1051
|
Ahmad R, Majhi SM, Zhang X, Swager TM, Salama KN. Recent progress and perspectives of gas sensors based on vertically oriented ZnO nanomaterials. Adv Colloid Interface Sci 2019; 270:1-27. [PMID: 31154073 DOI: 10.1016/j.cis.2019.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 05/03/2019] [Accepted: 05/14/2019] [Indexed: 10/26/2022]
Abstract
Vertically oriented zinc oxide (ZnO) nanomaterials, such as nanorods (NRs), nanowires (NWs), nanotubes (NTs), nanoneedles (NNs), and nanosheets (NSs), are highly ordered architectures that provide remarkable properties for sensors. Furthermore, these nanostructures have fascinating features, including high surface-area-to-volume ratios, high charge carrier concentrations, and many surface-active sites. These features make vertically oriented ZnO nanomaterials exciting candidates for gas sensor fabrication. The development of efficient methods for the production of vertically oriented nanomaterial electrode surfaces has resulted in improved stability, high reproducibility, and gas sensing performance. Moving beyond conventional fabrication processes that include binders and nanomaterial deposition steps has been crucial, as the materials from these processes suffer from poor stability, low reproducibility, and marginal sensing performance. In this feature article, we comprehensively describe vertically oriented ZnO nanomaterials for gas sensing applications. The uses of such nanomaterials for gas sensor fabrication are discussed in the context of ease of growth, stability on an electrode surface, growth reproducibility, and enhancements in device efficiency as a result of their unique and advantageous features. In addition, we summarize applications of gas sensors for a variety of toxic and volatile organic compound (VOC) gases, and we discuss future directions of the vertically oriented ZnO nanomaterials.
Collapse
|
1052
|
Molina GA, Esparza R, López-Miranda JL, Hernández-Martínez AR, España-Sánchez BL, Elizalde-Peña EA, Estevez M. Green synthesis of Ag nanoflowers using Kalanchoe Daigremontiana extract for enhanced photocatalytic and antibacterial activities. Colloids Surf B Biointerfaces 2019; 180:141-149. [DOI: 10.1016/j.colsurfb.2019.04.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/15/2019] [Accepted: 04/20/2019] [Indexed: 11/16/2022]
|
1053
|
Farzin L, Shamsipur M, Samandari L, Sheibani S. HIV biosensors for early diagnosis of infection: The intertwine of nanotechnology with sensing strategies. Talanta 2019; 206:120201. [PMID: 31514868 DOI: 10.1016/j.talanta.2019.120201] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022]
Abstract
Human immunodeficiency virus (HIV) is a lentivirus that leads to acquired immunodeficiency syndrome (AIDS). With increasing awareness of AIDS emerging as a global public health threat, different HIV testing kits have been developed to detect antibodies (Ab) directed toward different parts of HIV. A great limitation of these tests is that they can not detect HIV antibodies during early virus infection. Therefore, to overcome this challenge, a wide range of biosensors have been developed for early diagnosis of HIV infection. A significant amount of these studies have been focused on the application of nanomaterials for improving the sensitivity and accuracy of the sensing methods. Following an introduction into this field, a first section of this review covers the synthesis and applicability of such nanomaterials as metal nanoparticles (NPs), quantum dots (QDs), carbon-based nanomaterials and metal nanoclusters (NCs). A second larger section covers the latest developments concerning nanomaterial-based biosensors for HIV diagnosis, with paying a special attention to the determination of CD4+ cells as a hall mark of HIV infection, HIV gene, HIV p24 core protein, HIV p17 peptide, HIV-1 virus-like particles (VLPs) and HIV related enzymes, particularly those that are passed on from the virus to the CD4+ T lymphocytes and are necessary for viral reproduction within the host cell. These studies are described in detail along with their diverse principles/mechanisms (e.g. electrochemistry, fluorescence, electromagnetic-piezoelectric, surface plasmon resonance (SPR), surface enhanced Raman spectroscopy (SERS) and colorimetry). Despite the significant progress in HIV biosensing in the last years, there is a great need for the development of point-of-care (POC) technologies which are affordable, robust, easy to use, portable, and possessing sufficient quantitative accuracy to enable clinical decision making. In the final section, the focus is on the portable sensing devices as a new standard of POC and personalized diagnostics.
Collapse
Affiliation(s)
- Leila Farzin
- Radiation Application Research School, Nuclear Science and Technology Research Institute, P.O. Box, 11365-3486, Tehran, Iran.
| | - Mojtaba Shamsipur
- Department of Chemistry, Razi University, P.O. Box, 67149-67346, Kermanshah, Iran
| | - Leila Samandari
- Department of Chemistry, Razi University, P.O. Box, 67149-67346, Kermanshah, Iran
| | - Shahab Sheibani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, P.O. Box, 11365-3486, Tehran, Iran
| |
Collapse
|
1054
|
Abstract
Layered double hydroxides (LDHs) are an emergent class of biocompatible inorganic lamellar nanomaterials that have attracted significant research interest owing to their high surface-to-volume ratio, the capability to accumulate specific molecules, and the timely release to targets. Their unique properties have been employed for applications in organic catalysis, photocatalysis, sensors, drug delivery, and cell biology. Given the widespread contemporary interest in these topics, time-to-time it urges to review the recent progresses. This review aims to summarize the most recent cutting-edge reports appearing in the last years. It firstly focuses on the application of LDHs as catalysts in relevant chemical reactions and as photocatalysts for organic molecule degradation, water splitting reaction, CO2 conversion, and reduction. Subsequently, the emerging role of these materials in biological applications is discussed, specifically focusing on their use as biosensors, DNA, RNA, and drug delivery, finally elucidating their suitability as contrast agents and for cellular differentiation. Concluding remarks and future prospects deal with future applications of LDHs, encouraging researches in better understanding the fundamental mechanisms involved in catalytic and photocatalytic processes, and the molecular pathways that are activated by the interaction of LDHs with cells in terms of both uptake mechanisms and nanotoxicology effects.
Collapse
|
1055
|
Lee H, Park K. In Vitro Cytotoxicity of Zinc Oxide Nanoparticles in Cultured Statens Seruminstitut Rabbit Cornea Cells. Toxicol Res 2019; 35:287-294. [PMID: 31341558 PMCID: PMC6629441 DOI: 10.5487/tr.2019.35.3.287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/23/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022] Open
Abstract
The possibility of eye exposure for workers participating in manufacturing of nanoparticles or consumers using products containing nanoparticles has been reported, but toxicity studies on the eye are scarce. In this study, cytotoxicity of five nanoparticles including silver, ceria, silica, titanium and zinc were tested using Statens Seruminstitut Rabbit Cornea (SIRC) cells. When cells were treated with nanoparticles with concentrations of 1–100 μg/mL for 24 hr, zinc oxide nanoparticles showed higher toxicity to cornea cells. LC50 of zinc oxide nanoparticles was less than 25 μg/mL but those of other nanoparticles could not be calculated in this test, which means more than 100 μg/mL. Generation of reactive oxygen species was observed, and expression of apoptosis related biomarkers including Bax and Bcl-2 were changed after treatment of zinc oxide nanoparticles, while no other significant toxicity- related changes were observed in cornea cells treated with Ag, CeO2, SiO2 and TiO2 nanoparticles.
Collapse
Affiliation(s)
- Handule Lee
- College of Pharmacy, Dongduk Women's University, Seoul, Korea
| | - Kwangsik Park
- College of Pharmacy, Dongduk Women's University, Seoul, Korea
| |
Collapse
|
1056
|
Ahmad S, Munir S, Zeb N, Ullah A, Khan B, Ali J, Bilal M, Omer M, Alamzeb M, Salman SM, Ali S. Green nanotechnology: a review on green synthesis of silver nanoparticles - an ecofriendly approach. Int J Nanomedicine 2019; 14:5087-5107. [PMID: 31371949 PMCID: PMC6636611 DOI: 10.2147/ijn.s200254] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/26/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Nanotechnology explores a variety of promising approaches in the area of material sciences on a molecular level, and silver nanoparticles (AgNPs) are of leading interest in the present scenario. This review is a comprehensive contribution in the field of green synthesis, characterization, and biological activities of AgNPs using different biological sources. Methods: Biosynthesis of AgNPs can be accomplished by physical, chemical, and green synthesis; however, synthesis via biological precursors has shown remarkable outcomes. In available reported data, these entities are used as reducing agents where the synthesized NPs are characterized by ultraviolet-visible and Fourier-transform infrared spectra and X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Results: Modulation of metals to a nanoscale drastically changes their chemical, physical, and optical properties, and is exploited further via antibacterial, antifungal, anticancer, antioxidant, and cardioprotective activities. Results showed excellent growth inhibition of the microorganism. Conclusion: Novel outcomes of green synthesis in the field of nanotechnology are appreciable where the synthesis and design of NPs have proven potential outcomes in diverse fields. The study of green synthesis can be extended to conduct the in silco and in vitro research to confirm these findings.
Collapse
Affiliation(s)
- Shabir Ahmad
- Department of Chemistry, Islamia College University, Peshawar25120, Pakistan
| | - Sidra Munir
- Department of Chemistry, Islamia College University, Peshawar25120, Pakistan
| | - Nadia Zeb
- Department of Chemistry, Islamia College University, Peshawar25120, Pakistan
- Department of Chemistry, Government Girls Degree College, Peshawar, Pakistan
| | - Asad Ullah
- Department of Chemistry, Islamia College University, Peshawar25120, Pakistan
| | - Behramand Khan
- Department of Chemistry, Islamia College University, Peshawar25120, Pakistan
| | - Javed Ali
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Bilal
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Omer
- Institute of Chemical Sciences, University of Swat, Swat, 19201, Pakistan
| | - Muhammad Alamzeb
- Department of Chemistry, University of Kotli 11100, Azad Jammu and Kashmir, Pakistan
| | | | - Saqib Ali
- Department of Chemistry, University of Kotli 11100, Azad Jammu and Kashmir, Pakistan
| |
Collapse
|
1057
|
Nishihira VSK, Rubim AM, Brondani M, Dos Santos JT, Pohl AR, Friedrich JF, de Lara JD, Nunes CM, Feksa LR, Simão E, de Almeida Vaucher R, Durruthy MG, Laporta LV, Rech VC. In vitro and in silico protein corona formation evaluation of curcumin and capsaicin loaded-solid lipid nanoparticles. Toxicol In Vitro 2019; 61:104598. [PMID: 31299314 DOI: 10.1016/j.tiv.2019.104598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/25/2019] [Accepted: 07/07/2019] [Indexed: 11/16/2022]
Abstract
Nanotechnology has been an important tool for the production of nanoparticles with controlled release of drugs for therapeutic applications. Here, we produced solid lipid nanoparticles (SLN) loaded with curcumin and capsaicin (NCC) following the overarching goals of green chemistry. Currently, besides evaluating the composition, and size of these, it is necessary to understand the interactions between nanoparticles and the biomolecules present in the biological medium. For this, assays were conducted in order to evaluate the potential formation of the protein 'corona', and to better understand the results obtained in vitro, we also performed an interaction study, in silico, between the NCC components and the main serum protein, albumin. In the first hour of contact between the NCC and the culture medium showed fluctuation in the diameter of the NCC. However, after 24 and 48 h of the incubation period, all NCC concentrations showed an increase in size, which can be attributed to plasma protein adsorption. Since, hard corona takes a few seconds, while the soft corona can be formed in minutes up to a few hours. On the other hand, best docking binding-poses of interaction for the formed docking complexes evaluated suggest interactions following the docking affinity like free energy FEB (Tween 80-bovine serum albumin) ≈ FEB (Span 80-bovine serum albumin) showing a pharmacodynamic pattern based in non-covalent hydrophobic interactions with the bovine serum albumin binding-site. Our in silico results clarify and reinforce our in vitro findings of corona formation, which represents the real interaction with cell membranes in vivo.
Collapse
Affiliation(s)
| | | | - Morgana Brondani
- Graduação em Biomedicina, Universidade Franciscana, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Ariane Ribas Pohl
- Pós-Graduação em Nanociências, Universidade Franciscana, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Jéssica Dotto de Lara
- Graduação em Biomedicina, Universidade Franciscana, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Luciane Rosa Feksa
- Pós-Graduação em Biomedicina Estética, Núcleo de Estudos em Estética Ana Carolina Puga, São Paulo, Brazil
| | - Eder Simão
- Pós-Graduação em Nanociências, Universidade Franciscana, Santa Maria, Rio Grande do Sul, Brazil
| | - Rodrigo de Almeida Vaucher
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | | | | | - Virginia Cielo Rech
- Pós-Graduação em Nanociências, Universidade Franciscana, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
1058
|
Mostafa E, Fayed MAA, Radwan RA, Bakr RO. Centaurea pumilio L. extract and nanoparticles: A candidate for healthy skin. Colloids Surf B Biointerfaces 2019; 182:110350. [PMID: 31326622 DOI: 10.1016/j.colsurfb.2019.110350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/14/2019] [Accepted: 07/06/2019] [Indexed: 01/09/2023]
Abstract
Centaurea pumilio was the subject of phytochemical and biological studies, and its extract was used in the green synthesis of silver nanoparticles (AgNPs). Liquid chromatography/electrospray ionization mass spectrometry allowed the tentative identification of twenty-nine phytoconstituents of C. pumilio methanolic extract (CME), while column chromatography led to the identification of eight phenolic compounds. The neutral red uptake method showed the safety of CME and AgNPs on skin cells (HaCaT cell lines), while their high antioxidant potentials were demonstrated based on their oxygen radical absorbance capacity, and these results were confirmed in vivo. Additionally, CME and AgNPs had promising abilities to retard the ageing process and combat dark spots by potently inhibiting collagenase, elastase and tyrosinase, in addition to antimicrobial activity against skin infection-causing strains, especially Staphylococcus aureus, which was further confirmed by the significant phagocytic activity of neutrophils via engulfment. This study presents C. pumilio as a candidate for healthy skin.
Collapse
Affiliation(s)
- Eman Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 11787, Giza, Egypt
| | - Marwa A A Fayed
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Egypt
| | - Rasha A Radwan
- Biochemistry and Biotechnology Department, Faculty of Pharmacy & Drug Technology, Heliopolis University, Cairo, Egypt
| | - Riham O Bakr
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 11787, Giza, Egypt.
| |
Collapse
|
1059
|
Integrated continuous manufacturing in pharmaceutical industry: current evolutionary steps toward revolutionary future. Pharm Pat Anal 2019; 8:139-161. [DOI: 10.4155/ppa-2019-0011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Continuous manufacturing (CM) has the potential to provide pharmaceutical products with better quality, improved yield and with reduced cost and time. Moreover, ease of scale-up, small manufacturing footprint and on-line/in-line monitoring and control of the process are other merits for CM. Regulating authorities are supporting the adoption of CM by pharmaceutical manufacturers through issuing proper guidelines. However, implementation of this technology in pharmaceutical industry is encountered by a number of challenges regarding the process development and quality assurance. This article provides a background on the implementation of CM in pharmaceutical industry, literature survey of the most recent state-of-the-art technologies and critically discussing the encountered challenges and its future prospective in pharmaceutical industry.
Collapse
|
1060
|
Limongi T, Susa F, Cauda V. Nanoparticles for hematologic diseases detection and treatment. HEMATOLOGY & MEDICAL ONCOLOGY 2019; 4:1000183. [PMID: 33860108 PMCID: PMC7610588 DOI: 10.15761/hmo.1000183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanotechnology, as an interdisciplinary science, combines engineering, physics, material sciences, and chemistry with the biomedicine knowhow, trying the management of a wide range of diseases. Nanoparticle-based devices holding tumor imaging, targeting and therapy capabilities are formerly under study. Since conventional hematological therapies are sometimes defined by reduced selectivity, low therapeutic efficacy and many side effects, in this review we discuss the potential advantages of the NPs' use in alternative/combined strategies. In the introduction the basic notion of nanomedicine and nanoparticles' classification are described, while in the main text nanodiagnostics, nanotherapeutics and theranostics solutions coming out from the use of a wide-ranging NPs availability are listed and discussed.
Collapse
Affiliation(s)
- Tania Limongi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Francesca Susa
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
1061
|
Montoro Bustos AR, Pettibone JM, Murphy KE. Characterization of Nanoparticles: Advances. NANOPARTICLE DESIGN AND CHARACTERIZATION FOR CATALYTIC APPLICATIONS IN SUSTAINABLE CHEMISTRY 2019. [DOI: 10.1039/9781788016292-00037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Over the past two decades, the unique properties of engineered nanoparticles (NPs) have placed them at the centre of revolutionary advancements in many sectors of science, technology and commerce. Multi-technique and multi-disciplinary analytical approaches are required to identify, quantify, and characterize the chemical composition, size and size distribution, surface properties and the number and concentration of NPs. In this chapter, an overview of the recent advances in the characterization of NPs will be presented.
Collapse
Affiliation(s)
- A. R. Montoro Bustos
- National Institute of Standards and Technology 100 Bureau Drive Gaithersburg MD 20899-1070 USA
| | - J. M. Pettibone
- National Institute of Standards and Technology 100 Bureau Drive Gaithersburg MD 20899-1070 USA
| | - K. E. Murphy
- National Institute of Standards and Technology 100 Bureau Drive Gaithersburg MD 20899-1070 USA
| |
Collapse
|
1062
|
Chand K, Abro MI, Aftab U, Shah AH, Lakhan MN, Cao D, Mehdi G, Ali Mohamed AM. Green synthesis characterization and antimicrobial activity against Staphylococcus aureus of silver nanoparticles using extracts of neem, onion and tomato. RSC Adv 2019; 9:17002-17015. [PMID: 35519862 PMCID: PMC9064458 DOI: 10.1039/c9ra01407a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/04/2019] [Indexed: 11/21/2022] Open
Abstract
Recently, it has been shown that silver nanoparticles (AgNPs) exhibit great potential for different applications, including food storage, cosmetic products, electronic components, biosensor materials, cryogenics, dental materials and especially for drug-delivery activities. In this study, we synthesized AgNPs with neem extract (NE) alone and mixed plant extracts of neem, onion and tomato (NOT) as a combined reducing and stabilizing agent by a green synthesis method at different pHs. The synthesized products were characterized by ultraviolet-visible spectroscopy (UV-vis), X-ray diffraction (XRD), dynamic light scattering (DLS), atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The antibacterial effects of the synthesized products were studied by the Kirby disk diffusion method. It was confirmed that the AgNPs work effectively as a drug material against Gram-positive bacteria Staphylococcus aureus in nutrient agar. In addition, it was seen that the reducing and stabilizing agent NOT could work effectively with six medicines with a different nature at the maximum addition of 15 μg. However, the synthesized product with NE alone only worked for four of the medicines. Therefore, it was evident that the AgNPs synthesized with NOT extract were more susceptible to the Gram-positive bacteria Staphylococcus aureus. We believe that this new route for synthesizing AgNPs with NOT extract could be more beneficial in comparison to NE alone for improved antibacterial properties in drug-delivery applications.
Collapse
Affiliation(s)
- Kishore Chand
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University 150001 China
- Department of Metallurgy & Materials Engineering, Mehran University of Engineering & Technology Jamshoro 76062 Pakistan
| | - M Ishaque Abro
- Department of Metallurgy & Materials Engineering, Mehran University of Engineering & Technology Jamshoro 76062 Pakistan
| | - Umair Aftab
- Department of Metallurgy & Materials Engineering, Mehran University of Engineering & Technology Jamshoro 76062 Pakistan
| | - Ahmer Hussain Shah
- Department of Textile Engineering, Baluchistan University of Information Technology, Engineering and Management Sciences Quetta 87300 Pakistan
| | - Muhammad Nazim Lakhan
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University 150001 China
| | - Dianxue Cao
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University 150001 China
| | - Ghazanfar Mehdi
- College of Energy and Power Engineering, Harbin Engineering University 150001 China
| | - Abdalla Mohamed Ali Mohamed
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University 150001 China
| |
Collapse
|
1063
|
Sanzari I, Leone A, Ambrosone A. Nanotechnology in Plant Science: To Make a Long Story Short. Front Bioeng Biotechnol 2019; 7:120. [PMID: 31192203 PMCID: PMC6550098 DOI: 10.3389/fbioe.2019.00120] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/07/2019] [Indexed: 11/28/2022] Open
Abstract
This mini-review aims at gaining knowledge on basic aspects of plant nanotechnology. While in recent years the enormous progress of nanotechnology in biomedical sciences has revolutionized therapeutic and diagnostic approaches, the comprehension of nanoparticle-plant interactions, including uptake, mobilization and accumulation, is still in its infancy. Deeper studies are needed to establish the impact of nanomaterials (NMs) on plant growth and agro-ecosystems and to develop smart nanotechnology applications in crop improvement. Herein we provide a short overview of NMs employed in plant science and concisely describe key NM-plant interactions in terms of uptake, mobilization mechanisms, and biological effects. The major current applications in plants are reviewed also discussing the potential use of polymeric soft NMs which may open new and safer opportunities for smart delivery of biomolecules and for new strategies in plant genetic engineering, with the final aim to enhance plant defense and/or stimulate plant growth and development and, ultimately, crop production. Finally, we envisage that multidisciplinary collaborative approaches will be central to fill the knowledge gap in plant nanotechnology and push toward the use of NMs in agriculture and, more in general, in plant science research.
Collapse
Affiliation(s)
- Ilaria Sanzari
- Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom
| | | | | |
Collapse
|
1064
|
Pereira MP, de Gomes MG, Izoton JC, Nakama KA, Dos Santos RB, Pinto Savall AS, Ramalho JB, Roman SS, Luchese C, Cibin FW, Pinton S, Haas SE. Cationic and anionic unloaded polymeric nanocapsules: Toxicological evaluation in rats shows low toxicity. Biomed Pharmacother 2019; 116:109014. [PMID: 31146108 DOI: 10.1016/j.biopha.2019.109014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/05/2019] [Accepted: 05/21/2019] [Indexed: 01/23/2023] Open
Abstract
The experimental design aiming at evaluating the performance of drugs nanoencapsulated involves inclusion of a formulation without drug (unloaded). This formulation has sometimes presented per se effect. In this sense, we sought to evaluate the toxicity of unloaded polymeric nanocapsules (NCs) with different surfaces (cationic and anionic) in male Wistar rats in male Wistar rats. The physicochemical characterization of NCs with different surfaces: polysorbate 80 (P80), polyethylene glycol (PEG), eudragit ®RS 100 (EUD) and chitosan (CS) was performed. Rats were treated with unloaded NCs (P80, PEG, EUD and CS surfaces) daily for 14 days per oral route. 24 h of last treatment, animals were euthanized and organs were removed and weighted. After, biochemical determinations were performed. In general, NCs-surfaces did not cause alterations in body weight, weight of organs and histopathological analysis. PEG-surface NCs did not generate hepatotoxicity. In investigation of lipid profile, the surface with P80 changed TC and HDL-C levels. Besides that, all NCs did not alter oxidative stress markers in organs studied (TBARS and Reactive Species) and CS-surface presented antioxidant activity in kidney. This study demonstrated that NCs-surfaces depending on their physicochemical characteristics had low or no toxicity.
Collapse
Affiliation(s)
- Muriel Pando Pereira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Marcelo Gomes de Gomes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Jessica Cristina Izoton
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Kelly Ayumi Nakama
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Renata Bem Dos Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Anne Suely Pinto Savall
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, Brazil
| | - Juliana Bernera Ramalho
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, Brazil
| | - Silvane Souza Roman
- Universidade Regional Integrada do Alto Uruguai e das Missões, Campus Erechim, Erechim, Brazil
| | - Cristiane Luchese
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Francielli Weber Cibin
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, Brazil
| | - Simone Pinton
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, Brazil
| | - Sandra Elisa Haas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil.
| |
Collapse
|
1065
|
Chen L, Meng X, Gu J, Fan W, Abdlli N, Peprah FA, Wang N, Zhu F, Lü P, Ma S, Chen K. Silver nanoparticle toxicity in silkworms: Omics technologies for a mechanistic understanding. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:388-395. [PMID: 30731270 DOI: 10.1016/j.ecoenv.2019.01.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/09/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
The widespread use of silver nanoparticles (AgNPs) has raised public concern due to their potential toxic effects on humans and the environment. Although some studies have evaluated the toxicity of nanomaterials in vertebrates, studies on their hazardous effects on insects are limited. Here we focused on different concentrations of AgNPs to silkworms, a promising model organism, to evaluate their toxic effects by omics analysis. After the silkworms were fed with 100 mg L-1 AgNPs, transcriptomics analysis showed differential expression of 43 genes: 39 upregulated and 4 downregulated. These differentially expressed genes (DEGs) were involved in the digestion process, various metabolic pathways, transmembrane transport and energy synthesis. Proteomic results for silkworms fed with 400 mg L-1 AgNPs revealed 14 significantly differentially expressed proteins: 11 downregulated and 3 upregulated. Reverse transcription-polymerase chain reaction (RT-PCR) results showed that the expression levels of eight proteins were similar to the transcription levels of their corresponding genes. As the AgNPs concentration was increased, the expression of digestive enzymes was downregulated, which damaged the silkworm tissue and suppressed the activity of the enzyme superoxide dismutase and the protein HSP 1, causing oxidative stress and the production of reactive oxygen species, which had toxic effects on the silkworm digestive system. Histopathological results showed that treatment with 400 mg L-1 AgNPs destroyed the basal lamina and the columnar cells, caused adverse effects on tissues and had the potential to induce harmful effects on the digestive system. The data presented herein provide valuable information on the hazards and risks of nanoparticle contamination. Main finding: AgNPs would downregulate some digestive enzymes, damage the tissue of midgut in silkworm, meantime induce the accumulation of reactive oxygen species which may cause oxidative stress.
Collapse
Affiliation(s)
- Liang Chen
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Xu Meng
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Weiqiang Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China.
| | - Nouara Abdlli
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Frank Addai Peprah
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Niannian Wang
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Feifei Zhu
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Peng Lü
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Shangshang Ma
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| |
Collapse
|
1066
|
Furxhi I, Murphy F, Mullins M, Poland CA. Machine learning prediction of nanoparticle in vitro toxicity: A comparative study of classifiers and ensemble-classifiers using the Copeland Index. Toxicol Lett 2019; 312:157-166. [PMID: 31102714 DOI: 10.1016/j.toxlet.2019.05.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/12/2019] [Accepted: 05/13/2019] [Indexed: 01/22/2023]
Abstract
Nano-Particles (NPs) are well established as important components across a broad range of products from cosmetics to electronics. Their utilization is increasing with their significant economic and societal potential yet to be fully realized. Inroads have been made in our understanding of the risks posed to human health and the environment by NPs but this area will require continuous research and monitoring. In recent years Machine Learning (ML) techniques have exploited large datasets and computation power to create breakthroughs in diverse fields from facial recognition to genomics. More recently, ML techniques have been applied to nanotoxicology with very encouraging results. In this study, categories of ML classifiers (rules, trees, lazy, functions and bayes) were compared using datasets from the Safe and Sustainable Nanotechnology (S2NANO) database to investigate their performance in predicting NPs in vitro toxicity. Physicochemical properties, toxicological and quantum-mechanical attributes and in vitro experimental conditions were used as input variables to predict the toxicity of NPs based on cell viability. Voting, an ensemble meta-classifier, was used to combine base models to optimize the classification prediction of toxicity. To facilitate inter-comparison, a Copeland Index was applied that ranks the classifiers according to their performance and suggested the optimal classifier. Neural Network (NN) and Random forest (RF) showed the best performance in the majority of the datasets used in this study. However, the combination of classifiers demonstrated an improved prediction resulting meta-classifier to have higher indices. This proposed Copeland Index can now be used by researchers to identify and clearly prioritize classifiers in order to achieve more accurate classification predictions for NP toxicity for a given dataset.
Collapse
Affiliation(s)
- Irini Furxhi
- Dept. of Accounting and Finance, Kemmy Business School, University of Limerick, V94PH93, Ireland.
| | - Finbarr Murphy
- Dept. of Accounting and Finance, Kemmy Business School, University of Limerick, V94PH93, Ireland.
| | - Martin Mullins
- Dept. of Accounting and Finance, Kemmy Business School, University of Limerick, V94PH93, Ireland.
| | - Craig A Poland
- ELEGI/Colt Laboratory, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom.
| |
Collapse
|
1067
|
Lagashetty A, Pattar A, Ganiger SK. Synthesis, characterization and antibacterial study of Ag doped magnesium ferrite nanocomposite. Heliyon 2019; 5:e01760. [PMID: 31193682 PMCID: PMC6538970 DOI: 10.1016/j.heliyon.2019.e01760] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/28/2019] [Accepted: 05/14/2019] [Indexed: 11/07/2022] Open
Abstract
Nanomaterials are attracted a great deal of attention from scientific community due its unique properties and applications. The small size ferrites have opened up the door for intensive research to utilize their properties for biomedical applications. Ferrite nanomaterials like MgFe2O4 and its silver doped nanocomposites (Ag- MgFe2O4) have been prepared using solid state combustion method using polyvinyl alcohol (PVA) as a fuel. The structure of as prepared ferrites and its silver doped nanocomposites were characterized using X-ray diffraction (XRD) tool and morphology by Scanning Electron Micrograph (SEM) tool respectively. Presence of the metals in the ferrite and its composite was confirmed by EDX pattern. Bonding nature in the composite is well studied by Fourier transform infrared (FT-IR) tool. Antibacterial activity study of the nanocomposite is carried out against various bacteria. Ag doped magnesium ferrite shows moderate activity against bacteria.
Collapse
Affiliation(s)
- Arunkumar Lagashetty
- Department of Chemistry, Reshmi Degree College, Kalaburagi, 585106, Karnataka, India
| | - Amruta Pattar
- Department of Nanotechnology, Regional Research Centre, VTU, Belagavi, Karnataka, India
| | - Sangappa K. Ganiger
- Department of Physics, Government Engineering College, Raichur, 584135, Karnataka, India
| |
Collapse
|
1068
|
Nickel NPs @N-doped titania: an efficient and recyclable heterogeneous nanocatalytic system for one-pot synthesis of pyrano[2,3-d]pyrimidines and 1,8-dioxo-octahydroxanthenes. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01669-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
1069
|
Subramaniam MN, Goh PS, Lau WJ, Ismail AF. The Roles of Nanomaterials in Conventional and Emerging Technologies for Heavy Metal Removal: A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E625. [PMID: 30999639 PMCID: PMC6523656 DOI: 10.3390/nano9040625] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 01/12/2023]
Abstract
Heavy metal (HM) pollution in waterways is a serious threat towards global water security, as high dosages of HM poisoning can significantly harm all living organisms. Researchers have developed promising methods to isolate, separate, or reduce these HMs from water bodies to overcome this. This includes techniques, such as adsorption, photocatalysis, and membrane removal. Nanomaterials play an integral role in all of these remediation techniques. Nanomaterials of different shapes have been atomically designed via various synthesis techniques, such as hydrothermal, wet chemical synthesis, and so on to develop unique nanomaterials with exceptional properties, including high surface area and porosity, modified surface charge, increment in active sites, enhanced photocatalytic efficiency, and improved HM removal selectivity. In this work, a comprehensive review on the role that nanomaterials play in removing HM from waterways. The unique characteristics of the nanomaterials, synthesis technique, and removal principles are presented. A detailed visualisation of HM removal performances and the mechanisms behind this improvement is also detailed. Finally, the future directions for the development of nanomaterials are highlighted.
Collapse
Affiliation(s)
- Mahesan Naidu Subramaniam
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia.
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia.
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia.
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia.
| |
Collapse
|
1070
|
Gao Y, Arokia Vijaya Anand M, Ramachandran V, Karthikkumar V, Shalini V, Vijayalakshmi S, Ernest D. Biofabrication of Zinc Oxide Nanoparticles from Aspergillus niger, Their Antioxidant, Antimicrobial and Anticancer Activity. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01551-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
1071
|
Qian L, Su W, Wang Y, Dang M, Zhang W, Wang C. Synthesis and characterization of gold nanoparticles from aqueous leaf extract of Alternanthera sessilis and its anticancer activity on cervical cancer cells (HeLa). ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1173-1180. [PMID: 30942109 DOI: 10.1080/21691401.2018.1549064] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Linhua Qian
- Department of Gynaecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weihua Su
- Department of Obstetrics, Taian City Central Hospital, Taian, Shandong, China
| | - Yan Wang
- Department of Obstetrics, Taian City Central Hospital, Taian, Shandong, China
| | - Minyan Dang
- Innoscience Research Sdn Bhd. Subang Jaya, Selangor, Malaysia
| | - Wenzhi Zhang
- Innoscience Research Sdn Bhd. Subang Jaya, Selangor, Malaysia
| | - Changlin Wang
- Department of Gynaecology, The Affiliated Hospital of Shandong University of TCM, Jinan, Shandong, China
| |
Collapse
|
1072
|
Kamali M, Persson KM, Costa ME, Capela I. Sustainability criteria for assessing nanotechnology applicability in industrial wastewater treatment: Current status and future outlook. ENVIRONMENT INTERNATIONAL 2019; 125:261-276. [PMID: 30731376 DOI: 10.1016/j.envint.2019.01.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/19/2019] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
Application of engineered nanomaterials for the treatment of industrial effluents and to deal with recalcitrant pollutants has been noticeably promoted in recent years. Laboratory, pilot and full-scale studies emphasize the potential of this technology to offer promising treatment options to meet the future needs for clean water resources and to comply with stringent environmental regulations. The technology is now in the stage of being transferred to the real applications. Therefore, the assessment of its performance according to sustainability criteria and their incorporation into the decision-making process is a key task to ensure that long term benefits are achieved from the nano-treatment technologies. In this study, the importance of sustainability criteria for the conventional and novel technologies for the treatment of industrial effluents was determined in a general approach assisted by a fuzzy-Delphi method. The criteria were categorized in technical, economic, environmental and social branches and the current situation of the nanotechnology regarding the criteria was critically discussed. The results indicate that the efficiency and safety are the most important parameters to make sustainable choices for the treatment of industrial effluents. Also, in addition to the need for scaling-up the nanotechnology in various stages, the study on their environmental footprint must continue in deeper scales under expected environmental conditions, in particular the synthesis of engineered nanomaterials and the development of reactors with the ability of recovery and reuse the nanomaterials. This paper will aid to select the most sustainable types of nanomaterials for the real applications and to guide the future studies in this field.
Collapse
Affiliation(s)
- Mohammadreza Kamali
- Department of Environment and Planning, Center for Environmental and Marine Studies, CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; Department of Materials and Ceramics Engineering, Aveiro Institute of Materials, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Kenneth M Persson
- Department of Building and Environmental Technology/Water Resources Engineering, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Maria Elisabete Costa
- Department of Materials and Ceramics Engineering, Aveiro Institute of Materials, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Isabel Capela
- Department of Environment and Planning, Center for Environmental and Marine Studies, CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
1073
|
Dong P, Rakesh K, Manukumar H, Mohammed YHE, Karthik C, Sumathi S, Mallu P, Qin HL. Innovative nano-carriers in anticancer drug delivery-a comprehensive review. Bioorg Chem 2019; 85:325-336. [DOI: 10.1016/j.bioorg.2019.01.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 02/07/2023]
|
1074
|
Gautam P, Upadhyay PR, Srivastava V. Selective Hydrogenation of CO2 to Formic Acid over Alumina-Supported Ru Nanoparticles with Multifunctional Ionic Liquid. Catal Letters 2019. [DOI: 10.1007/s10562-019-02773-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
1075
|
Magacz M, Kędziora K, Sapa J, Krzyściak W. The Significance of Lactoperoxidase System in Oral Health: Application and Efficacy in Oral Hygiene Products. Int J Mol Sci 2019; 20:ijms20061443. [PMID: 30901933 PMCID: PMC6472183 DOI: 10.3390/ijms20061443] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
Lactoperoxidase (LPO) present in saliva are an important element of the nonspecific immune response involved in maintaining oral health. The main role of this enzyme is to oxidize salivary thiocyanate ions (SCN-) in the presence of hydrogen peroxide (H₂O₂) to products that exhibit antimicrobial activity. LPO derived from bovine milk has found an application in food, cosmetics, and medical industries due to its structural and functional similarity to the human enzyme. Oral hygiene products enriched with the LPO system constitute an alternative to the classic fluoride caries prophylaxis. This review describes the physiological role of human salivary lactoperoxidase and compares the results of clinical trials and in vitro studies of LPO alone and complex dentifrices enriched with bovine LPO. The role of reactivators and inhibitors of LPO is discussed together with the possibility of using nanoparticles to increase the stabilization and activity of this enzyme.
Collapse
Affiliation(s)
- Marcin Magacz
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Karolina Kędziora
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Jacek Sapa
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Wirginia Krzyściak
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
1076
|
Kamel GM, El-Nahass MN, El-Khouly ME, Fayed TA, El-Kemary M. Simple, selective detection and efficient removal of toxic lead and silver metal ions using Acid Red 94. RSC Adv 2019; 9:8355-8363. [PMID: 35518677 PMCID: PMC9061780 DOI: 10.1039/c9ra00464e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/21/2019] [Indexed: 11/21/2022] Open
Abstract
Toward the goal of detecting toxic elements and removing them from drinking water, we report herein the utilization of Acid Red 94 (AR94) in sensing the hazardous metal ions in water. Among the various examined metal ions (Ag+, Pb2+, K+, Mn2+, Zn2+, La3+, Hg2+, Ca2+, Cd2+, Co2+, and Ni2+), the UV-visible absorption spectra showed high selectivity and sensitivity for toxic silver and lead metal ions in an aqueous solution. The observed absorption spectral changes and the rapid color changes confirm complex formation between AR94 and both Ag+ and Pb2+ metal ions. The emission measurements showed the significant fluorescence quenching of the singlet excited state of AR94 in the presence of Ag+ and Pb2+ metal ions suggesting the formation of an irradiative dye-metal complex under the prevailing experimental conditions. In order to remove the accumulated complexes of AR94 with silver metal ions, safe and harmless mesoporous titanium dioxide was utilized efficiently in removing the complexes with adsorption capacities of 91% at 30 minutes. These findings suggest a simple, fast and efficient method for both detecting silver in water, and removing the formed AR94-metal complexes in water. In addition, AR94 is shown to be a good sensor for the presence of Ag and Pb nanoparticles, NPs, in aqueous solution. The absorption and emission spectra of AR94 showed significant changes that may be rationalized by the strong electromagnetic coupling induced by NPs plasmonic effects. These findings render AR94 a sensitive and selective sensor and a visual indicator for the qualitative and quantitative detection of silver ions, lead ions and their nanoparticles.
Collapse
Affiliation(s)
- Ghada M Kamel
- Department of Chemistry, Faculty of Science, Tanta University Tanta 31527 Egypt.,Department of Chemistry, Faculty of Science, Kafrelsheikh University Kafr El-Sheikh 33516 Egypt
| | - Marwa N El-Nahass
- Department of Chemistry, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Mohamed E El-Khouly
- Department of Chemistry, Faculty of Science, Kafrelsheikh University Kafr El-Sheikh 33516 Egypt.,Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology (E-JUST) Alexandria Egypt
| | - Tarek A Fayed
- Department of Chemistry, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Maged El-Kemary
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University Kafr El-Sheikh 33516 Egypt
| |
Collapse
|
1077
|
Kawabe Y, Ito T, Yoshida H, Moriwaki H. Glowing gold nanoparticle coating: restoring the lost property from bulk gold. NANOSCALE 2019; 11:3786-3793. [PMID: 30768103 DOI: 10.1039/c8nr10016k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The unique electronic, optical, and catalytic properties of AuNPs caused by localized surface plasmon resonance (LSPR) have attracted many scientists, but the LSPR diminishes the captivating luster of bulk gold. An exciting challenge is the fabrication of golden-colored AuNPs, but a decisive factor for controlling the absorption/reflection of AuNPs remains elusive. We now propose a simple and versatile method for the fabrication of glowing AuNPs to restore the "lost golden color" of AuNPs in combination with the deposition of AuNPs on a cellulose filter or a PET/cotton fabric by the successive ionic layer adsorption and reaction (SILAR) method and simple pencil drawing. The obtained materials exhibited the glowing golden-color on the pencil-drawn surface and common red and blue colors on the other parts. Surprisingly, the golden-colored AuNPs still maintain a catalytic activity different from that of bulk gold and could be used as a catalyst for the reduction of p-nitrophenol, pendimethalin or 2,4-dinitrophenol in the presence of NaBH4. We believe that the re-endowment of such a property characteristic of bulk gold into gold nanomaterials would lead to further advancement in the arts and culture as well as electronics, optics, and catalysis.
Collapse
Affiliation(s)
- Yukari Kawabe
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan.
| | - Takashi Ito
- Research Center for Supports to Advanced Science, Division of Instrumental Analysis (Ueda branch), Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan
| | - Hiroaki Yoshida
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan
| | - Hiroshi Moriwaki
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan. and Research Center for Supports to Advanced Science, Division of Instrumental Analysis (Ueda branch), Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan
| |
Collapse
|
1078
|
Multicolor emitting N/S-doped carbon dots as a fluorescent probe for imaging pathogenic bacteria and human buccal epithelial cells. Mikrochim Acta 2019; 186:157. [DOI: 10.1007/s00604-019-3270-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/20/2019] [Indexed: 12/20/2022]
|
1079
|
Ansari SAMK, Ficiarà E, Ruffinatti FA, Stura I, Argenziano M, Abollino O, Cavalli R, Guiot C, D'Agata F. Magnetic Iron Oxide Nanoparticles: Synthesis, Characterization and Functionalization for Biomedical Applications in the Central Nervous System. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E465. [PMID: 30717431 PMCID: PMC6384775 DOI: 10.3390/ma12030465] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/18/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022]
Abstract
Magnetic Nanoparticles (MNPs) are of great interest in biomedicine, due to their wide range of applications. During recent years, one of the most challenging goals is the development of new strategies to finely tune the unique properties of MNPs, in order to improve their effectiveness in the biomedical field. This review provides an up-to-date overview of the methods of synthesis and functionalization of MNPs focusing on Iron Oxide Nanoparticles (IONPs). Firstly, synthesis strategies for fabricating IONPs of different composition, sizes, shapes, and structures are outlined. We describe the close link between physicochemical properties and magnetic characterization, essential to developing innovative and powerful magnetic-driven nanocarriers. In conclusion, we provide a complete background of IONPs functionalization, safety, and applications for the treatment of Central Nervous System disorders.
Collapse
Affiliation(s)
| | - Eleonora Ficiarà
- Department of Neuroscience, University of Turin, 10124 Turin, Italy.
| | | | - Ilaria Stura
- Department of Public Health and Pediatrics, University of Turin, 10124 Turin, Italy.
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy.
| | - Ornella Abollino
- Department of Chemistry, University of Turin, 10124 Turin, Italy.
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy.
| | - Caterina Guiot
- Department of Neuroscience, University of Turin, 10124 Turin, Italy.
| | - Federico D'Agata
- Department of Neuroscience, University of Turin, 10124 Turin, Italy.
| |
Collapse
|
1080
|
Tamez C, Morelius EW, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey J. Biochemical and physiological effects of copper compounds/nanoparticles on sugarcane (Saccharum officinarum). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:554-562. [PMID: 30176466 DOI: 10.1016/j.scitotenv.2018.08.337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
The widespread use of copper based nanomaterials has been accompanied by an increasing interest in understanding their potential risks. It is essential to understand the effects of these nanoparticles on edible crops by performing long-term experiments at relevant exposure concentrations. Sugarcane is the source of 70% of the world's sugar supply and the widespread use of refined sugar and the consumption of raw sugarcane can provide a route for nanoparticles to enter the food supply. In order to evaluate the biochemical and physiological effects of copper nanoparticle exposure, sugarcane was grown for one year in soil amended with 20, 40, and 60 mg/kg of Kocide 3000 (a copper based fungicide), copper metal nanoparticles, micro-sized CuO, and CuCl2. The results show that stress indicators such as catalase and ascorbic peroxidase enzymatic activity in the sugarcane plant were activated by all the copper based materials at different concentrations. Sugarcane plants exposed to nearly all copper treatments showed dosage dependent increases in copper concentrations in root tissues. Translocation of copper to aerial tissues was minimal, with copper concentrations not being significantly different from controls. In addition, Chlorophyll A content was higher in plants treated with Kocide 3000 at 20 and 60 mg/kg, μCuO at 20 mg/kg, and CuCl2 at 20 and 60 mg/kg. To our knowledge, this is the first report on the effects of nano-copper compounds in sugarcane crop.
Collapse
Affiliation(s)
- C Tamez
- Environmental Science and Engineering PhD. Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, United States
| | - E W Morelius
- Environmental Science and Engineering PhD. Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, United States
| | - J A Hernandez-Viezcas
- Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, United States
| | - J R Peralta-Videa
- Environmental Science and Engineering PhD. Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, United States; Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, United States
| | - J Gardea-Torresdey
- Environmental Science and Engineering PhD. Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, United States; Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, United States.
| |
Collapse
|
1081
|
García-Cruz L, Montiel V, Solla-Gullón J. Shape-controlled metal nanoparticles for electrocatalytic applications. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2017-0124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
The application of shape-controlled metal nanoparticles is profoundly impacting the field of electrocatalysis. On the one hand, their use has remarkably enhanced the electrocatalytic activity of many different reactions of interest. On the other hand, their usage is deeply contributing to a correct understanding of the correlations between shape/surface structure and electrochemical reactivity at the nanoscale. However, from the point of view of an electrochemist, there are a number of questions that must be fully satisfied before the evaluation of the shaped metal nanoparticles as electrocatalysts including (i) surface cleaning, (ii) surface structure characterization, and (iii) correlations between particle shape and surface structure. In this chapter, we will cover all these aspects. Initially, we will collect and discuss about the different practical protocols and procedures for obtaining clean shaped metal nanoparticles. This is an indispensable requirement for the establishment of correct correlations between shape/surface structure and electrochemical reactivity. Next, we will also report how some easy-to-do electrochemical experiments including their subsequent analyses can enormously contribute to a detailed characterization of the surface structure of the shaped metal nanoparticles. At this point, we will remark that the key point determining the resulting electrocatalytic activity is the surface structure of the nanoparticles (obviously, the atomic composition is also extremely relevant) but not the particle shape. Finally, we will summarize some of the most significant advances/results on the use of these shaped metal nanoparticles in electrocatalysis covering a wide range of electrocatalytic reactions including fuel cell-related reactions (electrooxidation of formic acid, methanol and ethanol and oxygen reduction) and also CO2 electroreduction.
Graphical Abstract:
Collapse
|
1082
|
Benetti G, Cavaliere E, Brescia R, Salassi S, Ferrando R, Vantomme A, Pallecchi L, Pollini S, Boncompagni S, Fortuni B, Van Bael MJ, Banfi F, Gavioli L. Tailored Ag-Cu-Mg multielemental nanoparticles for wide-spectrum antibacterial coating. NANOSCALE 2019; 11:1626-1635. [PMID: 30644952 DOI: 10.1039/c8nr08375d] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Bactericidal nanoparticle coatings are very promising for hindering the indirect transmission of pathogens through cross-contaminated surfaces. The challenge, limiting their employment in nosocomial environments, is the ability of tailoring the coating's physicochemical properties, namely, composition, cytotoxicity, bactericidal spectrum, adhesion to the substrate, and consequent nanoparticles release into the environment. We have engineered a new family of nanoparticle-based bactericidal coatings comprising Ag, Cu, and Mg and synthesized by a green gas-phase technique. These coatings present wide-spectrum bactericidal activity on both Gram-positive and Gram-negative reference strains and tunable physicochemical properties of relevance in view of their "on-field" deployment. The link between material and functional properties is rationalized based on a multidisciplinary and multitechnique approach. Our results pave the way for engineering biofunctional, fully tunable nanoparticle coatings, exploiting an arbitrarily wide number of elements in a straightforward, eco-friendly, high-throughput, one-step process.
Collapse
Affiliation(s)
- Giulio Benetti
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP) and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via Musei 41, 25121 Brescia, Italy. luca.gavioli@unicatt and Laboratory of Solid State Physics and Magnetism, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Emanuele Cavaliere
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP) and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via Musei 41, 25121 Brescia, Italy. luca.gavioli@unicatt
| | - Rosaria Brescia
- Electron Microscopy Facility, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Sebastian Salassi
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Riccardo Ferrando
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - André Vantomme
- Institute for Nuclear and Radiation Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Lucia Pallecchi
- Department of Medical Biotechnologies, University of Siena, Viale Bracci 1, 53100 Siena, Italy
| | - Simona Pollini
- Dipartimento di Medicina Sperimentale e Clinica, Università di Firenze, Largo Brambilla 1, 50134 Firenze, Italy
| | - Selene Boncompagni
- Department of Medical Biotechnologies, University of Siena, Viale Bracci 1, 53100 Siena, Italy
| | - Beatrice Fortuni
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Margriet J Van Bael
- Laboratory of Solid State Physics and Magnetism, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Francesco Banfi
- FemtoNanoOptics group, Universitė de Lyon, Institut Lumière Matière (iLM), Université Lyon 1 and CNRS, 10 rue Ada Byron, 69622 Villeurbanne, France
| | - Luca Gavioli
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP) and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via Musei 41, 25121 Brescia, Italy. luca.gavioli@unicatt
| |
Collapse
|
1083
|
Deepa S, Murugananthkumar R, Raj Gupta Y, Gowda K.S M, Senthilkumaran B. Effects of zinc oxide nanoparticles and zinc sulfate on the testis of common carp, Cyprinus carpio. Nanotoxicology 2019; 13:240-257. [DOI: 10.1080/17435390.2018.1541259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Seetharam Deepa
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, India
| | - Raju Murugananthkumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, India
| | - Yugantak Raj Gupta
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, India
| | | | - Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, India
| |
Collapse
|
1084
|
Torrealba D, More-Bayona JA, Wakaruk J, Barreda DR. Innate Immunity Provides Biomarkers of Health for Teleosts Exposed to Nanoparticles. Front Immunol 2019; 9:3074. [PMID: 30687312 PMCID: PMC6335578 DOI: 10.3389/fimmu.2018.03074] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, the unique properties of nanoparticles have fostered novel applications in various fields such as biology, pharmaceuticals, agriculture, and others. Unfortunately, their rapid integration into daily life has also led to environmental concerns due to uncontrolled release of nanoparticles into the aquatic environment. Despite increasing awareness of nanoparticle bioaccumulation in the aquatic environment, much remains to be learned about their impact on aquatic organisms and how to best monitor these effects. Herein, we provide the first review of innate immunity as an emerging tool to assess the health of fish following nanoparticle exposure. Fish are widely used as sentinels for aquatic ecosystem pollution and innate immune parameters offer sensitive and reliable tools that can be harnessed for evaluation of contamination events. The most frequent biomarkers highlighted in literature to date include, but are not limited to, parameters associated with leukocyte dynamics, oxidative stress, and cytokine production. Taken together, innate immunity offers finite and sensitive biomarkers for assessment of the impact of nanoparticles on fish health.
Collapse
Affiliation(s)
- Débora Torrealba
- Immunology and Animal Health Laboratory, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Juan A. More-Bayona
- Immunology and Animal Health Laboratory, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Jeremy Wakaruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Daniel R. Barreda
- Immunology and Animal Health Laboratory, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
1085
|
Abstract
Metal and metalloid nanoparticles (NPs) have attracted substantial attention from research communities over the past few decades. Traditional methodologies for NP fabrication have also been intensely explored. However, drawbacks such as the use of toxic agents and the high energy consumption involved in chemical and physical processes hinder their further application in various fields. It is well known that some bacteria are capable of binding and concentrating dissolved metal and metalloid ions, thereby detoxifying their environments. Bioinspired fabrication of NPs is environmentally friendly and inexpensive and requires only low energy consumption. Some biosynthesized NPs are usually used as heterogeneous catalysts in environmental remediation and show higher catalytic efficiency because of their enhanced biocompatibility, stability and large specific surface areas. Therefore, bacteria used as nanofactories can provide a novel approach for removing metal or metalloid ions and fabricating materials with unique properties. Even though a wide range of NPs have been biosynthesized, and their synthetic mechanisms have been proposed, some of these mechanisms are not known in detail. This review focuses on the synthesis and catalytic applications of NPs obtained using bacteria. The known mechanisms of bioreduction and prospects in the design of NPs for catalytic applications are also discussed.
Collapse
|
1086
|
Shimoga G, Shin EJ, Kim SY. Silver nanoparticles incorporated PVC films: evaluation of structural, thermal, dielectric and catalytic properties. POLIMEROS 2019. [DOI: 10.1590/0104-1428.08218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ganesh Shimoga
- Korea University of Technology and Education, South Korea
| | - Eun-Jae Shin
- Korea University of Technology and Education, South Korea
| | - Sang-Youn Kim
- Korea University of Technology and Education, South Korea
| |
Collapse
|
1087
|
Ariga K, Makita T, Ito M, Mori T, Watanabe S, Takeya J. Review of advanced sensor devices employing nanoarchitectonics concepts. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2014-2030. [PMID: 31667049 PMCID: PMC6808193 DOI: 10.3762/bjnano.10.198] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/06/2019] [Indexed: 05/09/2023]
Abstract
Many recent advances in sensor technology have been possible due to nanotechnological advancements together with contributions from other research fields. Such interdisciplinary collaborations fit well with the emerging concept of nanoarchitectonics, which is a novel conceptual methodology to engineer functional materials and systems from nanoscale units through the fusion of nanotechnology with other research fields, including organic chemistry, supramolecular chemistry, materials science and biology. In this review article, we discuss recent advancements in sensor devices and sensor materials that take advantage of advanced nanoarchitectonics concepts for improved performance. In the first part, recent progress on sensor systems are roughly classified according to the sensor targets, such as chemical substances, physical conditions, and biological phenomena. In the following sections, advancements in various nanoarchitectonic motifs, including nanoporous structures, ultrathin films, and interfacial effects for improved sensor function are discussed to realize the importance of nanoarchitectonic structures. Many of these examples show that advancements in sensor technology are no longer limited by progress in microfabrication and nanofabrication of device structures - opening a new avenue for highly engineered, high performing sensor systems through the application of nanoarchitectonics concepts.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Tatsuyuki Makita
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Masato Ito
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Taizo Mori
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Shun Watanabe
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Jun Takeya
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| |
Collapse
|
1088
|
Pan Y, Kong W, Bhushan B, Zhao X. Rapid, ultraviolet-induced, reversibly switchable wettability of superhydrophobic/superhydrophilic surfaces. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:866-873. [PMID: 31165013 PMCID: PMC6541331 DOI: 10.3762/bjnano.10.87] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/08/2019] [Indexed: 05/16/2023]
Abstract
Controllable wettability is important for a wide range of applications, including intelligent switching, self-cleaning and oil/water separation. In this work, rapid switching and extreme wettability changes upon ultraviolet (UV) illumination were investigated. TiO2 nanoparticles were modified in solutions of trimethoxy(alkyl)silane, and the suspensions were sprayed on glass substrates. For such samples, the water contact angle (WCA) was shown to transition from a superhydrophobic (WCA ≈ 165°) to a superhydrophilic (WCA ≈ 0°) state within 10 min upon UV illumination and subsequent recovery to superhydrophobicity occurred after heat treatment. It was found that the changes in the trimethoxy(alkyl)silane upon UV illumination can explain the rapid decrease of the WCA from more than 165° to almost 0°. To further investigate the wettability transition, trimethoxy(alkyl)silane and Al2O3 nanoparticles (which are not photocatalytic) were mixed and spray-coated onto the glass substrates as the control samples. Then the unrecoverable change of trimethoxy(alkyl)silane under UV illumination can be confirmed. It was found that the presence of trimethoxy(alkyl)silane in the TiO2-trimethoxy(alkyl)silane coating served to speed up the super-wettability transition time from superhydrophobicity to superhydrophilicity, but also limited the number of wettability recycle times. With this understanding, the effect of the trimethoxy(alkyl)silane concentration on the number of recycle cycles was investigated.
Collapse
Affiliation(s)
- Yunlu Pan
- Key laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, Xidazhi 92, Harbin, 150001, PR China
| | - Wenting Kong
- Key laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, Xidazhi 92, Harbin, 150001, PR China
| | - Bharat Bhushan
- Key laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, Xidazhi 92, Harbin, 150001, PR China
- Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics (NLBB), The Ohio State University, 201 W. 19th Avenue, Columbus, OH 43210-1142, USA
| | - Xuezeng Zhao
- Key laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, Xidazhi 92, Harbin, 150001, PR China
| |
Collapse
|
1089
|
Osipov EM, Hendrickson OD, Tikhonova TV, Zherdev AV, Solopova ON, Sveshnikov PG, Dzantiev BB, Popov VO. Structure of the Anti-C60 Fullerene Antibody Fab Fragment: Structural Determinants of Fullerene Binding. Acta Naturae 2019; 11:58-65. [PMID: 31024749 PMCID: PMC6475864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Indexed: 11/03/2022] Open
Abstract
The structure of the anti-C60 fullerene antibody Fab fragment (FabC60) was solved by X-ray crystallography. The computer-aided docking of C60 into the antigen-binding pocket of FabC60 showed that binding of C60 to FabC60 is governed by the enthalpy and entropy; namely, by π-π stacking interactions with aromatic residues of the antigen-binding site and reduction of the solvent-accessible area of the hydrophobic surface of C60. A fragment of the mobile CDR H3 loop located on the surface of FabC60 interferes with C60 binding in the antigen-binding site, thereby resulting in low antibody affinity for C60. The structure of apo-FabC60 has been deposited with pdbid 6H3H.
Collapse
Affiliation(s)
- E. M. Osipov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, 119071, Moscow, Russia
| | - O. D. Hendrickson
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, 119071, Moscow, Russia
| | - T. V. Tikhonova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, 119071, Moscow, Russia
| | - A. V. Zherdev
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, 119071, Moscow, Russia
| | - O. N. Solopova
- Russian Research Center of Molecular Diagnostics and Therapy, Simpheropolsky Blvd. 8, 113149, Moscow, Russia
| | - P. G. Sveshnikov
- Russian Research Center of Molecular Diagnostics and Therapy, Simpheropolsky Blvd. 8, 113149, Moscow, Russia
| | - B. B. Dzantiev
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, 119071, Moscow, Russia
| | - V. O. Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, 119071, Moscow, Russia
| |
Collapse
|
1090
|
Ariga K, Matsumoto M, Mori T, Shrestha LK. Materials nanoarchitectonics at two-dimensional liquid interfaces. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1559-1587. [PMID: 31467820 PMCID: PMC6693411 DOI: 10.3762/bjnano.10.153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/16/2019] [Indexed: 05/06/2023]
Abstract
Much attention has been paid to the synthesis of low-dimensional materials from small units such as functional molecules. Bottom-up approaches to create new low-dimensional materials with various functional units can be realized with the emerging concept of nanoarchitectonics. In this review article, we overview recent research progresses on materials nanoarchitectonics at two-dimensional liquid interfaces, which are dimensionally restricted media with some freedoms of molecular motion. Specific characteristics of molecular interactions and functions at liquid interfaces are briefly explained in the first parts. The following sections overview several topics on materials nanoarchitectonics at liquid interfaces, such as the preparation of two-dimensional metal-organic frameworks and covalent organic frameworks, and the fabrication of low-dimensional and specifically structured nanocarbons and their assemblies at liquid-liquid interfaces. Finally, interfacial nanoarchitectonics of biomaterials including the regulation of orientation and differentiation of living cells are explained. In the recent examples described in this review, various materials such as molecular machines, molecular receptors, block-copolymer, DNA origami, nanocarbon, phages, and stem cells were assembled at liquid interfaces by using various useful techniques. This review overviews techniques such as conventional Langmuir-Blodgett method, vortex Langmuir-Blodgett method, liquid-liquid interfacial precipitation, instructed assembly, and layer-by-layer assembly to give low-dimensional materials including nanowires, nanowhiskers, nanosheets, cubic objects, molecular patterns, supramolecular polymers, metal-organic frameworks and covalent organic frameworks. The nanoarchitecture materials can be used for various applications such as molecular recognition, sensors, photodetectors, supercapacitors, supramolecular differentiation, enzyme reactors, cell differentiation control, and hemodialysis.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Michio Matsumoto
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Taizo Mori
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Lok Kumar Shrestha
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
1091
|
Iscaro A, Howard NF, Muthana M. Nanoparticles: Properties and Applications in Cancer Immunotherapy. Curr Pharm Des 2019; 25:1962-1979. [PMID: 31566122 DOI: 10.2174/1381612825666190708214240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tumours are no longer regarded as isolated masses of aberrantly proliferating epithelial cells. Rather, their properties depend on complex interactions between epithelial cancer cells and the surrounding stromal compartment within the tumour microenvironment. In particular, leukocyte infiltration plays a role in controlling tumour development and is now considered one of the hallmarks of cancer. Thus, in the last few years, immunotherapy has become a promising strategy to fight cancer, as its goal is to reprogram or activate antitumour immunity to kill tumour cells, without damaging the normal cells and provide long-lasting results where other therapies fail. However, the immune-related adverse events due to the low specificity in tumour cell targeting, strongly limit immunotherapy efficacy. In this regard, nanomedicine offers a platform for the delivery of different immunotherapeutic agents specifically to the tumour site, thus increasing efficacy and reducing toxicity. Indeed, playing with different material types, several nanoparticles can be formulated with different shape, charge, size and surface chemical modifications making them the most promising platform for biomedical applications. AIM In this review, we will summarize the different types of cancer immunotherapy currently in clinical trials or already approved for cancer treatment. Then, we will focus on the most recent promising strategies to deliver immunotherapies directly to the tumour site using nanoparticles. CONCLUSION Nanomedicine seems to be a promising approach to improve the efficacy of cancer immunotherapy. However, additional investigations are needed to minimize the variables in the production processes in order to make nanoparticles suitable for clinical use.
Collapse
Affiliation(s)
- Alessandra Iscaro
- Department of Oncology & Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, United Kingdom
| | - Nutter F Howard
- Department of Oncology & Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, United Kingdom
| | - Munitta Muthana
- Department of Oncology & Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, United Kingdom
| |
Collapse
|
1092
|
Helal NA, Eassa HA, Amer AM, Eltokhy MA, Edafiogho I, Nounou MI. Nutraceuticals' Novel Formulations: The Good, the Bad, the Unknown and Patents Involved. RECENT PATENTS ON DRUG DELIVERY & FORMULATION 2019; 13:105-156. [PMID: 31577201 PMCID: PMC6806606 DOI: 10.2174/1872211313666190503112040] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/07/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
Traditional nutraceuticals and cosmeceuticals hold pragmatic nature with respect to their definitions, claims, purposes and marketing strategies. Their definitions are not well established worldwide. They also have different regulatory definitions and registration regulatory processes in different parts of the world. Global prevalence of nutraceuticals and cosmeceuticals is noticeably high with large market share with minimal regulation compared to traditional drugs. The global market is flooded with nutraceuticals and cosmeceuticals claiming to be of natural origin and sold with a therapeutic claim by major online retail stores such as Amazon and eBay. Apart from the traditional formulations, many manufacturers and researchers use novel formulation technologies in nutraceutical and cosmeceutical formulations for different reasons and objectives. Manufacturers tend to differentiate their products with novel formulations to increase market appeal and sales. On the other hand, researchers use novel strategies to enhance nutraceuticals and cosmeceuticals activity and safety. The objective of this review is to assess the current patents and research adopting novel formulation strategies in nutraceuticals and cosmeceuticals. Patents and research papers investigating nutraceutical and cosmeceutical novel formulations were surveyed for the past 15 years. Various nanosystems and advanced biotechnology systems have been introduced to improve the therapeutic efficacy, safety and market appeal of nutraceuticals and cosmeceuticals, including liposomes, polymeric micelles, quantum dots, nanoparticles, and dendrimers. This review provides an overview of nutraceuticals and cosmeceuticals current technologies, highlighting their pros, cons, misconceptions, regulatory definitions and market. This review also aims in separating the science from fiction in the nutraceuticals and cosmeceuticals development, research and marketing.
Collapse
Affiliation(s)
- Nada A. Helal
- Both authors contributed equality to this manuscript
| | - Heba A. Eassa
- Both authors contributed equality to this manuscript
| | | | | | | | - Mohamed I. Nounou
- Address correspondence to this author at the Department of Pharmaceutical Sciences (DPS), School of Pharmacy and Physician Assistant Studies (SOPPAS), University of Saint Joseph (USJ), Hartford, CT, 06103, USA;
E-mail:
| |
Collapse
|
1093
|
Yonezawa T, Čempel D, Nguyen MT. Microwave-Induced Plasma-In-Liquid Process for Nanoparticle Production. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180285] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tetsu Yonezawa
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - David Čempel
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Mai Thanh Nguyen
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
1094
|
Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 2018; 37:177-192. [PMID: 30500353 DOI: 10.1016/j.biotechadv.2018.11.013] [Citation(s) in RCA: 1014] [Impact Index Per Article: 169.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 01/09/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is a leading cause of morbidity and mortality in cystic fibrosis patients and immunocompromised individuals. Eradication of P. aeruginosa has become increasingly difficult due to its remarkable capacity to resist antibiotics. Strains of Pseudomonas aeruginosa are known to utilize their high levels of intrinsic and acquired resistance mechanisms to counter most antibiotics. In addition, adaptive antibiotic resistance of P. aeruginosa is a recently characterized mechanism, which includes biofilm-mediated resistance and formation of multidrug-tolerant persister cells, and is responsible for recalcitrance and relapse of infections. The discovery and development of alternative therapeutic strategies that present novel avenues against P. aeruginosa infections are increasingly demanded and gaining more and more attention. Although mostly at the preclinical stages, many recent studies have reported several innovative therapeutic technologies that have demonstrated pronounced effectiveness in fighting against drug-resistant P. aeruginosa strains. This review highlights the mechanisms of antibiotic resistance in P. aeruginosa and discusses the current state of some novel therapeutic approaches for treatment of P. aeruginosa infections that can be further explored in clinical practice.
Collapse
Affiliation(s)
- Zheng Pang
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Renee Raudonis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Tong-Jun Lin
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Pediatrics, IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Zhenyu Cheng
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
1095
|
Gainanova GA, Valeeva FG, Kushnazarova RA, Bogoslov EA, Danilaev MP. Hybrid Systems Based on Surfactant-Stabilized Carbon Nano- and Microparticles. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218110191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
1096
|
Rasouli R, Barhoum A, Uludag H. A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance. Biomater Sci 2018; 6:1312-1338. [PMID: 29744496 DOI: 10.1039/c8bm00021b] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emerging field of nanostructured implants has enormous scope in the areas of medical science and dental implants. Surface nanofeatures provide significant potential solutions to medical problems by the introduction of better biomaterials, improved implant design, and surface engineering techniques such as coating, patterning, functionalization and molecular grafting at the nanoscale. This review is of an interdisciplinary nature, addressing the history and development of dental implants and the emerging area of nanotechnology in dental implants. After a brief introduction to nanotechnology in dental implants and the main classes of dental implants, an overview of different types of nanomaterials (i.e. metals, metal oxides, ceramics, polymers and hydrides) used in dental implant together with their unique properties, the influence of elemental compositions, and surface morphologies and possible applications are presented from a chemical point of view. In the core of this review, the dental implant materials, physical and chemical fabrication techniques and the role of nanotechnology in achieving ideal dental implants have been discussed. Finally, the critical parameters in dental implant design and available data on the current dental implant surfaces that use nanotopography in clinical dentistry have been discussed.
Collapse
Affiliation(s)
- Rahimeh Rasouli
- Department of Medical Nanotechnology, International Campus, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | |
Collapse
|
1097
|
Levina A, Repkova M, Ismagilov Z, Zarytova V. Methods of the Synthesis of Silicon-Containing Nanoparticles Intended for Nucleic Acid Delivery. EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL 2018. [DOI: 10.18321/ectj720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A promising new approach to the treatment of viral infections and genetic diseases associated with damaged or foreign nucleic acids in the body is gene therapy, i.e., the use of antisense oligonucleotides, ribozymes, deoxyribozymes, siRNA, plasmid DNA, etc. (therapeutic nucleic acids). Selective recognition of target nucleic acids by these compounds based on highly specific complementary interaction can minimize negative side effects, which occur with currently used low molecular weight drugs. To apply a new generation of therapeutic agents in medical practice, it is necessary to solve the problem of their delivery into cells. Silicon-containing nanoparticles are considered as promising carriers for this purpose due to their biocompatibility, low toxicity, ability to biodegradation and excretion from the body, as well as the simplicity of the synthesis and modification. Silicon-containing nanoparticles are divided into two broad categories: solid (nonporous) and mesoporous silicon nanoparticles (MSN). This review gives a brief overview of the creation of mesoporous, multilayer, and other silicon-based nanoparticles. The publications concerning solid silicon-organic nanoparticles capable of binding and delivering nucleic acids into cells are discussed in more detail with emphasis on methods for their synthesis. The review covers publications over the past 15 years, which describe the classical Stöber method, the microemulsion method, modification of commercial silica nanoparticles, and other strategies.
Collapse
|
1098
|
Pan Y, Ong CE, Pung YF, Chieng JY. The current understanding of the interactions between nanoparticles and cytochrome P450 enzymes – a literature-based review. Xenobiotica 2018; 49:863-876. [DOI: 10.1080/00498254.2018.1503360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yan Pan
- Department of Biomedical Science, The University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Chin Eng Ong
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Yuh Fen Pung
- Department of Biomedical Science, The University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Jin Yu Chieng
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|