1101
|
Pojoga LH, Yao TM, Opsasnick LA, Garza AE, Reslan OM, Adler GK, Williams GH, Khalil RA. Dissociation of hyperglycemia from altered vascular contraction and relaxation mechanisms in caveolin-1 null mice. J Pharmacol Exp Ther 2013; 348:260-70. [PMID: 24281385 DOI: 10.1124/jpet.113.209189] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hyperglycemia and endothelial dysfunction are associated with hypertension, but the specific causality and genetic underpinning are unclear. Caveolin-1 (cav-1) is a plasmalemmal anchoring protein and modulator of vascular function and glucose homeostasis. Cav-1 gene variants are associated with reduced insulin sensitivity in hypertensive individuals, and cav-1(-/-) mice show endothelial dysfunction, hyperglycemia, and increased blood pressure (BP). On the other hand, insulin-sensitizing therapy with metformin may inadequately control hyperglycemia while affecting the vascular outcome in certain patients with diabetes. To test whether the pressor and vascular changes in cav-1 deficiency states are related to hyperglycemia and to assess the vascular mechanisms of metformin under these conditions, wild-type (WT) and cav-1(-/-) mice were treated with either placebo or metformin (400 mg/kg daily for 21 days). BP and fasting blood glucose were in cav-1(-/-) > WT and did not change with metformin. Phenylephrine (Phe)- and KCl-induced aortic contraction was in cav-1(-/-) < WT; endothelium removal, the nitric-oxide synthase (NOS) blocker L-NAME (N(ω)-nitro-L-arginine methyl ester), or soluble guanylate cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) enhanced Phe contraction, and metformin blunted this effect. Acetylcholine-induced relaxation was in cav-1(-/-) > WT, abolished by endothelium removal, L-NAME or ODQ, and reduced with metformin. Nitric oxide donor sodium nitroprusside was more potent in inducing relaxation in cav-1(-/-) than in WT, and metformin reversed this effect. Aortic eNOS, AMPK, and sGC were in cav-1(-/-) > WT, and metformin decreased total and phosphorylated eNOS and AMPK in cav-1(-/-). Thus, metformin inhibits both vascular contraction and NO-cGMP-dependent relaxation but does not affect BP or blood glucose in cav-1(-/-) mice, suggesting dissociation of hyperglycemia from altered vascular function in cav-1-deficiency states.
Collapse
Affiliation(s)
- Luminita H Pojoga
- Cardiovascular Endocrine Section, Endocrinology, Diabetes and Hypertension Division (L.H.P., T.M.Y., A.E.G., G.K.A., G.H.W.), and Division of Vascular and Endovascular Surgery (L.A.O., O.M.R., R.A.K.), Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | |
Collapse
|
1102
|
Yang H, Garzel B, Heyward S, Moeller T, Shapiro P, Wang H. Metformin represses drug-induced expression of CYP2B6 by modulating the constitutive androstane receptor signaling. Mol Pharmacol 2013; 85:249-60. [PMID: 24252946 DOI: 10.1124/mol.113.089763] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Metformin is currently the most widely used drug for the treatment of type 2 diabetes. Mechanistically, metformin interacts with many protein kinases and transcription factors that alter the expression of numerous downstream target genes governing lipid metabolism, cell proliferation, and drug metabolism. The constitutive androstane receptor (CAR, NR1i3), a known xenobiotic sensor, has recently been recognized as a novel signaling molecule, in that its activation could be regulated by protein kinases in addition to the traditional ligand binding. We show that metformin could suppress drug-induced expression of CYP2B6 (a typical target gene of CAR) by modulating the phosphorylation status of CAR. In human hepatocytes, metformin robustly suppressed the expression of CYP2B6 induced by both indirect (phenobarbital) and direct CITCO [6-(4-chlorophenyl)imidazo[2,1-b]1,3thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime] activators of human CAR. Mechanistic investigation revealed that metformin specifically enhanced the phosphorylation of threonine-38 of CAR, which blocks CAR nuclear translocation and activation. Moreover, we showed that phosphorylation of CAR by metformin was primarily an AMP-activated protein kinase- and extracellular signal-regulated kinase 1/2-dependent event. Additional two-hybrid and coimmunoprecipitation assays demonstrated that metformin could also disrupt CITCO-mediated interaction between CAR and the steroid receptor coactivator 1 or the glucocorticoid receptor-interacting protein 1. Our results suggest that metformin is a potent repressor of drug-induced CYP2B6 expression through specific inhibition of human CAR activation. Thus, metformin may affect the metabolism and clearance of drugs that are CYP2B6 substrates.
Collapse
Affiliation(s)
- Hui Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (H.Y., B.G., P.S., H.W.); and Bioreclamation In Vitro Technologies (S.H., T.M.), Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
1103
|
Ljubicic V, Burt M, Jasmin BJ. The therapeutic potential of skeletal muscle plasticity in Duchenne muscular dystrophy: phenotypic modifiers as pharmacologic targets. FASEB J 2013; 28:548-68. [PMID: 24249639 DOI: 10.1096/fj.13-238071] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a life-limiting, neuromuscular disorder that causes progressive, severe muscle wasting in boys and young men. Although there is no cure, scientists and clinicians can leverage the fact that slower, more oxidative skeletal muscle fibers possess an enhanced degree of resistance to the dystrophic pathology relative to their faster, more glycolytic counterparts, and can thus use this knowledge when investigating novel therapeutic avenues. Several factors have been identified as powerful regulators of muscle plasticity. Some proteins, such as calcineurin, peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α), PPARβ/δ, and AMP-activated protein kinase (AMPK), when chronically stimulated in animal models, remodel skeletal muscle toward the slow, oxidative myogenic program, whereas others, such as receptor-interacting protein 140 (RIP140) and E2F transcription factor 1 (E2F1), repress this phenotype. Recent studies demonstrating that pharmacologic and physiological activation of targets that shift dystrophic muscle toward the slow, oxidative myogenic program provide appreciable molecular and functional benefits. This review surveys the rationale behind, and evidence for, the study of skeletal muscle plasticity in preclinical models of DMD and highlights the potential therapeutic opportunities in advancing a strategy focused on remodeling skeletal muscle in patients with DMD toward the slow, oxidative phenotype.
Collapse
Affiliation(s)
- Vladimir Ljubicic
- 1Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | | | | |
Collapse
|
1104
|
Pulito C, Sanli T, Rana P, Muti P, Blandino G, Strano S. Metformin: On Ongoing Journey across Diabetes, Cancer Therapy and Prevention. Metabolites 2013; 3:1051-75. [PMID: 24958265 PMCID: PMC3937831 DOI: 10.3390/metabo3041051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/27/2013] [Accepted: 10/31/2013] [Indexed: 02/08/2023] Open
Abstract
Cancer metabolism is the focus of intense research, which witnesses its key role in human tumors. Diabetic patients treated with metformin exhibit a reduced incidence of cancer and cancer-related mortality. This highlights the possibility that the tackling of metabolic alterations might also hold promising value for treating cancer patients. Here, we review the emerging role of metformin as a paradigmatic example of an old drug used worldwide to treat patients with type II diabetes which to date is gaining strong in vitro and in vivo anticancer activities to be included in clinical trials. Metformin is also becoming the focus of intense basic and clinical research on chemoprevention, thus suggesting that metabolic alteration is an early lesion along cancer transformation. Metabolic reprogramming might be a very efficient prevention strategy with a profound impact on public health worldwide.
Collapse
Affiliation(s)
- Claudio Pulito
- Molecular Chemoprevention Group, Molecular Medicine Area, Regina Elena National Institute, Rome 00144, Italy.
| | - Toran Sanli
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, ON L8V 5C2, Canada.
| | - Punam Rana
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, ON L8V 5C2, Canada.
| | - Paola Muti
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, ON L8V 5C2, Canada.
| | - Giovanni Blandino
- Translational Oncogenomics Unit-ROC, Molecular Medicine Area, Regina Elena National Institute, Rome 00144, Italy.
| | - Sabrina Strano
- Molecular Chemoprevention Group, Molecular Medicine Area, Regina Elena National Institute, Rome 00144, Italy.
| |
Collapse
|
1105
|
Pearce L, Atanassova N, Banton M, Bottomley B, van der Klaauw A, Revelli JP, Hendricks A, Keogh J, Henning E, Doree D, Jeter-Jones S, Garg S, Bochukova E, Bounds R, Ashford S, Gayton E, Hindmarsh P, Shield J, Crowne E, Barford D, Wareham N, O’Rahilly S, Murphy M, Powell D, Barroso I, Farooqi I. KSR2 mutations are associated with obesity, insulin resistance, and impaired cellular fuel oxidation. Cell 2013; 155:765-77. [PMID: 24209692 PMCID: PMC3898740 DOI: 10.1016/j.cell.2013.09.058] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 07/31/2013] [Accepted: 09/20/2013] [Indexed: 02/02/2023]
Abstract
Kinase suppressor of Ras 2 (KSR2) is an intracellular scaffolding protein involved in multiple signaling pathways. Targeted deletion of Ksr2 leads to obesity in mice, suggesting a role in energy homeostasis. We explored the role of KSR2 in humans by sequencing 2,101 individuals with severe early-onset obesity and 1,536 controls. We identified multiple rare variants in KSR2 that disrupt signaling through the Raf-MEKERK pathway and impair cellular fatty acid oxidation and glucose oxidation in transfected cells; effects that can be ameliorated by the commonly prescribed antidiabetic drug, metformin. Mutation carriers exhibit hyperphagia in childhood, low heart rate, reduced basal metabolic rate and severe insulin resistance. These data establish KSR2 as an important regulator of energy intake, energy expenditure, and substrate utilization in humans. Modulation of KSR2-mediated effects may represent a novel therapeutic strategy for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Laura R. Pearce
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Neli Atanassova
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Matthew C. Banton
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Bill Bottomley
- Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Agatha A. van der Klaauw
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | | | | | - Julia M. Keogh
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Deon Doree
- Lexicon Pharmaceuticals, The Woodlands, TX 77381, USA
| | | | - Sumedha Garg
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Elena G. Bochukova
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Rebecca Bounds
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Sofie Ashford
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Emma Gayton
- Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Peter C. Hindmarsh
- Institute of Child Health, University College London, London WC1E 6BT, UK
| | - Julian P.H. Shield
- University of Bristol and Bristol Royal Hospital for Children, Bristol BS2 8BJ, UK
| | - Elizabeth Crowne
- University of Bristol and Bristol Royal Hospital for Children, Bristol BS2 8BJ, UK
| | - David Barford
- Institute of Cancer Research, Chester Beatty Laboratories, London SW3 6JB, UK
| | - Nick J. Wareham
- MRC Epidemiology Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | | | - Stephen O’Rahilly
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Michael P. Murphy
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | | - Ines Barroso
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - I. Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
1106
|
Hume WE, Shingaki T, Takashima T, Hashizume Y, Okauchi T, Katayama Y, Hayashinaka E, Wada Y, Kusuhara H, Sugiyama Y, Watanabe Y. The synthesis and biodistribution of [(11)C]metformin as a PET probe to study hepatobiliary transport mediated by the multi-drug and toxin extrusion transporter 1 (MATE1) in vivo. Bioorg Med Chem 2013; 21:7584-90. [PMID: 24238901 DOI: 10.1016/j.bmc.2013.10.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022]
Abstract
In order to develop a new positron emission tomography (PET) probe to study hepatobiliary transport mediated by the multi-drug and toxin extrusion transporter 1 (MATE1), (11)C-labelled metformin was synthesized and then evaluated as a PET probe. [(11)C]Metformin ([(11)C]4) was synthesized in three steps, from [(11)C]methyl iodide. Evaluation by small animal PET of [(11)C]4 showed that there was increased concentrations of [(11)C]4 in the livers of mice pre-treated with pyrimethamine, a potential inhibitor of MATEs, inhibiting the hepatobiliary excretion of metformin. Radiometabolite analysis showed that [(11)C]4 was not degraded in vivo during the PET scan. Biodistribution studies were undertaken and the organ distributions were extrapolated into a standard human model. In conclusion, [(11)C]4 may be useful as a PET probe to non-invasively study the in vivo function of hepatobiliary transport and drug-drug interactions, mediated by MATE1 in future clinical investigations.
Collapse
Affiliation(s)
- W Ewan Hume
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1107
|
Wu J, Puppala D, Feng X, Monetti M, Lapworth AL, Geoghegan KF. Chemoproteomic analysis of intertissue and interspecies isoform diversity of AMP-activated protein kinase (AMPK). J Biol Chem 2013; 288:35904-12. [PMID: 24187138 DOI: 10.1074/jbc.m113.508747] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a heterotrimeric enzyme that senses and governs changes in the cellular energy balance represented by concentrations of AMP, ADP, and ATP. Each of its three chains (α, β, and γ) exists as either two or three subtypes, theoretically allowing up to 12 different forms of the complete enzyme. Tissue specificity in the distribution of AMPK subtypes is believed to underpin a range of biological functions for AMPK, a central regulator of metabolic function and response. It is of particular interest for drug discovery purposes to compare AMPK isoforms that are most prevalent in human liver and muscle with isoforms present in key preclinical species. To complement immunocapture/immunodetection methods, which for AMPK are challenged by sequence similarities and difficulties of obtaining accurate relative quantitation, AMPK was captured from lysates of a range of cells and tissues using the ActivX ATP probe. This chemical probe covalently attaches desthiobiotin to one or more conserved lysyl residues in the ATP-binding sites of protein kinases, including AMPK, while also labeling a wide range of ATP-utilizing proteins. Affinity-based recovery of labeled proteins followed by gel-based fractionation of the captured sample was followed by proteomic characterization of AMPK polypeptides. In agreement with transcript-based analysis and previous indications from immunodetection, the results indicated that the predominant AMPK heterotrimer in human liver is α1β2γ1 but that dog and rat livers mainly contain the α1β1γ1 and α2β1γ1 forms, respectively. Differences were not detected between the AMPK profiles of normal and diabetic human liver tissues.
Collapse
Affiliation(s)
- Jiang Wu
- From Pfizer Worldwide Research, Groton, Connecticut 06340 and
| | | | | | | | | | | |
Collapse
|
1108
|
Abstract
PURPOSE OF REVIEW Ghrelin is a multifaceted gut hormone that activates its receptor, growth hormone secretagogue receptor (GHS-R). Ghrelin's hallmark functions are its stimulatory effects on growth hormone release, food intake and fat deposition. Ghrelin is famously known as the 'hunger hormone'. However, ample recent literature indicates that the functions of ghrelin go well beyond its role as an orexigenic signal. Here, we have reviewed some of the most recent findings on ghrelin and its signalling in animals and humans. RECENT FINDINGS Ghrelin regulates glucose homeostasis by inhibiting insulin secretion and regulating gluconeogenesis/glycogenolysis. Ghrelin signalling decreases thermogenesis to regulate energy expenditure. Ghrelin improves the survival prognosis of myocardial infarction by reducing sympathetic nerve activity. Ghrelin prevents muscle atrophy by inducing muscle differentiation and fusion. Ghrelin regulates bone formation and metabolism by modulating proliferation and differentiation of osteoblasts. SUMMARY In addition to ghrelin's effects on appetite and adiposity, ghrelin signalling also plays crucial roles in glucose and energy homeostasis, cardioprotection, muscle atrophy and bone metabolism. These multifaceted roles of ghrelin make ghrelin and GHS-R highly attractive targets for drug development. Ghrelin mimetics may be used to treat heart diseases, muscular dystrophy/sarcopenia and osteoporosis; GHS-R antagonists may be used to treat obesity and insulin resistance.
Collapse
Affiliation(s)
- Geetali Pradhan
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Susan L. Samson
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yuxiang Sun
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
1109
|
Metformin inhibits expression and secretion of PEDF in adipocyte and hepatocyte via promoting AMPK phosphorylation. Mediators Inflamm 2013; 2013:429207. [PMID: 24288442 PMCID: PMC3833404 DOI: 10.1155/2013/429207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/07/2013] [Accepted: 09/09/2013] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Pigment epithelium-derived factor (PEDF) plays an important role in obesity-induced insulin resistance (IR). The study aims to investigate the effect of metformin, a widely used agent to improve IR, on PEDF production both in vivo and in vitro. METHODS SD rats were divided into normal control group, high fat group (HF group), and metformin group (MET group). Hyperinsulinemic euglycemic clamp was performed to evaluate insulin sensitivity. IR models of 3T3-L1 and HepG2 cells were established and then treated with metformin and inhibitor of AMP activated protein kinase (AMPK). RESULTS In vivo, the HF group showed increased serum PEDF which is negatively correlated with insulin sensitivity, while the MET group revealed decreased serum PEDF and downregulated PEDF expression in fat and liver, concomitant with significantly improved IR. In vitro, the IR cells showed enhanced PEDF secretion and expression, whereas metformin lowered PEDF secretion and expression, accompanied with increased glucose uptake. Metformin stimulated AMPK phosphorylation in fat and liver of the obese rats, while in vitro, when combined with AMPK inhibitor, the effect of metformin on PEDF was abrogated. CONCLUSIONS Metformin inhibits the expression and secretion of PEDF in fat and liver via promoting AMPK phosphorylation, which is closely associated with IR improvement.
Collapse
|
1110
|
Zannella VE, Dal Pra A, Muaddi H, McKee TD, Stapleton S, Sykes J, Glicksman R, Chaib S, Zamiara P, Milosevic M, Wouters BG, Bristow RG, Koritzinsky M. Reprogramming metabolism with metformin improves tumor oxygenation and radiotherapy response. Clin Cancer Res 2013; 19:6741-50. [PMID: 24141625 DOI: 10.1158/1078-0432.ccr-13-1787] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Tumor hypoxia is a negative prognostic factor in multiple cancers, due in part to its role in causing resistance to radiotherapy. Hypoxia arises in tumor regions distal to blood vessels as oxygen is consumed by more proximal tumor cells. Reducing the rate of oxygen consumption is therefore a potential strategy to reduce tumor hypoxia. We hypothesized that the anti-diabetic drug metformin, which reduces oxygen consumption through inhibition of mitochondrial complex I, would improve radiation response by increasing tumor oxygenation. EXPERIMENTAL DESIGN Tumor hypoxia was measured in xenografts before and after metformin treatment using 2-nitroimidazole hypoxia markers quantified by immunohistochemistry (IHC), flow cytometry, and positron emission tomography (PET) imaging. Radiation response was determined by tumor growth delay and clonogenic survival in xenografts with and without administration of metformin. The impact of metformin use on outcome was assessed in 504 patients with localized prostate cancer treated with curative-intent, image-guided radiotherapy (IGRT) from 1996 to 2012. Three-year biochemical relapse-free rates were assessed using the Kaplan-Meier method. RESULTS Metformin treatment significantly improved tumor oxygenation in two xenograft models as measured by IHC, flow cytometry, and PET imaging. Metformin also led to improved radiotherapy responses when mice were administered metformin immediately before irradiation. Clinically, metformin use was associated with an independent and significant decrease in early biochemical relapse rates (P = 0.0106). CONCLUSION Our data demonstrate that metformin can improve tumor oxygenation and response to radiotherapy. Our study suggests that metformin may represent an effective and inexpensive means to improve radiotherapy outcome with an optimal therapeutic ratio.
Collapse
Affiliation(s)
- Vanessa E Zannella
- Authors' Affiliations: Princess Margaret Cancer Centre and Radiation Medicine Program, University Health Network; Institute of Medical Science, Department of Radiation Oncology, Faculty of Medicine, Department of Medical Biophysics, University of Toronto; Selective Therapies Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada; and Department of Radiation Oncology (Maastro Lab), GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1111
|
Jian MY, Alexeyev MF, Wolkowicz PE, Zmijewski JW, Creighton JR. Metformin-stimulated AMPK-α1 promotes microvascular repair in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2013; 305:L844-55. [PMID: 24097562 DOI: 10.1152/ajplung.00173.2013] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Acute lung injury secondary to sepsis is a leading cause of mortality in sepsis-related death. Present therapies are not effective in reversing endothelial cell dysfunction, which plays a key role in increased vascular permeability and compromised lung function. AMP-activated protein kinase (AMPK) is a molecular sensor important for detection and mediation of cellular adaptations to vascular disruptive stimuli. In this study, we sought to determine the role of AMPK in resolving increased endothelial permeability in the sepsis-injured lung. AMPK function was determined in vivo using a rat model of endotoxin-induced lung injury, ex vivo using the isolated lung, and in vitro using cultured rat pulmonary microvascular endothelial cells (PMVECs). AMPK stimulation using N1-(α-d-ribofuranosyl)-5-aminoimidizole-4-carboxamide or metformin decreased the LPS-induced increase in permeability, as determined by filtration coefficient (Kf) measurements, and resolved edema as indicated by decreased wet-to-dry ratios. The role of AMPK in the endothelial response to LPS was determined by shRNA designed to decrease expression of the AMPK-α1 isoform in capillary endothelial cells. Permeability, wounding, and barrier resistance assays using PMVECs identified AMPK-α1 as the molecule responsible for the beneficial effects of AMPK in the lung. Our findings provide novel evidence for AMPK-α1 as a vascular repair mechanism important in the pulmonary response to sepsis and identify a role for metformin treatment in the management of capillary injury.
Collapse
Affiliation(s)
- Ming-Yuan Jian
- Dept. of Anesthesiology, BMR II, 901 19 St., S. Birmingham, AL 35294.
| | | | | | | | | |
Collapse
|
1112
|
Glycogen storage disease type 1 and diabetes: Learning by comparing and contrasting the two disorders. DIABETES & METABOLISM 2013; 39:377-87. [DOI: 10.1016/j.diabet.2013.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 02/25/2013] [Accepted: 03/11/2013] [Indexed: 12/18/2022]
|
1113
|
Kim D, Lee JE, Jung YJ, Lee AS, Lee S, Park SK, Kim SH, Park BH, Kim W, Kang KP. Metformin decreases high-fat diet-induced renal injury by regulating the expression of adipokines and the renal AMP-activated protein kinase/acetyl-CoA carboxylase pathway in mice. Int J Mol Med 2013; 32:1293-302. [PMID: 24068196 DOI: 10.3892/ijmm.2013.1508] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/18/2013] [Indexed: 11/06/2022] Open
Abstract
Metabolic syndrome is characterized by insulin resistance, dyslipidemia and hypertension. These metabolic changes contribute to the development of obesity-induced kidney injury. AMP-activated protein kinase (AMPK) is a ubiquitous enzyme that is involved in the cellular metabolic response to metabolic stress. Metformin, an AMPK activator, has been reported to exert a protective effect against non-alcoholic steatohepatitis. However, little is known about its role in the pathogenesis of obesity-induced renal injury. The aim of this study was to investigate the effects of metformin on high-fat diet (HFD)-induced kidney injury. Obesity was induced by HFD (60% of total calories from fat, 20% protein and 20% carbohydrates) in 6-week-old C57BL/6 mice. Mice were fed HFD plus 0.5% metformin. The effects of metformin on HFD-induced renal injury were evaluated by determining metabolic parameters, serum adipokine levels and renal AMPK/acetyl-CoA carboxylase (ACC) activities, as well as a histological examination. HFD induced metabolic derangement, systemic insulin resistance and glomerular mesangial matrix expansion. The administration of metformin reduced HFD-induced metabolic derangement and renal injury. The administration of metformin reduced the HFD-induced increase in adipokine expression and macrophage infiltration. Moreover, renal AMPK activity, which was decreased by HFD, was recovered following the administration of metformin; in addition, fatty acid oxidation was increased by the inhibition of ACC. These results indicate that metformin exerts beneficial effects on obesity-induced renal injury by regulating systemic inflammation, insulin resistance and the renal AMPK/ACC pathway. The clinical application of metformin to obese or early diabetic patients may be helpful in preventing obesity- or diabetes-related kidney disease.
Collapse
Affiliation(s)
- Dal Kim
- Department of Internal Medicine, Research Institute of Clinical Medicine and Diabetes Research Center, Chonbuk National University Medical School, Deokjin-gu, Jeonju 561-712, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1114
|
Wan X, Huo Y, Johns M, Piper E, Mason JC, Carling D, Haskard DO, Boyle JJ. 5'-AMP-activated protein kinase-activating transcription factor 1 cascade modulates human monocyte-derived macrophages to atheroprotective functions in response to heme or metformin. Arterioscler Thromb Vasc Biol 2013; 33:2470-80. [PMID: 24051143 DOI: 10.1161/atvbaha.113.300986] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Intraplaque hemorrhage (IPH) is an important driver of the progression of atherosclerotic plaques. Recently, we characterized Mhem as a novel macrophage phenotype that limits the atherogenicity of IPH. Mhem are directed by activating transcription factor 1 (ATF1), which is activated by phosphorylation. A better understanding of the counteratherogenic ATF1-Mhem pathway may facilitate antiatherosclerotic therapies. APPROACH AND RESULTS We tested the hypothesis that heme in pathologically relevant concentrations activates the ATF1-Mhem pathway via 5'-AMP-activated protein kinase (AMPK) in primary human monocyte-derived macrophages and mouse bone marrow macrophages. We found that heme (10 μmol/L) activates AMPK, and downstream ATF1-mediated coinduction of heme oxygenase and liver X receptor that characterize Mhem. Heme increased macrophage phospho-AMPK, phospho-ATF1, and its target genes, and these effects were inhibited by the AMPK antagonist dorsomorphin, or by AMPK-knockdown with small inhibitory ribonucleic acid. The AMPK-activating oral hypoglycemic agent metformin also induced and phosphorylated ATF1 at a clinically relevant concentration (10 μmol/L). Functional effects of heme and metformin were inhibited by AMPK-knockdown and included suppression of macrophage oxidative stress; increased cholesterol export; protection from foam-cell formation; and suppression of macrophage inflammatory activation (human leukocyte antigen type DR expression). CONCLUSIONS Our data indicate that heme activates the ATF1 pathway in human macrophages via AMPK, and that a similar response occurs after treatment of cells with metformin. Our results suggest an in vitro mechanism that may explain the clinical evidence that metformin has vascular protective effects beyond its role in treating hyperglycemia.
Collapse
Affiliation(s)
- Xinyi Wan
- From the Section of Vascular Sciences, National Heart & Lung Institute (X.W., Y.H., M.J., E.P., J.C.M., D.O.H., J.J.B.) and MRC Clinical Sciences Centre (D.C.), Imperial College, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
1115
|
Wang Y, Zhang L, Chen WL, Wang JH, Li N, Li JM, Mi JQ, Zhang WN, Li Y, Wu SF, Jin J, Wang YG, Huang H, Chen Z, Chen SJ, Tang H. Rapid diagnosis and prognosis of de novo acute myeloid leukemia by serum metabonomic analysis. J Proteome Res 2013; 12:4393-401. [PMID: 23998518 DOI: 10.1021/pr400403p] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute myeloid leukemia (AML) is a life-threatening hematological disease. Novel diagnostic and prognostic markers will be essential for new therapeutics and for significantly improving the disease prognosis. To characterize the metabolic features associated with AML and search for potential diagnostic and prognostic methods, here we analyzed the phenotypic characteristics of serum metabolite composition (metabonome) in a cohort of 183 patients with de novo acute myeloid leukemia together with 232 age- and gender-matched healthy controls using (1)H NMR spectroscopy in conjunction with multivariate data analysis. We observed significant serum metabonomic differences between AML patients and healthy controls and between AML patients with favorable and intermediate cytogenetic risks. Such differences were highlighted by systems differentiations in multiple metabolic pathways including glycolysis/gluconeogenesis, TCA cycle, biosynthesis of proteins and lipoproteins, and metabolism of fatty acids and cell membrane components, especially choline and its phosphorylated derivatives. This demonstrated the NMR-based metabonomics as a rapid and less invasive method for potential AML diagnosis and prognosis. The serum metabolic phenotypes observed here indicated that integration of metabonomics with other techniques will be useful for better understanding the biochemistry of pathogenesis and progression of leukemia.
Collapse
Affiliation(s)
- Yihuang Wang
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Graduate School, Chinese Academy of Sciences and Shanghai Institute of Hematology, Rui Jin Hospital, affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1116
|
Abstract
Type 2 diabetes and obesity are intimately linked; reduction of bodyweight improves glycemic control, mortality and morbidity. Treating obesity in the diabetic is hampered as some diabetic treatments lead to weight gain. Bariatric surgery is currently the most effective antiobesity treatment and causes long-term remission of diabetes in many patients. However, surgery has a high cost and is associated with a significant risk of complications, and in practical terms only limited numbers can undergo this therapy. The choice of pharmacological agents suitable for treatment of diabetes and obesity is currently limited. The glucagon-like peptide-1 receptor agonists improve glycemia and induce a modest weight loss, but there are doubts over their long-term safety. New drugs such as lorcaserin and phentermine/topiramate are being approved for obesity and have modest, salutary effects on glycemia, but again long-term safety is unclear. This article will also examine some future avenues for development, including gut hormone analogues that promise to combine powerful weight reduction with beneficial effects on glucose metabolism.
Collapse
Affiliation(s)
- Julia Kenkre
- Department of Investigative Medicine, Division of Diabetes, Endocrinology & Metabolism, Imperial College London, Sixth Floor, Commonwealth Building, London, W12 0HS, UK
| | | | | |
Collapse
|
1117
|
Elia EM, Quintana R, Carrere C, Bazzano MV, Rey-Valzacchi G, Paz DA, Pustovrh MC. Metformin decreases the incidence of ovarian hyperstimulation syndrome: an experimental study. J Ovarian Res 2013; 6:62. [PMID: 24011132 PMCID: PMC3851870 DOI: 10.1186/1757-2215-6-62] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 08/31/2013] [Indexed: 11/22/2022] Open
Abstract
Background In assisted reproduction cycles, gonadotropins are administered to obtain a greater number of oocytes. A majority of patients do not have an adverse response; however, approximately 3-6% develop ovarian hyperstimulation syndrome (OHSS). Metformin reduces the risk of OHSS but little is known about the possible effects and mechanisms of action involved. Objective To evaluate whether metformin attenuates some of the ovarian adverse effects caused by OHSS and to study the mechanisms involved. Material and methods A rat OHSS model was used to investigate the effects of metformin administration. Ovarian histology and follicle counting were performed in ovarian sections stained with Masson trichrome. Vascular permeability was measured by the release of intravenously injected Evans Blue dye (EB). VEGF levels were measured by commercially immunosorbent assay kit. COX-2 protein expression was evaluated by western blot and NOS levels were analyses by immunohistochemistry. Results Animals of the OHSS group showed similar physiopathology characteristics to the human syndrome: increased body weight, elevated progesterone and estradiol levels (P<0.001), increased number of corpora lutea (P<0.001), higher ovarian VEGF levels and vascular permeability (P<0.001 and P<0.01); and treatment with metformin prevented this effect (OHSS+M group; P<0.05). The vasoactive factors: COX-2 and NOS were increased in the ovaries of the OHSS group (P<0.05 and P<0.01) and metformin normalized their expression (P<0.05); suggesting that metformin has a role preventing the increased in vascular permeability caused by the syndrome. Conclusion Metformin has a beneficial effect preventing OHSS by reducing the increase in: body weight, circulating progesterone and estradiol and vascular permeability. These effects of metformin are mediated by inhibiting the increased of the vasoactive molecules: VEGF, COX-2 and partially NOS. Molecules that are increased in OHSS and are responsible for a variety of the symptoms related to OHSS.
Collapse
Affiliation(s)
- Evelin M Elia
- Laboratorio de Biología del Desarrollo, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET-UBA), Pabellón 2, 4 C1428EHA Cdad Universitaria, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
1118
|
Adaramoye OA, Lawal SO. Effect of kolaviron, a biflavonoid complex fromGarcinia kolaseeds, on the antioxidant, hormonal and spermatogenic indices of diabetic male rats. Andrologia 2013; 46:878-86. [DOI: 10.1111/and.12160] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2013] [Indexed: 02/02/2023] Open
Affiliation(s)
- O. A. Adaramoye
- Drug Metabolism and Toxicology Research Laboratories; Department of Biochemistry; College of Medicine; University of Ibadan; Ibadan Nigeria
| | - S. O. Lawal
- Drug Metabolism and Toxicology Research Laboratories; Department of Biochemistry; College of Medicine; University of Ibadan; Ibadan Nigeria
| |
Collapse
|
1119
|
Sahu BD, Kuncha M, Putcha UK, Sistla R. Effect of metformin against cisplatin induced acute renal injury in rats: A biochemical and histoarchitectural evaluation. ACTA ACUST UNITED AC 2013; 65:933-40. [DOI: 10.1016/j.etp.2013.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/04/2013] [Indexed: 10/27/2022]
|
1120
|
Kanadiya MK, Gohel TD, Sanaka MR, Thota PN, Shubrook JH. Relationship between type-2 diabetes and use of metformin with risk of colorectal adenoma in an American population receiving colonoscopy. J Diabetes Complications 2013; 27:463-6. [PMID: 23755906 DOI: 10.1016/j.jdiacomp.2013.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/10/2013] [Accepted: 04/15/2013] [Indexed: 01/05/2023]
Abstract
The aim of this study is to explore the relationship between type-2 diabetes, its treatments (Use of metformin) and the development of colorectal adenoma. Colonoscopy reports from a total of 66 endoscopists in one big hospital in midwest during 2008-2009 were reviewed. Colonoscopy findings including quality of preparation, polyp size, location, morphology, pathology and history of diabetes and metformin treatment were retrieved. Of the 7382 colonoscopy reports were reviewed, 3465 average risk patients were included in our final analysis. The pathologically proven Adenoma detection rate (ADR) in total population was 24.6 % (30.2% in Men and 19.2% in Women). Old age and male sex were significantly associated with increasing risk of colorectal adenoma. Type-2 diabetes was associated increased risk of colorectal adenoma (OD 1.35, 95% confidence interval 1.08-1.70, p=0.009). A total of 426 subjects (12.29%) had diabetes and 405 of these subjects (11.7%) had type-2 diabetes. Within diabetic patient group, people who were taking metformin have significantly lower risk of colorectal adenoma (OD 0.55, 95% confidence interval 0.34-0.87, p=0.011). Diabetic subjects have increased risk of developing colorectal adenoma. Our study also supports the beneficial effect of metformin in development of colorectal adenoma.
Collapse
|
1121
|
Hermans M, Ahn S, Rousseau M. What is the phenotype of patients with gastrointestinal intolerance to metformin? DIABETES & METABOLISM 2013; 39:322-9. [DOI: 10.1016/j.diabet.2013.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 10/26/2022]
|
1122
|
Rena G, Pearson ER, Sakamoto K. Molecular mechanism of action of metformin: old or new insights? Diabetologia 2013; 56:1898-906. [PMID: 23835523 PMCID: PMC3737434 DOI: 10.1007/s00125-013-2991-0] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/13/2013] [Indexed: 12/24/2022]
Abstract
Metformin is the first-line drug treatment for type 2 diabetes. Globally, over 100 million patients are prescribed this drug annually. Metformin was discovered before the era of target-based drug discovery and its molecular mechanism of action remains an area of vigorous diabetes research. An improvement in our understanding of metformin's molecular targets is likely to enable target-based identification of second-generation drugs with similar properties, a development that has been impossible up to now. The notion that 5' AMP-activated protein kinase (AMPK) mediates the anti-hyperglycaemic action of metformin has recently been challenged by genetic loss-of-function studies, thrusting the AMPK-independent effects of the drug into the spotlight for the first time in more than a decade. Key AMPK-independent effects of the drug include the mitochondrial actions that have been known for many years and which are still thought to be the primary site of action of metformin. Coupled with recent evidence of AMPK-independent effects on the counter-regulatory hormone glucagon, new paradigms of AMPK-independent drug action are beginning to take shape. In this review we summarise the recent research developments on the molecular action of metformin.
Collapse
Affiliation(s)
- Graham Rena
- Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY UK
| | - Ewan R. Pearson
- Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY UK
| | - Kei Sakamoto
- Nestlé Institute of Health Sciences SA, Campus EPFL, Quartier de l’innovation, bâtiment G, 1015 Lausanne, Switzerland
| |
Collapse
|
1123
|
Howland RH. A “Glucose Eater” Drug as a Therapeutic Agent in Psychiatry. J Psychosoc Nurs Ment Health Serv 2013; 51:13-6. [DOI: 10.3928/02793695-20130805-01] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
1124
|
Woudenberg-Vrenken TE, Conde de la Rosa L, Buist-Homan M, Faber KN, Moshage H. Metformin protects rat hepatocytes against bile acid-induced apoptosis. PLoS One 2013; 8:e71773. [PMID: 23951244 PMCID: PMC3741108 DOI: 10.1371/journal.pone.0071773] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 07/07/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Metformin is used in the treatment of Diabetes Mellitus type II and improves liver function in patients with non-alcoholic fatty liver disease (NAFLD). Metformin activates AMP-activated protein kinase (AMPK), the cellular energy sensor that is sensitive to changes in the AMP/ATP-ratio. AMPK is an inhibitor of mammalian target of rapamycin (mTOR). Both AMPK and mTOR are able to modulate cell death. AIM To evaluate the effects of metformin on hepatocyte cell death. METHODS Apoptotic cell death was induced in primary rat hepatocytes using either the bile acid glycochenodeoxycholic acid (GCDCA) or TNFα in combination with actinomycin D (actD). AMPK, mTOR and phosphoinositide-3 kinase (PI3K)/Akt were inhibited using pharmacological inhibitors. Apoptosis and necrosis were quantified by caspase activation, acridine orange staining and Sytox green staining respectively. RESULTS Metformin dose-dependently reduces GCDCA-induced apoptosis, even when added 2 hours after GCDCA, without increasing necrotic cell death. Metformin does not protect against TNFα/ActD-induced apoptosis. The protective effect of metformin is dependent on an intact PI3-kinase/Akt pathway, but does not require AMPK/mTOR-signaling. Metformin does not inhibit NF-κB activation. CONCLUSION Metformin protects against bile acid-induced apoptosis and could be considered in the treatment of chronic liver diseases accompanied by inflammation.
Collapse
Affiliation(s)
- Titia E. Woudenberg-Vrenken
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Laura Conde de la Rosa
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
1125
|
Semiz S, Dujic T, Causevic A. Pharmacogenetics and personalized treatment of type 2 diabetes. Biochem Med (Zagreb) 2013; 23:154-71. [PMID: 23894862 PMCID: PMC3900064 DOI: 10.11613/bm.2013.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a worldwide epidemic with considerable health and economic consequences. T2DM patients are often treated with more than one drug, including oral antidiabetic drugs (OAD) and drugs used to treat diabetic complications, such as dyslipidemia and hypertension. If genetic testing could be employed to predict treatment outcome, appropriate measures could be taken to treat T2DM more efficiently. Here we provide a review of pharmacogenetic studies focused on OAD and a role of common drug-metabolizing enzymes (DME) and drug-transporters (DT) variants in therapy outcomes. For example, genetic variations of several membrane transporters, including SLC2A1/2 and SLC47A1/2 genes, are implicated in the highly variable glycemic response to metformin, a first-line drug used to treat newly diagnosed T2DM. Furthermore, cytochrome P450 (CYP) enzymes are implicated in variation of sulphonylurea and meglitinide metabolism. Additional variants related to drug target and diabetes risk genes have been also linked to interindividual differences in the efficacy and toxicity of OAD. Thus, in addition to promoting safe and cost-effective individualized diabetes treatment, pharmacogenomics has a great potential to complement current efforts to optimize treatment of diabetes and lead towards its effective and personalized care.
Collapse
Affiliation(s)
- Sabina Semiz
- Department of Biochemistry and Clinical Analysis, Faculty of Pharmacy, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | | | | |
Collapse
|
1126
|
Miniature short hairpin RNA screens to characterize antiproliferative drugs. G3-GENES GENOMES GENETICS 2013; 3:1375-87. [PMID: 23797109 PMCID: PMC3737177 DOI: 10.1534/g3.113.006437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The application of new proteomics and genomics technologies support a view in which few drugs act solely by inhibiting a single cellular target. Indeed, drug activity is modulated by complex, often incompletely understood cellular mechanisms. Therefore, efforts to decipher mode of action through genetic perturbation such as RNAi typically yields "hits" that fall into several categories. Of particular interest to the present study, we aimed to characterize secondary activities of drugs on cells. Inhibiting a known target can result in clinically relevant synthetic phenotypes. In one scenario, drug perturbation could, for example, improperly activate a protein that normally inhibits a particular kinase. In other cases, additional, lower affinity targets can be inhibited as in the example of inhibition of c-Kit observed in Bcr-Abl-positive cells treated with Gleevec. Drug transport and metabolism also play an important role in the way any chemicals act within the cells. Finally, RNAi per se can also affect cell fitness by more general off-target effects, e.g., via the modulation of apoptosis or DNA damage repair. Regardless of the root cause of these unwanted effects, understanding the scope of a drug's activity and polypharmacology is essential for better understanding its mechanism(s) of action, and such information can guide development of improved therapies. We describe a rapid, cost-effective approach to characterize primary and secondary effects of small-molecules by using small-scale libraries of virally integrated short hairpin RNAs. We demonstrate this principle using a "minipool" composed of shRNAs that target the genes encoding the reported protein targets of approved drugs. Among the 28 known reported drug-target pairs, we successfully identify 40% of the targets described in the literature and uncover several unanticipated drug-target interactions based on drug-induced synthetic lethality. We provide a detailed protocol for performing such screens and for analyzing the data. This cost-effective approach to mammalian knockdown screens, combined with the increasing maturation of RNAi technology will expand the accessibility of similar approaches in academic settings.
Collapse
|
1127
|
|
1128
|
AMP-activated protein kinase at the nexus of therapeutic skeletal muscle plasticity in Duchenne muscular dystrophy. Trends Mol Med 2013; 19:614-24. [PMID: 23891277 DOI: 10.1016/j.molmed.2013.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/26/2013] [Accepted: 07/01/2013] [Indexed: 12/22/2022]
Abstract
Recent studies have highlighted the potential of adenosine monophosphate-activated protein kinase (AMPK) to act as a central therapeutic target in Duchenne muscular dystrophy (DMD). Here, we review the role of AMPK as an important integrator of cell signaling pathways that mediate phenotypic plasticity within the context of dystrophic skeletal muscle. Pharmacological AMPK activation remodels skeletal muscle towards a slower, more oxidative phenotype, which is more pathologically resistant to the lack of dystrophin. Moreover, recent studies suggest that AMPK-activated autophagy may be beneficial for myofiber structure and function in mice with muscular dystrophy. Thus, AMPK may represent an ideal target for intervention because clinically approved pharmacological agonists exist, and because benefits can be derived via two independent yet, complementary biological pathways. The availability of several AMPK activators could therefore lead to the rapid development and implementation of novel and highly effective therapeutics aimed at altering the relentless progression of DMD.
Collapse
|
1129
|
Kasuga M, Ueki K, Tajima N, Noda M, Ohashi K, Noto H, Goto A, Ogawa W, Sakai R, Tsugane S, Hamajima N, Nakagama H, Tajima K, Miyazono K, Imai K. Report of the JDS/JCA Joint Committee on Diabetes and Cancer. Diabetol Int 2013. [DOI: 10.1007/s13340-013-0121-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
1130
|
Fendt SM, Bell EL, Keibler MA, Davidson SM, Wirth GJ, Fiske B, Mayers JR, Schwab M, Bellinger G, Csibi A, Patnaik A, Blouin MJ, Cantley LC, Guarente L, Blenis J, Pollak MN, Olumi AF, Vander Heiden MG, Stephanopoulos G. Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism. Cancer Res 2013; 73:4429-38. [PMID: 23687346 PMCID: PMC3930683 DOI: 10.1158/0008-5472.can-13-0080] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metformin inhibits cancer cell proliferation, and epidemiology studies suggest an association with increased survival in patients with cancer taking metformin; however, the mechanism by which metformin improves cancer outcomes remains controversial. To explore how metformin might directly affect cancer cells, we analyzed how metformin altered the metabolism of prostate cancer cells and tumors. We found that metformin decreased glucose oxidation and increased dependency on reductive glutamine metabolism in both cancer cell lines and in a mouse model of prostate cancer. Inhibition of glutamine anaplerosis in the presence of metformin further attenuated proliferation, whereas increasing glutamine metabolism rescued the proliferative defect induced by metformin. These data suggest that interfering with glutamine may synergize with metformin to improve outcomes in patients with prostate cancer.
Collapse
Affiliation(s)
- Sarah-Maria Fendt
- Departments of Chemical Engineering and Biology, Massachusetts Institute of Technology, Cambridge, MA02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1131
|
Ruderman NB, Carling D, Prentki M, Cacicedo JM. AMPK, insulin resistance, and the metabolic syndrome. J Clin Invest 2013; 123:2764-72. [PMID: 23863634 DOI: 10.1172/jci67227] [Citation(s) in RCA: 616] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Insulin resistance (IR) and hyperinsulinemia are hallmarks of the metabolic syndrome, as are central adiposity, dyslipidemia, and a predisposition to type 2 diabetes, atherosclerotic cardiovascular disease, hypertension, and certain cancers. Regular exercise and calorie restriction have long been known to increase insulin sensitivity and decrease the prevalence of these disorders. The subsequent identification of AMP-activated protein kinase (AMPK) and its activation by exercise and fuel deprivation have led to studies of the effects of AMPK on both IR and metabolic syndrome-related diseases. In this review, we evaluate this body of literature, with special emphasis on the hypothesis that dysregulation of AMPK is both a pathogenic factor for these disorders in humans and a target for their prevention and therapy.
Collapse
Affiliation(s)
- Neil B Ruderman
- Diabetes and Metabolism Research Unit, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | |
Collapse
|
1132
|
Russo GL, Russo M, Ungaro P. AMP-activated protein kinase: a target for old drugs against diabetes and cancer. Biochem Pharmacol 2013; 86:339-50. [PMID: 23747347 DOI: 10.1016/j.bcp.2013.05.023] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/17/2013] [Accepted: 05/17/2013] [Indexed: 12/17/2022]
Abstract
The AMP-activated protein kinase (AMPK) is considered a key checkpoint to ensure energy balance in both cells and organisms. AMPK is an αβγ heterotrimer controlled by allosteric regulation by AMP, ADP and ATP, auto-inhibitory features and phosphorylation, with the threonine-172 phosphorylation on the catalytic α-subunit by LKB1, CaMKKβ or Tak1 being essential for its fully activation. AMPK acts as a protective response to energy stress in numerous systems, but it is also a key player in diabetes and related metabolic diseases and cancer. Pharmacological activation of AMPK by metformin or other compounds holds a considerable potential to reverse the metabolic abnormalities associated with type 2 diabetes. In cancer, correction of the dysregulated metabolic pathway LKB1/AMPK/mTORC1 can lower the Warburg effect, suggesting AMPK as a potential target for cancer prevention and/or treatment. In this commentary, we review recent findings that support the role and function of AMPK in normal and pathological conditions. We also discuss how the activation of AMPK by naturally occurring compounds could help to prevent the development of numerous chronic diseases contributing in such a way to the well-being of ageing population.
Collapse
Affiliation(s)
- Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy.
| | | | | |
Collapse
|
1133
|
Cox ME, Feinglos MN. Risk vs benefit in diabetes pharmacotherapy: a rational approach to choosing pharmacotherapy in type 2 diabetes. Curr Diab Rep 2013; 13:319-28. [PMID: 23512666 DOI: 10.1007/s11892-013-0374-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Type 2 diabetes now affects more than 1 in 10 US adults and is a leading cause of morbidity, mortality, and healthcare expense. There are increasing numbers of available pharmacotherapies, with established agents as well as newer drugs developed from hormones in the incretin pathway, among others. New data are accumulating continuously with respect to potential benefits of both long-standing and new agents, as well as risks identified through post-marketing surveillance. Here we review the commonly prescribed pharmacotherapy options with attention to recently published information and provide a rational approach to choice of therapy.
Collapse
Affiliation(s)
- Mary Elizabeth Cox
- Medical Clinic of North Texas, 909 9th Ave, Ste 300, Fort Worth, TX 76104, USA.
| | | |
Collapse
|
1134
|
Tseng CH. Diabetes and thyroid cancer mortality: a 12-year prospective follow-up of Taiwanese. Eur J Clin Invest 2013; 43:595-601. [PMID: 23550697 DOI: 10.1111/eci.12086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/10/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND The association between diabetes and thyroid cancer is rarely studied. This study evaluated thyroid cancer mortality trend in Taiwanese population, mortality rate ratios between diabetic patients and general population, and risk factors in diabetic patients. METHODS In general population, age-standardized trends were evaluated from 1995 to 2006. A total of 113,347 diabetic men and 131,573 diabetic women aged ≥ 25 years recruited during 1995-1998 were followed to 2006. Age- and sex-specific mortality rate ratios were calculated and Cox's regression evaluated the risk factors. RESULTS A steady trend of thyroid cancer mortality was observed in the general population. A total of 20 diabetic men and 45 diabetic women died of thyroid cancer, with overall mortality rate 2.32 and 4.26 per 100,000 person-years, respectively. Mortality rate ratios showed positive association with magnitude increased with decreasing age: 1.85 (0.77, 4.43), 1.21 (0.54, 2.73), 2.53 (1.14, 5.59) and 5.80 (2.10, 16.01) for ≥ 75, 65-74, 55-64 and 25-54 years old, respectively, for men; and 0.78 (0.35, 1.74), 2.03 (1.31, 3.13), 2.99 (1.77, 5.04) and 5.34 (2.20, 13.00), respectively, for women. After adjustment, only age was significantly associated with thyroid cancer mortality. Sex, diabetes duration, diabetes type, body mass index, smoking, insulin use and area of residence were not significantly predictive for thyroid cancer mortality. CONCLUSIONS The annual thyroid cancer mortality during 1995-2006 in the Taiwanese general population has been steady. Our data suggest a higher risk in diabetic patients, with especially higher mortality rate ratios in younger age. Obesity, smoking and insulin use are not modifiable risk factor.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
1135
|
Gui J, Liu Q, Feng L. Metformin vs insulin in the management of gestational diabetes: a meta-analysis. PLoS One 2013; 8:e64585. [PMID: 23724063 PMCID: PMC3664585 DOI: 10.1371/journal.pone.0064585] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/16/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Nowadays, there have been increasing studies comparing metformin with insulin. But the use of metformin in pregnant women is still controversial, therefore, we aim to examine the efficiency and safety of metformin by conducting a meta-analysis of randomized controlled trials (RCTs) comparing the effects of metformin with insulin on glycemic control, maternal and neonatal outcomes in gestational diabetes mellitus (GDM). METHODS We used the key words "gestational diabetes" in combination with "metformin" and searched the databases including Pubmed, the Cochrane Library, Web of knowledge, and Clinical Trial Registries. A random-effects model was used to compute the summary risk estimates. RESULTS Meta-analysis of 5 RCTs involving 1270 participants detected that average weight gains after enrollment were much lower in the metformin group (n = 1006, P = 0.003, SMD = -0.47, 95%CI [-0.77 to -0.16]); average gestational ages at delivery were significantly lower in the metformin group (n = 1270, P = 0.02, SMD = -0.14, 95%CI [-0.25 to -0.03]); incidence of preterm birth was significantly more in metformin group (n = 1110, P = 0.01, OR = 1.74, 95%CI [1.13 to 2.68]); the incidence of pregnancy induced hypertension was significantly less in the metformin group (n = 1110, P = 0.02, OR = 0.52, 95%CI [0.30 to 0.90]). The fasting blood sugar levels of OGTT were significantly lower in the metformin only group than in the supplemental insulin group (n = 478, P = 0.0006, SMD = -0.83, 95%CI [-1.31 to -0.36]). CONCLUSIONS Metformin is comparable with insulin in glycemic control and neonatal outcomes. It might be more suitable for women with mild GDM. This meta-analysis also provides some significant benefits and risks of the use of metformin in GDM and help to inform further development of management guidelines.
Collapse
Affiliation(s)
- Juan Gui
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
1136
|
Filippov S, Pinkosky SL, Lister RJ, Pawloski C, Hanselman JC, Cramer CT, Srivastava RAK, Hurley TR, Bradshaw CD, Spahr MA, Newton RS. ETC-1002 regulates immune response, leukocyte homing, and adipose tissue inflammation via LKB1-dependent activation of macrophage AMPK. J Lipid Res 2013; 54:2095-2108. [PMID: 23709692 DOI: 10.1194/jlr.m035212] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ETC-1002 is an investigational drug currently in Phase 2 development for treatment of dyslipidemia and other cardiometabolic risk factors. In dyslipidemic subjects, ETC-1002 not only reduces plasma LDL cholesterol but also significantly attenuates levels of hsCRP, a clinical biomarker of inflammation. Anti-inflammatory properties of ETC-1002 were further investigated in primary human monocyte-derived macrophages and in in vivo models of inflammation. In cells treated with ETC-1002, increased levels of AMP-activated protein kinase (AMPK) phosphorylation coincided with reduced activity of MAP kinases and decreased production of proinflammatory cytokines and chemokines. AMPK phosphorylation and inhibitory effects of ETC-1002 on soluble mediators of inflammation were significantly abrogated by siRNA-mediated silencing of macrophage liver kinase B1 (LKB1), indicating that ETC-1002 activates AMPK and exerts its anti-inflammatory effects via an LKB1-dependent mechanism. In vivo, ETC-1002 suppressed thioglycollate-induced homing of leukocytes into mouse peritoneal cavity. Similarly, in a mouse model of diet-induced obesity, ETC-1002 restored adipose AMPK activity, reduced JNK phosphorylation, and diminished expression of macrophage-specific marker 4F/80. These data were consistent with decreased epididymal fat-pad mass and interleukin (IL)-6 release by inflamed adipose tissue. Thus, ETC-1002 may provide further clinical benefits for patients with cardiometabolic risk factors by reducing systemic inflammation linked to insulin resistance and vascular complications of metabolic syndrome.
Collapse
|
1137
|
AMPK is involved in the regulation of incretin receptors expression in pancreatic islets under a low glucose concentration. PLoS One 2013; 8:e64633. [PMID: 23717642 PMCID: PMC3661597 DOI: 10.1371/journal.pone.0064633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 04/17/2013] [Indexed: 01/09/2023] Open
Abstract
The precise role of AMP-activated protein kinase (AMPK), a target of metformin, in pancreatic β cells remains controversial, even though metformin was recently shown to enhance the expression of incretin receptors (GLP-1 and GIP receptors) in pancreatic β cells. In this study, we investigated the effect of AMPK in the regulation of incretin receptors expression in pancreatic islets. The phosphorylation of AMPK in the mouse islets was decreased by increasing glucose concentrations. We showed the expression of incretin receptors in bell-shaped response to glucose; Expression of the incretin receptors in the isolated islets showed higher levels under a medium glucose concentration (11.1 mM) than that under a low glucose concentration (2.8 mM), but was suppressed under a high glucose concentration (22.2 mM). Both treatment with an AMPK inhibitor and DN-AMPK expression produced a significant increase of the incretin receptors expression under a low glucose concentration. By contrast, in hyperglycemic db/db islets, the enhancing effect of the AMPK inhibitor on the expression of incretin receptors was diminished under a low glucose concentration. Taken together, AMPK is involved in the regulation of incretin receptors expression in pancreatic islets under a low glucose concentration.
Collapse
|
1138
|
Nakamichi N, Shima H, Asano S, Ishimoto T, Sugiura T, Matsubara K, Kusuhara H, Sugiyama Y, Sai Y, Miyamoto KI, Tsuji A, Kato Y. Involvement of carnitine/organic cation transporter OCTN1/SLC22A4 in gastrointestinal absorption of metformin. J Pharm Sci 2013; 102:3407-17. [PMID: 23666872 DOI: 10.1002/jps.23595] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 04/16/2013] [Accepted: 04/18/2013] [Indexed: 11/11/2022]
Abstract
Metformin is a widely used oral anti-diabetic, but the molecular mechanism(s) of its gastrointestinal membrane permeation remains unclear. Here, we examined the role of carnitine/organic cation transporter OCTN1/SLC22A4, which is localized on apical membranes of small intestine in mice and humans, in metformin absorption. The maximum plasma concentration (Cmax ) after oral administration of metformin (50 mg/kg) in octn1 gene knockout mice (octn1 (-/-) ) was higher than that in wild-type mice, with only a minimal difference in terminal half-life, but Cmax in octn1(-/-) mice given a higher dose (175 mg/kg) was lower than that in wild-type mice. Systemic elimination of metformin after intravenous administration was similar in the two strains, suggesting the possible involvement of OCTN1 in the gastrointestinal absorption. OCTN1-mediated uptake of metformin was observed in human embryonic kidney 293 cells transfected with mouse OCTN1 gene, but much lower than the uptake of the typical substrate [(3) H]ergothioneine (ERGO). In particular, the distribution volume for OCTN1-mediated uptake increased markedly and then tended to decrease as the metformin concentration was increased. Efflux of metformin preloaded in intestinal epithelial cell line Caco-2 was inhibited by ERGO. Overall, the present findings suggest that OCTN1 transports metformin and may be involved in its oral absorption in small intestine.
Collapse
Affiliation(s)
- Noritaka Nakamichi
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1139
|
Pharmacokinetics of a fixed-dose combination of mitiglinide and metformin versus concurrent administration of individual formulations in healthy subjects: a randomized, open-label, two-treatment, two-period, two-sequence, single-dose, crossover study. Clin Drug Investig 2013; 32:799-804. [PMID: 23100167 DOI: 10.1007/s40261-012-0012-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND In the treatment of diabetes mellitus, combined drugs with different mechanisms of action can be effective when adequate glycaemic control is difficult with monotherapy. A fixed-dose combination (FDC) tablet of mitiglinide and metformin has been developed as a second-line treatment for type 2 diabetes. OBJECTIVES The objective of this study was to compare the pharmacokinetics and safety of a FDC and a free combination of mitiglinide and metformin in healthy male subjects. METHODS A randomized, open-label, two-period, two-treatment, single-dose, crossover study was conducted in 24 healthy Korean male subjects. In one period, a FDC tablet of mitiglinide and metformin (10 mg/500 mg) was administered, and in the other period, corresponding doses of individual formulations were administered. RESULTS Twenty-four subjects were enrolled and 19 subjects completed the study. The geometric mean ratios (90 % confidence interval) of the maximum plasma concentration (C(max)) and area under the plasma concentration-time curve from time zero to the time of the last measurable concentration (AUC(last)) were 0.9694 (0.8120, 1.1573) and 0.8951 (0.8440, 0.9494) for mitiglinide, and 1.0235 (0.9373, 1.1057) and 1.0542 (0.9697, 1.1460) for metformin, which were within the bioequivalence range. Among the 23 subjects who received study drugs, 15 subjects experienced 34 adverse events (AEs). The most frequently reported AEs were feeling hot and compensatory sweating. There were no serious AEs and no significant differences in the incidence of AEs between the two treatments. CONCLUSION A FDC tablet of mitiglinide and metformin was generally well tolerated in healthy male subjects. Administration of a FDC tablet and concomitant administration of individual formulations did not show significantly different pharmacokinetic profiles.
Collapse
|
1140
|
Abstract
Obesity-induced insulin resistance is the major determinant of metabolic syndrome, which precedes the development of type 2 diabetes mellitus and is thus the driving force behind the emerging diabetes epidemic. The precise causes of insulin resistance are varied, and the relative importance of each is a matter of ongoing research. Here, we offer a Perspective on the heterogeneous etiology of insulin resistance, focusing in particular on the role of inflammation, lipid metabolism, and the gastrointestinal microbiota.
Collapse
Affiliation(s)
- Andrew M F Johnson
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0673, USA
| | | |
Collapse
|
1141
|
Kohlstedt K, Trouvain C, Boettger T, Shi L, Fisslthaler B, Fleming I. AMP-activated protein kinase regulates endothelial cell angiotensin-converting enzyme expression via p53 and the post-transcriptional regulation of microRNA-143/145. Circ Res 2013; 112:1150-8. [PMID: 23476055 DOI: 10.1161/circresaha.113.301282] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
RATIONALE High-angiotensin-converting enzyme (ACE)-levels are associated with cardiovascular disease, but little is known about the regulation of its expression. OBJECTIVE To assess the molecular mechanisms regulating endothelial ACE expression focusing on the role of the AMP-activated protein kinase (AMPK) and miR-143/145. METHODS AND RESULTS Shear stress decreased ACE expression in cultured endothelial cells, an effect prevented by downregulating AMPKα2 but not AMPKα1. AMPKα2(-/-) mice expressed higher ACE levels than wild-type littermates resulting in impaired hindlimb vasodilatation to the ACE substrate, bradykinin. The latter response was also evident in animals lacking the AMPKα2 subunit only in endothelial cells. In cultured endothelial cells, miR-143/145 levels were increased by shear stress in an AMPKα2-dependent manner, and miR-143/145 overexpression decreased ACE expression. The effect of shear stress was unrelated to an increase in miR-143/145 promoter activity and transcription but could be attributed to post-transcriptional regulation of precursor-miR-143/145 by AMPKα2. The AMPK substrate, p53, can enhance the post-transcriptional processing of several microRNAs, including miR-143/145. We found that shear stress elicited the AMPKα2-dependent phosphorylation of p53 (on Ser15), and that p53 downregulation prevented the shear stress-induced decrease in ACE expression. Streptozotocin-induced diabetes mellitus in mice was studied as a pathophysiological model of altered AMPK activity. Diabetes mellitus increased tissue phosphorylation of the AMPK substrates, p53 and acetyl-coenzyme A carboxylase, changes that correlated with increased miR-143/145 levels and decreased ACE expression. CONCLUSIONS AMPKα2 suppresses endothelial ACE expression via the phosphorylation of p53 and upregulation of miR-143/145. Post-transcriptional regulation of miR-143/145 may contribute to the vascular complications associated with diabetes mellitus.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/deficiency
- AMP-Activated Protein Kinases/genetics
- AMP-Activated Protein Kinases/physiology
- Animals
- Cells, Cultured
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Gene Expression Regulation, Enzymologic
- Genes, p53/genetics
- Human Umbilical Vein Endothelial Cells
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Peptidyl-Dipeptidase A/biosynthesis
- Peptidyl-Dipeptidase A/deficiency
- Peptidyl-Dipeptidase A/genetics
- Phosphorylation/genetics
- RNA Processing, Post-Transcriptional/genetics
Collapse
Affiliation(s)
- Karin Kohlstedt
- Institute for Vascular Signalling, Centre for Molecular Medicine, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
1142
|
Viollet B, Foretz M. Revisiting the mechanisms of metformin action in the liver. ANNALES D'ENDOCRINOLOGIE 2013; 74:123-9. [PMID: 23582849 DOI: 10.1016/j.ando.2013.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although considerable efforts have been made since the 1950s to better understand the action of metformin, the first line therapeutic for type 2 diabetes, its mechanisms of action has not been fully elucidated. The main antidiabetic effect of this drug is to decrease hepatic glucose production. A plausible molecular mechanism of action now emerges from recent breakthroughs that place metformin at the control of energy homeostasis. Metformin was shown to induce a mild and transient inhibition of the mitochondrial respiratory chain complex 1. The resulting decrease in hepatic energy state activates the AMP-activated protein kinase (AMPK), a cellular metabolic sensor, and provided a generally accepted mechanism for metformin action on hepatic gluconeogenic program. However, the role of AMPK activation in metformin action has recently been challenged by loss-of-function experiments. Recent evidence showed that metformin-induced inhibition of hepatic glucose output is mediated by reducing cellular energy charge rather than direct inhibition of gluconeogenic gene expression. Furthermore, recent data support a novel mechanism of action for metformin involving antagonism of glucagon signaling pathways by inducing the accumulation of AMP, which inhibits adenylate cyclase and reduced levels of cAMP.
Collapse
Affiliation(s)
- Benoit Viollet
- Département endocrinologie, métabolisme et cancer, Inserm, U1016, Institut Cochin, 24, rue du Faubourg-Saint-Jacques, 75014 Paris, France.
| | | |
Collapse
|
1143
|
Hwang W, Hwang Y, Lee S, Lee D. Rule-based multi-scale simulation for drug effect pathway analysis. BMC Med Inform Decis Mak 2013; 13 Suppl 1:S4. [PMID: 23566173 PMCID: PMC3618249 DOI: 10.1186/1472-6947-13-s1-s4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Biological systems are robust and complex to maintain stable phenotypes under various conditions. In these systems, drugs reported the limited efficacy and unexpected side-effects. To remedy this situation, many pharmaceutical laboratories have begun to research combination drugs and some of them have shown successful clinical results. Complementary action of multiple compounds could increase efficacy as well as reduce side-effects through pharmacological interactions. However, experimental approach requires vast cost of preclinical experiments and tests as the number of possible combinations of compound dosages increases exponentially. Computer model-based experiments have been emerging as one of the most promising solutions to cope with such complexity. Though there have been many efforts to model specific molecular pathways using qualitative and quantitative formalisms, they suffer from unexpected results caused by distant interactions beyond their localized models. Results In this work, we propose a rule-based multi-scale modelling platform. We have tested this platform with Type 2 diabetes (T2D) model, which involves the malfunction of numerous organs such as pancreas, circulation system, liver, and adipocyte. We have extracted T2D-related 190 rules by manual curation from literature, pathway databases and converting from different types of existing models. We have simulated twenty-two T2D drugs. The results of our simulation show drug effect pathways of T2D drugs and whether combination drugs have efficacy or not and how combination drugs work on the multi-scale model. Conclusions We believe that our simulation would help to understand drug mechanism for the drug development and provide a new way to effectively apply existing drugs for new target. It also would give insight for identifying effective combination drugs.
Collapse
Affiliation(s)
- Woochang Hwang
- Department of Bio and Brain Engineering, KAIST, Daejeon, South Korea
| | | | | | | |
Collapse
|
1144
|
|
1145
|
Affiliation(s)
- Hyeong Kyu Park
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul, Korea
| |
Collapse
|
1146
|
Al-Abri SA, Hayashi S, Thoren KL, Olson KR. Metformin overdose-induced hypoglycemia in the absence of other antidiabetic drugs. Clin Toxicol (Phila) 2013; 51:444-7. [DOI: 10.3109/15563650.2013.784774] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
1147
|
Scheen AJ, Paquot N. Metformin revisited: a critical review of the benefit-risk balance in at-risk patients with type 2 diabetes. DIABETES & METABOLISM 2013; 39:179-90. [PMID: 23528671 DOI: 10.1016/j.diabet.2013.02.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 12/18/2022]
Abstract
Metformin is unanimously considered a first-line glucose-lowering agent. Theoretically, however, it cannot be prescribed in a large proportion of patients with type 2 diabetes because of numerous contraindications that could lead to an increased risk of lactic acidosis. Various observational data from real-life have shown that many diabetic patients considered to be at risk still receive metformin and often without appropriate dose adjustment, yet apparently with no harm done and particularly no increased risk of lactic acidosis. More interestingly, recent data have suggested that type 2 diabetes patients considered at risk because of the presence of traditional contraindications may still derive benefit from metformin therapy with reductions in morbidity and mortality compared with other glucose-lowering agents, especially sulphonylureas. The present review analyzes the benefit-risk balance of metformin therapy in special populations, namely, patients with stable coronary artery disease, acute coronary syndrome or myocardial infarction, congestive heart failure, renal impairment or chronic kidney disease, hepatic dysfunction and chronic respiratory insufficiency, all conditions that could in theory increase the risk of lactic acidosis. Special attention is also paid to elderly patients with type 2 diabetes, a population that is growing rapidly, as older patients can accumulate several comorbidities classically considered contraindications to the use of metformin. A review of the recent scientific literature suggests that reassessment of the contraindications of metformin is now urgently needed to prevent physicians from prescribing the most popular glucose-lowering therapy in everyday clinical practice outside of the official recommendations.
Collapse
Affiliation(s)
- A J Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders and Division of Clinical Pharmacology, Department of Medicine, CHU Sart-Tilman (B35), University of Liège, 4000 Liège, Belgium.
| | | |
Collapse
|
1148
|
Gagnon J, Sheppard E, Anini Y. Metformin directly inhibits ghrelin secretion through AMP-activated protein kinase in rat primary gastric cells. Diabetes Obes Metab 2013; 15:276-9. [PMID: 23066988 DOI: 10.1111/dom.12021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/11/2012] [Accepted: 10/01/2012] [Indexed: 01/03/2023]
Abstract
The antidiabetic drug Metformin causes weight loss in both diabetic and non-diabetic individuals. Metformin treatment is also associated with lower circulating levels of the orexigenic hormone ghrelin. To test whether Metformin directly affects ghrelin cells, rat primary stomach cells were treated with Metformin and the levels of ghrelin secretion, proghrelin gene expression and activation of adenosine monophosphate-activated protein kinase (AMPK) were examined. Metformin significantly reduced ghrelin secretion and proghrelin mRNA production and both these effects were blocked by co-incubation with the AMPK inhibitor compound C. Furthermore, the AMPK activator 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR) significantly inhibited ghrelin secretion. Additionally, ghrelin cells were shown to express AMPK. Finally, Metformin treatment caused a significant increase in the level of phosphorylated (active) AMPK. Our results show that Metformin directly inhibits stomach ghrelin production and secretion through AMPK. This reduction in ghrelin secretion may be one of the key components in Metformin's mechanism of weight loss.
Collapse
Affiliation(s)
- J Gagnon
- Departments of Obstetrics & Gynecology and Physiology & Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
1149
|
Hernández-Aguilera A, Rull A, Rodríguez-Gallego E, Riera-Borrull M, Luciano-Mateo F, Camps J, Menéndez JA, Joven J. Mitochondrial dysfunction: a basic mechanism in inflammation-related non-communicable diseases and therapeutic opportunities. Mediators Inflamm 2013; 2013:135698. [PMID: 23533299 PMCID: PMC3603328 DOI: 10.1155/2013/135698] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/01/2013] [Accepted: 02/01/2013] [Indexed: 12/14/2022] Open
Abstract
Obesity is not necessarily a predisposing factor for disease. It is the handling of fat and/or excessive energy intake that encompasses the linkage of inflammation, oxidation, and metabolism to the deleterious effects associated with the continuous excess of food ingestion. The roles of cytokines and insulin resistance in excessive energy intake have been studied extensively. Tobacco use and obesity accompanied by an unhealthy diet and physical inactivity are the main factors that underlie noncommunicable diseases. The implication is that the management of energy or food intake, which is the main role of mitochondria, is involved in the most common diseases. In this study, we highlight the importance of mitochondrial dysfunction in the mutual relationships between causative conditions. Mitochondria are highly dynamic organelles that fuse and divide in response to environmental stimuli, developmental status, and energy requirements. These organelles act to supply the cell with ATP and to synthesise key molecules in the processes of inflammation, oxidation, and metabolism. Therefore, energy sensors and management effectors are determinants in the course and development of diseases. Regulating mitochondrial function may require a multifaceted approach that includes drugs and plant-derived phenolic compounds with antioxidant and anti-inflammatory activities that improve mitochondrial biogenesis and act to modulate the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Anna Hernández-Aguilera
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, carrer Sant Llorenç 21, 43201 Reus, Spain
| | - Anna Rull
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, carrer Sant Llorenç 21, 43201 Reus, Spain
| | - Esther Rodríguez-Gallego
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, carrer Sant Llorenç 21, 43201 Reus, Spain
| | - Marta Riera-Borrull
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, carrer Sant Llorenç 21, 43201 Reus, Spain
| | - Fedra Luciano-Mateo
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, carrer Sant Llorenç 21, 43201 Reus, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, carrer Sant Llorenç 21, 43201 Reus, Spain
| | - Javier A. Menéndez
- Catalan Institute of Oncology and Girona Biomedical Research Institute, Avda de Francia s/n, 1707 Girona, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, carrer Sant Llorenç 21, 43201 Reus, Spain
| |
Collapse
|
1150
|
Badr D, Kurban M, Abbas O. Metformin in dermatology: an overview. J Eur Acad Dermatol Venereol 2013; 27:1329-35. [PMID: 23437788 DOI: 10.1111/jdv.12116] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 01/21/2013] [Indexed: 11/26/2022]
Abstract
For several decades, metformin has been used as an oral hypoglycaemic agent, where it is the first line of treatment in overweight and obese type 2 diabetic patients. This is because it decreases the hepatic glucose output and acts as an insulin sensitizer by increasing the glucose utilization by muscles and adipocytes. As a result of the improvement in glycaemic control, serum insulin concentrations decline slightly, thus improving hyperinsulinaemia and its signs. In addition, it has been shown that metformin has platelet anti-aggregating and antioxidant effects. These pharmacological properties have allowed metformin to be effective in non-diabetic situations including cutaneous conditions. This is an evidence-based review on the use of metformin in the treatment of skin disorders such as hirsutism, acne, hidradenitis suppurativa, acanthosis nigricans, psoriasis, skin cancer, among others. In addition, cutaneous side-effects such as leukocytoclastic vasculitis, bullous pemphigoid, psoriasiform drug eruption, lichen planus and acute alopecia have been associated with metformin use and are discussed in the article.
Collapse
Affiliation(s)
- D Badr
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | | | | |
Collapse
|