10751
|
Baas AF, Kuipers J, van der Wel NN, Batlle E, Koerten HK, Peters PJ, Clevers HC. Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell 2004; 116:457-66. [PMID: 15016379 DOI: 10.1016/s0092-8674(04)00114-x] [Citation(s) in RCA: 389] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Revised: 12/17/2003] [Accepted: 01/12/2004] [Indexed: 12/23/2022]
Abstract
The LKB1 gene encodes a serine/threonine kinase that is mutated in the Peutz-Jeghers cancer syndrome. LKB1 is homologous to the Par-4 polarity genes in C. elegans and D. melanogaster. We have previously reported the identification and characterization of an LKB1-specific adaptor protein, STRAD, which activates LKB1 and translocates it from nucleus to cytoplasm. We have now constructed intestinal epithelial cell lines in which inducible STRAD activates LKB1. Upon LKB1 activation, single cells rapidly remodel their actin cytoskeleton to form an apical brush border. The junctional proteins ZO-1 and p120 redistribute in a dotted circle peripheral to the brush border, in the absence of cell-cell contacts. Apical and basolateral markers sort to their respective membrane domains. We conclude that LKB1 can induce complete polarity in intestinal epithelial cells. In contrast to current thinking on polarization of simple epithelia, these cells can fully polarize in the absence of junctional cell-cell contacts.
Collapse
Affiliation(s)
- Annette F Baas
- Hubrecht Laboratory, Center for Biomedical Genetics, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
10752
|
Fernandez P, Carretero J, Medina PP, Jimenez AI, Rodriguez-Perales S, Paz MF, Cigudosa JC, Esteller M, Lombardia L, Morente M, Sanchez-Verde L, Sotelo T, Sanchez-Cespedes M. Distinctive gene expression of human lung adenocarcinomas carrying LKB1 mutations. Oncogene 2004; 23:5084-91. [PMID: 15077168 DOI: 10.1038/sj.onc.1207665] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
LKB1, a tumor-suppressor gene that codifies for a serine/threonine kinase, is mutated in the germ-line of patients affected with the Peutz-Jeghers syndrome (PJS), which have an increased incidence of several cancers including gastrointestinal, pancreatic and lung carcinomas. Regarding tumors arising in non-PJS patients, we recently observed that at least one-third of lung adenocarcinomas (LADs) harbor somatic LKB1 gene mutations, supporting a role for LKB1 in the origin of some sporadic tumors. To characterize the pattern of LKB1 mutations in LADs further, we first screened for LKB1 gene alterations (gene mutations, promoter hypermethylation and homozygous deletions) in 19 LADs and, in agreement with our previous data, five of them (26%) were shown to harbor mutations, all of which gave rise to a truncated protein. Recent reports demonstrate that LKB1 is able to suppress cell growth, but little is known about the specific mechanism by which it functions. To further our understanding of LKB1 function, we analysed global expression in lung primary tumors using cDNA microarrays to identify LKB1-specific variations in gene expression. In all, 34 transcripts, 24 of which corresponded to known genes, differed significantly between tumors with and without LKB1 gene alterations. Among the most remarkable findings was deregulation of transcripts involved in signal transduction (e.g. FRAP1/mTOR, ARAF1 and ROCK2), cytoskeleton (e.g. MPP1), transcription factors (e.g. MEIS2, ATF5), metabolism of AMP (AMPD3 and APRT) and ubiquitinization (e.g. USP16 and UBE2L3). Real-time quantitative RT-PCR on 15 tumors confirmed the upregulation of the homeobox MEIS2 and of the AMP-metabolism AMPD3 transcripts in LKB1-mutant tumors. In addition, immunohistochemistry in 10 of the lung tumors showed the absence of phosphorylated FRAP1/mTOR protein in LKB1-mutant tumors, indicating that LKB1 mutations do not lead to FRAP1/mTOR protein kinase activation. In conclusion, our results reveal that several important factors contribute to LKB1-mediated carcinogenesis in LADs, confirming previous observations and identifying new putative pathways that should help to elucidate the biological role of LKB1.
Collapse
Affiliation(s)
- Paloma Fernandez
- Lymphomas and Lung Cancer Laboratory, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10753
|
Brown CT, Callan CG. Evolutionary comparisons suggest many novel cAMP response protein binding sites in Escherichia coli. Proc Natl Acad Sci U S A 2004; 101:2404-9. [PMID: 14983022 PMCID: PMC356963 DOI: 10.1073/pnas.0308628100] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cAMP response protein (CRP) is a transcription factor known to regulate many genes in Escherichia coli. Computational studies of transcription factor binding to DNA are usually based on a simple matrix model of sequence-dependent binding energy. For CRP, this model predicts many binding sites that are not known to be functional. If they are indeed spurious, the underlying binding model is called into question. We use a species comparison method to assess the functionality of a population of such predicted CRP sites in E. coli. We compare them with orthologous sites in Salmonella typhimurium identified independently by CLUSTALW alignment, and find a dependence of mutation probability on position in the site. This dependence increases with predicted site binding energy. The positions where mutation is most strongly suppressed are those where mutation would have the biggest effect on predicted binding energy. This finding suggests that many of the novel sites are functional, that the matrix model correctly estimates their binding strength, and that calculated CRP binding strength is the quantity that is conserved between species. The analysis also identifies many new E. coli binding sites and genes likely to be functional for CRP.
Collapse
Affiliation(s)
- C T Brown
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
10754
|
Phillips MA, Jessen BA, Lu Y, Qin Q, Stevens ME, Rice RH. A distal region of the human TGM1 promoter is required for expression in transgenic mice and cultured keratinocytes. BMC DERMATOLOGY 2004; 4:2. [PMID: 15061870 PMCID: PMC416661 DOI: 10.1186/1471-5945-4-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2003] [Accepted: 04/05/2004] [Indexed: 11/23/2022]
Abstract
Background TGM1(transglutaminase 1) is an enzyme that crosslinks the cornified envelope of mature keratinocytes. Appropriate expression of the TGM1 gene is crucial for proper keratinocyte function as inactivating mutations lead to the debilitating skin disease, lamellar ichthyosis. TGM1 is also expressed in squamous metaplasia, a consequence in some epithelia of vitamin A deficiency or toxic insult that can lead to neoplasia. An understanding of the regulation of this gene in normal and abnormal differentiation states may contribute to better disease diagnosis and treatment. Methods In vivo requirements for expression of the TGM1 gene were studied by fusing various lengths of promoter DNA to a reporter and injecting the DNA into mouse embryos to generate transgenic animals. Expression of the reporter was ascertained by Western blotting and immunohistochemistry. Further delineation of a transcriptionally important distal region was determined by transfections of progressively shortened or mutated promoter DNA into cultured keratinocytes. Results In vivo analysis of a reporter transgene driven by the TGM1 promoter revealed that 1.6 kilobases, but not 1.1 kilobases, of DNA was sufficient to confer tissue-specific and cell layer-specific expression. This same region was responsible for reporter expression in tissues undergoing squamous metaplasia as a response to vitamin A deprivation. Mutation of a distal promoter AP1 site or proximal promoter CRE site, both identified as important transcriptional elements in transfection assays, did not prevent appropriate expression. Further searching for transcriptional elements using electrophoretic mobility shift (EMSA) and transfection assays in cultured keratinocytes identified two Sp1 elements in a transcriptionally active region between -1.6 and -1.4 kilobases. While mutation of either Sp1 site or the AP1 site singly had only a small effect, mutation of all three sites eliminated nearly all the transcriptional activity. Conclusions A distal region of the TGM1 gene promoter, containing AP1 and Sp1 binding sites, is evolutionarily conserved and responsible for high level expression in transgenic mice and in transfected keratinocyte cultures.
Collapse
Affiliation(s)
- Marjorie A Phillips
- Department of Environmental Toxicology, University of California, Davis, CA 95616-8588 USA
| | - Bart A Jessen
- Department of Environmental Toxicology, University of California, Davis, CA 95616-8588 USA
- Pfizer Global Research and Development, San Diego, CA 92121 USA
| | - Ying Lu
- Department of Environmental Toxicology, University of California, Davis, CA 95616-8588 USA
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817 USA
| | - Qin Qin
- Department of Environmental Toxicology, University of California, Davis, CA 95616-8588 USA
| | | | - Robert H Rice
- Department of Environmental Toxicology, University of California, Davis, CA 95616-8588 USA
| |
Collapse
|
10755
|
|
10756
|
|
10757
|
Lewis MT, Veltmaat JM. Next stop, the twilight zone: hedgehog network regulation of mammary gland development. J Mammary Gland Biol Neoplasia 2004; 9:165-81. [PMID: 15300011 DOI: 10.1023/b:jomg.0000037160.24731.35] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The hedgehog signal transduction network is a critical mediator of cell-cell communication during embryonic development. Evidence also suggests that properly regulated hedgehog network function is required in some adult organs for stem cell maintenance or renewal. Mutation, or misexpression, of network genes is implicated in the development of several different types of cancer, particularly that of skin, brain, lung, and pancreas. Recent studies in the mouse mammary gland have demonstrated roles for hedgehog network genes at virtually every phase of mammary gland development where it regulates such diverse processes as embryonic mammary gland induction, establishment of ductal histoarchitecture, and functional differentiation in lactation. Further, studies suggest a role for misregulated network function in the progression of breast cancer.
Collapse
|
10758
|
Hu Y, Wang T, Stormo GD, Gordon JI. RNA interference of achaete-scute homolog 1 in mouse prostate neuroendocrine cells reveals its gene targets and DNA binding sites. Proc Natl Acad Sci U S A 2004; 101:5559-64. [PMID: 15060276 PMCID: PMC397422 DOI: 10.1073/pnas.0306988101] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have previously characterized a transgenic mouse model (CR2-TAg) of metastatic prostate cancer arising in the neuroendocrine (NE) cell lineage. Biomarkers of NE differentiation in this model are expressed in conventional adenocarcinoma of the prostate with NE features. To further characterize the pathways that control NE proliferation, differentiation, and survival, we established prostate NE cancer (PNEC) cell lines from CR2-TAg prostate tumors and metastases. GeneChip analyses of cell lines harvested at different passages, and as xenografted tumors, indicated that PNECs express consistent features ex vivo and in vivo and share a remarkable degree of similarity with primary CR2-TAg prostate NE tumors. PNECs express mAsh1, a basic helix-loop-helix (bHLH) transcription factor essential for NE cell differentiation in other tissues. RNA interference knockdown of mAsh1, GeneChip comparisons of treated and control cell populations, and a computational analysis of down-regulated genes identified 12 transcriptional motifs enriched in the gene set. Affected genes, including Adcy9, Hes6, Iapp1, Ndrg4, c-Myb, and Mesdc2, are enriched for a palindromic E-box motif, CAGCTG, indicating that it is a physiologically relevant mAsh1 binding site. The enrichment of a c-Myb binding site and the finding that c-Myb is down-regulated by mAsh1 RNA interference suggest that mAsh1 and c-Myb are in the same signaling pathway. Our data indicate that mAsh1 negatively regulates the cell cycle (e.g., via enhanced Cdkn2d, Bub1 expression), promotes differentiation (e.g., through effects on cAMP), and enhances survival by inhibiting apoptosis. PNEC cell lines should be generally useful for genetic and/or pharmacologic studies of the regulation of NE cell proliferation, differentiation, and tumorigenesis.
Collapse
Affiliation(s)
- Yan Hu
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
10759
|
|
10760
|
The Hedgehog Pathway. Dermatol Surg 2004. [DOI: 10.1097/00042728-200404000-00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10761
|
Abstract
RNA interference (RNAi) is a post-transcriptional gene-silencing phenomenon induced by double-stranded RNA. It has been widely used as a knockdown technology to analyze gene function in various organisms. Although RNAi was first discovered in worms, related phenomena such as post-transcriptional gene silencing and coat protein mediated protection from viral infection had been observed in plants prior to this. In plants, RNAi is often achieved through transgenes that produce hairpin RNA. For genetic improvement of crop plants, RNAi has advantages over antisense-mediated gene silencing and co-suppression, in terms of its efficiency and stability. It also offers advantages over mutation-based reverse genetics in its ability to suppress transgene expression in multigene families in a regulated manner.
Collapse
Affiliation(s)
- Makoto Kusaba
- Institute of Radiation Breeding, National Institute of Agrobiological Sciences, PO Box 3, Ohmiya-machi, Naka-gun, Ibaraki 319-2293, Japan.
| |
Collapse
|
10762
|
Gadalla AE, Pearson T, Currie AJ, Dale N, Hawley SA, Sheehan M, Hirst W, Michel AD, Randall A, Hardie DG, Frenguelli BG. AICA riboside both activates AMP-activated protein kinase and competes with adenosine for the nucleoside transporter in the CA1 region of the rat hippocampus. J Neurochem 2004; 88:1272-82. [PMID: 15009683 DOI: 10.1046/j.1471-4159.2003.02253.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
5-Aminoimidazole-4-carboxamide riboside (AICA riboside; Acadesine) activates AMP-activated protein kinase (AMPK) in intact cells, and is reported to exert protective effects in the mammalian CNS. In rat cerebrocortical brain slices, AMPK was activated by metabolic stress (ischaemia > hypoxia > aglycaemia) and AICA riboside (0.1-10 mm). Activation of AMPK by AICA riboside was greatly attenuated by inhibitors of equilibrative nucleoside transport. AICA riboside also depressed excitatory synaptic transmission in area CA1 of the rat hippocampus, which was prevented by an adenosine A1 receptor antagonist and reversed by application of adenosine deaminase. However, AICA riboside was neither a substrate for adenosine deaminase nor an agonist at adenosine receptors. We conclude that metabolic stress and AICA riboside both stimulate AMPK activity in mammalian brain, but that AICA riboside has an additional effect, i.e. competition with adenosine for uptake by the nucleoside transporter. This results in an increase in extracellular adenosine and subsequent activation of adenosine receptors. Neuroprotection by AICA riboside could be mediated by this mechanism as well as, or instead of, by AMPK activation. Caution should therefore be exercised in ascribing an effect of AICA riboside to AMPK activation, especially in systems where inhibition of adenosine re-uptake has physiological consequences.
Collapse
Affiliation(s)
- Anne E Gadalla
- Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dundee, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10763
|
van Eyll JM, Pierreux CE, Lemaigre FP, Rousseau GG. Shh-dependent differentiation of intestinal tissue from embryonic pancreas by activin A. J Cell Sci 2004; 117:2077-86. [PMID: 15054113 DOI: 10.1242/jcs.01067] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pancreas develops from the endoderm to give rise to ducts, acini and islets of Langerhans. This process involves extracellular signals of the Transforming Growth Factor beta (TGFbeta) family. The aim of this work was to study the effects of activin A, a member of this family, whose potential role in pancreas differentiation is controversial. To this end, we used pancreatic explants from E12.5 mouse embryos. In culture these explants exhibited spontaneous growth, epithelial morphogenesis and endocrine and exocrine differentiation. Exposure to activin A did not affect exocrine or endocrine differentiation. Surprisingly, activin A induced in the explants the appearance of a large contractile structure surrounded by a cylindrical epithelium, a thick basal lamina and a smooth muscle layer. This structure, the formation of which was prevented by follistatin, was typical of an intestinal wall. Consistent with this interpretation, activin A rapidly induced in the explants the mRNAs for fatty acid binding proteins (FABPs), which are markers of the intestine, but not of the pancreas. We also found that induction of the FABPs was preceded by induction of Sonic hedgehog (Shh), a known inducer of intestinal differentiation in the endoderm. Activin B induced neither Shh nor intestinal differentiation. The activin A-mediated intestinal differentiation was blocked by cyclopamine, an inhibitor of Hedgehog signaling, and it was mimicked by Shh. We conclude that activin A does not appear to affect the exocrine or endocrine components of the pancreas, but that it can promote differentiation of pancreatic tissue into intestine via a Shh-dependent mechanism. These findings illustrate the plasticity of differentiation programs in response to extracellular signals in the pancreas and they shed new light on the regulation of pancreas and intestinal development.
Collapse
Affiliation(s)
- Jonathan M van Eyll
- Hormone and Metabolic Research Unit, Institute of Cellular Pathology and Université catholique de Louvain, 75 Avenue Hippocrate, B-1200 Brussels, Belgium
| | | | | | | |
Collapse
|
10764
|
Chang CF, Wai KM, Patterton HG. Calculating the statistical significance of physical clusters of co-regulated genes in the genome: the role of chromatin in domain-wide gene regulation. Nucleic Acids Res 2004; 32:1798-807. [PMID: 15034148 PMCID: PMC390345 DOI: 10.1093/nar/gkh507] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Physical clusters of co-regulated, but apparently functionally unrelated, genes are present in many genomes. Despite the important implication that the genomic environment contributes appreciably to the regulation of gene expression, no simple statistical method has been described to identify physical clusters of co-regulated genes. Here we report the development of a model that allows the direct calculation of the significance of such clusters. We have implemented the derived statistical relation in a software program, Pyxis, and have analyzed a selection of Saccharomyces cerevisiae gene expression microarray data sets. We have identified many gene clusters where constituent genes exhibited a regulatory dependence on proteins previously implicated in chromatin structure. Specifically, we found that Tup1p-dependent gene domains were enriched close to telomeres, which suggested a new role for Tup1p in telomere silencing. In addition, we identified Sir2p-, Sir3p- and Sir4p-dependent clusters, which suggested the presence of Sir-mediated heterochromatin in previously unidentified regions of the yeast genome. We also showed the presence of Sir4p-dependent gene clusters bordering the HMRa heterothallic locus, which suggested leaky termination of the heterochromatin by the boundary elements. These results demonstrate the utility of Pyxis in identifying possible higher order genomic features that may contribute to gene regulation in extended domains.
Collapse
Affiliation(s)
- Cheng-Fu Chang
- Department of Molecular and Cell Biology and Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, University Private Bag, Rondebosch 7701, South Africa
| | | | | |
Collapse
|
10765
|
Rouzaire-Dubois B, Malo M, Milandri JB, Dubois JM. Cell size-proliferation relationship in rat glioma cells. Glia 2004; 45:249-57. [PMID: 14730698 DOI: 10.1002/glia.10320] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The homeostasis of the central nervous system is highly controlled by glial cells and is dramatically altered in the case of glioma. In this respect, the complex connection between cell size and division is of particular importance and needs clarifying. In order to investigate this connection, cell number and volume were measured in C6 rat glioma cells under different experimental conditions, including continuous cell culture, Cl- channel blockade, and anisotonicity, and in the presence of an inhibitory conditioned medium collected from cell cultures or in a medium containing a low level of fetal calf serum. The rate of cell proliferation changed with cell volume in a bell-shaped manner, so that it is optimal within a cell volume window and appears to be controlled by low and high cell size checkpoints. The cell size-proliferation relationship can be defined by Boltzmann-like equations, which may reflect the effects of macromolecular crowding on proteins controlling the cell cycle progression. Altogether, these observations indicate that glioma cell proliferation is controlled predominantly but not exclusively by cell size-dependent mechanisms.
Collapse
|
10766
|
Johansson A, Katzov H, Zetterberg H, Feuk L, Johansson B, Bogdanovic N, Andreasen N, Lenhard B, Brookes AJ, Pedersen NL, Blennow K, Prince JA. Variants of CYP46A1 may interact with age and APOE to influence CSF Abeta42 levels in Alzheimer's disease. Hum Genet 2004; 114:581-7. [PMID: 15034781 DOI: 10.1007/s00439-004-1107-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 02/18/2004] [Indexed: 11/28/2022]
Abstract
Recent studies have suggested that variants of CYP46A1, encoding cholesterol 24-hydroxylase (CYP46), confer risk for Alzheimer's disease (AD), a prospect substantiated by evidence of genetic association from several quantitative traits related to AD pathology, including cerebrospinal fluid (CSF) levels of the 42 amino-acid cleavage product of beta-amyloid (Abeta42) and the tau protein. In the present study, these claims have been explored by the genotyping of previously associated markers in CYP46A1 in three independent northern European case-control series encompassing 1323 individuals and including approximately 400 patients with measurements of CSF Abeta42 and phospho-tau protein levels. Tests of association in case-control models revealed limited evidence that CYP46A1 variants contributed to AD risk across these samples. However, models testing for potential effects upon CSF measures suggested a possible interaction of an intronic marker (rs754203) with age and APOE genotype. In stratified analyses, significant effects were evident that were restricted to elderly APOE epsilon4 carriers for both CSF Abeta42 ( P=0.0009) and phospho-tau ( P=0.046). Computational analyses indicate that the rs754203 marker probably does not impact the binding of regulatory factors, suggesting that other polymorphic sites underlie the observed associations. Our results provide an important independent replication of previous findings, supporting the existence of CYP46A1 sequence variants that contribute to variability in beta-amyloid metabolism.
Collapse
Affiliation(s)
- Annica Johansson
- Department of Clinical Neuroscience, Sahlgrenska University Hospital, Göteborg University, Göteborg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10767
|
Ha T. Structural Dynamics and Processing of Nucleic Acids Revealed by Single-Molecule Spectroscopy. Biochemistry 2004; 43:4055-63. [PMID: 15065847 DOI: 10.1021/bi049973s] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single-molecule fluorescence spectroscopy is a powerful method to observe real time movements of individual biological molecules while they are functioning without the need for synchronization. Dynamic characteristics of nucleic acids can now be easily and reliably studied, and new applications are emerging in which their recognition and processing by proteins and enzymes are being understood with unprecedented detail. The most recent examples are discussed, including the hairpin ribozyme, Holliday junction, G-quadruplex, Rep helicase, reverse transcriptase, and combination with mechanical manipulation.
Collapse
Affiliation(s)
- Taekjip Ha
- Department of Physics and Center for Biophysics and Computational Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
10768
|
Nelson CE, Hersh BM, Carroll SB. The regulatory content of intergenic DNA shapes genome architecture. Genome Biol 2004; 5:R25. [PMID: 15059258 PMCID: PMC395784 DOI: 10.1186/gb-2004-5-4-r25] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 01/09/2004] [Accepted: 02/08/2004] [Indexed: 11/21/2022] Open
Abstract
The relationship between regulatory complexity and gene spacing was examined in Caenorhabditis elegans and Drosophila melanogaster. Intergenic distance, and hence genome architecture, is shaped by regulatory information contained in noncoding DNA. Background Factors affecting the organization and spacing of functionally unrelated genes in metazoan genomes are not well understood. Because of the vast size of a typical metazoan genome compared to known regulatory and protein-coding regions, functional DNA is generally considered to have a negligible impact on gene spacing and genome organization. In particular, it has been impossible to estimate the global impact, if any, of regulatory elements on genome architecture. Results To investigate this, we examined the relationship between regulatory complexity and gene spacing in Caenorhabditis elegans and Drosophila melanogaster. We found that gene density directly reflects local regulatory complexity, such that the amount of noncoding DNA between a gene and its nearest neighbors correlates positively with that gene's regulatory complexity. Genes with complex functions are flanked by significantly more noncoding DNA than genes with simple or housekeeping functions. Genes of low regulatory complexity are associated with approximately the same amount of noncoding DNA in D. melanogaster and C. elegans, while loci of high regulatory complexity are significantly larger in the more complex animal. Complex genes in C. elegans have larger 5' than 3' noncoding intervals, whereas those in D. melanogaster have roughly equivalent 5' and 3' noncoding intervals. Conclusions Intergenic distance, and hence genome architecture, is highly nonrandom. Rather, it is shaped by regulatory information contained in noncoding DNA. Our findings suggest that in compact genomes, the species-specific loss of nonfunctional DNA reveals a landscape of regulatory information by leaving a profile of functional DNA in its wake.
Collapse
Affiliation(s)
- Craig E Nelson
- Howard Hughes Medical Institute, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53703, USA.
| | | | | |
Collapse
|
10769
|
Remold SK, Lenski RE. Pervasive joint influence of epistasis and plasticity on mutational effects in Escherichia coli. Nat Genet 2004; 36:423-6. [PMID: 15072075 DOI: 10.1038/ng1324] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The effects of mutations on phenotype and fitness may depend on the environment (phenotypic plasticity), other mutations (genetic epistasis) or both. Here we examine the fitness effects of 18 random insertion mutations in E. coli in two resource environments and five genetic backgrounds. We tested each mutation for plasticity and epistasis by comparing its fitness effects across these ecological and genetic contexts. Some mutations had no measurable effect in any of these contexts. None of the mutations had effects on phenotypic plasticity that were independent of genetic background. However, half the mutations had epistatic interactions such that their effects differed among genetic backgrounds, usually in an environment-dependent manner. Also, the pattern of mutational effects across backgrounds indicated that epistasis had been shaped primarily by unique events in the evolutionary history of a population rather than by repeatable events associated with shared environmental history.
Collapse
Affiliation(s)
- Susanna K Remold
- Center for Microbial Ecology, Michigan State University, East Lansing, 48824, USA.
| | | |
Collapse
|
10770
|
Bogomolnaya LM, Pathak R, Cham R, Guo J, Surovtseva YV, Jaeckel L, Polymenis M. A new enrichment approach identifies genes that alter cell cycle progression in Saccharomyces cerevisiae. Curr Genet 2004; 45:350-9. [PMID: 15022016 DOI: 10.1007/s00294-004-0497-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 02/14/2004] [Accepted: 02/22/2004] [Indexed: 10/26/2022]
Abstract
Mechanisms that coordinate cell growth with division are thought to determine the timing of initiation of cell division and to limit overall cell proliferation. To identify genes involved in this process in Saccharomyces cerevisiae, we describe a method that does not rely on cell size alterations or resistance to pheromone. Instead, our approach was based on the cell surface deposition of the Flo1p protein in cells having passed START. We found that over-expression of HXT11 (which encodes a plasma membrane transporter), PPE1 (coding for a protein methyl esterase), or SIK1 (which encodes a protein involved in rRNA processing) shortened the duration of the G1 phase of the cell cycle, prior to the initiation of DNA replication. In addition, we found that, although SIK1 was not part of a mitotic checkpoint, SIK1 over-expression caused spindle orientation defects and sensitized G2/M checkpoint mutant cells. Thus, unlike HXT11 and PPE1, SIK1 over-expression is also associated with mitotic functions. Overall, we used a novel enrichment approach and identified genes that were not previously associated with cell cycle progression. This approach can be extended to other organisms.
Collapse
Affiliation(s)
- Lydia M Bogomolnaya
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA
| | | | | | | | | | | | | |
Collapse
|
10771
|
Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, Cantley LC. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A 2004; 101:3329-35. [PMID: 14985505 PMCID: PMC373461 DOI: 10.1073/pnas.0308061100] [Citation(s) in RCA: 1420] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a highly conserved sensor of cellular energy status found in all eukaryotic cells. AMPK is activated by stimuli that increase the cellular AMP/ATP ratio. Essential to activation of AMPK is its phosphorylation at Thr-172 by an upstream kinase, AMPKK, whose identity in mammalian cells has remained elusive. Here we present biochemical and genetic evidence indicating that the LKB1 serine/threonine kinase, the gene inactivated in the Peutz-Jeghers familial cancer syndrome, is the dominant regulator of AMPK activation in several mammalian cell types. We show that LKB1 directly phosphorylates Thr-172 of AMPKalpha in vitro and activates its kinase activity. LKB1-deficient murine embryonic fibroblasts show nearly complete loss of Thr-172 phosphorylation and downstream AMPK signaling in response to a variety of stimuli that activate AMPK. Reintroduction of WT, but not kinase-dead, LKB1 into these cells restores AMPK activity. Furthermore, we show that LKB1 plays a biologically significant role in this pathway, because LKB1-deficient cells are hypersensitive to apoptosis induced by energy stress. On the basis of these results, we propose a model to explain the apparent paradox that LKB1 is a tumor suppressor, yet cells lacking LKB1 are resistant to cell transformation by conventional oncogenes and are sensitive to killing in response to agents that elevate AMP. The role of LKB1/AMPK in the survival of a subset of genetically defined tumor cells may provide opportunities for cancer therapeutics.
Collapse
Affiliation(s)
- Reuben J Shaw
- Department of Systems Biology, Harvard Medical School, and Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
10772
|
Hammarsund M, Corcoran MM, Wilson W, Zhu C, Einhorn S, Sangfelt O, Grandér D. Characterization of a novel B-CLL candidate gene--DLEU7--located in the 13q14 tumor suppressor locus. FEBS Lett 2004; 556:75-80. [PMID: 14706829 DOI: 10.1016/s0014-5793(03)01371-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Deletion of chromosome 13q14 is the most frequent genetic aberration in B-cell chronic lymphocytic leukemia (CLL), found in more than 50% of cases, indicating that this region contains a gene(s) involved in the development of CLL. However, the pathogenic gene in the critical 13q14 region has not yet been defined. Here, we have cloned and characterized a novel gene, DLEU7, located adjacent to the consensus deleted region, and overlapping the 3' end of DLEU1 tail to tail. Human DLEU7 encodes a putative 221 amino acid protein, with significant conservation in rodents. Mutational and expression analysis in primary CLL samples failed to demonstrate any specific mutations in DLEU7, but no DLEU7 expression could be detected in CLL cells. Methylation of a CpG island in the promoter region of DLEU7 was further analyzed as a possible mechanism for the absence of DLEU7 expression, and the promoter was found to be methylated in the majority of the CLL samples investigated.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Chromosomes, Human, Pair 13/genetics
- Cloning, Molecular
- DNA Methylation
- DNA Mutational Analysis
- DNA Primers/genetics
- Gene Deletion
- Gene Expression Regulation, Leukemic
- Genes, Tumor Suppressor
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Mice
- Molecular Sequence Data
- Neoplasm Proteins/genetics
- Promoter Regions, Genetic/genetics
- Proto-Oncogene Proteins
- Rats
- Sequence Alignment
- Sequence Homology, Amino Acid
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- Marianne Hammarsund
- Department of Oncology/Pathology, Cancer Center Karolinska, R8:03, Karolinska Hospital and Institute, S-17176, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
10773
|
Boutros M, Kiger AA, Armknecht S, Kerr K, Hild M, Koch B, Haas SA, Paro R, Perrimon N. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 2004; 303:832-5. [PMID: 14764878 DOI: 10.1126/science.1091266] [Citation(s) in RCA: 578] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A crucial aim upon completion of whole genome sequences is the functional analysis of all predicted genes. We have applied a high-throughput RNA-interference (RNAi) screen of 19,470 double-stranded (ds) RNAs in cultured cells to characterize the function of nearly all (91%) predicted Drosophila genes in cell growth and viability. We found 438 dsRNAs that identified essential genes, among which 80% lacked mutant alleles. A quantitative assay of cell number was applied to identify genes of known and uncharacterized functions. In particular, we demonstrate a role for the homolog of a mammalian acute myeloid leukemia gene (AML1) in cell survival. Such a systematic screen for cell phenotypes, such as cell viability, can thus be effective in characterizing functionally related genes on a genome-wide scale.
Collapse
Affiliation(s)
- Michael Boutros
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10774
|
Vulsteke V, Beullens M, Boudrez A, Keppens S, Van Eynde A, Rider MH, Stalmans W, Bollen M. Inhibition of Spliceosome Assembly by the Cell Cycle-regulated Protein Kinase MELK and Involvement of Splicing Factor NIPP1. J Biol Chem 2004; 279:8642-7. [PMID: 14699119 DOI: 10.1074/jbc.m311466200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NIPP1 is a ubiquitous nuclear protein that is required for spliceosome assembly. We report here that the phosphothreonine-binding Forkhead-associated domain of NIPP1 interacts with the cell cycle-regulated protein Ser/Thr kinase MELK (maternal embryonic leucine zipper kinase). The NIPP1-MELK interaction was critically dependent on the phosphorylaton of Thr-478 of MELK and was increased in lysates from mitotically arrested cells. Recombinant MELK was a potent inhibitor of an early step of spliceosome assembly in nuclear extracts. This splicing defect was also seen with a kinase-dead mutant but was absent after mutation (T478A) of the NIPP1 binding site of MELK, indicating a mediatory role for NIPP1. Our data suggest that MELK has a role in the cell cycle-regulated control of pre-mRNA splicing.
Collapse
Affiliation(s)
- Veerle Vulsteke
- Afdeling Biochemie, Faculteit Geneeskunde, Catholic University of Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
10775
|
Soltoff SP. Evidence That Tyrphostins AG10 and AG18 Are Mitochondrial Uncouplers That Alter Phosphorylation-dependent Cell Signaling. J Biol Chem 2004; 279:10910-8. [PMID: 14688271 DOI: 10.1074/jbc.m305396200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptor agonists that initiate fluid secretion in salivary gland epithelial cells also increase protein phosphorylation. To assess contributions of tyrosine phosphorylation to secretion, changes in muscarinic receptor-initiated secretion (estimated from sodium pump-dependent increases in oxygen consumption) were measured in parotid acinar cells exposed to tyrosine kinase inhibitors. However, like the mitochondrial uncoupler carbonyl cyanide p-trifluoromethoxyphenyl hydrazone, tyrphostins AG10 and AG18 increased the rate of oxygen consumption and reduced cellular ATP by approximately 90% in the absence of the muscarinic agonist carbachol, indicating that these tyrphostins uncouple mitochondria. Exposure of isolated mitochondria to five structurally related tyrphostins demonstrated that their relative potencies as uncouplers differed from their in vitro kinase-inhibitory potencies due to different molecular requirements for the two effects. AG10 and AG18 blocked parotid phosphorylation events only at concentrations that reduced ATP content. The tyrosine kinase inhibitor genistein reduced ATP content by 15-20% and weakly uncoupled isolated mitochondria, but its inhibition of carbachol-mediated protein kinase Cdelta tyrosine phosphorylation and ERK1/2 activation appeared attributable to blocking tyrosine kinases directly. Carbachol itself rapidly reduced ATP content by 15-20%. Carbachol, 3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (P2X(7) receptor agonist), AG10, AG18, and carbonyl cyanide p-trifluoromethoxyphenyl hydrazone rapidly activated the fuel sensor AMP-activated protein kinase (AMPK); however, only AMPK activation by carbachol and BzATP was due to sodium pump stimulation. AG10 and AG18 also activated AMPK and/or uncoupled mitochondria in PC12, HeLa, and HEK293 cells. These studies demonstrate that some tyrosine kinase inhibitors produce cellular effects that are mechanistically different from their primary in vitro characterizations and, as do salivary secretory stimuli, promote rapid metabolic alterations that initiate secondary signaling events.
Collapse
Affiliation(s)
- Stephen P Soltoff
- Beth Israel Deaconess Medical Center, Division of Signal Transduction, Boston, Massachusetts 02215, USA
| |
Collapse
|
10776
|
Abstract
The Hedgehog (Hh) signal transduction pathway plays critical instructional roles during development. Activating mutations in human Hh signaling components predispose to a variety of tumor types, and have been observed in sporadic tumors occurring in a wide range of organs. Multiple insights into the regulation of Hh signaling have been achieved through studies using Drosophila melanogaster as a model organism. In Drosophila, regulation of the transcription factor Cubitus interruptus (Ci) is the ultimate target of the Hh pathway. Ci is regulated through communication of the membrane proteins Patched (Ptc) and Smoothened (Smo) to the intracellular Hedgehog Signaling Complex (HSC) in response to a graded concentration of Hh ligand. The HSC consists of the Kinesin Related Protein, Costal2 (Cos2), the serine-threonine protein kinase. Fused (Fu) and Ci. In the absence of Hh stimulation, the HSC is involved in processing of Ci to a truncated repressor protein. In response to Hh binding to Ptc, processing of Ci is blocked to allow for accumulation of full-length Ci activator protein(s). Differential concentrations of Hh ligand stimulate production of Ci transcriptional activators of varying strength, which facilitate activation of distinct subsets of target genes. The mechanism(s) by which Ptc and Smo communicate with the HSC in response to differential ligand concentrations to regulate Ci function are not yet fully elucidated. Here, we review what is known about regulation of individual Hh signaling components, concentrating on the mechanisms by which the Hh signal is propagated through Smo to the HSC.
Collapse
Affiliation(s)
- Stacey K. Ogden
- Department of Pharmacology and Toxicology, Dartmouth Medical School, 7650 Remsen Hall, Hanover, NH 03755-3835, USA
| | - Manuel Ascano
- Department of Pharmacology and Toxicology, Dartmouth Medical School, 7650 Remsen Hall, Hanover, NH 03755-3835, USA
- Graduate Program, Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0524, USA
| | - Melanie A. Stegman
- Department of Pharmacology and Toxicology, Dartmouth Medical School, 7650 Remsen Hall, Hanover, NH 03755-3835, USA
- Graduate Program, Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0524, USA
| | - David J. Robbins
- Department of Pharmacology and Toxicology, Dartmouth Medical School, 7650 Remsen Hall, Hanover, NH 03755-3835, USA
- Corresponding author. Tel.: +1-603-650-1716; fax: +1-603-650-1129. (D.J. Robbins)
| |
Collapse
|
10777
|
Pancoska P, Moravek Z, Moll UM. Efficient RNA interference depends on global context of the target sequence: quantitative analysis of silencing efficiency using Eulerian graph representation of siRNA. Nucleic Acids Res 2004; 32:1469-79. [PMID: 14993466 PMCID: PMC390352 DOI: 10.1093/nar/gkh314] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Several aspects of gene silencing by small interfering RNA duplexes (siRNA) influence the efficiency of the silencing. They can be divided into two categories, one covering the cell-specific factors and the other covering molecular factors of the RNA interference (RNAi). A prerequisite for sequence-based siRNA design is that hybridization thermodynamics is the dominant factor. Our assumption is that cell-specific parameters (cell line, degradation, cross-hybridization, target conformation, etc.) can be pooled into an average cellular factor. Our hypothesis is that the molecular basis of the positional dependence of siRNA-induced gene silencing is the uniqueness of context of a corresponding target sequence segment relative to all other such segments along the attacked RNA. We encode this context into descriptors derived from Eulerian graph representation of siRNAs and show that the descriptor based upon the contextual similarity and predicted thermodynamic stability correlates with the experimentally observed silencing efficiency of human lamin A/C gene. We further show that information encoded in this regression function is generalizable and can be used as a predictor of siRNA efficiency in unrelated genes (CD54 and PTEN). In summary, our method represents an evolution of siRNA design from the currently used algorithms which are only qualitative in nature.
Collapse
Affiliation(s)
- Petr Pancoska
- Department of Pathology, SUNY, Stony Brook, NY 11794, USA.
| | | | | |
Collapse
|
10778
|
Abstract
Identifying the targets of transcription factors is important for understanding cellular processes. We review how targets have previously been isolated and outline new technologies that are being developed to identify novel direct targets, including chromatin immunoprecipitation combined with microarray screening and bioinformatic approaches.
Collapse
Affiliation(s)
- Nicola V Taverner
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge CB2 1QR, UK
| | - James C Smith
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge CB2 1QR, UK
| | - Fiona C Wardle
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge CB2 1QR, UK
| |
Collapse
|
10779
|
Trinklein ND, Aldred SF, Hartman SJ, Schroeder DI, Otillar RP, Myers RM. An abundance of bidirectional promoters in the human genome. Genome Res 2004; 14:62-6. [PMID: 14707170 PMCID: PMC314279 DOI: 10.1101/gr.1982804] [Citation(s) in RCA: 460] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The alignment of full-length human cDNA sequences to the finished sequence of the human genome provides a unique opportunity to study the distribution of genes throughout the genome. By analyzing the distances between 23,752 genes, we identified a class of divergently transcribed gene pairs, representing more than 10% of the genes in the genome, whose transcription start sites are separated by less than 1000 base pairs. Although this bidirectional arrangement has been previously described in humans and other species, the prevalence of bidirectional gene pairs in the human genome is striking, and the mechanisms of regulation of all but a few bidirectional genes are unknown. Our work shows that the transcripts of many bidirectional pairs are coexpressed, but some are antiregulated. Further, we show that many of the promoter segments between two bidirectional genes initiate transcription in both directions and contain shared elements that regulate both genes. We also show that the bidirectional arrangement is often conserved among mouse orthologs. These findings demonstrate that a bidirectional arrangement provides a unique mechanism of regulation for a significant number of mammalian genes.
Collapse
Affiliation(s)
- Nathan D Trinklein
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | | | | | | | | | | |
Collapse
|
10780
|
Lizcano JM, Göransson O, Toth R, Deak M, Morrice NA, Boudeau J, Hawley SA, Udd L, Mäkelä TP, Hardie DG, Alessi DR. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 2004; 23:833-43. [PMID: 14976552 PMCID: PMC381014 DOI: 10.1038/sj.emboj.7600110] [Citation(s) in RCA: 1086] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Accepted: 01/15/2004] [Indexed: 12/13/2022] Open
Abstract
We recently demonstrated that the LKB1 tumour suppressor kinase, in complex with the pseudokinase STRAD and the scaffolding protein MO25, phosphorylates and activates AMP-activated protein kinase (AMPK). A total of 12 human kinases (NUAK1, NUAK2, BRSK1, BRSK2, QIK, QSK, SIK, MARK1, MARK2, MARK3, MARK4 and MELK) are related to AMPK. Here we demonstrate that LKB1 can phosphorylate the T-loop of all the members of this subfamily, apart from MELK, increasing their activity >50-fold. LKB1 catalytic activity and the presence of MO25 and STRAD are required for activation. Mutation of the T-loop Thr phosphorylated by LKB1 to Ala prevented activation, while mutation to glutamate produced active forms of many of the AMPK-related kinases. Activities of endogenous NUAK2, QIK, QSK, SIK, MARK1, MARK2/3 and MARK4 were markedly reduced in LKB1-deficient cells. Neither LKB1 activity nor that of AMPK-related kinases was stimulated by phenformin or AICAR, which activate AMPK. Our results show that LKB1 functions as a master upstream protein kinase, regulating AMPK-related kinases as well as AMPK. Between them, these kinases may mediate the physiological effects of LKB1, including its tumour suppressor function.
Collapse
Affiliation(s)
- Jose M Lizcano
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Olga Göransson
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Rachel Toth
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Maria Deak
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Nick A Morrice
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jérôme Boudeau
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Simon A Hawley
- Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Lina Udd
- Molecular Cancer Biology Program, Institute of Biomedicine and Helsinki University Central Hospital, Biomedicum Helsinki, University of Helsinki, Finland
| | - Tomi P Mäkelä
- Molecular Cancer Biology Program, Institute of Biomedicine and Helsinki University Central Hospital, Biomedicum Helsinki, University of Helsinki, Finland
| | - D Grahame Hardie
- Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Dario R Alessi
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK. Tel.: +44 1382 344 241; Fax: +44 1382 223 778; E-mail:
| |
Collapse
|
10781
|
Kessaris N, Jamen F, Rubin LL, Richardson WD. Cooperation between sonic hedgehog and fibroblast growth factor/MAPK signalling pathways in neocortical precursors. Development 2004; 131:1289-98. [PMID: 14960493 DOI: 10.1242/dev.01027] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sonic hedgehog (SHH) and fibroblast growth factor 2 (FGF2) can both induce neocortical precursors to express the transcription factor OLIG2 and generate oligodendrocyte progenitors (OLPs) in culture. The activity of FGF2 is unaffected by cyclopamine, which blocks Hedgehog signalling, demonstrating that the FGF pathway to OLP production is Hedgehog independent. Unexpectedly, SHH-mediated OLP induction is blocked by PD173074, a selective inhibitor of FGF receptor (FGFR) tyrosine kinase. SHH activity also depends on mitogen-activated protein kinase (MAPK) but SHH does not itself activate MAPK. Instead, constitutive activity of FGFR maintains a basal level of phosphorylated MAPK that is absolutely required for the OLIG2- and OLP-inducing activities of SHH. Stimulating the MAPK pathway with a retrovirus encoding constitutively active RAS shows that the requirement for MAPK is cell-autonomous, i.e. MAPK is needed together with SHH signalling in the cells that become OLPs.
Collapse
Affiliation(s)
- Nicoletta Kessaris
- Wolfson Institute for Biomedical Research and Department of Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
10782
|
Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, Allende ML, Proia RL, Cyster JG. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 2004; 427:355-60. [PMID: 14737169 DOI: 10.1038/nature02284] [Citation(s) in RCA: 1992] [Impact Index Per Article: 99.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Accepted: 12/12/2003] [Indexed: 12/18/2022]
Abstract
Adaptive immunity depends on T-cell exit from the thymus and T and B cells travelling between secondary lymphoid organs to survey for antigens. After activation in lymphoid organs, T cells must again return to circulation to reach sites of infection; however, the mechanisms regulating lymphoid organ exit are unknown. An immunosuppressant drug, FTY720, inhibits lymphocyte emigration from lymphoid organs, and phosphorylated FTY720 binds and activates four of the five known sphingosine-1-phosphate (S1P) receptors. However, the role of S1P receptors in normal immune cell trafficking is unclear. Here we show that in mice whose haematopoietic cells lack a single S1P receptor (S1P1; also known as Edg1) there are no T cells in the periphery because mature T cells are unable to exit the thymus. Although B cells are present in peripheral lymphoid organs, they are severely deficient in blood and lymph. Adoptive cell transfer experiments establish an intrinsic requirement for S1P1 in T and B cells for lymphoid organ egress. Furthermore, S1P1-dependent chemotactic responsiveness is strongly upregulated in T-cell development before exit from the thymus, whereas S1P1 is downregulated during peripheral lymphocyte activation, and this is associated with retention in lymphoid organs. We find that FTY720 treatment downregulates S1P1, creating a temporary pharmacological S1P1-null state in lymphocytes, providing an explanation for the mechanism of FTY720-induced lymphocyte sequestration. These findings establish that S1P1 is essential for lymphocyte recirculation and that it regulates egress from both thymus and peripheral lymphoid organs.
Collapse
Affiliation(s)
- Mehrdad Matloubian
- Howard Hughes Medical Institute and Department of Microbiology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, California 94143-0414, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10783
|
Storchova Z, Pellman D. From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol 2004; 5:45-54. [PMID: 14708009 DOI: 10.1038/nrm1276] [Citation(s) in RCA: 577] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polyploidy is a frequent phenomenon in the eukaryotic world, but the biological properties of polyploid cells are not well understood. During evolution, polyploidy is thought to be an important mechanism that contributes to speciation. Polyploid, usually non-dividing, cells are formed during development in otherwise diploid organisms. A growing amount of evidence indicates that polyploid cells also arise during a variety of pathological conditions. Genetic instability in these cells might provide a route to aneuploidy and thereby contribute to the development of cancer.
Collapse
Affiliation(s)
- Zuzana Storchova
- Department of Pediatric Oncology of The Dana-Farber Cancer Institute, Children's Hospital and Harvard Medical School, Room M621A, 44 Binney Street Boston, Massachusetts 02115, USA
| | | |
Collapse
|
10784
|
Kemp BE. Bateman domains and adenosine derivatives form a binding contract. J Clin Invest 2004; 113:182-4. [PMID: 14722609 PMCID: PMC311445 DOI: 10.1172/jci20846] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Conserved pairs of CBS sequence motifs (named after cystathionine beta-synthase) found in a wide variety of proteins associate to form Bateman domains. A new study establishes that Bateman domains bind adenosyl compounds and regulate IMP dehydrogenase, CBS, chloride channels, and AMP-activated protein kinase. This discovery reveals how mutations in CBS sequences in these proteins cause hereditary diseases and provides a rich vista of conceptual opportunities for therapies in energy metabolism, obesity, diabetes, cancer, antivirals, and immunosuppression.
Collapse
Affiliation(s)
- Bruce E Kemp
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.
| |
Collapse
|
10785
|
Abstract
Hematopoiesis and vasculogenesis in the mammalian embryo begin in the blood islands of the yolk sac and continue, somewhat later, within the embryo proper. A subset of the first endothelial and hematopoietic cells of the yolk sac arise in close spatial and temporal association, apparently from a common mesodermal progenitor, the "hemangioblast." The mechanisms that control formation of hemangioblast and embryonic hematopoietic and endothelial (angioblastic) stem/progenitor cells are still not well understood. Formation of these cell types from nascent mesoderm requires signals from an adjacent outer layer of primitive (visceral) endoderm. Indian hedgehog (Ihh), a member of the hedgehog family of extracellular morphogens, is secreted by visceral endoderm and alone is sufficient to induce hematopoiesis and vasculogenesis in explanted embryos. While gene targeting studies in mice support a role for hedgehog signaling in these processes in vivo, they also suggest that additional molecules (perhaps, for example, Wnt proteins) are required for induction and patterning of hematopoietic and vascular mesoderm. Indian hedgehog likely functions through upregulation of genes encoding other signaling molecules, such as bone morphogenetic protein (Bmp)-4, in the target tissue. This review will focus on hematopoietic and vascular development in the early mouse embryo and will discuss potential implications of recent studies for stem cell transplantation in humans.
Collapse
Affiliation(s)
- Margaret H Baron
- Department of Medicine, Molecular, Brookdale Department of Cell and Developmental Biology, Ruttenberg Cancer Center, Mount Sinai School of Medicine, 1425 Madison Avenue 11-70B, Box 1079, New York, NY 10029, USA.
| |
Collapse
|
10786
|
Watson CS, Gametchu B. Proteins of multiple classes may participate in nongenomic steroid actions. Exp Biol Med (Maywood) 2004; 228:1272-81. [PMID: 14681543 PMCID: PMC1224708 DOI: 10.1177/153537020322801106] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Responses to steroids initiated from non-nuclear receptors impinge on a wide variety of cellular responses and utilize nearly all known signal transduction webs. While the mechanisms by which steroid receptors localize in the membrane are still unclear, it is apparent that this alternative localization allows steroid receptors to participate in a wide range of complex functions influencing cell proliferation, death, and differentiation. The central debate still remains the identity of the protein class or classes that mediate membrane-initiated (nongenomic) responses. The data thus far have supported several possibilities, including: nuclear steroid receptor-like forms in non-nuclear locations; other known (nonsteroid) membrane receptors or channels with additional steroid-binding sites; enzymes; transporters; receptors for serum steroid-binding proteins; unique and previously undescribed proteins; or chimeras of typical steroid receptor domains with other unique or known protein domains. Categorizing membrane steroid receptor proteins based exclusively on the actions of antagonists and agonists, without considering cell context and protein partnering issues, may mislead us into predicting more receptor subtypes than really exist. However, the plethora of signaling and functional outcomes may indicate the participation of more than one kind of steroid-binding protein. Resolving such unanswered questions will require future investigative focus on this alternative arm of steroid action, which is likely to yield as many therapeutic opportunities as have nuclear steroid mechanisms.
Collapse
Affiliation(s)
- Cheryl S Watson
- Department of Human Biological Chemistry and Genetics, University of Texas, Medical Branch, Galveston, Texas 77555, USA.
| | | |
Collapse
|
10787
|
Affiliation(s)
- Anne E Carpenter
- Whitehead Institute for Biomedical Research, MIT Department of Biology, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
10788
|
Kuhn EJ, Hart CM, Geyer PK. Studies of the role of the Drosophila scs and scs' insulators in defining boundaries of a chromosome puff. Mol Cell Biol 2004; 24:1470-80. [PMID: 14749365 PMCID: PMC344178 DOI: 10.1128/mcb.24.4.1470-1480.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Revised: 09/11/2003] [Accepted: 11/20/2003] [Indexed: 11/20/2022] Open
Abstract
Insulators are DNA elements that establish independent transcriptional domains within eukaryotic genomes. The Drosophila scs and scs' insulators localize near the borders of a structural domain in the polytene chromosomes, known as a puff, produced by transcription of the 87A heat shock protein (hsp) genes. It has been suggested that scs and scs' are boundary elements that delimit this decondensed chromatin domain, reflecting the mechanism by which these sequences act to constrain regulatory interactions. This model was tested using transposons that carried a yellow gene to assess enhancer blocking and an hsp70-lacZ gene to examine the structure of a heat shock puff in the presence and absence of insulators. We found that although scs and scs' blocked enhancer function, these sequences did not prevent the spread of decondensation resulting from hsp70-lacZ transcription. Further analysis of the endogenous 87A locus demonstrated that scs and scs' reside within, not at, the borders of the puff. Taken together, our studies suggest that scs and scs' are not boundary elements that block the propagation of an altered chromatin state associated with puff formation. We propose that these insulators may have a direct role in limiting regulatory interactions in the gene-dense 87A region.
Collapse
Affiliation(s)
- Emily J Kuhn
- Molecular Biology Program, University of Iowa, College of Medicine, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
10789
|
Santos NC, Castanho MARB. An overview of the biophysical applications of atomic force microscopy. Biophys Chem 2004; 107:133-49. [PMID: 14962595 DOI: 10.1016/j.bpc.2003.09.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2002] [Revised: 07/30/2003] [Accepted: 09/04/2003] [Indexed: 11/27/2022]
Abstract
The potentialities of the atomic force microscopy (AFM) make it a tool of undeniable value for the study of biologically relevant samples. AFM is progressively becoming a usual benchtop technique. In average, more than one paper is published every day on AFM biological applications. This figure overcomes materials science applications, showing that 17 years after its invention, AFM has completely crossed the limits of its traditional areas of application. Its potential to image the structure of biomolecules or bio-surfaces with molecular or even sub-molecular resolution, study samples under physiological conditions (which allows to follow in situ the real time dynamics of some biological events), measure local chemical, physical and mechanical properties of a sample and manipulate single molecules should be emphasized.
Collapse
Affiliation(s)
- Nuno C Santos
- Instituto de Bioquímica/Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal.
| | | |
Collapse
|
10790
|
Abstract
Cancers of the skin encompass the first and second most common neoplasms in the United States, epidermal basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), respectively, as well as the melanocytic malignancy, malignant melanoma (MM). Recently identified alterations in the function of specific genes in these cancers provide new potential therapeutic targets. These alterations affect conserved regulators of cellular proliferation and viability, including the Sonic Hedgehog, Ras/Raf, ARF/p53, p16(INK4A)/CDK4/Rb and NF-kappaB pathways. New modalities designed to target these specific proteins may represent promising approaches to therapy of human skin cancers.
Collapse
Affiliation(s)
- Cheryl L Green
- Program in Epithelial Biology, Stanford University School of Medicine, 269 Campus Drive, Room 2145, Stanford, CA 94305, USA
| | | |
Collapse
|
10791
|
Castrillo JI, Oliver SG. Yeast as a Touchstone in Post-genomic Research: Strategies for Integrative Analysis in Functional Genomics. BMB Rep 2004; 37:93-106. [PMID: 14761307 DOI: 10.5483/bmbrep.2004.37.1.093] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The new complexity arising from the genome sequencing projects requires new comprehensive post-genomic strategies: advanced studies in regulatory mechanisms, application of new high-throughput technologies at a genome-wide scale, at the different levels of cellular complexity (genome, transcriptome, proteome and metabolome), efficient analysis of the results, and application of new bioinformatic methods in an integrative or systems biology perspective. This can be accomplished in studies with model organisms under controlled conditions. In this review a perspective of the favourable characteristics of yeast as a touchstone model in post-genomic research is presented. The state-of-the art, latest advances in the field and bottlenecks, new strategies, new regulatory mechanisms, applications (patents) and high-throughput technologies, most of them being developed and validated in yeast, are presented. The optimal characteristics of yeast as a well-defined system for comprehensive studies under controlled conditions makes it a perfect model to be used in integrative, "systems biology" studies to get new insights into the mechanisms of regulation (regulatory networks) responsible of specific phenotypes under particular environmental conditions, to be applied to more complex organisms (e.g. plants, human).
Collapse
Affiliation(s)
- Juan I Castrillo
- School of Biological Sciences, University of Manchester, 2205 Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| | | |
Collapse
|
10792
|
Abstract
A membrane channel, encoded by the gene sid-1, is responsible for the spreading of RNA interference between cells in plants and in Caenorhabditis elegans. RNA interference (RNAi) has been shown to spread from cell to cell in plants and in Caenorhabditis elegans, but it does not spread in other organisms, such as Drosophila. A recent report demonstrates that a membrane channel, encoded by the gene sid-1, is responsible for the spreading of RNAi between cells.
Collapse
Affiliation(s)
- Peter van Roessel
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Current address: Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrea H Brand
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
10793
|
Pan D. Size matters. Workshop on growth control in development and disease. EMBO Rep 2004; 5:136-9. [PMID: 14749718 PMCID: PMC1298992 DOI: 10.1038/sj.embor.7400081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Accepted: 12/09/2003] [Indexed: 11/09/2022] Open
Affiliation(s)
- Duojia Pan
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9040, USA.
| |
Collapse
|
10794
|
Hale MB, Nolan GP, Wolkowicz R. Oligonucleotide-directed site-specific integration of high complexity libraries into ssDNA templates. Nucleic Acids Res 2004; 32:e22. [PMID: 14752044 PMCID: PMC373376 DOI: 10.1093/nar/gnh021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an approach that generates an oligomer-based library with minimal need for restriction site modification of sequences in the target vector. The technique has the advantage that it can be applied for generating peptide aptamer libraries at sites within proteins without the need for introducing flanking enzyme sites. As an example we present a phagemid retroviral shuttle vector that can be used to achieve stable expression of the library in mammalian cells for the purpose of screening for peptides with desired biological activity.
Collapse
Affiliation(s)
- M B Hale
- Department of Molecular Pharmacology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
10795
|
Andersson U, Filipsson K, Abbott CR, Woods A, Smith K, Bloom SR, Carling D, Small CJ. AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem 2004; 279:12005-8. [PMID: 14742438 DOI: 10.1074/jbc.c300557200] [Citation(s) in RCA: 556] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is the downstream component of a protein kinase cascade that acts as an intracellular energy sensor maintaining the energy balance within the cell. The finding that leptin and adiponectin activate AMPK to alter metabolic pathways in muscle and liver provides direct evidence for this role in peripheral tissues. The hypothalamus is a key regulator of food intake and energy balance, coordinating body adiposity and nutritional state in response to peripheral hormones, such as leptin, peptide YY-(3-36), and ghrelin. To date the hormonal regulation of AMPK in the hypothalamus, or its potential role in the control of food intake, have not been reported. Here we demonstrate that counter-regulatory hormones involved in appetite control regulate AMPK activity and that pharmacological activation of AMPK in the hypothalamus increases food intake. In vivo administration of leptin, which leads to a reduction in food intake, decreases hypothalamic AMPK activity. By contrast, injection of ghrelin in vivo, which increases food intake, stimulates AMPK activity in the hypothalamus. Consistent with the effect of ghrelin, injection of 5-amino-4-imidazole carboxamide riboside, a pharmacological activator of AMPK, into either the third cerebral ventricle or directly into the paraventricular nucleus of the hypothalamus significantly increased food intake. These results suggest that AMPK is regulated in the hypothalamus by hormones which regulate food intake. Furthermore, direct pharmacological activation of AMPK in the hypothalamus is sufficient to increase food intake. These findings demonstrate that AMPK plays a role in the regulation of feeding and identify AMPK as a novel target for anti-obesity drugs.
Collapse
Affiliation(s)
- Ulrika Andersson
- Medical Research Council Clinical Sciences Centre, Cellular Stress Group and Endocrine Unit, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 ONN, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
10796
|
Kunda P, Craig G, Dominguez V, Baum B. Abi, Sra1, and Kette control the stability and localization of SCAR/WAVE to regulate the formation of actin-based protrusions. Curr Biol 2004; 13:1867-75. [PMID: 14588242 DOI: 10.1016/j.cub.2003.10.005] [Citation(s) in RCA: 293] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND In animal cells, GTPase signaling pathways are thought to generate cellular protrusions by modulating the activity of downstream actin-regulatory proteins. Although the molecular events linking activation of a GTPase to the formation of an actin-based process with a characteristic morphology are incompletely understood, Rac-GTP is thought to promote the activation of SCAR/WAVE, whereas Cdc42 is thought to initiate the formation of filopodia through WASP. SCAR and WASP then activate the Arp2/3 complex to nucleate the formation of new actin filaments, which through polymerization exert a protrusive force on the membrane. RESULTS Using RNAi to screen for genes regulating cell form in an adherent Drosophila cell line, we identified a set of genes, including Abi/E3B1, that are absolutely required for the formation of dynamic protrusions. These genes delineate a pathway from Cdc42 and Rac to SCAR and the Arp2/3 complex. Efforts to place Abi in this signaling hierarchy revealed that Abi and two components of a recently identified SCAR complex, Sra1 (p140/PIR121/CYFIP) and Kette (Nap1/Hem), protect SCAR from proteasome-mediated degradation and are critical for SCAR localization and for the generation of Arp2/3-dependent protrusions. CONCLUSIONS In Drosophila cells, SCAR is regulated by Abi, Kette, and Sra1, components of a conserved regulatory SCAR complex. By controlling the stability, localization, and function of SCAR, these proteins may help to ensure that Arp2/3 activation and the generation of actin-based protrusions remain strictly dependant on local GTPase signaling.
Collapse
Affiliation(s)
- Patricia Kunda
- Ludwig Institute for Cancer Research - University College Branch, London, UK
| | | | | | | |
Collapse
|
10797
|
Sandelin A, Alkema W, Engström P, Wasserman WW, Lenhard B. JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res 2004; 32:D91-4. [PMID: 14681366 PMCID: PMC308747 DOI: 10.1093/nar/gkh012] [Citation(s) in RCA: 1211] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The analysis of regulatory regions in genome sequences is strongly based on the detection of potential transcription factor binding sites. The preferred models for representation of transcription factor binding specificity have been termed position-specific scoring matrices. JASPAR is an open-access database of annotated, high-quality, matrix-based transcription factor binding site profiles for multicellular eukaryotes. The profiles were derived exclusively from sets of nucleotide sequences experimentally demonstrated to bind transcription factors. The database is complemented by a web interface for browsing, searching and subset selection, an online sequence analysis utility and a suite of programming tools for genome-wide and comparative genomic analysis of regulatory regions. JASPAR is available at http://jaspar. cgb.ki.se.
Collapse
Affiliation(s)
- Albin Sandelin
- Center for Genomics and Bioinformatics, Karolinska Institutet, Berzelius väg 35, S-17177 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
10798
|
Milburn CC, Boudeau J, Deak M, Alessi DR, van Aalten DMF. Crystal structure of MO25 alpha in complex with the C terminus of the pseudo kinase STE20-related adaptor. Nat Struct Mol Biol 2004; 11:193-200. [PMID: 14730349 DOI: 10.1038/nsmb716] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2003] [Accepted: 12/08/2003] [Indexed: 01/05/2023]
Abstract
Mouse protein 25 alpha (MO25 alpha) is a 40-kDa protein that, together with the STE20-related adaptor-alpha (STRAD alpha) pseudo kinase, forms a regulatory complex capable of stimulating the activity of the LKB1 tumor suppressor protein kinase. The latter is mutated in the inherited Peutz-Jeghers cancer syndrome (PJS). MO25 alpha binds directly to a conserved Trp-Glu-Phe sequence at the STRAD alpha C terminus, markedly enhancing binding of STRAD alpha to LKB1 and increasing LKB1 catalytic activity. The MO25 alpha crystal structure reveals a helical repeat fold, distantly related to the Armadillo proteins. A complex with the STRAD alpha peptide reveals a hydrophobic pocket that is involved in a unique and specific interaction with the Trp-Glu-Phe motif, further supported by mutagenesis studies. The data represent a first step toward structural analysis of the LKB1-STRAD-MO25 complex, and suggests that MO25 alpha is a scaffold protein to which other regions of STRAD-LKB1, cellular LKB1 substrates or regulatory components could bind.
Collapse
Affiliation(s)
- Christine C Milburn
- Division of Biological Chemistry & Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | | | | | | | | |
Collapse
|
10799
|
Shang J, Lehrman MA. Activation of glycogen phosphorylase with 5-aminoimidazole-4-carboxamide riboside (AICAR). Assessment of glycogen as a precursor of mannosyl residues in glycoconjugates. J Biol Chem 2004; 279:12076-80. [PMID: 14729664 DOI: 10.1074/jbc.m400431200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The experimental evaluation of the contribution of glycogen phosphorylase (GP) to biochemical pathways is limited to methods that raise cAMP, activating the cAMP-dependent protein kinase/phosphorylase kinase/GP cascade. Such methods convert the unphosphorylated form, "GPb," which catalyzes glycogenolysis only in the presence of appropriate allosteric activators such as AMP, to the phosphorylated, constitutively activated form, "GPa." However, activation of GP in this way is indirect, requires a functional cAMP kinase cascade, and is complicated by other actions of cAMP. Here, we demonstrate a strategy for the experimental manipulation of GP in intact dermal fibroblasts, involving activation by the membrane-permeable adenosine analog 5-aminoimidazole-4-carboxamide riboside (AICAR) and inhibition by caffeine and Pfizer compound CP-91149, which bind to GP at distinct sites. Potential complications because of activation of AMP-activated protein kinase by AICAR were assessed with metformin, which activates this kinase but does not activate GP. Using this strategy, we show that glycogen can be a significant and regulatable precursor of mannosyl units in lipid-linked oligosaccharides and glycoproteins.
Collapse
Affiliation(s)
- Jie Shang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, USA
| | | |
Collapse
|
10800
|
|