate brain, and in the brain in Niemann-Pick type C disease mice. These mutant animals have lysosomal cholesterol accumulation and progressive neurodegeneration caused by an inactivating mutation of the NPC1 gene whose protein product functions in vesicular lipid trafficking. Western blot analysis of rat hippocampal homogenates with an affinity purified rabbit polyclonal antibody directed against an internal epitope of sterol regulatory element binding protein-1 identified a major 68,000 mol. wt protein consistent with the amino-terminal, transcriptionally active fragment of sterol regulatory element binding proteins-1. Immunocytochemically, this antibody revealed dense sterol regulatory element binding protein-1 staining of nuclei and light staining of the cytoplasm of cells in the neocortex and hippocampus in the rat, mouse and monkey brain. By electron microscopy of immunogold-labeled brain sections, these densely labeled cells were found to be neurons. In contrast, normal glial cells had little or no sterol regulatory element binding protein-1 immunoreactivity even at a developmental stage (postnatal day 9) which coincides with active myelination in the rat brain. Also, in contrast to the normal mouse brain, Niemann-Pick type C mice showed reduced staining of cortical and hippocampal neuronal nuclei. Since sterol regulatory element binding protein-1 has been shown to be a transcriptional regulator of fatty acid synthesis in vivo, the current findings of a predominantly neuronal nuclear expression of the 68,000 mol. wt transcriptionally active fragment of sterol regulatory element binding protein-1 highlights the established role of phospholipid metabolites and other fatty-acid containing lipids in neuronal signal transduction and other neuronal functions. Reduced sterol regulatory element binding protein-1 expression in neurons in Niemann-Pick type C may reflect a deficiency in fatty acid synthesis that could contribute to the neuronal dysfunction in this disorder.
Collapse
Affiliation(s)
- W Y Ong
- Department of Anatomy, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
1023
|
Christomanou H, Vanier MT, Santambrogio P, Arosio P, Kleijer WJ, Harzer K. Deficient ferritin immunoreactivity in tissues from niemann-pick type C patients: extension of findings to fetal tissues, H and L ferritin isoforms, but also one case of the rare Niemann-Pick C2 complementation group. Mol Genet Metab 2000; 70:196-202. [PMID: 10924274 DOI: 10.1006/mgme.2000.3004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies employing rabbit polyclonal anti-human liver ferritin have shown an absence of L ferritin immunoreactivity in liver and spleen tissue from patients with Niemann-Pick disease type C1 (NPC1). The great majority of NPC cases is caused by defects of the NPC1 gene, and a minority by those of another (NPC2). In this study using polyclonal and monoclonal antibodies we show the deficiency of H and L ferritin isoforms in various NPC tissues, including fetal NPC1, not previously described. In particular, evidence is provided for deficiency in H and L ferritins in tissues, except lung, from a patient with Niemann-Pick disease type C2 (NPC2). The present findings indicate that H and L ferritins are deficient in both NPC types characterized by accumulation of unesterified cholesterol and additional metabolites in the endosomal/lysosomal system. We hypothesize that the lesions in NPC1 and NPC2 block the intracellular utilization not only of cholesterol, but also that of iron for the synthesis of cytosolic ferritin.
Collapse
Affiliation(s)
- H Christomanou
- Laboratory of Neurochemistry and Molecular Biology, Athens, Greece
| | | | | | | | | | | |
Collapse
|
1024
|
Abstract
Luteinization is essential to the success of early gestation. It is the process by which elements of the ovarian follicle, usually including both theca interna and granulosa cells, are provoked by the ovulatory stimulus to develop into the corpus luteum. Although there are significant species differences in luteinization, some elements pervade, including the morphological and functional differentiation to produce and secrete progesterone. There is evidence that luteinization results in granulosa cell exit from the cell cycle. The mechanisms that appear to control luteinization include intracellular signalling pathways, cell adhesion factors, intracellular cholesterol and oxysterols, and perhaps progesterone itself as a paracrine or intracrine regulator. Cell models of luteinization, along with some of the conflicting observations on the luteinization process, are discussed in this review.
Collapse
Affiliation(s)
- B D Murphy
- Centre de recherche en reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada J2S 7C6.
| |
Collapse
|
1025
|
Henderson LP, Lin L, Prasad A, Paul CA, Chang TY, Maue RA. Embryonic striatal neurons from niemann-pick type C mice exhibit defects in cholesterol metabolism and neurotrophin responsiveness. J Biol Chem 2000; 275:20179-87. [PMID: 10770933 DOI: 10.1074/jbc.m001793200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Niemann-Pick type C (NP-C) disease is a progressive and fatal neuropathological disorder previously characterized by abnormal cholesterol metabolism in peripheral tissues. Although a defective gene has been identified in both humans and the npc(nih) mouse model of NP-C disease, how this leads to abnormal neuronal function is unclear. Here we show that whereas embryonic striatal neurons from npc(nih) mice can take up low density lipoprotein-derived cholesterol, its subsequent hydrolysis and esterification are significantly reduced. Given the importance of cholesterol to a variety of signal transduction mechanisms, we assessed the effect of this abnormality on the ability of these neurons to respond to brain-derived neurotrophic factor (BDNF). In contrast to its effects on wild type neurons, BDNF failed to induce autophosphorylation of the TrkB receptor and to increase neurite outgrowth in npc(nih) neurons, despite expression of TrkB on the cell surface. The results suggest that abnormal cholesterol metabolism occurs in neurons in the brain during NP-C disease, even at embryonic stages of development prior to the onset of phenotypic symptoms. Moreover, this defect is associated with a lack of TrkB function and BDNF responsiveness, which may contribute to the loss of neuronal function observed in NP-C disease.
Collapse
Affiliation(s)
- L P Henderson
- Departments of Physiology and Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | |
Collapse
|
1026
|
Blanchette-Mackie EJ. Intracellular cholesterol trafficking: role of the NPC1 protein. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1486:171-83. [PMID: 10856720 DOI: 10.1016/s1388-1981(00)00055-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- E J Blanchette-Mackie
- Laboratory of Cell Biochemistry and Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 30892-0850, USA.
| |
Collapse
|
1027
|
Abstract
The compartmentalization of cholesterol metabolism implies target-specific cholesterol trafficking between the endoplasmic reticulum, plasma membrane, lysosomes, mitochondria and peroxisomes. One hypothesis has been that sterol carrier protein-2 (SCP2, also known as the non-specific lipid transfer protein) acts in cholesterol transport through the cytoplasm. Recent studies employing gene targeting in mice showed, however, that mice lacking SCP2 and the related putative sterol carrier known as SCPx, develop a defect in peroxisomal beta-oxidation. In addition, diminished peroxisomal alpha-oxidation of phytanic acid (3,7,11, 15-tetramethylhexadecanoic acid) in these null mice was attributed to the absence of SCP2 which has a number of properties supporting a function as carrier for fatty acyl-CoAs rather than for sterols.
Collapse
Affiliation(s)
- U Seedorf
- Institute for Arteriosclerosis Research, Institute for Clinical Chemistry and Laboratory Medicine, Interdisciplinary Center for Clinical Research, Westphalian Wilhelms-University, Münster, Germany.
| | | | | |
Collapse
|
1028
|
van Meer G, Holthuis JC. Sphingolipid transport in eukaryotic cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1486:145-70. [PMID: 10856719 DOI: 10.1016/s1388-1981(00)00054-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sphingolipids constitute a sizeable fraction of the membrane lipids in all eukaryotes and are indispensable for eukaryotic life. First of all, the involvement of sphingolipids in organizing the lateral domain structure of membranes appears essential for processes like protein sorting and membrane signaling. In addition, recognition events between complex glycosphingolipids and glycoproteins are thought to be required for tissue differentiation in higher eukaryotes and for other specific cell interactions. Finally, upon certain stimuli like stress or receptor activation, sphingolipids give rise to a variety of second messengers with effects on cellular homeostasis. All sphingolipid actions are governed by their local concentration. The intricate control of their intracellular topology by the proteins responsible for their synthesis, hydrolysis and intracellular transport is the topic of this review.
Collapse
Affiliation(s)
- G van Meer
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | |
Collapse
|
1029
|
Lange Y, Ye J, Rigney M, Steck T. Cholesterol movement in Niemann-Pick type C cells and in cells treated with amphiphiles. J Biol Chem 2000; 275:17468-75. [PMID: 10751394 DOI: 10.1074/jbc.m000875200] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cholesterol accumulates to massive levels in cells from Niemann-Pick type C (NP-C) patients and in cells treated with class 2 amphiphiles that mimic NP-C disease. This behavior has been attributed to the failure of cholesterol released from ingested low density lipoproteins to exit the lysosomes. However, we now show that the rate of movement of cholesterol from lysosomes to plasma membranes in NP-C cells is at least as great as normal, as was also found previously for amphiphile-treated cells. Furthermore, the lysosomes in these cells filled with plasma membrane cholesterol in the absence of lipoproteins. In addition, we showed that the size of the endoplasmic reticulum cholesterol pool and the set point of the homeostatic sensor of cell cholesterol were approximately normal in NP-C cells. The plasma membrane cholesterol pools in both NP-C and amphiphile-treated cells were also normal. Furthermore, the build up of cholesterol in NP-C lysosomes was not a physiological response to cholesterol overload. Rather, it appeared that the accumulation in NP-C lysosomes results from an imbalance in the brisk flow of cholesterol among membrane compartments. In related experiments, we found that NP-C cells did not respond to class 2 amphiphiles (e.g. trifluoperazine, imipramine, and U18666A); these agents may therefore act directly on the NPC1 protein or on its pathway. Finally, we showed that the lysosomal cholesterol pool in NP-C cells was substantially and preferentially reduced by incubating cells with the oxysterols, 25-hydroxycholesterol and 7-ketocholesterol; these findings suggest a new pharmacological approach to the treatment of NP-C disease.
Collapse
Affiliation(s)
- Y Lange
- Department of Pathology, Rush-Presbyterian-St. Luke's Medical Center University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | |
Collapse
|
1030
|
Sym M, Basson M, Johnson C. A model for niemann-pick type C disease in the nematode Caenorhabditis elegans. Curr Biol 2000; 10:527-30. [PMID: 10801441 DOI: 10.1016/s0960-9822(00)00468-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Niemann-Pick type C (NP-C) disease is a progressive neurodegenerative disorder characterized by the inappropriate accumulation of unesterified cholesterol in lysosomes [1]. NP-C patients show various defects including hepatosplenomegaly, ataxia, dystonia and dementia. Most cases of NP-C are associated with inactivating mutations of the NPC1 gene [2], which encodes a protein implicated in the retrograde transport of sterols and other cargo from lysosomes [3]. Furthermore, localization of the NPC1 protein to lysosomal/endosomal compartments is essential for proper transport [4]. To create a model of NP-C disease in a simple, genetically tractable organism, we generated deletion mutations in two Caenorhabditis elegans homologs of the human NPC1 gene, designated npc-1 and npc-2. Animals mutant for npc-1 developed slowly, laid eggs prematurely, and were hypersensitive to cholesterol deprivation. Furthermore, npc-1; npc-2 double-mutant animals inappropriately formed dauer larvae under favorable growth conditions. These phenotypes in C. elegans provide a model system for both genetic and chemical suppressor screening that could identify promising drug targets and leads for NP-C disease.
Collapse
Affiliation(s)
- M Sym
- NemaPharm Group, Axys Pharmaceuticals, Exelixis Incorporated, South San Francisco, 94080, USA.
| | | | | |
Collapse
|
1031
|
Garver WS, Heidenreich RA, Erickson RP, Thomas MA, Wilson JM. Localization of the murine Niemann-Pick C1 protein to two distinct intracellular compartments. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)32376-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
1032
|
Stephan DA, Chen Y, Jiang Y, Malechek L, Gu JZ, Robbins CM, Bittner ML, Morris JA, Carstea E, Meltzer PS, Adler K, Garlick R, Trent JM, Ashlock MA. Positional cloning utilizing genomic DNA microarrays: the Niemann-Pick type C gene as a model system. Mol Genet Metab 2000; 70:10-8. [PMID: 10833327 DOI: 10.1006/mgme.2000.2989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A major obstacle in positional cloning is identifying the specific mutated gene from within a large physical contig. Here we describe the application of DNA microarray technology to a defined genomic region (physical map) to identify: (i) exons without a priori sequence data and (ii) the disease gene based on differential gene expression in a recessive disorder. The feasibility was tested using resources from the positional cloning of the Neimann-Pick Type C (NP-C) disease gene, NPC1. To identify NPC1 exons and optimize the technology, an array was generated from genomic fragments of the 110-kb bacterial artificial chromosome, 108N2, which encodes NPC1. First, as a test case for blindly identifying exons, fluorescently labeled NPC1 cDNA identified 108N2 fragments that contained NPC1 exons, many of which also contained intronic sequences and could be used to determine part of the NPC1 genomic structure. Second, to demonstrate that the NPC1 disease gene could be identified based upon differential gene expression, subarrays of 108N2 fragments were hybridized with fluorescently labeled cDNA probes generated from total RNA from hamster cell lines differentially expressing NPC1. A probe derived from the NP-C cell line CT60 did not detect NPC1 exons or other genomic fragments from 108N2. In contrast, several NPC1 exons were detected by a probe generated from the non-NP-C cell line 911D5A13, which was derived from CT60, and expressed NPC1 as a consequence of stable transduction with a YAC that contains NPC1 and encompasses 108N2. Thus, the array technology identified NPC1 as a candidate gene based on a physical contig and differential NPC1 expression between NP-C and non-NP-C cells. This technique should facilitate gene identification when a physical contig exists for a region of interest and mutations result in changes in the mRNA level of the disease gene or portions thereof.
Collapse
Affiliation(s)
- D A Stephan
- Cancer Genetics Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1033
|
Abstract
In the group of lysosomal storage diseases, transport disorders occupy a special place because they represent rare examples of inborn errors of metabolism caused by a defect of an intracellular membrane transporter. In particular, two disorders are caused by a proven defect in carrier-mediated transport of metabolites: cystinosis and the group of sialic acid storage disorders (SASD). The recent identification of the gene mutations for both disorders will improve patient diagnosis and shed light on new physiological mechanisms of intracellular trafficking.
Collapse
Affiliation(s)
- G M Mancini
- Department of Clinical Genetics, Erasmus University, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
1034
|
Abstract
Transcriptional regulation and membrane traffic have traditionally been quite separate fields of biology, but they have been brought under the same roof by recent advances in understanding the cellular control of cholesterol metabolism.
Collapse
Affiliation(s)
- R Y Hampton
- Department of Biology, University of California San Diego, La Jolla 92093-0347, USA.
| |
Collapse
|
1035
|
Davies JP, Levy B, Ioannou YA. Evidence for a Niemann-pick C (NPC) gene family: identification and characterization of NPC1L1. Genomics 2000; 65:137-45. [PMID: 10783261 DOI: 10.1006/geno.2000.6151] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Niemann-Pick type C1 (NPC1) disease is caused by defects in the NPC1 protein, which result in perturbation of subcellular cholesterol transport. To identify related proteins that may be involved in subcellular cholesterol trafficking, the expressed sequence tag (EST) database was searched to find homologues of human NPC1. A short, weakly similar EST was identified and used to obtain a full-length human cDNA of about 5 kb and two alternatively spliced transcripts. The gene, named NPC1L1, was mapped to chromosome 7p13, contained 20 exons, including an unusually large 1526-bp exon 2, and spanned approximately 29 kb. In contrast to NPC1, the NPC1L1 putative promoter region contained a sterol-regulatory element. The predicted protein shared 42% identity and 51% similarity with NPC1. Interestingly, NPC1L1 contains the conserved amino-terminal "NPC1 domain" and the putative sterol-sensing domain, providing strong evidence that it is related to human NPC1 and suggesting that these may comprise a new family of NPC1-related proteins. However, the two differ with respect to their putative intracellular targeting signals. Collectively, these data suggest that NPC1L1 and NPC1 form part of a family of related proteins that may have similar functions at different subcellular locations, perhaps at sequential steps of the same cholesterol transport pathway.
Collapse
Affiliation(s)
- J P Davies
- Department of Human Genetics, Mount Sinai School of Medicine, New York, New York, 10029, USA
| | | | | |
Collapse
|
1036
|
Ridgway ND. Interactions between metabolism and intracellular distribution of cholesterol and sphingomyelin. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1484:129-41. [PMID: 10760463 DOI: 10.1016/s1388-1981(00)00006-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
There is ample evidence from experimental models and human metabolic disorders indicating that cholesterol and sphingomyelin (SM) levels are coordinately regulated. Generally it has been observed that altering the cellular content of sphingomyelin or cholesterol results in corresponding changes in mass and/or synthesis of the other lipid. In the case of cholesterol synthesis and trafficking, SM regulates the capacity of membranes to absorb cholesterol and thereby controls sterol flux between the plasma membrane and regulatory pathways in the endoplasmic reticulum. This relationship exemplifies the importance of cholesterol/sphingolipid-rich domains in cholesterol homeostasis, as well as other aspects of cell signaling and transport. Evidence for regulation of sphingomyelin metabolism by cholesterol is less convincing and dependent on the model system under study. Sphingomyelin biosynthetic rates are not dramatically affected by alterations in cholesterol balance suggesting that sphingomyelin or its metabolites serve other indispensable functions in the cell. A notable exception is the robust and specific regulation of both SM and cholesterol synthesis by 25-hydroxycholesterol. This finding is reviewed in the context of the role of oxysterol binding protein and its putative role in cholesterol and SM trafficking between the plasma membrane and Golgi apparatus.
Collapse
Affiliation(s)
- N D Ridgway
- The Atlantic Research Centre, and the Departments of Pediatrics, and Biochemistry and Molecular Biology, Dalhousie University, 5849 University Avenue, Halifax, NS, Canada.
| |
Collapse
|
1037
|
Affiliation(s)
- L Mao
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA.
| |
Collapse
|
1038
|
Abstract
Membrane cholesterol impinges on signal transduction in several ways, which is highlighted in particular by the Hedgehog signaling pathway. In Hedgehog signaling, cholesterol is important for ligand biogenesis, as well as for signal transduction in receiving cells. Hedgehog ligands are post-translationally modified by cholesterol, and the Hedgehog receptor, Patched, is structurally similar to the Niemann-Pick C1 protein, which functions in intracellular lipid transport. Although the exact role of cholesterol in Hedgehog signal transduction remains elusive and is probably multifaceted, studies over the past year have implicated raft membrane subdomains, cholesterol transport and a link between protein and lipid trafficking in endocytic compartments.
Collapse
Affiliation(s)
- J P Incardona
- Department of Biological Structure and Center for Developmental Biology, University of Washington, Seattle 98195, USA. jincar@u. washington.edu
| | | |
Collapse
|
1039
|
Abstract
Caveolins are major integral membrane components of caveolae. Over the last few years, evidence has accumulated for a close link between caveolin, caveolae, and the regulation of cellular cholesterol levels. However, the exact role of caveolin in this process, the intracellular trafficking routes followed by caveolin/cholesterol complexes, and the relationship of caveolin-cholesterol to other caveolin-mediated processes such as signal transduction have remained unclear. Recent findings from a number of systems suggest that specific signaling pathways require precise regulation of cellular cholesterol. Here we review evidence for caveolin regulation of cholesterol transport and consider how this may relate to signal transduction.
Collapse
Affiliation(s)
- E Ikonen
- Department of Biochemistry, National Public Health Institute, Mannerheimintie 166, 00300 Helsinki, Finland.
| | | |
Collapse
|
1040
|
Abstract
The Niemann-Pick C protein (NPC1) is required for cholesterol transport from late endosomes and lysosomes to other cellular membranes. Mutations in NPC1 cause lysosomal lipid storage and progressive neurological degeneration. Cloning of the NPC1 gene has given us tools with which to investigate the function of this putative cholesterol transporter. Here, we discuss recent studies indicating that NPC1 is not a cholesterol-specific transport molecule. Instead, NPC1 appears to be required for the vesicular shuttling of both lipids and fluid-phase constituents from multivesicular late endosomes to destinations such as the trans-Golgi network.
Collapse
Affiliation(s)
- L Liscum
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| |
Collapse
|
1041
|
Abstract
Detergent insoluble sphingolipid-cholesterol enriched 'raft'-like membrane microdomains have been implicated in a variety of biological processes including sorting, trafficking, and signaling. Mutant cells and knockout animals of sphingolipid biosynthesis are clearly useful to understand the biological roles of lipid components in raft-like domains. It is suggested that raft-like domains distribute in internal vacuolar membranes as well as plasma membranes. In addition to sphingolipid-cholesterol-rich membrane domains, recent studies suggest the existence of another lipid-membrane domain in the endocytic pathway. This domain is enriched with a unique phospholipid, lysobisphosphatidic acid (LBPA) and localized in the internal membrane of multivesicular endosome. LBPA-rich membrane domains are involved in lipid and protein sorting within the endosomal system. Possible interaction between sphingolipids and LBPA in sphingolipid-storage disease is discussed.
Collapse
Affiliation(s)
- T Kobayashi
- Supra-Biomolecular System Research Group, Frontier Research System, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, Japan.
| | | |
Collapse
|
1042
|
Watari H, Blanchette-Mackie EJ, Dwyer NK, Sun G, Glick JM, Patel S, Neufeld EB, Pentchev PG, Strauss JF. NPC1-containing compartment of human granulosa-lutein cells: a role in the intracellular trafficking of cholesterol supporting steroidogenesis. Exp Cell Res 2000; 255:56-66. [PMID: 10666334 DOI: 10.1006/excr.1999.4774] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Steroidogenic cells represent unique systems for the exploration of intracellular cholesterol trafficking. We employed cytochemical and biochemical methods to explore the expression, regulation, and function of the Niemann-Pick C1 protein (NPC1) in human granulosa-lutein cells. NPC1 was localized in a subset of lysosome-associated membrane glycoprotein 2 (LAMP-2)-positive vesicles. By analyzing the sensitivity of NPC1 N-linked oligosaccharide chains to glycosidases and neuraminidase, evidence was obtained for movement of nascent NPC1 from the endoplasmic reticulum through the medial and trans compartments of the Golgi apparatus prior to its appearance in cytoplasmic vesicles. NPC1 protein content and the morphology and cellular distribution of NPC1-containing vesicles were not affected by treatment of the granulosa-lutein cells with 8-Br-cAMP, which stimulates cholesterol metabolism into progesterone. In contrast, steroidogenic acute regulatory (StAR) protein levels were increased by 8-Br-cAMP. Incubation of granulosa-lutein cells with low-density lipoprotein (LDL) in the presence of the hydrophobic amine, U18666A, caused accumulation of free cholesterol in granules, identified by filipin staining, that contained LAMP-2 and NPC1. These granules also stained for neutral lipid with Nile red, reflecting accumulation of LDL-derived cholesterol esters. LDL-stimulated progesterone synthesis was completely blocked by U18666A, leaving steroid output at levels similar to those of cells incubated in the absence of LDL. The hydrophobic amine also blocked the LDL augmentation of 8-Br-cAMP-stimulated progesterone synthesis, reducing steroid production to levels seen in cells stimulated with 8-Br-cAMP in the absence of LDL. Steroidogenesis recovered after U18666A was removed from the culture medium. U18666A treatment caused a 2-fold or more increase in NPC1 protein and mRNA levels, suggesting that disruption of NPC1's function activates a compensatory mechanism resulting in increased NPC1 synthesis. We conclude that the NPC1 compartment plays an important role in the trafficking of LDL-derived substrate in steroidogenic cells; that NPC1 expression is up-regulated when NPC1 action is blocked; and that the NPC1 compartment can be functionally separated from other intracellular pathways contributing substrate for steroidogenesis.
Collapse
Affiliation(s)
- H Watari
- Center for Research on Reproduction and Women's Health, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1043
|
Cruz JC, Sugii S, Yu C, Chang TY. Role of Niemann-Pick type C1 protein in intracellular trafficking of low density lipoprotein-derived cholesterol. J Biol Chem 2000; 275:4013-21. [PMID: 10660558 DOI: 10.1074/jbc.275.6.4013] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Niemann-Pick type C (NPC) is a disease that affects intracellular cholesterol-trafficking pathways. By cloning the hamster ortholog of NPC1, we identified the molecular lesions in two independently isolated Chinese hamster ovary cell mutants, CT60 and CT43. Both mutants lead to premature translational terminations of the NPC1 protein. Transfecting hamster NPC1 cDNA complemented the defects of the mutants. Investigation of the CT mutants, their parental cells, and an NPC1-stable transfectant allow us to present evidence that NPC1 is involved in a post-plasma membrane cholesterol-trafficking pathway. We found that the initial movement of low density lipoprotein (LDL)-derived cholesterol to the plasma membrane (PM) did not require NPC1. After reaching the PM and subsequent internalization, however, cholesterol trafficking back to the PM did involve NPC1. Both LDL-derived cholesterol and cholesterol originating from the PM accumulated in a dense, intracellular compartment in the CT mutants. Cholesterol movement from this compartment to the PM or endoplasmic reticulum was defective in the CT mutants. Our results functionally distinguish the dense, intracellular compartment from the early endocytic hydrolytic organelle and imply that NPC1 is involved in sorting cholesterol from the intracellular compartment back to the PM or to the endoplasmic reticulum.
Collapse
Affiliation(s)
- J C Cruz
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | |
Collapse
|
1044
|
Erickson RP, Garver WS, Camargo F, Hossain GS, Heidenreich RA. Pharmacological and genetic modifications of somatic cholesterol do not substantially alter the course of CNS disease in Niemann-Pick C mice. J Inherit Metab Dis 2000; 23:54-62. [PMID: 10682308 DOI: 10.1023/a:1005650930330] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Niemann-Pick type C (NPC) is a neurodegenerative disorder with somatically altered cholesterol metabolism. The NPC1 gene has recently been cloned and shown to have sequences shared with known sterol-sensing proteins. We have used a mouse model with a disrupted Npc1 gene to study two cholesterol-lowering drugs (nifedipine and probucol) and the effects of introducing a null mutation in the low-density lipoprotein receptor (LDLR). Although these treatments significantly ameliorated liver cholesterol storage, little effect on the onset of neurological symptoms was found.
Collapse
Affiliation(s)
- R P Erickson
- Angel Charity for Children-Wings for Genetic Research, Steele Memorial Children's Research Center, Department of Pediatrics, University of Arizona College of Medicine, Tucson, USA
| | | | | | | | | |
Collapse
|
1045
|
Hölttä-Vuori M, Määttä J, Ullrich O, Kuismanen E, Ikonen E. Mobilization of late-endosomal cholesterol is inhibited by Rab guanine nucleotide dissociation inhibitor. Curr Biol 2000. [DOI: 10.1016/s0960-9822(00)00289-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
1046
|
Abstract
Niemann-Pick disease, originally defined in terms of its histology as a reticuloendotheliosis, is now subdivided on the basis of biochemical and molecular criteria into two separate classes. This categorization has been aided by the discovery of the genes for acid sphingomyelinase, deficient in types A and B, and for the NPC-1 protein, deficient in types C and D, and the finding of mutations in each. Animal models of type A and type C disease are known or have been developed. These models have been utilized in therapeutic trials of bone marrow transplantation and gene transfection of stem cells and in studies of disease pathogenesis. Lysosphingomyelin has been implicated in the nervous system involvement associated with type A disease in humans and accumulations of the NPC-1 protein and apolipoprotein D have been found in murine NP-C brain. Cells from both human and murine Niemann-Pick disease type A have been studied to assess the role of acid sphingomyelinase in signal transduction pathways involving cell proliferation, differentiation, and apoptosis.
Collapse
Affiliation(s)
- E H Kolodny
- New York University School of Medicine, Department of Neurology, New York 10016, USA
| |
Collapse
|
1047
|
Burke R, Nellen D, Bellotto M, Hafen E, Senti KA, Dickson BJ, Basler K. Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signaling cells. Cell 1999; 99:803-15. [PMID: 10619433 DOI: 10.1016/s0092-8674(00)81677-3] [Citation(s) in RCA: 429] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Members of the Hedgehog (Hh) family of secreted signaling proteins function as potent short-range organizers in animal development. Their range of action is limited by a C-terminal cholesterol tether and the upregulation of Patched (Ptc) receptor levels. Here we identify a novel segment-polarity gene in Drosophila, dispatched (disp), and demonstrate that its product is required in sending cells for normal Hh function. In the absence of Disp, cholesterol-modified but not cholesterol-free Hh is retained in these cells, indicating that Disp functions to release cholesterol-anchored Hh. Despite their opposite roles, Disp and Ptc share structural homology in the form of a sterol-sensing domain, suggesting that release and sequestration of cholesterol-modified Hh may be based on related molecular pathways.
Collapse
Affiliation(s)
- R Burke
- Institut für Molekularbiologie, Universität Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
1048
|
Abstract
The hedgehog signalling pathway is responsible for the embryonic patterning of a range of tissues, and it is now known that dysregulation of this pathway can result in the formation of several tumour types. This cascade is regulated at the cell surface by the opposing actions of the patched and smoothened molecules which together form a receptor complex for hedgehog. The discovery that inactivation of the human patched gene is responsible for familial and sporadic forms of basal cell carcinoma firmly established a role for dysregulation of hedgehog signalling in tumorigenesis. Other key members of this pathway have also been shown to be involved in tumour formation, as have more distal downstream targets of hedgehog signalling. Since it appears that tumorigenesis results from constitutive activation of hedgehog responsive genes, the identification of novel downstream targets of hedgehog signalling in given cell types is likely to increase our understanding of the molecular processes underlying tumour formation.
Collapse
Affiliation(s)
- C Wicking
- Centre for Molecular and Cellular Biology, University of Queensland, St Lucia, Australia
| | | | | |
Collapse
|
1049
|
Abstract
Holoprosencephaly is a malformation of the cerebral hemispheres resulting in the absence of the inter-hemispheric fissure along with other defects of brain development. Frequently midline defects of the craniofacial structures are also present. This malformation sequence has been of interest for many years because of the well recognized genetic and environmental pathogeneses, although the molecular pathogenesis remained elusive. Recent studies have begun clarifying the molecular pathogenesis of holoprosencephaly. Herein is reviewed the syndromes associated with holoprosencephaly, the pathology of this disorder, genetic and environment factors, and a current understanding of the molecular pathogenesis of this disorder.
Collapse
Affiliation(s)
- J A Golden
- Department of Pathology, Abramson Research Center, Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine, 19104, USA.
| |
Collapse
|
1050
|
Greer WL, Dobson MJ, Girouard GS, Byers DM, Riddell DC, Neumann PE. Mutations in NPC1 highlight a conserved NPC1-specific cysteine-rich domain. Am J Hum Genet 1999; 65:1252-60. [PMID: 10521290 PMCID: PMC1288277 DOI: 10.1086/302620] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Niemann-Pick type II disease is an autosomal recessive disorder characterized by a defect in intracellular trafficking of sterols. We have determined the intron/exon boundaries of eight exons from the conserved 3' portion of NPC1, the gene associated with most cases of the disease. SSCP analyses were designed for these exons and were used to identify the majority of mutations in 13 apparently unrelated families. Thirteen mutations were found, accounting for 19 of the 26 alleles. These mutations included eight different missense mutations (including one reported by Greer et al. [1998]), one 4-bp and two 2-bp deletions that generate premature stop codons, and two intronic mutations that are predicted to alter splicing. Two of the missense mutations were present in predicted transmembrane (TM) domains. Clustering of these and other reported NPC1 mutations in the carboxy-terminal third of the protein indicates that screening of these exons, by means of the SSCP analyses reported here, will detect most mutations. The carboxy-terminal half of the Npc1 protein shares amino acid similarity with the TM domains of the morphogen receptor Patched, with the largest stretch of unrelated sequence lying between two putative TM spans. Alignment of this portion of the human Npc1 protein sequence with Npc1-related sequences from mouse, yeast, nematode, and a plant, Arabidopsis, revealed conserved cysteine residues that may coordinate the structure of this domain. That 7 of a total of 13 NPC1 missense mutations are concentrated in this single Npc1-specific domain suggests that integrity of this region is particularly critical for normal functioning of the protein.
Collapse
Affiliation(s)
- W L Greer
- Department of Pathology, Division of Molecular Pathology and Molecular Genetics, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | | | | | |
Collapse
|