1001
|
Dherin C, Dizdaroglu M, Doerflinger H, Boiteux S, Radicella JP. Repair of oxidative DNA damage in Drosophila melanogaster: identification and characterization of dOgg1, a second DNA glycosylase activity for 8-hydroxyguanine and formamidopyrimidines. Nucleic Acids Res 2000; 28:4583-92. [PMID: 11095666 PMCID: PMC115177 DOI: 10.1093/nar/28.23.4583] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Drosophila, the S3 ribosomal protein has been shown to act as a DNA glycosylase/AP lyase capable of releasing 8-hydroxyguanine (8-OH-Gua) in damaged DNA. Here we describe a second Drosophila protein (dOgg1) with 8-OH-Gua and abasic (AP) site DNA repair activities. The Drosophila OGG1 gene codes for a protein of 327 amino acids, which shows 33 and 37% identity with the yeast and human Ogg1 proteins, respectively. The DNA glycosylase activity of purified dOgg1 was investigated using gamma-irradiated DNA and gas chromatography/isotope dilution mass spectrometry (GC/IDMS). The dOgg1 protein excises 8-OH-Gua and 2, 6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) from gamma-irradiated DNA. with k(ca)(t)/K:(M) values of 21.0 x 10(-5) and 11.2 x 10(-5) (min(-1) nM(-1)), respectively. Enzymatic assays using oligodeoxyribonucleotides containing a single lesion show that dOgg1 displays a marked preference for DNA duplexes containing 8-OH-Gua, 8-OH-Ade or an AP site placed opposite a cytosine. The cleavage of the 8-OH-Gua-containing strand results from the excision of the damaged base followed by a ss-elimination reaction at the 3'-side of the resulting AP site. Cleavage of 8-OH-Gua.C duplex involves the formation of a reaction intermediate that is converted into a stable covalent adduct in the presence of sodium borohydre. dOgg1 complements the mutator phenotype of fpg mutY mutants of Escherichia coli. Whole-mount in situ hybridizations on tissues at different stages of Drosophila development reveal that the dOGG1 messenger is expressed uniformly at a low level in cells in which mitotic division occurs. Therefore, Drosophila possesses two DNA glycosylase activities that can excise 8-OH-Gua and formamidopyrimidines from DNA, dOgg1 and the ribosomal protein S3.
Collapse
Affiliation(s)
- C Dherin
- CEA, Département de Radiobiologie et Radiopathologie, UMR217 CNRS-CEA, Radiobiologie Moléculaire et Cellulaire, 60 rue du Général Leclerc, BP6, 92265-Fontenay aux Roses, France
| | | | | | | | | |
Collapse
|
1002
|
Harfe BD, Jinks-Robertson S. DNA polymerase zeta introduces multiple mutations when bypassing spontaneous DNA damage in Saccharomyces cerevisiae. Mol Cell 2000; 6:1491-9. [PMID: 11163221 DOI: 10.1016/s1097-2765(00)00145-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Spontaneous DNA damage can be dealt with by multiple repair/bypass pathways that have overlapping specificities. We have used a frameshift reversion assay to examine spontaneous mutations that accumulate in yeast strains defective for the high-fidelity nucleotide excision repair or recombination pathways. In contrast to the simple frameshift mutations that occur in wild-type strains, the reversion events in mutant strains are often complex in nature, with the selected frameshift mutation being accompanied by one or more base substitutions. Genetic analyses demonstrate that the complex events are dependent on the Pol zeta translesion polymerase, thus implicating the DNA damage bypass activity of low-fidelity translesion polymerases in hypermutation phenomena.
Collapse
Affiliation(s)
- B D Harfe
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
1003
|
Slor H, Batko S, Khan SG, Sobe T, Emmert S, Khadavi A, Frumkin A, Busch DB, Albert RB, Kraemer KH. Clinical, cellular, and molecular features of an Israeli xeroderma pigmentosum family with a frameshift mutation in the XPC gene: sun protection prolongs life. J Invest Dermatol 2000; 115:974-80. [PMID: 11121128 DOI: 10.1046/j.1523-1747.2000.00190.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An Ashkenazi Jewish Israeli family with two children affected with severe xeroderma pigmentosum was investigated. A son, XP12TA, developed skin cancer at 2 y and died at 10 y. A daughter, XP25TA, now 24 y old, was sun protected and began developing skin cancers at 10 y. Their cultured skin fibroblasts showed reductions in post-ultraviolet survival (11% of normal), unscheduled DNA synthesis (10% of normal), global genome DNA repair (15% of normal), and plasmid host cell reactivation (5% of normal). Transcription-coupled DNA repair was normal, however. Northern blot analysis revealed greatly reduced xeroderma pigmentosum complementation group C mRNA. A plasmid host cell reactivation assay assigned the cells to xeroderma pigmentosum complementation group C. Cells from both parents and an unaffected child exhibited normal post-ultraviolet-C survival and normal DNA repair. Sequencing the xeroderma pigmentosum complementation group C cDNA of XP12TA and XP25TA revealed a homozygous deletion of two bases (del AT 669-670) in exon 5 with a new termination site 10 codons downstream that is expected to encode a truncated xeroderma pigmentosum complementation group C protein. Sequence analysis of the xeroderma pigmentosum complementation group C cDNA in cells from the parents found identical heterozygous mutations: one allele carries both the exon 5 frameshift and an exon 15 polymorphism and the other allele carries neither alteration. Cells from the unaffected brother had two normal xeroderma pigmentosum complementation group C alleles. This frameshift mutation in the xeroderma pigmentosum complementation group C gene led to reduced DNA repair with multiple skin cancers and early death. Sun protection delayed the onset of skin cancer and prolonged life in a sibling with the same mutation.
Collapse
Affiliation(s)
- H Slor
- Department of Human Genetics and Molecular Medicine, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1004
|
Abstract
A variety of types of DNA oxidation occur endogenously and mediated by xenobiotics. Certain forms are mutagenic and carcinogenic and may lead to other pathologies.
Collapse
Affiliation(s)
- G M Williams
- Pathology Department, New York Medical College, Valhalla, New York 10595, USA
| | | |
Collapse
|
1005
|
Adams A, Guss JM, Collyer CA, Denny WA, Wakelin LP. A novel form of intercalation involving four DNA duplexes in an acridine-4-carboxamide complex of d(CGTACG)(2). Nucleic Acids Res 2000; 28:4244-53. [PMID: 11058124 PMCID: PMC113118 DOI: 10.1093/nar/28.21.4244] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The structures of the complexes formed between 9-amino-[N:-(2-dimethyl-amino)butyl]acridine-4-carboxamide and d(CG(5Br)UACG)(2) and d(CGTACG)(2) have been solved by X-ray crystallography using MAD phasing methodology and refined to a resolution of 1.6 A. The complexes crystallised in space group C222. An asymmetric unit in the brominated complex comprises two strands of DNA, one disordered drug molecule, two cobalt (II) ions and 19 water molecules (31 in the native complex). Asymmetric units in the native complex also contain a sodium ion. The structures exhibit novel features not previously observed in crystals of DNA/drug complexes. The DNA helices stack in continuous columns with their central 4 bp adopting a B-like motif. However, despite being a palindromic sequence, the terminal GC base pairs engage in quite different interactions. At one end of the duplex there is a CpG dinucleotide overlap modified by ligand intercalation and terminal cytosine exchange between symmetry-related duplexes. A novel intercalation complex is formed involving four DNA duplexes, four ligand molecules and two pairs of base tetrads. The other end of the DNA is frayed with the terminal guanine lying in the minor groove of the next duplex in the column. The structure is stabilised by guanine N7/cobalt (II) coordination. We discuss our findings with respect to the effects of packing forces on DNA crystal structure, and the potential effects of intercalating agents on biochemical processes involving DNA quadruplexes and strand exchanges. NDB accession numbers: DD0032 (brominated) and DD0033 (native).
Collapse
Affiliation(s)
- A Adams
- Department of Biochemistry, University of Sydney, NSW 2006, Australia, Auckland Cancer Society Research Centre, Faculty of Medicine and Health Science, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
1006
|
Guo Z, Kumagai A, Wang SX, Dunphy WG. Requirement for Atr in phosphorylation of Chk1 and cell cycle regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus egg extracts. Genes Dev 2000; 14:2745-56. [PMID: 11069891 PMCID: PMC317027 DOI: 10.1101/gad.842500] [Citation(s) in RCA: 328] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The checkpoint kinase Xchk1 becomes phosphorylated in Xenopus egg extracts in response to DNA replication blocks or UV-damaged DNA. Xchk1 is also required for the cell cycle delay that is induced by unreplicated or UV-damaged DNA. In this report, we have removed the Xenopus homolog of ATR (Xatr) from egg extracts by immunodepletion. In Xatr-depleted extracts, the checkpoint-associated phosphorylation of Xchk1 is abolished, and the cell cycle delay induced by replication blocks is strongly compromised. Xatr from egg extracts phosphorylated recombinant Xchk1 in vitro, but not a mutant form of Xchk1 (Xchk1-4AQ) containing nonphosphorylatable residues in its four conserved SQ/TQ motifs. Recombinant human ATR, but not a kinase-inactive mutant, phosphorylated the same sites in Xchk1. Furthermore, the Xchk1-4AQ mutant was found to be defective in mediating a checkpoint response in egg extracts. These findings suggest that Xchk1 is a functionally important target of Xatr during a checkpoint response to unreplicated or UV-damaged DNA.
Collapse
Affiliation(s)
- Z Guo
- Division of Biology, 216-76, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
1007
|
Petronzelli F, Riccio A, Markham GD, Seeholzer SH, Stoerker J, Genuardi M, Yeung AT, Matsumoto Y, Bellacosa A. Biphasic kinetics of the human DNA repair protein MED1 (MBD4), a mismatch-specific DNA N-glycosylase. J Biol Chem 2000; 275:32422-9. [PMID: 10930409 DOI: 10.1074/jbc.m004535200] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The human protein MED1 (also known as MBD4) was previously isolated in a two-hybrid screening using the mismatch repair protein MLH1 as a bait, and shown to have homology to bacterial base excision repair DNA N-glycosylases/lyases. To define the mechanisms of action of MED1, we implemented a sensitive glycosylase assay amenable to kinetic analysis. We show that MED1 functions as a mismatch-specific DNA N-glycosylase active on thymine, uracil, and 5-fluorouracil when these bases are opposite to guanine. MED1 lacks uracil glycosylase activity on single-strand DNA and abasic site lyase activity. The glycosylase activity of MED1 prefers substrates containing a G:T mismatch within methylated or unmethylated CpG sites; since G:T mismatches can originate via deamination of 5-methylcytosine to thymine, MED1 may act as a caretaker of genomic fidelity at CpG sites. A kinetic analysis revealed that MED1 displays a fast first cleavage reaction followed by slower subsequent reactions, resulting in biphasic time course; this is due to the tight binding of MED1 to the abasic site reaction product rather than a consequence of enzyme inactivation. Comparison of kinetic profiles revealed that the MED1 5-methylcytosine binding domain and methylation of the mismatched CpG site are not required for efficient catalysis.
Collapse
Affiliation(s)
- F Petronzelli
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1008
|
Schulz I, Mahler HC, Boiteux S, Epe B. Oxidative DNA base damage induced by singlet oxygen and photosensitization: recognition by repair endonucleases and mutagenicity. Mutat Res 2000; 461:145-56. [PMID: 11018587 DOI: 10.1016/s0921-8777(00)00049-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have analyzed the recognition by various repair endonucleases of DNA base modifications induced by three oxidants, viz. [4-(tert-butyldioxycarbonyl)benzyl]triethylammonium chloride (BCBT), a photochemical source of tert-butoxyl radicals, disodium salt of 1,4-etheno-2,3-benzodioxin-1,4-dipropanoic acid (NDPO(2)), a chemical source of singlet oxygen, and riboflavin, a type-I photosensitizer. The base modifications induced by BCBT, which were previously shown to be mostly 7,8-dihydro-8-oxoguanine (8-oxoGua) residues, were recognized by Fpg and Ogg1 proteins, but not by endonuclease IIII, Ntg1 and Ntg2 proteins. In the case of singlet oxygen induced damage, 8-oxoGua accounted for only 35% of the base modifications recognized by Fpg protein. The remaining Fpg-sensitive modifications were not recognized by Ogg1 protein and relatively poor by endonuclease III, but they were relatively good substrates of Ntg1 and Ntg2. In the case of the damage induced by photoexcited riboflavin, the fraction of Fpg-sensitive base modifications identified as 8-oxoGua was only 23%. In contrast to the damage induced by singlet oxygen, the remaining lesions were not only recognized by Ntg1 and Ntg2 proteins and (relatively poor) by endonuclease III, but also by Ogg1 protein. The analysis of the mutations observed after transfection of modified plasmid pSV2gpt into Escherichia coli revealed that all agents induced near exclusively GC-->TA and GC-->CG transversions, the numbers of which were correlated with the numbers of 8-oxoGua residues and Ntg-sensitive modifications, respectively. In conclusion, both singlet oxygen and the type-I photosensitizer riboflavin induce predominantly oxidative guanine modifications other than 8-oxoGua, which most probably give rise to GC-->CG transversions and in which eukaryotic cells are substrates of Ntg1 and Ntg2 proteins.
Collapse
Affiliation(s)
- I Schulz
- Institute of Pharmacy, University of Mainz, Staudingerweg 5, D-55099 Mainz, Germany
| | | | | | | |
Collapse
|
1009
|
Hadi MZ, Coleman MA, Fidelis K, Mohrenweiser HW, Wilson DM. Functional characterization of Ape1 variants identified in the human population. Nucleic Acids Res 2000; 28:3871-9. [PMID: 11024165 PMCID: PMC110798 DOI: 10.1093/nar/28.20.3871] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Apurinic/apyrimidinic (AP) sites are common mutagenic and cytotoxic DNA lesions. Ape1 is the major human repair enzyme for abasic sites and incises the phosphodiester backbone 5' to the lesion to initiate a cascade of events aimed at removing the AP moiety and maintaining genetic integrity. Through resequencing of genomic DNA from 128 unrelated individuals, and searching published reports and sequence databases, seven amino acid substitution variants were identified in the repair domain of human Ape1. Functional characterization revealed that three of the variants, L104R, E126D and R237A, exhibited approximately 40-60% reductions in specific incision activity. A fourth variant, D283G, is similar to the previously characterized mutant D283A found to exhibit approximately 10% repair capacity. The most common substitution (D148E; observed at an allele frequency of 0.38) had no impact on endonuclease and DNA binding activities, nor did a G306A substitution. A G241R variant showed slightly enhanced endonuclease activity relative to wild-type. In total, four of seven substitutions in the repair domain of Ape1 imparted reduced function. These reduced function variants may represent low penetrance human polymorphisms that associate with increased disease susceptibility.
Collapse
Affiliation(s)
- M Z Hadi
- Molecular and Structural Biology Division, L-441, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94551, USA
| | | | | | | | | |
Collapse
|
1010
|
Nikolaishvili-Feinberg N, Cordeiro-Stone M. Discrimination between translesion synthesis and template switching during bypass replication of thymine dimers in duplex DNA. J Biol Chem 2000; 275:30943-50. [PMID: 10913440 DOI: 10.1074/jbc.m005225200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The goal of this study was to determine whether bypass replication occurs by translesion synthesis or template switching (copy choice) when a duplex molecule carrying a single cis,syn-cyclobutane thymine dimer is replicated in vitro by human cell extracts. Circular heteroduplex DNA molecules were constructed to contain the SV40 origin of replication and a mismatch opposite to or nearby the dimer. Control molecules with only the mismatch were also prepared. Heteroduplexes were methylated at CpG islands and replicated in vitro (30 min). Following bisulfite treatment, the nascent DNA complementary to the dimer-containing template was distinguished from the other three strands by methylation-specific polymerase chain reaction. Cloning and sequencing of polymerase chain reaction products revealed that 80-98% carried the sequence predicted for translesion synthesis, with two adenines incorporated opposite the dimer. The fraction of clones with sequence predictive of template switching was reduced when extracts deficient in mismatch repair or nucleotide excision repair activities were used to replicate the heteroduplex molecules. These results support the conclusion that lesion bypass during in vitro replication of duplex DNA containing thymine dimers occurs by translesion synthesis.
Collapse
Affiliation(s)
- N Nikolaishvili-Feinberg
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7525, USA
| | | |
Collapse
|
1011
|
Wittschieben J, Shivji MK, Lalani E, Jacobs MA, Marini F, Gearhart PJ, Rosewell I, Stamp G, Wood RD. Disruption of the developmentally regulated Rev3l gene causes embryonic lethality. Curr Biol 2000; 10:1217-20. [PMID: 11050392 DOI: 10.1016/s0960-9822(00)00725-9] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The REV3 gene encodes the catalytic subunit of DNA polymerase (pol) zeta, which can replicate past certain types of DNA lesions [1]. Saccharomyces cerevisiae rev3 mutants are viable and have lower rates of spontaneous and DNA-damage-induced mutagenesis [2]. Reduction in the level of Rev31, the presumed catalytic subunit of mammalian pol zeta, decreased damage-induced mutagenesis in human cell lines [3]. To study the function of mammalian Rev31, we inactivated the gene in mice. Two exons containing conserved DNA polymerase motifs were replaced by a cassette encoding G418 resistance and beta-galactosidase, under the control of the Rev3l promoter. Surprisingly, disruption of Rev3l caused mid-gestation embryonic lethality, with the frequency of Rev3l(-/-) embryos declining markedly between 9.5 and 12.5 days post coitum (dpc). Rev3l(-/-) embryos were smaller than their heterozygous littermates and showed retarded development. Tissues in many areas were disorganised, with significantly reduced cell density. Rev3l expression, traced by beta-galactosidase staining, was first detected during early somitogenesis and gradually expanded to other tissues of mesodermal origin, including extraembryonic membranes. Embryonic death coincided with the period of more widely distributed Rev3l expression. The data demonstrate an essential function for murine Rev31 and suggest that bypass of specific types of DNAlesions by pol zeta is essential for cell viability during embryonic development in mammals.
Collapse
Affiliation(s)
- J Wittschieben
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mims, Herts EN6 3LD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
1012
|
Luo C, Krishnasamy R, Basu AK, Zou Y. Recognition and incision of site-specifically modified C8 guanine adducts formed by 2-aminofluorene, N-acetyl-2-aminofluorene and 1-nitropyrene by UvrABC nuclease. Nucleic Acids Res 2000; 28:3719-24. [PMID: 11000263 PMCID: PMC110764 DOI: 10.1093/nar/28.19.3719] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2000] [Revised: 08/15/2000] [Accepted: 08/15/2000] [Indexed: 11/13/2022] Open
Abstract
Nucleotide excision repair plays a crucial role in removing many types of DNA adducts formed by UV light and chemical carcinogens. We have examined the interactions of Escherichia coli UvrABC nuclease proteins with three site-specific C8 guanine adducts formed by the carcinogens 2-aminofluorene (AF), N:-acetyl-2-acetylaminofluorene (AAF) and 1-nitropyrene (1-NP) in a 50mer oligonucleotide. Similar to the AF and AAF adducts, the 1-NP-induced DNA adduct contains an aminopyrene (AP) moiety covalently linked to the C8 position of guanine. The dissociation constants for UvrA binding to AF-, AAF- and AP-DNA adducts, determined by gel mobility shift assay, are 33 +/- 9, 8 +/- 2 and 23 +/- 9 nM, respectively, indicating that the AAF adduct is recognized much more efficiently than the other two. Incision by UvrABC nuclease showed that AAF-DNA was cleaved approximately 2-fold more efficiently than AF- or AP-DNA (AAF > AF approximately AP), even though AP has the largest molecular size in this group. However, an opened DNA structure of six bases around the adduct increased the incision efficiency for AF-DNA (but not for AP-DNA), making it equivalent to that for AAF-DNA. These results are consistent with a model in which DNA damage recognition by the E. coli nucleotide excision repair system consists of two sequential steps. It includes recognition of helical distortion in duplex DNA followed by recognition of the type of nucleotide chemical modification in a single-stranded region. The difference in incision efficiency between AF- and AAF-DNA adducts in normal DNA sequence, therefore, is a consequence of their difference in inducing structural distortions in DNA. The results of this study are discussed in the light of NMR solution structures of these DNA adducts.
Collapse
Affiliation(s)
- C Luo
- Sealy Center for Molecular Science and Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | |
Collapse
|
1013
|
Radany EH, Dornfeld KJ, Sanderson RJ, Savage MK, Majumdar A, Seidman MM, Mosbaugh DW. Increased spontaneous mutation frequency in human cells expressing the phage PBS2-encoded inhibitor of uracil-DNA glycosylase. Mutat Res 2000; 461:41-58. [PMID: 10980411 DOI: 10.1016/s0921-8777(00)00040-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Ugi protein inhibitor of uracil-DNA glycosylase encoded by bacteriophage PBS2 inactivates human uracil-DNA glycosylases (UDG) by forming a tight enzyme:inhibitor complex. To create human cells that are impaired for UDG activity, the human glioma U251 cell line was engineered to produce active Ugi protein. In vitro assays of crude cell extracts from several Ugi-expressing clonal lines showed UDG inactivation under standard assay conditions as compared to control cells, and four of these UDG defective cell lines were characterized for their ability to conduct in vivo uracil-DNA repair. Whereas transfected plasmid DNA containing either a U:G mispair or U:A base pairs was efficiently repaired in the control lines, uracil-DNA repair was not evident in the lines producing Ugi. Experiments using a shuttle vector to detect mutations in a target gene showed that Ugi-expressing cells exhibited a 3-fold higher overall spontaneous mutation frequency compared to control cells, due to increased C:G to T:A base pair substitutions. The growth rate and cell cycle distribution of Ugi-expressing cells did not differ appreciably from their parental cell counterpart. Further in vitro examination revealed that a thymine DNA glycosylase (TDG) previously shown to mediate Ugi-insensitive excision of uracil bases from DNA was not detected in the parental U251 cells. However, a Ugi-insensitive UDG activity of unknown origin that recognizes U:G mispairs and to a lesser extent U:A base pairs in duplex DNA, but which was inactive toward uracil residues in single-stranded DNA, was detected under assay conditions previously shown to be efficient for detecting TDG.
Collapse
Affiliation(s)
- E H Radany
- Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Orange, CA 92868, USA.
| | | | | | | | | | | | | |
Collapse
|
1014
|
Canitrot Y, Hoffmann JS, Calsou P, Hayakawa H, Salles B, Cazaux C. Nucleotide excision repair DNA synthesis by excess DNA polymerase beta: a potential source of genetic instability in cancer cells. FASEB J 2000; 14:1765-74. [PMID: 10973926 DOI: 10.1096/fj.99-1063com] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The nucleotide excision repair pathway contributes to genetic stability by removing a wide range of DNA damage through an error-free reaction. When the lesion is located, the altered strand is incised on both sides of the lesion and a damaged oligonucleotide excised. A repair patch is then synthesized and the repaired strand is ligated. It is assumed that only DNA polymerases delta and/or epsilon participate to the repair DNA synthesis step. Using UV and cisplatin-modified DNA templates, we measured in vitro that extracts from cells overexpressing the error-prone DNA polymerase beta exhibited a five- to sixfold increase of the ultimate DNA synthesis activity compared with control extracts and demonstrated the specific involvement of Pol beta in this step. By using a 28 nt gapped, double-stranded DNA substrate mimicking the product of the incision step, we showed that Pol beta is able to catalyze strand displacement downstream of the gap. We discuss these data within the scope of a hypothesis previously presented proposing that excess error-prone Pol beta in cancer cells could perturb the well-defined specific functions of DNA polymerases during error-free DNA transactions.
Collapse
Affiliation(s)
- Y Canitrot
- Groupe 'Instabilité génétique et cancer', Groupe 'Toxico-résistance', Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, 31077 Toulouse cedex 4, France.
| | | | | | | | | | | |
Collapse
|
1015
|
|
1016
|
Abstract
Cells of higher eukaryotes possess several very efficient systems for the repair of radiation-induced lesions in DNA. Different strategies have been adopted at the cellular level to remove or even tolerate various types of lesions in order to assure survival and limit the mutagenic consequences. In mammalian cells, the main DNA repair systems comprise direct reversion of damage, excision of damage and exchange mechanisms with intact DNA. Among these, the direct ligation of single strand breaks (SSB) by a DNA ligase and the multi-enzymatic repair systems of mismatch repair, base and nucleotide excision repair as well as the repair of double strand breaks (DSB) by homologous recombination or non homologous end-joining are the most important systems. Most of these processes are error-free except the non homologous end-joining pathway used mainly for the repair of DSB. Moreover, certain lesions can be tolerated by more or less accurately acting polymerases capable of performing translesional DNA syntheses. The DNA repair systems are intimately integrated in the network of cellular regulation. Some of their components are DNA damage inducible. Radiation-induced mutagenesis is largely due to unrepaired DNA damage but also involves error-prone repair processes like the repair of DSB by non-homologous end-joining. Generally, mammalian cells are well prepared to repair radiation-induced lesions. However, some questions remain to be asked about mechanistic details and efficiencies of the systems for removing certain types of radiation-damage and about their order and timing of action. The answers to these questions would be important for radioprotection as well as radiotherapy.
Collapse
Affiliation(s)
- D Averbeck
- Institut Curie, laboratoires Raymond-Latarjet, UMR2027 CNRS, centre universitaire d'Orsay, France
| |
Collapse
|
1017
|
Abstract
DNA polymerase beta, the smallest eukaryotic DNA polymerase, is designed to synthesize DNA in short DNA gaps during DNA repair. It is composed of two specialized domains that contribute essential enzymatic activities to base excision repair (BER). Its amino-terminal domain possesses a lyase activity necessary to remove the 5'-deoxyribose phosphate (dRP) intermediate generated during BER. Removal of the dRP moiety is often the rate-limiting step during BER. Failure to remove this group may initiate alternate BER pathways. The larger polymerase domain has nucleotidyl transferase activity. This domain has a modular organization with sub-domains that bind duplex DNA, catalytic metals, and the correct nucleoside triphosphate in a template-dependent manner. X-ray crystal structures of DNA polymerase beta, with and without bound substrates, has inferred that domain, sub-domain, and substrate conformational changes occur upon ligand binding. Many of these conformational changes are distinct from those observed in structures of other DNA polymerases. This review will examine the structural aspects of DNA polymerase beta that facilitate its role in BER.
Collapse
Affiliation(s)
- W A Beard
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
1018
|
Abstract
Uracil-DNA glycosylase (UDG) functions as a sentry guarding against uracil in DNA. UDG initiates DNA base excision repair (BER) by hydrolyzing the uracil base from the deoxyribose. As one of the best studied DNA glycosylases, a coherent and complete functional mechanism is emerging that combines structural and biochemical results. This functional mechanism addresses the detection of uracil bases within a vast excess of normal DNA, the features of the enzyme that drive catalysis, and coordination of UDG with later steps of BER while preventing the release of toxic intermediates. Many of the solutions that UDG has evolved to overcome the challenges of policing the genome are shared by other DNA glycosylases and DNA repair enzymes, and thus appear to be general.
Collapse
Affiliation(s)
- S S Parikh
- Department of Molecular Biology, Skaggs Institute for Chemical Biology, The Scripps Research Institute, MB4, 10550 North Torrey Pines Road, La Jolla, CA 92037-1027, USA
| | | | | |
Collapse
|
1019
|
Mol CD, Hosfield DJ, Tainer JA. Abasic site recognition by two apurinic/apyrimidinic endonuclease families in DNA base excision repair: the 3' ends justify the means. Mutat Res 2000; 460:211-29. [PMID: 10946230 DOI: 10.1016/s0921-8777(00)00028-8] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA damage occurs unceasingly in all cells. Spontaneous DNA base loss, as well as the removal of damaged DNA bases by specific enzymes targeted to distinct base lesions, creates non-coding and lethal apurinic/apyrimidinic (AP) sites. AP sites are the central intermediate in DNA base excision repair (BER) and must be processed by 5' AP endonucleases. These pivotal enzymes detect, recognize, and cleave the DNA phosphodiester backbone 5' of, AP sites to create a free 3'-OH end for DNA polymerase repair synthesis. In humans, AP sites are processed by APE1, whereas in yeast the primary AP endonuclease is termed APN1, and these enzymes are the major constitutively expressed AP endonucleases in these organisms and are homologous to the Escherichia coli enzymes Exonuclease III (Exo III) and Endonuclease IV (Endo IV), respectively. These enzymes represent both of the conserved 5' AP endonuclease enzyme families that exist in biology. Crystal structures of APE1 and Endo IV, both bound to AP site-containing DNA reveal how abasic sites are recognized and the DNA phosphodiester backbone cleaved by these two structurally unrelated enzymes with distinct chemical mechanisms. Both enzymes orient the AP-DNA via positively charged complementary surfaces and insert loops into the DNA base stack, bending and kinking the DNA to promote flipping of the AP site into a sequestered enzyme pocket that excludes undamaged nucleotides. Each enzyme-DNA complex exhibits distinctly different DNA conformations, which may impact upon the biological functions of each enzyme within BER signal-transduction pathways.
Collapse
Affiliation(s)
- C D Mol
- Department of Molecular Biology, and Skaggs Institute for Chemical Biology, The Scripps Research Institute, MB4, 10550 North Torrey Pines Road, La Jolla, CA 92037-1027, USA
| | | | | |
Collapse
|
1020
|
Vispe S, Yung TM, Ritchot J, Serizawa H, Satoh MS. A cellular defense pathway regulating transcription through poly(ADP-ribosyl)ation in response to DNA damage. Proc Natl Acad Sci U S A 2000; 97:9886-91. [PMID: 10944198 PMCID: PMC27615 DOI: 10.1073/pnas.170280397] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA damage is known to trigger key cellular defense pathways such as those involved in DNA repair. Here we provide evidence for a previously unrecognized pathway regulating transcription in response to DNA damage and show that this regulation is mediated by the abundant nuclear enzyme poly(ADP-ribose) polymerase. We found that poly(ADP-ribose) polymerase reduced the rate of transcription elongation by RNA polymerase II, suggesting that poly(ADP-ribose) polymerase negatively regulates transcription, possibly through the formation of poly(ADP-ribose) polymerase-RNA complexes. In damaged cells, poly(ADP-ribose) polymerase binds to DNA breaks and automodifies itself in the presence of NAD(+), resulting in poly(ADP-ribose) polymerase inactivation. We found that automodification of poly(ADP-ribose) polymerase in response to DNA damage resulted in the up-regulation of transcription, presumably because automodified poly(ADP-ribose) polymerase molecules were released from transcripts, thereby relieving the block on transcription. Because agents that damage DNA damage RNA as well, up-regulation of RNA synthesis in response to DNA damage may provide cells with a mechanism to compensate for the loss of damaged transcripts and may be critical for cell survival after exposure to DNA-damaging agents.
Collapse
Affiliation(s)
- S Vispe
- DNA Repair Group, Health and Environment Unit, Laval University Medical Research Center, Centre Hospitalier Universitaire de Québec (CHUQ), Faculty of Medicine, Laval University, 2705 Boulevard Laurier, Ste-Foy, QC G1V 4G2, Canada
| | | | | | | | | |
Collapse
|
1021
|
Fortini P, Pascucci B, Belisario F, Dogliotti E. DNA polymerase beta is required for efficient DNA strand break repair induced by methyl methanesulfonate but not by hydrogen peroxide. Nucleic Acids Res 2000; 28:3040-6. [PMID: 10931918 PMCID: PMC108440 DOI: 10.1093/nar/28.16.3040] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2000] [Revised: 06/27/2000] [Accepted: 06/27/2000] [Indexed: 11/12/2022] Open
Abstract
The most frequent DNA lesions in mammalian genomes are removed by the base excision repair (BER) via multiple pathways that involve the replacement of one or more nucleotides at the lesion site. The biological consequences of a BER defect are at present largely unknown. We report here that mouse cells defective in the main BER DNA polymerase beta (Pol beta) display a decreased rate of DNA single-strand breaks (ssb) rejoining after methyl methanesulfonate damage when compared with wild-type cells. In contrast, Pol beta seems to be dispensable for hydrogen peroxide-induced DNA ssb repair, which is equally efficient in normal and defective cells. By using an in vitro repair assay on single abasic site-containing circular duplex molecules, we show that the long-patch BER is the predominant repair route in Pol beta-null cell extract. Our results strongly suggest that the Pol beta-mediated single nucleotide BER is the favorite pathway for repair of N-methylpurines while oxidation-induced ssb, likely arising from oxidized abasic sites, are the substrate for long-patch BER.
Collapse
Affiliation(s)
- P Fortini
- Laboratory of Comparative Toxicology and Ecotoxicology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | |
Collapse
|
1022
|
Abstract
The concept that the highly reactive hydroxyl radical (HO) could be generated from an interaction between superoxide (O(2)(-)) and hydrogen peroxide (H(2)O(2)) was proposed (with Joseph Weiss) in Professor Haber's final paper published in 1934. Until it was recognized that free radicals are produced in biological systems, this finding seemed to have no relevance to biology. However, following the discovery that O(2)(-) was a normal cellular metabolite, it was quickly recognized that the Haber-Weiss reaction (O(2)(-)+H(2)O(2) -->HO+O(2)+HO(-)) might provide a means to generate more toxic radicals. Although the basic reaction has a second order rate constant of zero in aqueous solution and thus cannot occur in biological systems, the ability of iron salts to serve as catalysts was discussed by these authors. Because transition metal ions, particularly iron, are present at low levels in biological systems, this pathway (commonly referred to as the iron-catalyzed Haber-Weiss reaction) has been widely postulated to account for the in vivo generation of the highly reactive HO. Recent data documenting the importance of redox regulation of various cellular signaling pathways makes it clear that free radicals are essential for normal cellular function. However, this also makes it obvious that disruptions of free radical production or defenses at many different levels can lead to adverse effects on cells. While the generation of HO, which is by far the most reactive oxygen species, is generally indicative of an overtly toxic event, it is through studies at this level that we have reached a better understanding of free radicals as both signaling molecules and toxic species.
Collapse
Affiliation(s)
- J P Kehrer
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712-1074, USA.
| |
Collapse
|
1023
|
Oei SL, Ziegler M. ATP for the DNA ligation step in base excision repair is generated from poly(ADP-ribose). J Biol Chem 2000; 275:23234-9. [PMID: 10930429 DOI: 10.1074/jbc.m002429200] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In mammalian cells, the base excision repair (BER) pathway is the main route to counteract the mutagenic effects of DNA lesions. DNA nicks induce, among others, DNA polymerase activities and the synthesis of poly(ADP-ribose). It is shown here that poly(ADP-ribose) serves as an energy source for the final and rate-limiting step of BER, DNA ligation. This conclusion was drawn from experiments in which the fate of [(32)P]poly(ADP-ribose) or [(32)P]NAD added to HeLa nuclear extracts was systematically followed. ATP was synthesized from poly(ADP-ribose) in a pathway that strictly depended on nick-induced DNA synthesis. NAD was used for the synthesis of poly(ADP-ribose), which, in turn, was converted to ATP by pyrophosphorylytic cleavage utilizing the pyrophosphate generated from dNTPs during DNA synthesis. The adenylyl moiety was then preferentially used to adenylate DNA ligase III, from which it was transferred to the 5'-phosphoryl end of the nicked DNA. Finally, ligation to the 3'-OH end resulted in the release of AMP. When using NAD, but not poly(ADP-ribose), in the presence of 3-aminobenzamide, the entire process was blocked, confirming poly(ADP-ribosyl)ation to be the essential initial step. Thus, poly(ADP-ribose) polymerase-1, DNA polymerase beta, and ligase III interact with x-ray repair cross-complementing protein-1 within the BER complex, which ensures that ATP is generated and specifically used for DNA ligation.
Collapse
Affiliation(s)
- S L Oei
- Institut für Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Federal Republic of Germany.
| | | |
Collapse
|
1024
|
Brooks PJ, Wise DS, Berry DA, Kosmoski JV, Smerdon MJ, Somers RL, Mackie H, Spoonde AY, Ackerman EJ, Coleman K, Tarone RE, Robbins JH. The oxidative DNA lesion 8,5'-(S)-cyclo-2'-deoxyadenosine is repaired by the nucleotide excision repair pathway and blocks gene expression in mammalian cells. J Biol Chem 2000; 275:22355-62. [PMID: 10801836 DOI: 10.1074/jbc.m002259200] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Xeroderma pigmentosum (XP) patients with inherited defects in nucleotide excision repair (NER) are unable to excise from their DNA bulky photoproducts induced by UV radiation and therefore develop accelerated actinic damage, including cancer, on sun-exposed tissue. Some XP patients also develop a characteristic neurodegeneration believed to result from their inability to repair neuronal DNA damaged by endogenous metabolites since the harmful UV radiation in sunlight does not reach neurons. Free radicals, which are abundant in neurons, induce DNA lesions that, if unrepaired, might cause the XP neurodegeneration. Searching for such a lesion, we developed a synthesis for 8,5'-(S)-cyclo-2'-deoxyadenosine (cyclo-dA), a free radical-induced bulky lesion, and incorporated it into DNA to test its repair in mammalian cell extracts and living cells. Using extracts of normal and mutant Chinese hamster ovary (CHO) cells to test for NER and adult rat brain extracts to test for base excision repair, we found that cyclo-dA is repaired by NER and not by base excision repair. We measured host cell reactivation, which reflects a cell's capacity for NER, by transfecting CHO and XP cells with DNA constructs containing a single cyclo-dA or a cyclobutane thymine dimer at a specific site on the transcribed strand of a luciferase reporter gene. We found that, like the cyclobutane thymine dimer, cyclo-dA is a strong block to gene expression in CHO and human cells. Cyclo-dA was repaired extremely poorly in NER-deficient CHO cells and in cells from patients in XP complementation group A with neurodegeneration. Based on these findings, we propose that cyclo-dA is a candidate for an endogenous DNA lesion that might contribute to neurodegeneration in XP.
Collapse
Affiliation(s)
- P J Brooks
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1025
|
Le Page F, Klungland A, Barnes DE, Sarasin A, Boiteux S. Transcription coupled repair of 8-oxoguanine in murine cells: the ogg1 protein is required for repair in nontranscribed sequences but not in transcribed sequences. Proc Natl Acad Sci U S A 2000; 97:8397-402. [PMID: 10890888 PMCID: PMC26959 DOI: 10.1073/pnas.140137297] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2000] [Indexed: 11/18/2022] Open
Abstract
To assess the role of the Ogg1 DNA glycosylase in the transcription-coupled repair (TCR) of the mutagenic lesion, 7, 8-dihydro-8oxoguanine (8-OxoG), we have investigated the removal of this lesion in wild-type and ogg1(-/-) null mouse embryo fibroblast (MEF) cell lines. We used nonreplicating plasmids containing a single 8-OxoG.C base pair in a different assay that allowed us to study the removal of 8-OxoG located in a transcribed sequence (TS) or in a nontranscribed sequence (NTS). The results show that the removal of 8-OxoG in a wild-type MEF cell line is faster in the TS than in the NTS, indicating TCR of 8-OxoG in murine cells. In the homozygous ogg1(-/-) MEF cell line, 8-OxoG was not removed from the NTS whereas there was still efficient 8-OxoG repair in the TS. Expression of the mouse Ogg1 protein in the homozygous ogg1(-/-) cell line restored the ability to remove 8-OxoG in the NTS. Therefore, we have demonstrated that Ogg1 is essential for the repair of 8-OxoG in the NTS but is not required in the TS. These results indicate the existence of an Ogg1-independent pathway for the TCR of 8-OxoG in vivo.
Collapse
Affiliation(s)
- F Le Page
- Laboratoire de Radiobiologie de l'ADN, UMR217, Commissariat à l'Energie Atomique-Centre National de la Recherche Scientifique, BP6, 92265-Fontenay aux Roses, France
| | | | | | | | | |
Collapse
|
1026
|
Abstract
Base excision repair (BER) of DNA corrects a number of spontaneous and environmentally induced genotoxic or miscoding base lesions in a process initiated by DNA glycosylases. An AP endonuclease cleaves at the 5' side of the abasic site and the repair process is subsequently completed via either short patch repair or long patch repair, which largely require different proteins. As one example, the UNG gene encodes both nuclear (UNG2) and mitochondrial (UNG1) uracil DNA glycosylase and prevents accumulation of uracil in the genome. BER is likely to have a major role in preserving the integrity of DNA during evolution and may prevent cancer.
Collapse
Affiliation(s)
- H E Krokan
- Institute of Cancer Research and Molecular Biology, Norwegian University of Science and Technology, N-7489, Trondheim, Norway.
| | | | | | | | | |
Collapse
|
1027
|
Sobol RW, Prasad R, Evenski A, Baker A, Yang XP, Horton JK, Wilson SH. The lyase activity of the DNA repair protein beta-polymerase protects from DNA-damage-induced cytotoxicity. Nature 2000; 405:807-10. [PMID: 10866204 DOI: 10.1038/35015598] [Citation(s) in RCA: 269] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Small DNA lesions such as oxidized or alkylated bases are repaired by the base excision repair (BER) pathway. BER includes removal of the damaged base by a lesion-specific DNA glycosylase, strand scission by apurinic/apyrimidinic endonuclease, DNA resynthesis and ligation. BER may be further subdivided into DNA beta-polymerase (beta-pol)-dependent single-nucleotide repair and beta-pol-dependent or -independent long patch repair subpathways. Two important enzymatic steps in mammalian single-nucleotide BER are contributed by beta-pol: DNA resynthesis of the repair patch and lyase removal of 5'-deoxyribose phosphate (dRP). Fibroblasts from beta-pol null mice are hypersensitive to mono-functional DNA-methylating agents, resulting in increases in chromosomal damage, apoptosis and necrotic cell death. Here we show that only the dRP lyase activity of beta-pol is required to reverse methylating agent hypersensitivity in beta-pol null cells. These results indicate that removal of the dRP group is a pivotal step in BER in vivo. Persistence of the dRP moiety in DNA results in the hypersensitivity phenotype of beta-pol null cells and may signal downstream events such as apoptosis and necrotic cell death.
Collapse
Affiliation(s)
- R W Sobol
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709-2233, USA
| | | | | | | | | | | | | |
Collapse
|
1028
|
|
1029
|
Abstract
Nucleotide excision repair (NER) is one of the major cellular pathways that removes bulky DNA adducts and helix-distorting lesions. The biological consequences of defective NER in humans include UV-light-induced skin carcinogenesis and extensive neurodegeneration. Understanding the mechanism of the NER process is of great importance as the number of individuals diagnosed with skin cancer has increased considerably in recent years, particularly in the United States. Rapid progress made in the DNA repair field since the early 1980s has revealed the complexity of NER, which operates differently in different genomic regions. The genomic heterogeneity of repair seems to be governed by the functional compartmentalization of chromatin into transcriptionally active and inactive domains in the nucleus. Two sub-pathways of NER remove UV-induced photolesions: (I) Global Genome Repair (GGR) and (II) Transcription Coupled Repair (TCR). GGR is a random process that occurs slowly, while the TCR, which is tightly linked to RNA polymerase II transcription, is highly specific and efficient. The efficiency of these pathways is important in avoiding cancer and genomic instability. Studies with cell lines derived from Cockayne syndrome (CS) and Xeroderma pigmentosum (XP) group C patients, that are defective in the NER sub-pathways, have yielded valuable information regarding the genomic heterogeneity of DNA repair. This review deals with the complexity of repair heterogeneity, its mechanism and interacting molecular pathways as well as its relevance in the maintenance of genomic integrity.
Collapse
Affiliation(s)
- A S Balajee
- Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
1030
|
Affiliation(s)
- E Citterio
- MGC-Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus University, Rotterdam, The Netherlands
| | | | | |
Collapse
|
1031
|
|
1032
|
Wang G, Hazra TK, Mitra S, Lee HM, Englander EW. Mitochondrial DNA damage and a hypoxic response are induced by CoCl(2) in rat neuronal PC12 cells. Nucleic Acids Res 2000; 28:2135-40. [PMID: 10773083 PMCID: PMC105383 DOI: 10.1093/nar/28.10.2135] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Generation of reactive oxygen species (ROS) and activation of a transcriptional program that mimics the hypoxic response have been documented in cultured cells in the presence of cobalt chloride. We found that in the presence of hypoxia-mimicking concentrations of CoCl(2), mitochondrial but not nuclear DNA damage is induced in rat neuronal, PC12 cells. To our knowledge, this is the first documentation of induction of mitochondrial DNA (mtDNA) damage under these conditions. Likewise, we provide the first evidence for elevation of MYH, the mammalian homolog of the Escherichia coli MutY DNA glycosylase, in mammalian cells. Recently, the human MYH was implicated in repair of oxidative DNA damage and shown to carry a mitochondrial localization sequence. Here, an induction of mtDNA damage and a time-dependent increase in the MYH level were detected with exposure of cells to 100 microM CoCl(2). In addition, the levels of proteins involved in cellular responses to hypoxia, ROS and nuclear DNA damage; hypoxia-inducible factor 1alpha(HIF-1alpha), p53, p21 and PCNA were also modulated temporally. Earlier studies suggested that the mtDNA is a primary target for oxidative damage. Our findings extend these observations and suggest that activation of DNA repair processes is associated with the presence of mtDNA damage.
Collapse
Affiliation(s)
- G Wang
- Department of Surgery and Shriners Hospitals for Children and Sealy Center for Molecular Science, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
1033
|
Parikh SS, Walcher G, Jones GD, Slupphaug G, Krokan HE, Blackburn GM, Tainer JA. Uracil-DNA glycosylase-DNA substrate and product structures: conformational strain promotes catalytic efficiency by coupled stereoelectronic effects. Proc Natl Acad Sci U S A 2000; 97:5083-8. [PMID: 10805771 PMCID: PMC25785 DOI: 10.1073/pnas.97.10.5083] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enzymatic transformations of macromolecular substrates such as DNA repair enzyme/DNA transformations are commonly interpreted primarily by active-site functional-group chemistry that ignores their extensive interfaces. Yet human uracil-DNA glycosylase (UDG), an archetypical enzyme that initiates DNA base-excision repair, efficiently excises the damaged base uracil resulting from cytosine deamination even when active-site functional groups are deleted by mutagenesis. The 1.8-A resolution substrate analogue and 2.0-A resolution cleaved product cocrystal structures of UDG bound to double-stranded DNA suggest enzyme-DNA substrate-binding energy from the macromolecular interface is funneled into catalytic power at the active site. The architecturally stabilized closing of UDG enforces distortions of the uracil and deoxyribose in the flipped-out nucleotide substrate that are relieved by glycosylic bond cleavage in the product complex. This experimentally defined substrate stereochemistry implies the enzyme alters the orientation of three orthogonal electron orbitals to favor electron transpositions for glycosylic bond cleavage. By revealing the coupling of this anomeric effect to a delocalization of the glycosylic bond electrons into the uracil aromatic system, this structurally implicated mechanism resolves apparent paradoxes concerning the transpositions of electrons among orthogonal orbitals and the retention of catalytic efficiency despite mutational removal of active-site functional groups. These UDG/DNA structures and their implied dissociative excision chemistry suggest biology favors a chemistry for base-excision repair initiation that optimizes pathway coordination by product binding to avoid the release of cytotoxic and mutagenic intermediates. Similar excision chemistry may apply to other biological reaction pathways requiring the coordination of complex multistep chemical transformations.
Collapse
Affiliation(s)
- S S Parikh
- Skaggs Institute for Chemical Biology and the Department of Molecular Biology, MB-4, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037-1027, USA
| | | | | | | | | | | | | |
Collapse
|
1034
|
Chepanoske CL, Langelier CR, Chmiel NH, David SS. Recognition of the nonpolar base 4-methylindole in DNA by the DNA repair adenine glycosylase MutY. Org Lett 2000; 2:1341-4. [PMID: 10810743 DOI: 10.1021/ol005831o] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[formula: see text] The DNA repair adenine glycosylase MutY efficiently recognizes 7-deaza-2'-deoxyadenosine (Z) and its nonpolar isostere 4-methylindole beta-deoxynucleoside (M) opposite 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG) and G in DNA. Both wild-type and truncated MutY exhibit a 10- to 20-fold higher affinity for a duplex containing OG:M than OG:Z. More efficient recognition of M over Z by MutY may be to due the lack of hydrogen bonding with the OG that facilitates nucleotide flipping during the substrate recognition process.
Collapse
Affiliation(s)
- C L Chepanoske
- Department of Chemistry, University of Utah, Salt Lake City 84112, USA
| | | | | | | |
Collapse
|
1035
|
Boiteux S, Radicella JP. The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis. Arch Biochem Biophys 2000; 377:1-8. [PMID: 10775435 DOI: 10.1006/abbi.2000.1773] [Citation(s) in RCA: 354] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A particularly important stress for all cells is the one produced by reactive oxygen species (ROS) that are formed as byproducts of cell metabolism. Among DNA damages induced by ROS, 8-hydroxyguanine (8-OH-G) is certainly the product that has retained most of the attention in the past few years. The biological relevance of 8-OH-G in DNA has been unveiled by the study of Escherichia coli and Saccharomyces cerevisiae genes involved in the neutralization of the mutagenic effects of 8-OH-G. These genes, fpg and mutY for E. coli and OGG1 for yeast, code for DNA glycosylases. Inactivation of any of those genes leads to a spontaneous mutator phenotype, characterized by the increase in GC to TA transversions. In yeast, the OGG1 gene encodes a DNA glycosylase/AP lyase that excises 8-OH-G from DNA. In human cells, the OGG1 gene is localized on chromosome 3p25 and encodes two forms of hOgg1 protein which result from an alternative splicing of a single messenger RNA. The alpha-hOgg1 protein has a nuclear localization whereas the beta-hOgg1 is targeted to the mitochondrion. Biochemical studies on the alpha-hOgg1 protein show that it is a DNA glycosylase/AP lyase that excises 8-OH-G and Fapy-G from gamma-irradiated DNA. Several approaches have been used to study the biological role of OGG1 in mammalian cells, ranging from its overexpression in cell lines to the generation of homozygous ogg1-/- null mice. Furthermore, to explore a possible role in the prevention of cancer, the cDNA coding for alpha-hOgg1 has been sequenced in human tumors. All these results point to 8-OH-G as an endogenous source of mutations in eukaryotes and to its likely involvement in the process of carcinogenesis. A review of the recent literature on the mammalian Ogg1 proteins, the main repair system involved in the elimination of this mutagenic lesion, is presented.
Collapse
Affiliation(s)
- S Boiteux
- CEA, DSV, Département de Radiobiologie et Radiopathologie, UMR217 CNRS-CEA Radiobiologie Moléculaire et Cellulaire, Fontenay aux Roses, 92265, France.
| | | |
Collapse
|
1036
|
Guo Z, Dunphy WG. Response of Xenopus Cds1 in cell-free extracts to DNA templates with double-stranded ends. Mol Biol Cell 2000; 11:1535-46. [PMID: 10793133 PMCID: PMC14865 DOI: 10.1091/mbc.11.5.1535] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Although homologues of the yeast checkpoint kinases Cds1 and Chk1 have been identified in various systems, the respective roles of these kinases in the responses to damaged and/or unreplicated DNA in vertebrates have not been delineated precisely. Likewise, it is largely unknown how damaged DNA and unreplicated DNA trigger the pathways that contain these effector kinases. We report that Xenopus Cds1 (Xcds1) is phosphorylated and activated by the presence of some simple DNA molecules with double-stranded ends in cell-free Xenopus egg extracts. Xcds1 is not affected by aphidicolin, an agent that induces DNA replication blocks. In contrast, Xenopus Chk1 (Xchk1) responds to DNA replication blocks but not to the presence of double-stranded DNA ends. Immunodepletion of Xcds1 (and/or Xchk1) from egg extracts did not attenuate the cell cycle delay induced by double-stranded DNA ends. These results imply that the cell cycle delay triggered by double-stranded DNA ends either does not involve Xcds1 or uses a factor(s) that can act redundantly with Xcds1.
Collapse
Affiliation(s)
- Z Guo
- Division of Biology, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
1037
|
Kuraoka I, Bender C, Romieu A, Cadet J, Wood RD, Lindahl T. Removal of oxygen free-radical-induced 5',8-purine cyclodeoxynucleosides from DNA by the nucleotide excision-repair pathway in human cells. Proc Natl Acad Sci U S A 2000; 97:3832-7. [PMID: 10759556 PMCID: PMC18102 DOI: 10.1073/pnas.070471597] [Citation(s) in RCA: 270] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/1999] [Indexed: 11/18/2022] Open
Abstract
Exposure of cellular DNA to reactive oxygen species generates several classes of base lesions, many of which are removed by the base excision-repair pathway. However, the lesions include purine cyclodeoxynucleoside formation by intramolecular crosslinking between the C-8 position of adenine or guanine and the 5' position of 2-deoxyribose. This distorting form of DNA damage, in which the purine is attached by two covalent bonds to the sugar-phosphate backbone, occurs as distinct diastereoisomers. It was observed here that both diastereoisomers block primer extension by mammalian and microbial replicative DNA polymerases, using DNA with a site-specific purine cyclodeoxynucleoside residue as template, and consequently appear to be cytotoxic lesions. Plasmid DNA containing either the 5'R or 5'S form of 5',8-cyclo-2-deoxyadenosine was a substrate for the human nucleotide excision-repair enzyme complex. The R diastereoisomer was more efficiently repaired than the S isomer. No correction of the lesion by direct damage reversal or base excision repair was detected. Dual incision around the lesion depended on the core nucleotide excision-repair protein XPA. In contrast to several other types of oxidative DNA damage, purine cyclodeoxynucleosides are chemically stable and would be expected to accumulate at a slow rate over many years in the DNA of nonregenerating cells from xeroderma pigmentosum patients. High levels of this form of DNA damage might explain the progressive neurodegeneration seen in XPA individuals.
Collapse
Affiliation(s)
- I Kuraoka
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | | | | | | | | | |
Collapse
|
1038
|
Frosina G. Overexpression of enzymes that repair endogenous damage to DNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2135-49. [PMID: 10759836 DOI: 10.1046/j.1432-1327.2000.01266.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A significant contribution to human mutagenesis and carcinogenesis may come from DNA damage of endogenous, rather than exogenous, origin. Efficient repair mechanisms have evolved to cope with this. The main repair pathway involved in repair of endogenous damage is DNA base excision repair. In addition, an important contribution is given by O6-alkylguanine DNA alkyltranferase, that repairs specifically the miscoding base O6-alkylguanine. In recent years, several attempts have been carried out to enhance the efficiency of repair of endogenous damage by overexpressing in mammalian cells single enzymatic activities. In some cases (e.g. O6-alkylguanine DNA alkyltransferase or yeast AP endonuclease) this approach has been successful in improving cellular protection from endogenous and exogenous mutagens, while overexpression of other enzymatic activities (e.g. alkyl N-purine glycosylase or DNA polymerase beta) were detrimental and even produced a genome instability phenotype. The reasons for these different outcomes are analyzed and alternative enzymatic activities whose overexpression may improve the efficiency of repair of endogenous damage in human cells are proposed.
Collapse
Affiliation(s)
- G Frosina
- DNA Repair Unit, Mutagenesis laboratory, Istituto Nazionale Ricerca Cancro, Genova, Italy.
| |
Collapse
|
1039
|
Bruner SD, Norman DP, Verdine GL. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 2000; 403:859-66. [PMID: 10706276 DOI: 10.1038/35002510] [Citation(s) in RCA: 744] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spontaneous oxidation of guanine residues in DNA generates 8-oxoguanine (oxoG). By mispairing with adenine during replication, oxoG gives rise to a G x C --> T x A transversion, a frequent somatic mutation in human cancers. The dedicated repair pathway for oxoG centres on 8-oxoguanine DNA glycosylase (hOGG1), an enzyme that recognizes oxoG x C base pairs, catalysing expulsion of the oxoG and cleavage of the DNA backbone. Here we report the X-ray structure of the catalytic core of hOGG1 bound to oxoG x C-containing DNA at 2.1 A resolution. The structure reveals the mechanistic basis for the recognition and catalytic excision of DNA damage by hOGG1 and by other members of the enzyme superfamily to which it belongs. The structure also provides a rationale for the biochemical effects of inactivating mutations and polymorphisms in hOGG1. One known mutation, R154H, converts hOGG1 to a promutator by relaxing the specificity of the enzyme for the base opposite oxoG.
Collapse
Affiliation(s)
- S D Bruner
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
1040
|
HUANG DONGYA, SHENOY ARUNDATHI, CUI JIANKUN, HUANG WEIYONG, LIU PHILIPK. In situ detection of AP sites and DNA strand breaks bearing 3'-phosphate termini in ischemic mouse brain. FASEB J 2000; 14:407-17. [PMID: 10657997 PMCID: PMC2746459 DOI: 10.1096/fasebj.14.2.407] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Our aims were to examine whether oxidative DNA damage was elevated in brain cells of male C57BL/6 mice after oxidative stress, and to determine whether neuronal nitric oxide synthase (nNOS) was involved in such damage. Oxidative stress was induced by occluding both common carotid arteries for 90 min, followed by reperfusion. Escherichia coli exonuclease III (Exo III) removes apyrimidinic or apurinic (AP) sites and 3'-phosphate termini in single-strand breaks, and converts these lesions to 3'OH termini. These ExoIII-sensitive sites (EXOSS) can then be postlabeled using digoxigenin-11-dUTP and Klenow DNA polymerase-I, and detected using fluorescein isothiocyanate-IgG against digoxigenin. Compared with the non-ischemia controls, the density of EXOSS-positive cells was elevated at least 20-fold (P < 0.01) at 15 min of reperfusion, and remained elevated for another 30 min. EXOSS mainly occurred in the cell nuclei of the astrocytes and neurons. Signs of cell death were detected at 24 h of reperfusion and occurred mostly in the neurons. Both DNA damage and cell death in the cerebral cortical neurons were abolished by treatment with 3-bromo-7-nitroindazole (30 mg/kg, intraperitoneal), which specifically inhibited nNOS. Our results suggest that nNOS, its activator (calcium), and peroxynitrite exacerbate oxidative DNA damage after brain ischemia.-Huang, D., Shenoy, A., Cui, J., Huang, W., Liu, P. In situ detection of AP sites and DNA strand breaks bearing 3'-phosphate termini in ischemic mouse brain.
Collapse
Affiliation(s)
| | | | | | | | - PHILIP K. LIU
- Correspondence: Department of Neurosurgery, 6560 Fannin St., Suite 944, Baylor College of Medicine, Houston, TX 77030. E-mail:
| |
Collapse
|
1041
|
Mol CD, Izumi T, Mitra S, Tainer JA. DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination [corrected]. Nature 2000; 403:451-6. [PMID: 10667800 DOI: 10.1038/35000249] [Citation(s) in RCA: 571] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Non-coding apurinic/apyrimidinic (AP) sites in DNA are continually created in cells both spontaneously and by damage-specific DNA glycosylases. The biologically critical human base excision repair enzyme APE1 cleaves the DNA sugar-phosphate backbone at a position 5' of AP sites to prime DNA repair synthesis. Here we report three co-crystal structures of human APE1 bound to abasic DNA which show that APE1 uses a rigid, pre-formed, positively charged surface to kink the DNA helix and engulf the AP-DNA strand. APE1 inserts loops into both the DNA major and minor grooves and binds a flipped-out AP site in a pocket that excludes DNA bases and racemized beta-anomer AP sites. Both the APE1 active-site geometry and a complex with cleaved AP-DNA and Mn2+ support a testable structure-based catalytic mechanism. Alanine substitutions of the residues that penetrate the DNA helix unexpectedly show that human APE1 is structurally optimized to retain the cleaved DNA product. These structural and mutational results show how APE1 probably displaces bound glycosylases and retains the nicked DNA product, suggesting that APE1 acts in vivo to coordinate the orderly transfer of unstable DNA damage intermediates between the excision and synthesis steps of DNA repair.
Collapse
Affiliation(s)
- C D Mol
- Skaggs Institute for Chemical Biology, and the Department of Molecular Biology, La Jolla, California 92037-1027, USA
| | | | | | | |
Collapse
|