1051
|
Moyano S, Frechilla D, Del Río J. NMDA receptor subunit and CaMKII changes in rat hippocampus induced by acute MDMA treatment: a mechanism for learning impairment. Psychopharmacology (Berl) 2004; 173:337-45. [PMID: 14985918 DOI: 10.1007/s00213-004-1816-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Accepted: 01/22/2004] [Indexed: 10/26/2022]
Abstract
RATIONALE Cognitive deficits have been reported in recreational 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") users. In rats and other animal species, acute MDMA administration produces an impairment in passive avoidance and other learning tasks. Different studies have shown that this learning deficit is not strictly related to the pronounced serotonin (5-HT) depletion induced by the drug. OBJECTIVES This study was aimed at determining if acute MDMA administration induces in the rat hippocampus early molecular changes related to memory impairment in a passive avoidance task. The membrane expression of key molecules in memory consolidation, such as the NR1 and NR2B subunits of the N-methyl-D-aspartate (NMDA) receptor, Ca2+/calmodulin-dependent protein kinase II (CaMKII) and protein phosphatase 1 (PP1) was measured. Some of these studies were also performed after 5-HT depletion induced by the 5-HT synthesis inhibitor p-chlorophenylalanine (PCPA). METHODS Neurochemical studies were performed in rats treated with MDMA and killed 90 min later and also in rats subjected to passive avoidance 30 min after MDMA treatment. Western blotting was used for measuring the levels of NMDA receptor subunits, CAMKII and PP1. Enzyme activity assays were also performed. RESULTS In hippocampal membrane extracts, passive avoidance training increased NMDA receptor NR1 subunit expression as well as CaMKII levels and phosphorylated CaMKII. In untrained rats, MDMA reduced NR1 and NR2B protein levels, membrane CaMKII levels and enzyme activity, and enhanced PP1 levels and activity. In trained rats, MDMA prevented the learning-specific increase in NR1 subunit expression and membrane CaMKII/pCaMKII levels. After pronounced 5-HT depletion by PCPA, MDMA impaired passive avoidance retention to a similar extent and also prevented the training-associated changes in NR1 levels and CaMKII activity. CONCLUSIONS Diminished function of hippocampal CaMKII and reduced levels of synaptic NMDA receptor subunits appear to be involved in the impairment of passive avoidance learning induced in rats by acute MDMA treatment.
Collapse
Affiliation(s)
- S Moyano
- Department of Pharmacology, School of Medicine, University of Navarra, Apartado 177, 31080 Pamplona, Spain
| | | | | |
Collapse
|
1052
|
Scott LL, Singh TD, Nordeen EJ, Nordeen KW. Developmental patterns of NMDAR expression within the song system do not recur during adult vocal plasticity in zebra finches. ACTA ACUST UNITED AC 2004; 58:442-54. [PMID: 14978722 DOI: 10.1002/neu.10300] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
All songbirds learn to sing during postnatal development but then display species differences in the capacity to learn song in adulthood. While the mechanisms that regulate avian vocal plasticity are not well characterized, one contributing factor may be the composition of N-methyl-D-aspartate receptors (NMDAR). Previous studies of an anterior forebrain pathway implicated in vocal plasticity revealed significant regulation of NMDAR subunit expression during the developmental sensitive period for song learning. Much less is known about the developmental regulation of NMDAR subunit expression in regions that participate more directly in motor aspects of song behavior. We show here that an increase in NR2A subunit mRNA and a decrease in NR2B subunit mRNA within the vocal motor pathway accompany song learning in zebra finches; however, manipulations that can alter the timing of song learning did not alter the course of these developmental changes. We also tested whether adult deafening, a treatment that provokes vocal change in songbirds that normally sing a stable song throughout adulthood, would render NMDAR subunit expression more similar to that observed developmentally. We report that NR2A and NR2B mRNA levels did not change within the anterior forebrain or vocal motor pathways after adult deafening, even after substantial changes in song structure. These results indicate that vocal plasticity does not require "juvenile patterns" of NMDAR gene expression in the avian song system.
Collapse
Affiliation(s)
- Luisa L Scott
- Neuroscience Program, University of Rochester, Rochester, New York 14642, USA.
| | | | | | | |
Collapse
|
1053
|
O'Connor V, Genin A, Davis S, Karishma KK, Doyère V, De Zeeuw CI, Sanger G, Hunt SP, Richter-Levin G, Mallet J, Laroche S, Bliss TVP, French PJ. Differential Amplification of Intron-containing Transcripts Reveals Long Term Potentiation-associated Up-regulation of Specific Pde10A Phosphodiesterase Splice Variants. J Biol Chem 2004; 279:15841-9. [PMID: 14752115 DOI: 10.1074/jbc.m312500200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We employed differential display of expressed mRNAs (Liang, P., and Pardee, A. B. (1992) Science 257, 967-971) to identify genes up-regulated after long term potentiation (LTP) induction in the hippocampus of awake adult rats. In situ hybridization confirmed the differential expression of five independently amplified clones representing two distinct transcripts, cl13/19/90 and cl95/96. Neither cl13/19/90 nor cl95/96 showed significant sequence homology to known transcripts (mRNA or expressed sequence tag) or to the mouse or human genome. However, comparison with the rat genome revealed that they are localized to a predicted intron of the phosphodiesterase Pde10A gene. cl13/19/90 and cl95/96 are likely to be part of the Pde10A primary transcript as, using reverse transcriptase-PCR, we could specifically amplify distinct introns of the Pde10A primary transcript, and in situ hybridization demonstrated that a subset of Pde10A splice variants are also up-regulated after LTP induction. These results indicate that amplification of a primary transcript can faithfully report gene activity and that differential display can be used to identify differential expression of RNA species other than mRNA. In transiently transfected Cos7 cells, Pde10A3 reduces the atrial natriuretic peptide-induced elevation in cGMP levels without affecting basal cGMP levels. This cellular function of LTP-associated Pde10A transcripts argues for a role of the cGMP/cGMP-dependent kinase pathway in long term synaptic plasticity.
Collapse
Affiliation(s)
- Vincent O'Connor
- School of Biological Sciences, University of Southampton, Southampton SO16 7PX, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1054
|
Erren TC, Erren M. Can fat explain the human brain's big bang evolution?-Horrobin's leads for comparative and functional genomics. Prostaglandins Leukot Essent Fatty Acids 2004; 70:345-7. [PMID: 15041025 DOI: 10.1016/j.plefa.2003.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
When David Horrobin suggested that phospholipid and fatty acid metabolism played a major role in human evolution, his 'fat utilization hypothesis' unified intriguing work from paleoanthropology, evolutionary biology, genetic and nervous system research in a novel and coherent lipid-related context. Interestingly, unlike most other evolutionary concepts, the hypothesis allows specific predictions which can be empirically tested in the near future. This paper summarizes some of Horrobin's intriguing propositions and suggests as to how approaches of comparative genomics published in Cell, Nature, Science and elsewhere since 1997 may be used to examine his evolutionary hypothesis. Indeed, systematic investigations of the genomic clock in the species' mitochondrial DNA, the Y and autosomal chromosomes as evidence of evolutionary relationships and distinctions can help to scrutinize associated predictions for their validity, namely that key mutations which differentiate us from Neanderthals and from great apes are in the genes coding for proteins which regulate fat metabolism, and particularly the phospholipid metabolism of the synapses of the brain. It is concluded that beyond clues to humans' relationships with living primates and to the Neanderthals' cognitive performance and their disappearance, the suggested molecular clock analyses may provide crucial insights into the biochemical evolution-and means of possible manipulation-of our brain.
Collapse
Affiliation(s)
- T C Erren
- Institute and Polyclinic for Occupational and Social Medicine, School of Medicine and Dentistry, University of Cologne, Joseph-Stelzmann-Str. 9, 50924 Köln (Lindenthal), Germany.
| | | |
Collapse
|
1055
|
Kim IH, Park SK, Sun W, Kang Y, Kim HT, Kim H. Spatial learning enhances the expression of inositol 1,4,5-trisphosphate 3-kinase A in the hippocampal formation of rat. ACTA ACUST UNITED AC 2004; 124:12-9. [PMID: 15093681 DOI: 10.1016/j.molbrainres.2003.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2003] [Indexed: 12/01/2022]
Abstract
Calcium-mediated signaling is crucial for the synaptic plasticity and long-term memory storage, which requires de novo protein synthesis. Inositol 1,4,5-trisphosphate 3-kinase A (IP(3)K-A) is an enzyme, which is involved in the maintenance of intracellular calcium homeostasis by converting inositol 1,4,5-trisphosphate (IP(3)) to inositol 1,3,4,5-tetrakisphosphate (IP(4)). Because IP(3)K-A is enriched in the dendritic spines of hippocampal neurons, it has been speculated that this enzyme is involved in the memory formation. In the present study, we demonstrated that the expression of IP(3)K-A is increased in the hippocampal formation of the rats during the Morris water maze training. Immunohistochemical analysis indicated the specific induction of IP(3)K-A protein in the hippocampal formation following 5-day water maze training. Furthermore, in situ hybridization histochemistry showed that the induction of IP(3)K-A mRNA in the hippocampal formation was observed on the first day of training, and the induced level of IP(3)K-A mRNA was maintained until the fifth day of training. These results suggest that IP(3)K-A plays a role in the processing of spatial memory, most likely by regulating the calcium signaling in the dendritic spines of hippocampal formation.
Collapse
Affiliation(s)
- Il Hwan Kim
- Department of Anatomy and Division of Brain Korea 21Biomedical Science, Korea University College of Medicine, 126-1, 5-ga, Anam-dong, Sungbuk-gu, 136-705 Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
1056
|
Bai L, Hof PR, Standaert DG, Xing Y, Nelson SE, Young AB, Magnusson KR. Changes in the expression of the NR2B subunit during aging in macaque monkeys. Neurobiol Aging 2004; 25:201-8. [PMID: 14749138 DOI: 10.1016/s0197-4580(03)00091-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Humans, non-human primates and rodents show declines in spatial memory abilities with increased age. Some of these declines in mice are related to changes in the expression of the epsilon2 (epsilon2) (NR2B) subunit of the N-methyl-D-aspartate receptor. The purpose of this study was to determine whether primates show changes during aging in the mRNA expression of the NR2B subunit. In situ hybridization was performed on tissue sections from three different ages of Rhesus monkeys (Macaca mulatta; 6-8, 10-12, and 24-26 years). There was a significant decrease in the mRNA expression of the NR2B subunit overall in the prefrontal cortex and in the caudate nucleus between young and old monkeys. There were no significant changes in NR2B mRNA expression in the hippocampus or the parahippocampal gyrus. The results in the prefrontal cortex, caudate and hippocampus were similar to those seen previously in C57BL/6 mice during aging, which suggests that mice may be useful as a model for primates to further examine the age-related changes in the expression of the NR2B subunit of the NMDA receptor in several important regions of the brain.
Collapse
Affiliation(s)
- Ling Bai
- Program in Molecular, Cellular, and Integrative Neurosciences, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | |
Collapse
|
1057
|
Abstract
One of the most significant challenges in neuroscience is to identify the cellular and molecular processes that underlie learning and memory formation. The past decade has seen remarkable progress in understanding changes that accompany certain forms of acquisition and recall, particularly those forms which require activation of afferent pathways in the hippocampus. This progress can be attributed to a number of factors including well-characterized animal models, well-defined probes for analysis of cell signaling events and changes in gene transcription, and technology which has allowed gene knockout and overexpression in cells and animals. Of the several animal models used in identifying the changes which accompany plasticity in synaptic connections, long-term potentiation (LTP) has received most attention, and although it is not yet clear whether the changes that underlie maintenance of LTP also underlie memory consolidation, significant advances have been made in understanding cell signaling events that contribute to this form of synaptic plasticity. In this review, emphasis is focused on analysis of changes that occur after learning, especially spatial learning, and LTP and the value of assessing these changes in parallel is discussed. The effect of different stressors on spatial learning/memory and LTP is emphasized, and the review concludes with a brief analysis of the contribution of studies, in which transgenic animals were used, to the literature on memory/learning and LTP.
Collapse
Affiliation(s)
- M A Lynch
- Trinity College Institute of Neuroscience, Department of Physiology, Trinity College, Dublin, Ireland.
| |
Collapse
|
1058
|
Schulz D, Sergeeva OA, Ianovskii E, Luhmann HJ, Haas HL, Huston JP. Behavioural parameters in aged rats are related to LTP and gene expression of ChAT and NMDA-NR2 subunits in the striatum. Eur J Neurosci 2004; 19:1373-83. [PMID: 15016095 DOI: 10.1111/j.1460-9568.2004.03234.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Striatal parameters were assessed for their relevance to age-related behavioural decline. Forty aged rats (28-30 months) were tested in the water maze and open field. Of these, seven superior and seven inferior learners were compared with each other in terms of levels of in vitro short- and long-term potentiation (STP and LTP), and gene expression of choline acetyltransferase (ChAT) as well as of the NMDA-NR2A-C subunits assessed by quantitative RT-PCR. Results revealed that the superior as compared with the inferior learners had higher levels of ChAT mRNA in the striatum. For the superior group, ChAT mRNA was correlated with escape on to the cued platform in the water maze, whereas level of LTP was predictive of place learning in the water maze and rearing activity in the open field. For the inferior group, expression of NR2A and NR2B was positively correlated with place learning and probe trial performance in the water maze. The results show that individual differences in various behaviours of aged rats were accounted for by variability in striatal parameters, i.e. LTP, ChAT and NMDA-NR2 subunit mRNA. Notably, the correlations found were heterogeneous amid the groups, e.g. variability in place learning was explained by variability in levels of LTP in the superior learners, but in levels of NR2A-B mRNA in the inferior group.
Collapse
Affiliation(s)
- D Schulz
- Institute of Physiological Psychology, Center for Biological and Medical Research, University of Dusseldorf, Universitatsstr 1, D-40225, Dusseldorf, Germany
| | | | | | | | | | | |
Collapse
|
1059
|
Cui Z, Wang H, Tan Y, Zaia KA, Zhang S, Tsien JZ. Inducible and Reversible NR1 Knockout Reveals Crucial Role of the NMDA Receptor in Preserving Remote Memories in the Brain. Neuron 2004; 41:781-93. [PMID: 15003177 DOI: 10.1016/s0896-6273(04)00072-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Revised: 01/06/2004] [Accepted: 01/26/2004] [Indexed: 10/26/2022]
Abstract
Long-term storage of information is a hallmark feature of the brain, yet routine turnover of synaptic receptors appears to be intrinsically paradoxical to this capability. To investigate how the brain preserves its delicate synaptic efficacies, we generated inducible and reversible knockout mice in which the NMDA receptor can be temporarily switched off in the forebrain specifically during the storage stage. Retention of 9-month contextual and cued fear memories is severely disrupted by prolonged, but not transient, loss of the NMDA receptor that occurs 6 months after initial training and at least 2 months prior to memory retrieval. Normal learning and memory function in subsequent tasks following the 9-month retention tests suggest that the observed retention deficits did not result from recall or performance impairment. Thus, our study reveals a hitherto unrecognized role of the NMDA receptor in dynamically maintaining the long-term synaptic stability of memory storage circuits in the brain.
Collapse
Affiliation(s)
- Zhenzhong Cui
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA, USA
| | | | | | | | | | | |
Collapse
|
1060
|
Dal-Farra RA, Prates EJ. A psicologia face aos novos progressos da genética humana. PSICOLOGIA: CIÊNCIA E PROFISSÃO 2004. [DOI: 10.1590/s1414-98932004000100011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Os avanços da Genética contemporânea têm suscitado uma grande polêmica a respeito da gênese do homem e das possibilidades de agir sobre a biologia humana, repercutindo intensamente sobre os mais diversos ramos do conhecimento. Considerando a importância do tema, este texto pretende apresentar de forma sucinta os principais resultados de pesquisas sobre as bases genéticas do comportamento humano, com o foco voltado para a importância do profissional de Psicologia em questões relativas ao assunto.
Collapse
|
1061
|
Mesches MH, Gemma C, Veng LM, Allgeier C, Young DA, Browning MD, Bickford PC. Sulindac improves memory and increases NMDA receptor subunits in aged Fischer 344 rats. Neurobiol Aging 2004; 25:315-24. [PMID: 15123337 DOI: 10.1016/s0197-4580(03)00116-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2002] [Revised: 03/13/2003] [Accepted: 04/30/2003] [Indexed: 01/19/2023]
Abstract
Inflammatory processes in the central nervous system are thought to contribute to Alzheimer's disease (AD). Chronic administration of nonsteroidal anti-inflammatory drugs (NSAIDs) decreases the incidence of Alzheimer's disease. There are very few studies, however, on the cognitive impact of chronic NSAID administration. The N-methyl-d-aspartate (NMDA) receptor is implicated in learning and memory, and age-related decreases in the NMDA NR2B subunit correlate with memory deficits. Sulindac, an NSAID that is a nonselective cyclooxygenase (COX) inhibitor was chronically administered to aged Fischer 344 rats for 2 months. Sulindac, but not its non-COX active metabolite, attenuated age-related deficits in learning and memory as assessed in the radial arm water maze and contextual fear conditioning tasks. Sulindac treatment also attenuated an age-related decrease in the NR1 and NR2B NMDA receptor subunits and prevented an age-related increase in the pro-inflammatory cytokine, interleukin 1beta (IL-1beta), in the hippocampus. These findings support the inflammation hypothesis of aging and have important implications for potential cognitive enhancing effects of NSAIDs in the elderly.
Collapse
Affiliation(s)
- Michael H Mesches
- Department of Preventive Medicine and Biometrics, University of Colorado Health Sciences Center, 4200 East 9th Avenue, Denver, CO 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
1062
|
Pal R, Agbas A, Bao X, Hui D, Leary C, Hunt J, Naniwadekar A, Michaelis ML, Kumar KN, Michaelis EK. Selective dendrite-targeting of mRNAs of NR1 splice variants without exon 5: identification of a cis-acting sequence and isolation of sequence-binding proteins. Brain Res 2004; 994:1-18. [PMID: 14642443 DOI: 10.1016/j.brainres.2003.08.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Both protein and mRNA for the NR1 subunit of N-methyl-D-aspartate receptors are present in neuronal dendrites and undergo changes in distribution following synaptic excitation. However, the expression of all exonic splice variants of NR1 in dendrites has not been determined. In the present study, antibodies against the exon 5 (ex5) peptide sequence labeled proteins mostly in the soma of hippocampus neurons, whereas antibodies against ex21 or ex22 labeled cell bodies and dendrites. Antisense cRNAs for ex5 hybridized with mRNAs in cell bodies, whereas cRNAs for ex21 with mRNAs in both cell bodies and dendrites. Antisense DNA to a 24-base sequence identified as being present only in the 5'-UTR of cDNAs lacking ex5 (ex5(-)), hybridized with mRNAs in soma and dendrites and this labeling was coincident, mostly, with RNA granules. Insertion of the 24-base DNA ahead of that for enhanced green fluorescent protein (EGFP) increased the transport of EGFP mRNA and the expression of EGFP in neurites of neurons in culture. Fluorescent sense mRNA that contained the 24-base sequence bound to proteins in dendrites and to two proteins, 60 and 70 kDa, in brain microsomes. Proteins of similar size were also labeled by [32P]CTP-mRNA for NR1-(1a), which contains the 24-base 5'-UTR sequence, but not for NR1-(2b), which does not. Biotinylated 24-base sense mRNA was used to purify from brain microsomes two RNA-binding proteins (60 and 70 kDa). We concluded that the 24-base sequence in 5'-UTR of ex5(-) mRNA functioned as a cis-acting, dendrite-targeting element recognized selectively by two microsome proteins.
Collapse
Affiliation(s)
- Ranu Pal
- Department of Pharmacology and Toxicology and the Center for Neurobiology and Immunology Research, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1063
|
Abstract
Age-related memory impairment, a cognitive decline not clearly related to any gross pathology, is progressive and widespread in the population, although not universal. While the mechanisms of learning and memory remain incompletely understood, the study of their molecular mechanisms is already yielding promising approaches toward therapy for such "normal" declines in the efficiency of learning. This review presents the rationale and results for two such approaches. One approach, partial inhibition of the type IV cAMP specific phosphodiesterase, appears to act indirectly. Although little evidence supports an age-related decline in this system, considerable evidence indicates that this approach can facilitate the transition from short-term to long-term memory and thus counterbalance defects in long-term memory, which may be due to other causes. A second approach, inhibition of l-type voltage gated calcium channels (LVGCCs) may be a specific corrective for a molecular pathology of aging, as substantial evidence indicates that an ongoing increase occurs throughout the lifespan in the density of these channels in hippocampal pyramidal cells, with a concomitant reduction in cellular excitability. Because LVGCCs are also crucial to extinction, a paradigm of inhibitory learning, age-related memory impairment may be an unfortunate side effect of a developmental process necessary to the maturation of the ability to suppress inappropriate behavior, an interpretation consistent with the antagonistic pleiotropy theory of aging.
Collapse
Affiliation(s)
- Mark Barad
- Department of Psychiatry and Biobehavioral Sciences, Brain Research Institute, and Neuropsychiatric Institute, UCLA, Los Angeles, California, USA.
| |
Collapse
|
1064
|
Sandner G. Lower animal conditioning studies help in the understanding of human memory and its disorders: the merits of conditioned taste, odor, and flavor aversion research. Am J Physiol Regul Integr Comp Physiol 2004; 286:R251-3. [PMID: 14707010 DOI: 10.1152/ajpregu.00596.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
1065
|
Maayan R, Yoran-Hegesh R, Strous R, Nechmad A, Averbuch E, Weizman A, Spivak B. Three-month treatment course of methylphenidate increases plasma levels of dehydroepiandrosterone (DHEA) and dehydroepiandrosterone-sulfate (DHEA-S) in attention deficit hyperactivity disorder. Neuropsychobiology 2004; 48:111-5. [PMID: 14586159 DOI: 10.1159/000073626] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Methylphenidate is considered by many to be the treatment of choice for attention deficit hyperactivity disorder (ADHD). Methylphenidate exerts its therapeutic effects through the dopaminergic, serotonergic and noradrenergic systems, however its effects on other neurophysiological systems, such as the neurosteroidal system, remain unknown. Dehydroepiandrosterone (DHEA) and its sulfate ester (DHEA-S) are neuroactive steroids with effects on several neurophysiological and behavioral processes. The purpose of the present study was to determine the effect of 3 months of treatment with methylphenidate on circulatory DHEA, DHEA-S, and cortisol in children with ADHD. The study population consisted of 15 boys (aged 11.5 +/- 1.6 years) with ADHD, combined type. Subjects were evaluated before and after methylphenidate treatment with a specific rating scale for the assessment of inattention and impulsivity in ADHD. Results show that treatment led to significant clinical improvement in all subjects. Furthermore, following 3 months of treatment, there was a significant increase in serum levels of DHEA and DHEA-S but not in circulatory levels of cortisol. The mean rate of increase in DHEA levels was 23 and 53.6% in DHEA-S. Our findings suggest that DHEA and DHEA-S may play a role in the therapeutic effects of methylphenidate. Several mechanisms to explain this action are proposed, including involvement of the serotonergic, GABA-ergic and noradrenergic pathways.
Collapse
Affiliation(s)
- Rachel Maayan
- Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Petah Tiqva, Israel
| | | | | | | | | | | | | |
Collapse
|
1066
|
Dere E, De Souza-Silva MA, Topic B, Spieler RE, Haas HL, Huston JP. Histidine-decarboxylase knockout mice show deficient nonreinforced episodic object memory, improved negatively reinforced water-maze performance, and increased neo- and ventro-striatal dopamine turnover. Learn Mem 2004; 10:510-9. [PMID: 14657262 PMCID: PMC305466 DOI: 10.1101/lm.67603] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The brain's histaminergic system has been implicated in hippocampal synaptic plasticity, learning, and memory, as well as brain reward and reinforcement. Our past pharmacological and lesion studies indicated that the brain's histamine system exerts inhibitory effects on the brain's reinforcement respective reward system reciprocal to mesolimbic dopamine systems, thereby modulating learning and memory performance. Given the close functional relationship between brain reinforcement and memory processes, the total disruption of brain histamine synthesis via genetic disruption of its synthesizing enzyme, histidine decarboxylase (HDC), in the mouse might have differential effects on learning dependent on the task-inherent reinforcement contingencies. Here, we investigated the effects of an HDC gene disruption in the mouse in a nonreinforced object exploration task and a negatively reinforced water-maze task as well as on neo- and ventro-striatal dopamine systems known to be involved in brain reward and reinforcement. Histidine decarboxylase knockout (HDC-KO) mice had higher dihydrophenylacetic acid concentrations and a higher dihydrophenylacetic acid/dopamine ratio in the neostriatum. In the ventral striatum, dihydrophenylacetic acid/dopamine and 3-methoxytyramine/dopamine ratios were higher in HDC-KO mice. Furthermore, the HDC-KO mice showed improved water-maze performance during both hidden and cued platform tasks, but deficient object discrimination based on temporal relationships. Our data imply that disruption of brain histamine synthesis can have both memory promoting and suppressive effects via distinct and independent mechanisms and further indicate that these opposed effects are related to the task-inherent reinforcement contingencies.
Collapse
Affiliation(s)
- Ekrem Dere
- Institute of Physiological Psychology, University of Düsseldorf, D-40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
1067
|
Krapivinsky G, Krapivinsky L, Manasian Y, Ivanov A, Tyzio R, Pellegrino C, Ben-Ari Y, Clapham DE, Medina I. The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron 2004; 40:775-84. [PMID: 14622581 DOI: 10.1016/s0896-6273(03)00645-7] [Citation(s) in RCA: 353] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The NMDA subtype of glutamate receptors (NMDAR) at excitatory neuronal synapses plays a key role in synaptic plasticity. The extracellular signal-regulated kinase (ERK1,2 or ERK) pathway is an essential component of NMDAR signal transduction controlling the neuroplasticity underlying memory processes, neuronal development, and refinement of synaptic connections. Here we show that NR2B, but not NR2A or NR1 subunits of the NMDAR, interacts in vivo and in vitro with RasGRF1, a Ca(2+)/calmodulin-dependent Ras-guanine-nucleotide-releasing factor. Specific disruption of this interaction in living neurons abrogates NMDAR-dependent ERK activation. Thus, RasGRF1 serves as NMDAR-dependent regulator of the ERK kinase pathway. The specific association of RasGRF1 with the NR2B subunit and study of ERK activation in neurons with varied content of NR2B suggests that NR2B-containing channels are the dominant activators of the NMDA-dependent ERK pathway.
Collapse
Affiliation(s)
- Grigory Krapivinsky
- Howard Hughes Medical Institute, Children's Hospital, 1309 Enders Building, 320 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1068
|
Mori H, Mishina M. Roles of diverse glutamate receptors in brain functions elucidated by subunit-specific and region-specific gene targeting. Life Sci 2004; 74:329-36. [PMID: 14607261 DOI: 10.1016/j.lfs.2003.09.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutamate receptor (GluR) channels play a major role in fast excitatory synaptic transmission in vertebrate central nervous system. We revealed the molecular diversity of the GluR channel by molecular cloning and investigated their physiological roles by subunit-specific gene targeting. NMDA receptor GluRepsilon1 KO mice showed increase in thresholds for hippocampal long-term potentiation and hippocampus-dependent contextual learning. The mutant mice performed delay eyeblink conditioning, but failed to learn trace eyeblink conditioning. GluRepsilon1 mutant suffered less brain injury after focal cerebral ischemia. NMDA receptor GluRepsilon2 KO mice showed impairment of the whisker-related neural pattern formation and suckling response, and died shortly after birth. Heterozygous (+/-) GluRepsilon2 mutant mice were viable and showed enhanced startle response to acoustic stimuli. GluRdelta2, a member of novel GluR channel subfamily we found by molecular cloning, is selectively expressed in the Purkinje cells of the cerebellum. GluRdelta2 KO mice showed impairments of cerebellar synaptic plasticity and synapse stability. GluRdelta2 KO mice exhibited impairment in delay eyeblink conditioning, but learned normally trace eyeblink conditioning. The phenotypes of NMDA receptor subunits and GluRdelta2 mutant mice suggest that diverse GluR subunits play differential roles in the brain functions.
Collapse
Affiliation(s)
- Hisashi Mori
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, and SORST, Japan Science and Technology Corporation, Hongo 7-3-1, Tokyo 113-0033, Bunkyo, Japan.
| | | |
Collapse
|
1069
|
Hu JH, Ma YH, Jiang J, Yang N, Duan SH, Jiang ZH, Mei ZT, Fei J, Guo LH. Cognitive impairment in mice over-expressing γ-aminobutyric acid transporter I (GAT1). Neuroreport 2004; 15:9-12. [PMID: 15106822 DOI: 10.1097/00001756-200401190-00003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
There is increasing evidence that GABAergic system plays an important role in the neural control of learning and memory processes. GAT1 over-expressing mice (NA) were generated, in which GAT1 is under the control of a neuron-specific enolase (NSE) promoter, to investigate effects of GABA transporter on cognitive function. Our results revealed that NA mice displayed cognitive deterioration in associative learning ability and new object recognition retention, compared with the wild-type littermates (WT2). However, the impaired cognitive function of transgenic mice could be rescued after chronic administration of GAT1 selective inhibitor for 6 days. In addition, there was no change of the expression of NMDA receptors in NA mice. Taken together, we show a potentially important role for GAT1 in the neural control of cognitive processes, and indicate great potential for GAT1 as a clinical target of cognitive disorders.
Collapse
Affiliation(s)
- Jia-Hua Hu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 YueYang Road, Shanghai 200031, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
1070
|
van Dam EJM, Kamal A, Artola A, de Graan PNE, Gispen WH, Ramakers GMJ. Group I metabotropic glutamate receptors regulate the frequency-response function of hippocampal CA1 synapses for the induction of LTP and LTD. Eur J Neurosci 2004; 19:112-8. [PMID: 14750969 DOI: 10.1111/j.1460-9568.2004.03103.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synaptically released glutamate binds to ionotropic or metabotropic glutamate receptors. Metabotropic glutamate receptors (mGluRs) are G-protein-coupled receptors and can be divided into three subclasses (Group I-III) depending on their pharmacology and coupling to signal transduction cascades. Group I mGluRs are coupled to phospholipase C and are implicated in several important physiological processes, including activity-dependent synaptic plasticity, but their exact role in synaptic plasticity remains unclear. Synaptic plasticity can manifest itself as an increase or decrease of synaptic efficacy, referred to as long-term potentiation (LTP) and long-term depression (LTD). The likelihood, degree and direction of the change in synaptic efficacy depends on the history of the synapse and is referred to as 'metaplasticity'. We provide direct experimental evidence for an involvement of group I mGluRs in metaplasticity in CA1 hippocampal synapses. Bath application of a low concentration of the specific group I agonist 3,5-dihydroxyphenylglycine (DHPG), which does not affect basal synaptic transmission, resulted in a leftward shift of the frequency-response function for the induction of LTD and LTP in naïve synapses. DHPG resulted in the induction of LTP at frequencies which induced LTD in control slices. These alterations in the induction of LTD and LTP resemble the metaplastic changes observed in previously depressed synapses. In addition, in the presence of DHPG additional potentiation could be induced after LTP had apparently been saturated. These findings provide strong evidence for an involvement of group I mGluRs in the regulation of metaplasticity in the CA1 field of the hippocampus.
Collapse
Affiliation(s)
- Els J M van Dam
- Rudolf Magnus Institute of Neuroscience, UMC Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
1071
|
Adams MM, Fink SE, Janssen WGM, Shah RA, Morrison JH. Estrogen modulates synapticN-methyl-D-aspartate receptor subunit distribution in the aged hippocampus. J Comp Neurol 2004; 474:419-26. [PMID: 15174084 DOI: 10.1002/cne.20148] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Estrogen interacts with N-methyl-D-aspartate (NMDA) receptors to regulate multiple aspects of morphological and functional plasticity. In hippocampus, estrogen increases both dendritic spine density and synapse number, and NMDA antagonists block these effects. Thus, estrogen-mediated hippocampal plasticity may be of particular importance in the context of age-related changes in endocrine status and cognitive performance. NR1 levels per synapse are increased in CA1 by estrogen in aged rats but not young rats, although no information is available on estrogen-induced synaptic alterations in other NMDA receptor subunits that might impact function. Therefore, the present study was designed to investigate the effect of estrogen on the synaptic and subsynaptic distributions of the NMDA receptor subunits, NR2A and NR2B in CA1 pyramidal cells, within the context of aging. Our results demonstrated that the overall synaptic levels of NR2A and NR2B are similar in young and aged female rats, regardless of estrogen treatment. However, in the aged CA1, estrogen restores NR2B levels back to young levels in the lateral portions of the active synaptic zone. Thus, estrogen may impact the mobility of NMDA receptors across the synapse and, in the process, restore a more youthful synaptic profile. These findings have important implications for the mechanism of estrogen-induced alterations in NMDA receptor-mediated processes, particularly in the context of aging.
Collapse
Affiliation(s)
- Michelle M Adams
- Department of Geriatrics and Adult Development, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
1072
|
Meyer WN, Keifer J, Korzan WJ, Summers CH. Social stress and corticosterone regionally upregulate limbic N-methyl-d-aspartatereceptor (NR) subunit type NR2A and NR2B in the lizard anolis carolinensis. Neuroscience 2004; 128:675-84. [PMID: 15464276 DOI: 10.1016/j.neuroscience.2004.06.084] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2004] [Indexed: 11/29/2022]
Abstract
Social aggression in the lizard Anolis carolinensis produces dominant and subordinate relationships while elevating corticosterone levels and monoaminergic transmitter activity in hippocampus (medial and mediodorsal cortex). Adaptive social behavior for dominant and subordinate male A. carolinensis is learned during aggressive interaction and therefore was hypothesized to involve hippocampus and regulation of N-methyl-d-aspartate (NMDA) receptors. To test the effects of social stress and corticosterone on NMDA receptor subunits (NR), male lizards were either paired or given two injections of corticosterone 1 day apart. Paired males were allowed to form dominant-subordinate relationships and were killed 1 day later. Groups included isolated controls, dominant males, subordinate males and males injected with corticosterone. Brains were processed for glutamate receptor subunit immunohistochemistry and fluorescence was analyzed by image analysis for NR(2A) and NR(2B) in the small and large cell divisions of the medial and mediodorsal cortex. In the small granule cell division there were no significant differences in NR(2A) or NR(2B) immunoreactivity among all groups. In contrast, there was a significant upregulation of NR(2A) and NR(2B) subunits in the large pyramidal cell division in all three experimental groups as compared with controls. The results revealed significantly increased NR(2A) and NR(2B) subunits in behaving animals, whereas animals simply injected with corticosterone showed less of an effect, although they were significantly increased over control. Upregulation of NR(2) subunits occurs during stressful social interactions and is likely to be regulated in part by glucocorticoids. The data also suggest that learning social roles during stressful aggressive interactions may involve NMDA receptor-mediated mechanisms.
Collapse
Affiliation(s)
- W N Meyer
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD 57069, USA
| | | | | | | |
Collapse
|
1073
|
Quinlan EM, Lebel D, Brosh I, Barkai E. A Molecular Mechanism for Stabilization of Learning-Induced Synaptic Modifications. Neuron 2004; 41:185-92. [PMID: 14741100 DOI: 10.1016/s0896-6273(03)00874-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Olfaction is a principal sensory modality in rodents, and rats quickly learn to discriminate between odors and to associate odor with reward. Here we show that such olfactory discrimination (OD) learning consists of two phases with distinct cellular mechanisms: an initial NMDAR-sensitive phase in which the animals acquire a successful behavioral strategy (rule learning), followed by an NMDAR-insensitive phase in which the animals learn to distinguish between individual odors (pair learning). Rule learning regulates the composition of synaptic NMDARs in the piriform cortex, resulting in receptors with a higher complement of the NR2a subunit protein relative to NR2b. Rule learning also reduces long-term potentiation (LTP) induced by high-frequency stimulation of the intracortical axons in slices of piriform cortex. As NR2a-containing NMDARs mediate shorter excitatory postsynaptic currents than those containing NR2b, we suggest that learning-induced regulation of NMDAR composition constrains subsequent synaptic plasticity, thereby maintaining the memory encoded by experience.
Collapse
Affiliation(s)
- Elizabeth M Quinlan
- Department of Biology, Neuroscience and Cognitive Sciences Program, University of Maryland, College Park, 20742, USA.
| | | | | | | |
Collapse
|
1074
|
Shiflett MW, Tomaszycki ML, Rankin AZ, DeVoogd TJ. Long-Term Memory for Spatial Locations in a Food-Storing Bird (Poecile atricapilla) Requires Activation of NMDA Receptors in the Hippocampal Formation During Learning. Behav Neurosci 2004; 118:121-30. [PMID: 14979788 DOI: 10.1037/0735-7044.118.1.121] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Food-storing birds use a form of long-term memory to recover their hidden food caches that depends on the hippocampal formation (HF). The authors assessed whether food-storing birds' long-term memory for spatial locations requires N-methyl-D-aspartate receptor (NMDA-R)-dependent synaptic plasticity. Black-capped chickadees (Poecile atricapilla) were given bilateral infusions of the NMDA-R antagonist AP5 into the hippocampus, and their memory on a spatial reference memory task was assessed. NMDA-R inactivation during learning prevented formation of long-term spatial memories but did not affect short-term memory and retrieval processes. NMDA-R inactivation immediately following learning did not disrupt long-term memory formation. NMDA-R inactivation disrupted the learning of multiple serially encoded reward locations when a 180-min delay separated successive learning episodes, suggesting that NMDA-R activity has a role in the incorporation of new information into existing long-term memory, as well as in forming unitary long-term memories.
Collapse
|
1075
|
Abstract
NMDA receptors (NMDARs) are essential for modulating synaptic strength at central synapses. At hippocampal CA3-to-CA1 synapses of adult mice, different NMDAR subtypes with distinct functionality assemble from NR1 with NR2A and/or NR2B subunits. Here we investigated the role of these NMDA receptor subtypes in long-term potentiation (LTP) induction. Because of the higher NR2B contribution in the young hippocampus, LTP of extracellular field potentials could be enhanced by repeated tetanic stimulation in young but not in adult mice. Similarly, NR2B-specific antagonists reduced LTP in young but only marginally in adult wild-type mice, further demonstrating that in mature CA3-to-CA1 connections LTP induction results primarily from NR2A-type signaling. This finding is also supported by gene-targeted mutant mice expressing C-terminally truncated NR2A subunits, which participate in synaptic NMDAR channel formation and Ca2+ signaling, as indicated by immunopurified synaptic receptors, postembedding immunogold labeling, and spinous Ca2+ transients in the presence of NR2B blockers. These blockers abolished LTP in the mutant at all ages, revealing that, without the intracellular C-terminal domain, NR2A-type receptors are deficient in LTP signaling. Without NR2B blockade, CA3-to-CA1 LTP was more strongly reduced in adult than young mutant mice but could be restored to wild-type levels by repeated tetanic stimulation. Thus, besides NMDA receptor-mediated Ca2+ influx, subtype-specific signaling is critical for LTP induction, with the intracellular C-terminal domain of the NR2 subunits directing signaling pathways with an age-dependent preference.
Collapse
|
1076
|
Pathway-specific differences in subunit composition of synaptic NMDA receptors on pyramidal neurons in neocortex. J Neurosci 2003. [PMID: 14602822 DOI: 10.1523/jneurosci.23-31-10074.2003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Heterogeneity of synaptic inputs onto neocortical layer 5 pyramidal neurons could result from differences in the underlying receptors, yet previous work has shown that functional attributes of AMPA receptors are uniform among synaptic connections onto these neurons. To determine whether NMDA receptors (NMDARs) would be similarly uniform, we compared in the same pyramidal neurons pharmacologically isolated NMDAR-mediated EPSCs evoked by stimulation of two anatomically distinguishable pathways, callosal or intracortical. Based on differences in voltage dependence, decay kinetics, apparent Mg2+sensitivity, and subunit-specific (NR2A, NR2B, and NR2C/D) pharmacology, we found NMDARs at these inputs to be distinct. Furthermore, NMDARs activated by the intracortical pathway were more efficient at integrating EPSPs and bringing the neuron closer to the spike-firing threshold than the callosal pathway. These results suggest that pyramidal neurons encode information differentially depending on the origin of their neocortical inputs and that NMDAR-dependent synaptic plasticity may be pathway specific.
Collapse
|
1077
|
Lee EHY, Hsu WL, Ma YL, Lee PJ, Chao CC. Enrichment enhances the expression of sgk, a glucocorticoid-induced gene, and facilitates spatial learning through glutamate AMPA receptor mediation. Eur J Neurosci 2003; 18:2842-52. [PMID: 14656333 DOI: 10.1111/j.1460-9568.2003.03032.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously demonstrated that the serum and glucocorticoid-inducible kinase (sgk) gene plays a causal role in facilitating memory performance in rats. Environment enrichment is known to facilitate spatial learning. We therefore examined the effect of enrichment on sgk expression. We also examined the role of sgk in spatial and nonspatial learning and the regulation of sgk expression by activation of different glutamate receptors. Both real-time polymerase chain reaction and Western blot analyses revealed that enrichment training preferentially increased sgk mRNA and protein levels in the hippocampus. Transfection of sgk mutant DNA to the hippocampal CA1 area markedly impaired spatial learning, fear-conditioning learning and novel object-recognition learning in rats, but enrichment training effectively reversed these learning deficits. Meanwhile, S422A mutant DNA transfection prevented enrichment-induced spatial learning facilitation. In studying glutamate receptor regulation of sgk expression, we found that blockade of N-methyl-d-aspartate (NMDA) receptors in general, and the NR2B subunit in particular both effectively blocked enrichment-induced spatial learning facilitation, but they did not block enrichment-induced sgk expression. Upon various glutamate agonist infusions, only alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) increased sgk mRNA levels significantly in the hippocampus. Furthermore, blockade of AMPA receptors effectively blocked both enrichment-induced spatial learning facilitation and sgk expression. These results indicate that there is a dissociation between NMDA receptor activation and sgk expression. Enrichment enhanced spatial learning through both NMDA and AMPA receptor activation, whereas enrichment-induced sgk expression is specifically mediated through AMPA receptors. These results suggest that sgk could serve as a novel molecular mechanism, in addition to the NMDA receptor NR2B, underlying enrichment-induced learning facilitation.
Collapse
Affiliation(s)
- Eminy H Y Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.
| | | | | | | | | |
Collapse
|
1078
|
Kuehl-Kovarik MC, Partin KM, Magnusson KR. Acute dissociation for analyses of NMDA receptor function in cortical neurons during aging. J Neurosci Methods 2003; 129:11-7. [PMID: 12951228 DOI: 10.1016/s0165-0270(03)00196-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present study was designed to determine if functional age differences in the NMDA epsilon2 (NR2B) subunit were detectable at the level of individual cortical neurons. Neurons were acutely dissociated from the frontal and prefrontal cortices of young adult, middle-aged, or old mice, using a combination of proteinase K and trypsin followed by manual trituration. After overnight culture, patch-clamp electrophysiology and rapid perfusion were used to obtain whole-cell responses to 300 microM NMDA, with or without the potent NR2B antagonist ifenprodil. Healthy, phase-bright cortical neurons were isolated from animals of all ages. Cell diameter and capacitance was consistent between ages. We were able to perform kinetic analyses of the NMDA-evoked response, and demonstrated a significant increase in the rate of deactivation with increasing age. In addition, we observed a significant effect of high-concentration ifenprodil on the NMDA-evoked response in old animals. Thus, this method is ideal for the dissociation of neurons from the brain of both young and old animals, and offers a powerful tool for functional analysis at the level of the individual cell.
Collapse
Affiliation(s)
- M Cathleen Kuehl-Kovarik
- Department of Biomedical Sciences, Anatomy Section, Colorado State University, Fort Collins, CO 80523-1680, USA.
| | | | | |
Collapse
|
1079
|
Pérez MF, Salmirón R, Ramírez OA. NMDA-NR1 and -NR2B subunits mRNA expression in the hippocampus of rats tolerant to Diazepam. Behav Brain Res 2003; 144:119-24. [PMID: 12946602 DOI: 10.1016/s0166-4328(03)00072-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The development of tolerance to the hypolocomotor effects of Diazepam (DZ) is thought to be a contingent or learning phenomenon. In previous reports, we demonstrated a positive correlation between the development of tolerance to the sedative effects of DZ and hippocampal synaptic plasticity. Furthermore, previous exposure to the drug administration context blocks both the tolerance to sedative effects of DZ and the increased hippocampal plasticity. The results of the present investigation show that the development of tolerance to hypolocomotor action of DZ (5 mg/kg/day) for 4 days results in a significant increase in the hybridization signals for mRNA for N-methyl-D-aspartate (NMDA) glutamatergic receptor NR1 and NR2B subunits in the hippocampal dentate gyrus. Furthermore, we have observed more benzodiazepine binding sites in the hippocampus of non-tolerant animals. We conclude that the increased hippocampal synaptic efficacy in DZ tolerant rats, may be NMDA receptor dependent due to an increased recombinant NR1-NR2B complex observed in the hippocampal formation of tolerant rats.
Collapse
Affiliation(s)
- Mariela F Pérez
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | | | | |
Collapse
|
1080
|
Abstract
The NMDA receptor (NMDAR) plays a central role in the function of excitatory synapses. Recent studies have provided interesting insights into several aspects of the trafficking of this receptor in neurons. The NMDAR is not a static resident of the synapse. Rather, the number and composition of synaptic NMDARs can be modulated by several factors. The interaction of PDZ proteins, generally thought to occur at the synapse, appears to occur early in the secretory pathway; this interaction may play a role in the assembly of the receptor complex and its exit from the endoplasmic reticulum. This review addresses recent advances in our understanding of NMDAR trafficking and its synaptic delivery and maintenance.
Collapse
Affiliation(s)
- Robert J Wenthold
- Laboratory of Neurochemistry, NIDCD, NIH, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
1081
|
Abstract
Human performance on diverse tests of intellect are impacted by a "general" regulatory factor that accounts for up to 50% of the variance between individuals on intelligence tests. Neurobiological determinants of general cognitive abilities are essentially unknown, owing in part to the paucity of animal research wherein neurobiological analyses are possible. We report a methodology with which we have assessed individual differences in the general learning abilities of laboratory mice. Abilities of mice on tests of associative fear conditioning, operant avoidance, path integration, discrimination, and spatial navigation were assessed. Tasks were designed so that each made unique sensory, motor, motivational, and information processing demands on the animals. A sample of 56 genetically diverse outbred mice (CD-1) was used to assess individuals' acquisition on each task. Indicative of a common source of variance, positive correlations were found between individuals' performance on all tasks. When tested on multiple test batteries, the overall performance ranks of individuals were found to be highly reliable and were "normally" distributed. Factor analysis of learning performance variables determined that a single factor accounted for 38% of the total variance across animals. Animals' levels of native activity and body weights accounted for little of the variability in learning, although animals' propensity for exploration loaded strongly (and was positively correlated) with learning abilities. These results indicate that diverse learning abilities of laboratory mice are influenced by a common source of variance and, moreover, that the general learning abilities of individual mice can be specified relative to a sample of peers.
Collapse
|
1082
|
Law AJ, Weickert CS, Webster MJ, Herman MM, Kleinman JE, Harrison PJ. Expression of NMDA receptor NR1, NR2A and NR2B subunit mRNAs during development of the human hippocampal formation. Eur J Neurosci 2003; 18:1197-205. [PMID: 12956718 DOI: 10.1046/j.1460-9568.2003.02850.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The N-methyl-d-aspartate receptor plays a critical role in the formation and maintenance of synapses during brain development. In the rodent, changes in subunit expression and assembly of the heteromeric receptor complex accompany these maturational processes. However, little is known about N-methyl-d-aspartate receptor subunit expression during human brain development. We used in situ hybridization to examine the distribution and relative abundance of NR1, NR2A and NR2B subunit messenger ribonucleic acids in the hippocampal formation and adjacent cortex of 34 human subjects at five stages of life (neonate, infant, adolescent, young adult and adult). At all ages, the three messenger ribonucleic acids were expressed in all subfields, predominantly by pyramidal neurons, granule cells and polymorphic hilar cells. However, their abundance varied across ontogeny. Levels of NR1 messenger ribonucleic acid in CA4, CA3 and CA2 subfields were significantly lower in the neonate than all other age groups. In the dentate gyrus, subiculum and parahippocampal gyrus, NR2B messenger ribonucleic acid levels were higher in the neonate than in older age groups. NR2A messenger ribonucleic acid levels remained constant, leading to an age-related increase in NR2A/2B transcript ratio. We conclude that N-methyl-d-aspartate receptor subunit messenger ribonucleic acids are differentially expressed during postnatal development of the human hippocampus, with a pattern similar but not identical to that seen in the rodent. Changes in subunit composition may thus contribute to maturational differences in human hippocampal N-methyl-d-aspartate receptor function, and to their role in the pathophysiology of schizophrenia and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Amanda J Law
- Department of Psychiatry, University of Oxford, Neurosciences Building, Warneford Hospital, Oxford OX3 7JX, UK.
| | | | | | | | | | | |
Collapse
|
1083
|
Varas MM, Pérez MF, Ramírez OA, de Barioglio SR. Increased susceptibility to LTP generation and changes in NMDA-NR1 and -NR2B subunits mRNA expression in rat hippocampus after MCH administration. Peptides 2003; 24:1403-11. [PMID: 14706556 DOI: 10.1016/j.peptides.2003.09.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The present study attempts to determine which mechanisms underlie the retrograde facilitation of memory induced by microinjection hippocampal melanin-concentrating hormone (MCH) on the inhibitory avoidance paradigm. Previous reports using this test on the hippocampus suggest that NMDA receptor-mediated mechanisms are involved in memory processing and are also necessary for the induction of long-term potentiation (LTP) of the hippocampal dentate gyrus. In addition, alterations in expression of synaptic NMDA subunits in the hippocampus have been associated with memory formation of an inhibitory avoidance task. We have studied the effects of the neuropeptide upon the electrophysiological parameters using hippocampal slices from rats injected with the peptide and tested in step-down tests as well as possible changes in the mRNA expression of NMDA receptor subunits. We postulate that the increased facility to induce LTP, and the overexpression of this N-methyl-D-aspartate mRNA receptor subunits induced by MCH, could be behind the retrograde facilitation observed after MCH hippocampal microinjection.
Collapse
Affiliation(s)
- Mariana Marcela Varas
- Departamento de Farmacología, Facultad de Ciencias Químicas, Haya de La Torre esq. Medina Allende, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.
| | | | | | | |
Collapse
|
1084
|
Chen A, Muzzio IA, Malleret G, Bartsch D, Verbitsky M, Pavlidis P, Yonan AL, Vronskaya S, Grody MB, Cepeda I, Gilliam TC, Kandel ER. Inducible enhancement of memory storage and synaptic plasticity in transgenic mice expressing an inhibitor of ATF4 (CREB-2) and C/EBP proteins. Neuron 2003; 39:655-69. [PMID: 12925279 DOI: 10.1016/s0896-6273(03)00501-4] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To examine the role of C/EBP-related transcription factors in long-term synaptic plasticity and memory storage, we have used the tetracycline-regulated system and expressed in the forebrain of mice a broad dominant-negative inhibitor of C/EBP (EGFP-AZIP), which preferentially interacts with several inhibiting isoforms of C/EBP. EGFP-AZIP also reduces the expression of ATF4, a distant member of the C/EBP family of transcription factors that is homologous to the Aplysia memory suppressor gene ApCREB-2. Consistent with the removal of inhibitory constraints on transcription, we find an increase in the pattern of gene transcripts in the hippocampus of EGFP-AZIP transgenic mice and both a reversibly enhanced hippocampal-based spatial memory and LTP. These results suggest that several proteins within the C/EBP family including ATF4 (CREB-2) act to constrain long-term synaptic changes and memory formation. Relief of this inhibition lowers the threshold for hippocampal-dependent long-term synaptic potentiation and memory storage in mice.
Collapse
Affiliation(s)
- Amy Chen
- Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1085
|
Selectively reduced expression of synaptic plasticity-related genes in amyloid precursor protein + presenilin-1 transgenic mice. J Neurosci 2003. [PMID: 12832546 DOI: 10.1523/jneurosci.23-12-05219.2003] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A critical question in Alzheimer's disease (AD) research is the cause of memory loss that leads to dementia. The amyloid precursor protein + presenilin-1 (APP+PS1) transgenic mouse is a model for amyloid deposition, and like AD, the mice develop memory deficits as amyloid deposits accumulate. We profiled gene expression in these transgenic mice by microarray and quantitative RT-PCR (qRT-PCR). At the age when these animals developed cognitive dysfunction, they had reduced mRNA expression of several genes essential for long-term potentiation and memory formation (Arc, Zif268, NR2B, GluR1, Homer-1a, Nur77/TR3). These changes appeared to be related to amyloid deposition, because mRNA expression was unchanged in the regions that did not accumulate amyloid. Transgene expression was similar in both amyloid-containing and amyloid-free regions of the brain. Interestingly, these changes occurred without apparent changes in synaptic structure, because a number of presynaptic marker mRNAs (growth-associated protein-43, synapsin, synaptophysin, synaptopodin, synaptotagmin, syntaxin) remained stable. Additionally, a number of genes related to inflammation were elevated in transgenic mice, primarily in the regions containing amyloid. In AD cortical tissue, the same memory-associated genes were downregulated. However, all synaptic and neuronal transcripts were reduced, implying that the loss of neurons and synapses contributed to these changes. We conclude that reduced expression of selected genes associated with memory consolidation are linked to memory loss in both circumstances. This suggests that the memory loss in APP+PS1 transgenic mice may model the early memory dysfunction in AD before the degeneration of synapses and neurons.
Collapse
|
1086
|
Mamiya T, Yamada K, Miyamoto Y, König N, Watanabe Y, Noda Y, Nabeshima T. Neuronal mechanism of nociceptin-induced modulation of learning and memory: involvement of N-methyl-D-aspartate receptors. Mol Psychiatry 2003; 8:752-65. [PMID: 12888804 DOI: 10.1038/sj.mp.4001313] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2002] [Revised: 08/23/2002] [Accepted: 12/08/2002] [Indexed: 11/08/2022]
Abstract
Nociceptin (also called orphanin FQ) is an endogenous heptadecapeptide that activates the opioid receptor-like 1 (ORL1) receptor. Nociceptin system not only affects the nociception and locomotor activity, but also regulates learning and memory in rodents. We have previously reported that long-term potentiation and memory of ORL1 receptor knockout mice are enhanced compared with those in wild-type mice. Here, we show the neuronal mechanism of nociceptin-induced modulation of learning and memory. Retention of fear-conditioned contextual memory was significantly enhanced in the ORL1 receptor knockout mice without any changes in cued conditioned freezing. Inversely, in the wild-type mice retention of contextual, but not cued, conditioning freezing behavior was suppressed by exogenous nociceptin when it was administered into the cerebroventricle immediately after the training. ORL1 receptor knockout mice exhibited a hyperfunction of N-methyl-D-aspartate (NMDA) receptor, as evidenced by an increase in [3H]MK-801 binding, NMDA-evoked 45Ca2+ uptake and activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity and its phosphorylation as compared with those in wild-type mice. The NMDA-induced CaMKII activation in the hippocampal slices of wild-type mice was significantly inhibited by exogenous nociceptin via a pertussis toxin-sensitive pathway. However, the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor GluR1 subunit at Ser831 and Ser845, and NMDA receptor subunit NR2B at Thr286 were phosphorylated similarly after NMDA receptor stimulation in both type of mice. The expressions of GluR1 and GluR2 also did not change, but the levels of polysialylated form of neuronal cell adhesion molecule (N-CAM) were reduced in the ORL1 receptor knockout as compared with wild-type mice. These results suggest that nociceptin system negatively modulates learning and memory through the regulation of NMDA receptor function and the expression of N-CAM.
Collapse
Affiliation(s)
- T Mamiya
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
1087
|
Schröder N, O'Dell SJ, Marshall JF. Neurotoxic methamphetamine regimen severely impairs recognition memory in rats. Synapse 2003; 49:89-96. [PMID: 12740864 DOI: 10.1002/syn.10210] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Methamphetamine (mAMPH), when administered repeatedly to rodents or primates, is neurotoxic to some cortical neurons and to forebrain dopaminergic and serotonergic axon terminals. The aim of the present study was to investigate the effects of a neurotoxic regimen of mAMPH on two hippocampus-dependent memory tasks: object recognition, a nonspatial memory task, and the Morris water maze, a spatial memory task. Male rats were treated with mAMPH (4 x 4.0 mg/kg, s.c.) or saline and trained in the object recognition task 1 week and 3 weeks later. During training, animals explored two identical copies of the same object. In retention test sessions one of the objects was replaced by a novel object. mAMPH-treated rats showed no recognition memory during the short-term memory (STM) test, given 90 min after the training session, and showed marked impairments in the long-term memory (LTM) test, given 24 h after training. Even 3 weeks after drug injections, the mAMPH-treated animals were unable to discriminate between the novel and familiar objects during both STM and LTM tests. Despite the severe deficits observed in the recognition memory, no effects of prior mAMPH treatment were seen in the water maze task. Damage to monoamine terminals was confirmed by significant 30-40% losses of [(125)I]RTI-55 binding to striatal dopamine transporter and hippocampal serotonin transporter sites at both 1 and 3 weeks after mAMPH treatments. Thus, administration of mAMPH restricted to a single day can produce a profound, persistent, and selective deficit in a nonspatial hippocampus-dependent memory.
Collapse
Affiliation(s)
- Nadja Schröder
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697, USA
| | | | | |
Collapse
|
1088
|
Andersen JM, Fonnum F, Myhrer T. D-Serine alleviates retrograde amnesia of a visual discrimination task in rats with a lesion of the perirhinal cortex. Brain Res 2003; 979:240-4. [PMID: 12850593 DOI: 10.1016/s0006-8993(03)02894-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
D-Serine has been suggested to be a potent endogenous glycine-site agonist on the N-methyl-D-aspartate receptor, thereby having a potential role in the process of learning and memory. In rats, perirhinal cortex (PC) constitutes a particularly important structure for mnemonic processing, and damage to this area induces both anterograde and retrograde amnesia. In the present work, we show that intraperitoneal administration of 1000 mg/kg D-serine immediately after bilateral lesion of PC produced complete restoration of retrograde memory in rats, measured by a visual brightness discrimination task, while a higher dose (3000 mg/kg) did not show any reliable effect. Uptake of the drug into the brain was confirmed using high performance liquid chromatography (HPLC).
Collapse
Affiliation(s)
- Jannike M Andersen
- Norwegian Defence Research Establishment, Division for Protection and Material, N-2027, Kjeller, Norway.
| | | | | |
Collapse
|
1089
|
Matynia A, Kushner SA, Silva AJ. Genetic approaches to molecular and cellular cognition: a focus on LTP and learning and memory. Annu Rev Genet 2003; 36:687-720. [PMID: 12429705 DOI: 10.1146/annurev.genet.36.062802.091007] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Long-term potentiation (LTP) is the predominant experimental model for the synaptic plasticity mechanisms thought to underlie learning and memory. This review is focused on the contributions of genetics to the understanding of the role of LTP in learning and memory. These studies have used a combination of genetics, molecular biology, neurophysiology, and psychology to demonstrate that molecular mechanisms of synaptic plasticity are critical for learning and memory. Because of the large scope of this literature, we focus primarily on genetic studies of hippocampal-dependent learning. Altogether, these findings not only demonstrate a role for plasticity in learning, they also lay down the foundations for the new field of molecular and cellular cognition.
Collapse
Affiliation(s)
- Anna Matynia
- Department of Neurobiology, Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
1090
|
Williams JM, Guévremont D, Kennard JTT, Mason-Parker SE, Tate WP, Abraham WC. Long-term regulation of N-methyl-D-aspartate receptor subunits and associated synaptic proteins following hippocampal synaptic plasticity. Neuroscience 2003; 118:1003-13. [PMID: 12732245 DOI: 10.1016/s0306-4522(03)00028-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Synaptic plasticity in the dentate gyrus is dependent on activation of the N-methyl-D-aspartate (NMDA)-subtype of glutamate receptors. In this study, we show that synaptic plasticity in turn regulates NMDA receptors, since subunits of the NMDA receptor complex are bidirectionally and independently regulated in the dentate gyrus following activation of perforant synapses in awake animals. Low-frequency stimulation that produced a mild synaptic depression resulted in a decrease in the NMDA receptor subunits NR1 and NR2B 48 h following stimulation. High-frequency stimulation that produced long-term potentiation resulted in an increase in NR1 and NR2B at the same time point. Further investigations revealed that in contrast to NR2B, NR1 levels increased gradually after long-term potentiation induction, reaching a peak level at 48 h, and were insensitive to the competitive NMDA receptor antagonist 3-3(2-carboxypiperazin-4-yl) propyl-1-phosphate. The increased levels of NR1 and NR2B at 48 h were found associated with synaptic membranes and with increased NMDA receptor-associated proteins, postsynaptic density protein 95, neuronal nitric oxide synthase and Ca(2+)/calmodulin-dependent protein kinase II, alpha subunit. These data suggest that the persistence of long-term potentiation is associated with an increase in the number of NMDA receptor complexes, which may be indicative of an increase in synaptic contact area.
Collapse
Affiliation(s)
- J M Williams
- Department of Anatomy and Structural Biology, Otago School of Medical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand.
| | | | | | | | | | | |
Collapse
|
1091
|
Miyatake R, Furukawa A, Suwaki H. Identification of a novel variant of the human NR2B gene promoter region and its possible association with schizophrenia. Mol Psychiatry 2003; 7:1101-6. [PMID: 12476325 DOI: 10.1038/sj.mp.4001152] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2002] [Revised: 03/07/2002] [Accepted: 05/07/2002] [Indexed: 11/09/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptor dysfunction is involved in the pathogenesis of schizophrenia. We determined the nucleotide sequence of the 5'-upstream region of the human NMDA receptor 2B (NR2B) subunit gene and identified a novel T-200G variant located in one of the Sp1 binding sites. To investigate the effect of this variant on the transcriptional activity of the hNR2B gene, we performed gene reporter assays using PC12 pheochromocytoma cells transiently transfected with luciferase reporter plasmids. In the absence of nerve growth factor (NGF), luciferase activities did not significantly differ between the two alleles and the control plasmid. However, luciferase reporter activity of the T allele was significantly up-regulated compared to that of the G allele in the presence of NGF (P = 0.0013), indicating that this polymorphic site is a critical region for NR2B gene regulation through NGF-induced Sp1-binding. A case control study showed that the frequency of the G allele (P = 0.0164) was significantly higher in 100 schizophrenics than in 100 controls. These findings suggest that the T-200G variant causes dysfunction of NMDA receptors consisting of the NR2B subunit and may be involved in the development of schizophrenia. Replication studies of independent samples and family-based association studies are necessary to further evaluate the significance of our findings.
Collapse
Affiliation(s)
- R Miyatake
- Department of Neuropsychiatry, Faculty of Medicine, Kagawa Medical University, Kagawa, Japan.
| | | | | |
Collapse
|
1092
|
Lee PR, Brady D, Koenig JI. Corticosterone alters N-methyl-D-aspartate receptor subunit mRNA expression before puberty. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 115:55-62. [PMID: 12824055 DOI: 10.1016/s0169-328x(03)00180-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stress and stress hormones alter the expression of mRNA for the NR1, NR2A and NR2B subunits of the N-methyl-D-aspartate (NMDA) receptor in brain regions associated with the stress response. Early life stress contributes to the risk and pathophysiology of mental illness. Examining how stress hormones modulate NMDA receptor subunit gene expression before and after pubertal onset will further contribute to the understanding of how stress during adolescence relates to adult mental illness. Using in situ hybridization histochemistry, we measured NR1, NR2A and NR2B mRNA expression in the hippocampus and in the hypothalamic paraventricular nucleus (PVN) of rats that had undergone adrenalectomy (ADX) or sham surgery before or after puberty. Some ADX rats received corticosterone pellets that released either normal or stress levels of corticosterone for 14 days prior to sacrifice. There was a significant increase in NR1 subunit mRNA expression throughout the subfields of the hippocampus and in the PVN of ADX prepubertal rats. However, similar changes in hippocampal NR1 expression were not observed in postpubertal ADX rats. Pre- and postpubertal ADX rats implanted with a high-dose corticosterone pellet had decreased expression of PVN NR1 mRNA. Only prepubertal rats had an increase in dentate gyrus NR2A mRNA and CA3 region NR2B mRNA following high-dose replacement. These results provide evidence that glucocorticoids have differential effects on the regional expression of mRNA NMDA receptor subunits and elucidate a window during adolescence in which the NR1, NR2A and NR2B genes are responsive to glucocorticoids.
Collapse
Affiliation(s)
- Paul R Lee
- Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD, USA.
| | | | | |
Collapse
|
1093
|
Ferguson SM, Norton CS, Watson SJ, Akil H, Robinson TE. Amphetamine-evoked c-fos mRNA expression in the caudate-putamen: the effects of DA and NMDA receptor antagonists vary as a function of neuronal phenotype and environmental context. J Neurochem 2003; 86:33-44. [PMID: 12807422 DOI: 10.1046/j.1471-4159.2003.01815.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dopamine (DA) and glutamate neurotransmission is thought to be critical for psychostimulant drugs to induce immediate early genes (IEGs) in the caudate-putamen (CPu). We report here, however, that the ability of DA and glutamate NMDA receptor antagonists to attenuate amphetamine-evoked c-fos mRNA expression in the CPu depends on environmental context. When given in the home cage, amphetamine induced c-fos mRNA expression predominately in preprodynorphin and preprotachykinin mRNA-containing neurons (Dyn-SP+ cells) in the CPu. In this condition, all of the D1R, D2R and NMDAR antagonists tested dose-dependently decreased c-fos expression in Dyn-SP+ cells. When given in a novel environment, amphetamine induced c-fos mRNA in both Dyn-SP+ and preproenkephalin mRNA-containing neurons (Enk+ cells). In this condition, D1R and non-selective NMDAR antagonists dose-dependently decreased c-fos expression in Dyn-SP+ cells, but neither D2R nor NR2B-selective NMDAR antagonists had no effect. Furthermore, amphetamine-evoked c-fos expression in Enk+ cells was most sensitive to DAR and NMDAR antagonism; the lowest dose of every antagonist tested significantly decreased c-fos expression only in these cells. Finally, novelty-stress also induced c-fos expression in both Dyn-SP+ and Enk+ cells, and this was relatively resistant to all but D1R antagonists. We suggest that the mechanism(s) by which amphetamine evokes c-fos expression in the CPu varies depending on the stimulus (amphetamine vs. stress), the striatal cell population engaged (Dyn-SP+ vs. Enk+ cells), and environmental context (home vs. novel cage).
Collapse
Affiliation(s)
- Susan M Ferguson
- Neuroscience Program, University of Michigan, Ann Arbor 48109, USA
| | | | | | | | | |
Collapse
|
1094
|
Abstract
Synaptic plasticity was recently shown to depend on the relative timing of the pre- and postsynaptic spikes. This article analytically derives a spike-dependent learning rule based on the principle of information maximization for a single neuron with spiking inputs. This rule is then transformed into a biologically feasible rule, which is compared to the experimentally observed plasticity. This comparison reveals that the biological rule increases information to a near-optimal level and provides insights into the structure of biological plasticity. It shows that the time dependency of synaptic potentiation should be determined by the synaptic transfer function and membrane leak. Potentiation consists of weight-dependent and weight-independent components whose weights are of the same order of magnitude. It further suggests that synaptic depression should be triggered by rare and relevant inputs but at the same time serves to unlearn the baseline statistics of the network's inputs. The optimal depression curve is uniformly extended in time, but biological constraints that cause the cell to forget past events may lead to a different shape, which is not specified by our current model. The structure of the optimal rule thus suggests a computational account for several temporal characteristics of the biological spike-timing-dependent rules.
Collapse
Affiliation(s)
- Gal Chechik
- Interdisciplinary Center for Neural Computation, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
1095
|
Dik MG, Pluijm SMF, Jonker C, Deeg DJH, Lomecky MZ, Lips P. Insulin-like growth factor I (IGF-I) and cognitive decline in older persons. Neurobiol Aging 2003; 24:573-81. [PMID: 12714114 DOI: 10.1016/s0197-4580(02)00136-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Insulin-like growth factor I (IGF-I) deficiency may be involved in cognitive deficits seen with aging, and in neurodegenerative diseases such as Alzheimer's disease. The objective of this study was to investigate whether IGF-I is associated with cognitive performance and 3-year cognitive decline in 1318 subjects, aged 65-88 years. Cross-sectionally, IGF-I was directly related to information processing speed, memory, fluid intelligence, and Mini-Mental State Examination (MMSE) score, but these associations did not remain significant after adjustment for age and other factors. Analysis in quintiles of IGF-I revealed a threshold effect of low IGF-I on information processing speed, with lower speed in subjects in the lowest quintile of IGF-I (<9.4 nmol/l)(1) versus those in the other four quintiles (fully adjusted B=-0.89; 95% CI, -1.72 to -0.05). This threshold of low IGF-I was also observed for 3-year decline in information processing speed (adjusted RR=1.78; 95% CI, 1.19-2.68). In summary, this study suggests that IGF-I levels below 9.4 nmol/l are negatively associated with both the level and decline of information processing speed.
Collapse
Affiliation(s)
- Miranda G Dik
- Institute for Research in Extramural Medicine (EMGO Institute), VU University Medical Center, 1081 BT, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
1096
|
Froc DJ, Eadie B, Li AM, Wodtke K, Tse M, Christie BR. Reduced synaptic plasticity in the lateral perforant path input to the dentate gyrus of aged C57BL/6 mice. J Neurophysiol 2003; 90:32-8. [PMID: 12634277 DOI: 10.1152/jn.00105.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hippocampal slices obtained from C57BL/6 mice (3-25 mo) were used to investigate the effects of aging on excitatory postsynaptic potentials (EPSPs) elicited in dentate gyrus with lateral perforant path stimulation. The maximal amplitude of the EPSP, as well as the degree of paired-pulse facilitation, was significantly reduced in animals aged 12 mo or more compared with younger animals (<12 mo). Although all animals showed equivalent short-term potentiation (STP) in response to high-frequency stimulation, this did not translate into a long-lasting increase in synaptic efficacy in the older animals. A significant degree of long-term potentiation (LTP) of synaptic efficacy was only observed in animals <12 mo of age when measured 30 min after induction. Blocking GABAA-mediated inhibition significantly enhanced STP in younger and older animals; however, a significant degree of LTP was again only observed in slices taken from younger animals. These data indicate that the lateral perforant path input to the dentate gyrus is altered by the aging process, and that this results in a reduction in the capacity of this input to exhibit long-lasting synaptic plasticity.
Collapse
Affiliation(s)
- David J Froc
- Department of Psychology, The Neuroscience Program and The Brain Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | | | | | | | |
Collapse
|
1097
|
Jeon D, Yang YM, Jeong MJ, Philipson KD, Rhim H, Shin HS. Enhanced learning and memory in mice lacking Na+/Ca2+ exchanger 2. Neuron 2003; 38:965-76. [PMID: 12818181 DOI: 10.1016/s0896-6273(03)00334-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The plasma membrane Na(+)/Ca(2+) exchanger (NCX) plays a role in regulation of intracellular Ca(2+) concentration via the forward mode (Ca(2+) efflux) or the reverse mode (Ca(2+) influx). To define the physiological function of the exchanger in vivo, we generated mice deficient for NCX2, the major isoform in the brain. Mutant hippocampal neurons exhibited a significantly delayed clearance of elevated Ca(2+) following depolarization. The frequency threshold for LTP and LTD in the hippocampal CA1 region was shifted to a lowered frequency in the mutant mice, thereby favoring LTP. Behaviorally, the mutant mice exhibited enhanced performance in several hippocampus-dependent learning and memory tasks. These results demonstrate that NCX2 can be a temporal regulator of Ca(2+) homeostasis and as such is essential for the control of synaptic plasticity and cognition.
Collapse
Affiliation(s)
- Daejong Jeon
- National Creative Research Initiative Center for Calcium & Learning, Korea Institute of Science and Technology, 136-791, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
1098
|
Bredy TW, Humpartzoomian RA, Cain DP, Meaney MJ. Partial reversal of the effect of maternal care on cognitive function through environmental enrichment. Neuroscience 2003; 118:571-6. [PMID: 12699791 DOI: 10.1016/s0306-4522(02)00918-1] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Maternal care influences hippocampal development in the rat. The offspring of mothers that exhibit increased levels of pup licking/grooming and arched-back nursing (High LG-ABN mothers) show increased hippocampal N-methyl-D-aspartate (NMDA) receptor binding and enhanced hippocampal-dependent spatial learning. In these studies we examined whether environmental enrichment from days 22-70 of life might reverse the effects of low maternal care. Environmental enrichment eliminated the differences between the offspring of High and Low LG-ABN mothers in both Morris water maze learning and object recognition. However, enrichment did not reverse the effect of maternal care on long-term potentiation in the dentate gyrus or on hippocampal NMDA receptor binding. In contrast, peripubertal enrichment did reverse the effects of maternal care on hippocampal alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor binding. These findings provide evidence for the reversal of the effects of reduced maternal investment in early life on cognitive function in adulthood. Such effects might involve compensatory changes associated with peripubertal enrichment.
Collapse
Affiliation(s)
- T W Bredy
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, 6875 Boulevard LaSalle, Montreal, Canada H4H 1R3
| | | | | | | |
Collapse
|
1099
|
Barceló-Coblijn G, Kitajka K, Puskás LG, Hogyes E, Zvara A, Hackler L, Farkas T. Gene expression and molecular composition of phospholipids in rat brain in relation to dietary n-6 to n-3 fatty acid ratio. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1632:72-9. [PMID: 12782153 DOI: 10.1016/s1388-1981(03)00064-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rats were fed from conception till adulthood either with normal rat chow with a linoleic (LA) to linolenic acid (LNA) ratio of 8.2:1 or a rat chow supplemented with a mixture of perilla and soy bean oil giving a ratio of LA to LNA of 4.7:1. Fat content of the feed was 5%. Fatty acid and molecular species composition of ethanolamine phosphoglyceride was determined. Effect of this diet on gene expression was also studied. There was an accumulation of docosahexaenoic (DHA) and arachidonic acids (AA) in brains of the experimental animals. Changes in the ratio sn-1 saturated, sn-2 docosahexaenoic to sn-1 monounsaturated, sn-2 docosahexaenoic were observed. Twenty genes were found overexpressed in response to the 4.7:1 mixture diet and four were found down-regulated compared to normal rat chow. Among them were the genes related to energy household, lipid metabolism and respiration. The degree of up-regulation exceeded that observed with perilla with a ratio of LA to LNA 8.2:1 [Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 2619]. It was concluded that brain sensitively reacts to the fatty acid composition of the diet. It was suggested that alteration in membrane architecture and function coupled with alterations in gene expression profiles may contribute to the observed beneficial impact of n-3 type polyunsaturated fatty acids on cognitive functions.
Collapse
Affiliation(s)
- Gwendolyn Barceló-Coblijn
- Biological Research Center, Institute of Biochemistry, Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
1100
|
Sandi C, Davies HA, Cordero MI, Rodriguez JJ, Popov VI, Stewart MG. Rapid reversal of stress induced loss of synapses in CA3 of rat hippocampus following water maze training. Eur J Neurosci 2003; 17:2447-56. [PMID: 12814376 DOI: 10.1046/j.1460-9568.2003.02675.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The impact was examined of exposing rats to two life experiences of a very different nature (stress and learning) on synaptic structures in hippocampal area CA3. Rats were subjected to either (i) chronic restraint stress for 21 days, and/or (ii) spatial training in a Morris water maze. At the behavioural level, restraint stress induced an impairment of acquisition of the spatial response. Moreover, restraint stress and water maze training had contrasting impacts on CA3 synaptic morphometry. Chronic stress induced a loss of simple asymmetric synapses [those with an unperforated postsynaptic density (PSD)], whilst water maze learning reversed this effect, promoting a rapid recovery of stress-induced synaptic loss within 2-3 days following stress. In addition, in unstressed animals a correlation was found between learning efficiency and the density of synapses with an unperforated PSD: the better the performance in the water maze, the lower the synaptic density. Water maze training increased the number of perforated synapses (those with a segmented PSD) in CA3, both in stressed and, more notably, in unstressed rats. The distinct effects of stress and learning on CA3 synapses reported here provide a neuroanatomical basis for the reported divergent effects of these experiences on hippocampal synaptic activity, i.e. stress as a suppressor and learning as a promoter of synaptic plasticity.
Collapse
Affiliation(s)
- Carmen Sandi
- Dept of Psychobiology, Universidad Nacional de Educacion a Distancia, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|