1151
|
Rainville JR, Hodes GE. Inflaming sex differences in mood disorders. Neuropsychopharmacology 2019; 44:184-199. [PMID: 29955150 PMCID: PMC6235877 DOI: 10.1038/s41386-018-0124-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023]
Abstract
Men and women often experience different symptoms or rates of occurrence for a variety of mood disorders. Many of the symptoms of mood disorders overlap with autoimmune disorders, which also have a higher prevalence in women. There is a growing interest in exploring the immune system to provide biomarkers for diagnosis of mood disorders, along with new targets for developing treatments. This review examines known sex differences in the immune system and their relationship to mood disorders. We focus on immune alterations associated with unipolar depression, bipolar depression, and anxiety disorders. We describe work from both basic and clinical research examining potential immune mechanisms thought to contribute to stress susceptibility and associated mood disorders. We propose that sex and age are important, intertwined factors that need to be included in future experimental designs if we are going to harness the power of the immune system to develop a new wave of treatments for mood disorders.
Collapse
Affiliation(s)
- Jennifer R Rainville
- Department of Neuroscience, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA, 24060, USA
| | - Georgia E Hodes
- Department of Neuroscience, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA, 24060, USA.
| |
Collapse
|
1152
|
Curcumin Exerted Neuroprotection against Ozone-Induced Oxidative Damage and Decreased NF- κB Activation in Rat Hippocampus and Serum Levels of Inflammatory Cytokines. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9620684. [PMID: 30693069 PMCID: PMC6332875 DOI: 10.1155/2018/9620684] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/01/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022]
Abstract
Ozone is a harmful tropospheric pollutant, causing the formation of reactive oxygen and nitrogen species that lead to oxidative damage in living beings. NF-κB can be activated in response to oxidative damage, inducing an inflammatory response. Nowadays, there are no reliable results that consolidate the use of antioxidants to protect from damage caused by ozone, particularly in highly polluted cities. Curcumin has a strong antioxidant activity and is a potent inhibitor of NF-κB activation with no side effects. The aim of this study is to evaluate the effect of curcumin in preventive and therapeutic approaches against oxidative damage, NF-κB activation, and the rise in serum levels of IL-1β and TNF-α induced by acute and chronic exposure to ozone in rat hippocampus. One hundred male Wistar rats were distributed into five groups; the intact control, curcumin-fed control, the ozone-exposed group, and the preventive and therapeutic groups. These last two groups were exposed to ozone and received food supplemented with curcumin. Lipid peroxidation was determined by spectrophotometry, and protein oxidation was evaluated by immunodetection of carbonylated proteins and densitometry analysis. Activation of NF-κB was assessed by electrophoretic mobility shift assay (EMSA), and inflammatory cytokines (IL-1β and TNF-α) were determined by ELISA. Curcumin decreased NF-κB activation and serum levels of inflammatory cytokines as well as protein and lipid oxidation, in both therapeutic and preventive approaches. Curcumin has proven to be a phytodrug against the damage caused by the environmental exposure to ozone.
Collapse
|
1153
|
Qiu L, Wang M, Hu S, Ru X, Ren Y, Zhang Z, Yu S, Zhang Y. Oncogenic Activation of Nrf2, Though as a Master Antioxidant Transcription Factor, Liberated by Specific Knockout of the Full-Length Nrf1α that Acts as a Dominant Tumor Repressor. Cancers (Basel) 2018; 10:cancers10120520. [PMID: 30562963 PMCID: PMC6315801 DOI: 10.3390/cancers10120520] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
Liver-specific knockout of Nrf1 in the mouse leads to spontaneous development of non- alcoholic steatohepatitis with dyslipidemia, and then its deterioration results in hepatoma, but the underlying mechanism remains elusive to date. A similar pathological model is reconstructed here by using human Nrf1α-specific knockout cell lines. Our evidence has demonstrated that a marked increase of the inflammation marker COX2 definitely occurs in Nrf1α−/− cells. Loss of Nrf1α leads to hyperactivation of Nrf2, which results from substantial decreases in Keap1, PTEN and most of 26S proteasomal subunits in Nrf1α−/− cells. Further investigation of xenograft model mice showed that malignant growth of Nrf1α−/−-derived tumors is almost abolished by silencing of Nrf2, while Nrf1α+/+-tumor is markedly repressed by an inactive mutant (i.e., Nrf2−/−ΔTA), but largely unaffected by a priori constitutive activator (i.e., caNrf2ΔN). Mechanistic studies, combined with transcriptomic sequencing, unraveled a panoramic view of opposing and unifying inter-regulatory cross-talks between Nrf1α and Nrf2 at different layers of the endogenous regulatory networks from multiple signaling towards differential expression profiling of target genes. Collectively, Nrf1α manifests a dominant tumor-suppressive effect by confining Nrf2 oncogenicity. Though as a tumor promoter, Nrf2 can also, in turn, directly activate the transcriptional expression of Nrf1 to form a negative feedback loop. In view of such mutual inter-regulation by between Nrf1α and Nrf2, it should thus be taken severe cautions to interpret the experimental results from loss of Nrf1α, Nrf2 or both.
Collapse
Affiliation(s)
- Lu Qiu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Meng Wang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Shaofan Hu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Xufang Ru
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Yonggang Ren
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Zhengwen Zhang
- Institute of Neuroscience and Psychology, School of Life Sciences, University of Glasgow, 42 Western Common Road, Glasgow G22 5PQ, Scotland, United Kingdom.
| | - Siwang Yu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, No. 38 Xueyuan Rd., Haidian District, Beijing 100191, China.
| | - Yiguo Zhang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| |
Collapse
|
1154
|
Du Y, Ren P, Wang Q, Jiang SK, Zhang M, Li JY, Wang LL, Guan DW. Cannabinoid 2 receptor attenuates inflammation during skin wound healing by inhibiting M1 macrophages rather than activating M2 macrophages. JOURNAL OF INFLAMMATION-LONDON 2018; 15:25. [PMID: 30534003 PMCID: PMC6278147 DOI: 10.1186/s12950-018-0201-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022]
Abstract
Background The anti-inflammatory properties of the cannabinoid 2 receptor (CB2R) in injury and inflammatory diseases have been widely substantiated. Specifically, the anti-inflammatory effect of CB2R may be achieved by regulating macrophage polarisation. Several research findings suggested that the activation of CB2R could attenuate inflammation by reducing pro-inflammatory M1 macrophage polarisation and promoting anti-inflammatory M2 polarisation. However, considering CB2R inhibits fibrosis and M2 promotes fibrosis, that the activation of CB2R may lead to an increase in M2 macrophages seems contradictory. Therefore, we hypothesised that the activation of CB2R to attenuate inflammation is not achieved by up-regulating M2 macrophages. Methods We established an incised wound model using mouse skin and used this to evaluate the effect of CB2R agonists (JWH133 or GP1a) and an antagonist (AM630) on wound healing. At various post-injury intervals, we used western blot analysis, immunofluorescence staining, enzyme-linked immunosorbent assay and quantitative reverse transcription polymerase chain reaction assays to determine CB2R protein expression, M1/M2 macrophage infiltration, and the protein and gene expression of M1/M2-associated markers and cytokines in skin lesions. Results Activation of CB2R significantly reduced M1 macrophage infiltration and slightly increased M2 macrophage infiltration. Similarly, gene expression and protein levels of M1-associated markers and cytokines (interleukin [IL]-6, IL-12, CD86 and inducible nitric oxide synthase) were significantly down-regulated after CB2R agonist administration; in contrast, markers and cytokines were increased in the CB2R antagonist–treated group. Conversely, the administration of agonists slightly increased gene expression and protein levels of M2-associated markers and cytokines (IL-4, IL-10, CD206 and arginase-1 [Arg-1]); however, a statistical significance at most time points post-injury was not noted. Conclusion In summary, our findings suggested that during incised skin wound healing in mice, increased levels of CB2R may affect inflammation by regulating M1 rather than M2 macrophage subtype polarisation. These results offer a novel understanding of the molecular mechanisms involved in the inhibition of inflammation by CBR2 that may lead to new treatments for cutaneous inflammation.
Collapse
Affiliation(s)
- Yu Du
- 1Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenyang North New Area, Shenyang, 110122 Liaoning Province People's Republic of China.,Department of Forensic Medicine, Criminal Investigation Police University of China, Shenyang, 110854 China.,Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, 110033 China
| | - Peng Ren
- 1Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenyang North New Area, Shenyang, 110122 Liaoning Province People's Republic of China.,Department of Forensic Medicine, Criminal Investigation Police University of China, Shenyang, 110854 China.,Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, 110033 China
| | - Qi Wang
- 4Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515 China
| | - Shu-Kun Jiang
- 1Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenyang North New Area, Shenyang, 110122 Liaoning Province People's Republic of China.,Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, 110033 China
| | - Miao Zhang
- 1Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenyang North New Area, Shenyang, 110122 Liaoning Province People's Republic of China.,Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, 110033 China
| | - Jiao-Yong Li
- 1Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenyang North New Area, Shenyang, 110122 Liaoning Province People's Republic of China.,Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, 110033 China
| | - Lin-Lin Wang
- 1Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenyang North New Area, Shenyang, 110122 Liaoning Province People's Republic of China.,Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, 110033 China
| | - Da-Wei Guan
- 1Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.77, Puhe Road, Shenyang North New Area, Shenyang, 110122 Liaoning Province People's Republic of China.,Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, 110033 China
| |
Collapse
|
1155
|
Moghaddam NSA, Oskouie MN, Butler AE, Petit PX, Barreto GE, Sahebkar A. Hormetic effects of curcumin: What is the evidence? J Cell Physiol 2018; 234:10060-10071. [PMID: 30515809 DOI: 10.1002/jcp.27880] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022]
Abstract
Curcumin (diferuloylmethane), a component of the yellow powder prepared from the roots of Curcuma longa or Zingiberaceae (known as turmeric) is not only widely used to color and flavor food but also used as a pharmaceutical agent. Curcumin demonstrates anti-inflammatory, anticarcinogenic, antiaging, and antioxidant activity, as well as efficacy in wound healing. Notably, curcumin is a hormetic agent (hormetin), as it is stimulatory at low doses and inhibitory at high doses. Hormesis by curcumin could be also a particular function at low doses (i.e., antioxidant behavior) and another function at high dose (i.e., induction of autophagy and cell death). Recent findings suggest that curcumin exhibits biphasic dose-responses on cells, with low doses having stronger effects than high doses; examples being activation of the mitogen-activated protein kinase signaling pathway or antioxidant activity. This indicates that many effects induced by curcumin are dependent on dose and some effects might be greater at lower doses, indicative of a hormetic response. Despite the consistent occurrence of hormetic responses of curcumin in a wide range of biomedical models, epidemiological and clinical trials are needed to assess the nature of curcumin's dose-response in humans. Fortunately, more than one hundred clinical trials with curcumin and curcumin derivatives are ongoing. In this review, we provide the first comprehensive analysis supportive of the hormetic behavior of curcumin and curcumin derivatives.
Collapse
Affiliation(s)
| | - Mohammad Nosrati Oskouie
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | - Patrice X Petit
- CNRS FR3636 Institut de Neurosciences "Mitochondria, Apoptosis and Autophagy Signalling," Université Paris-Descartes, Paris, France
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
1156
|
Raghunath A, Sundarraj K, Arfuso F, Sethi G, Perumal E. Dysregulation of Nrf2 in Hepatocellular Carcinoma: Role in Cancer Progression and Chemoresistance. Cancers (Basel) 2018; 10:cancers10120481. [PMID: 30513925 PMCID: PMC6315366 DOI: 10.3390/cancers10120481] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 12/23/2022] Open
Abstract
The liver executes versatile functions and is the chief organ for metabolism of toxicants/xenobiotics. Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and the third foremost cause of cancer death worldwide. Oxidative stress is a key factor related with the development and progression of HCC. Nuclear factor erythroid 2 [NF-E2]-related factor 2 (Nrf2) is a cytosolic transcription factor, which regulates redox homeostasis by activating the expression of an array of antioxidant response element-dependent genes. Nrf2 displays conflicting roles in normal, healthy liver and HCC; in the former, Nrf2 offers beneficial effects, whereas in the latter it causes detrimental effects favouring the proliferation and survival of HCC. Sustained Nrf2 activation has been observed in HCC and facilitates its progression and aggressiveness. This review summarizes the role and mechanism(s) of action of Nrf2 dysregulation in HCC and therapeutic options that can be employed to modulate this transcription factor.
Collapse
Affiliation(s)
- Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamilnadu, India.
| | - Kiruthika Sundarraj
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamilnadu, India.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamilnadu, India.
| |
Collapse
|
1157
|
Xiang Y, Wang M, Hu S, Qiu L, Yang F, Zhang Z, Yu S, Pi J, Zhang Y. Mechanisms controlling the multistage post-translational processing of endogenous Nrf1α/TCF11 proteins to yield distinct isoforms within the coupled positive and negative feedback circuits. Toxicol Appl Pharmacol 2018; 360:212-235. [DOI: 10.1016/j.taap.2018.09.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/23/2018] [Accepted: 09/23/2018] [Indexed: 01/20/2023]
|
1158
|
Szafran BN, Lee JH, Borazjani A, Morrison P, Zimmerman G, Andrzejewski KL, Ross MK, Kaplan BLF. Characterization of Endocannabinoid-Metabolizing Enzymes in Human Peripheral Blood Mononuclear Cells under Inflammatory Conditions. Molecules 2018; 23:molecules23123167. [PMID: 30513753 PMCID: PMC6321211 DOI: 10.3390/molecules23123167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/20/2018] [Accepted: 11/28/2018] [Indexed: 01/09/2023] Open
Abstract
Endocannabinoid-metabolizing enzymes are downregulated in response to lipopolysaccharide (LPS)-induced inflammation in mice, which may serve as a negative feedback mechanism to increase endocannabinoid levels and reduce inflammation. Increased plasma levels of the pro-inflammatory cytokine interleukin-6 (IL-6) and decreased fatty acid amide hydrolase (FAAH) activity in peripheral lymphocytes from individuals diagnosed with Huntington’s disease (HD) suggests that a similar negative feedback system between inflammation and the endocannabinoid system operates in humans. We investigated whether CpG- (unmethylated bacterial DNA) and LPS-induced IL-6 levels in peripheral blood mononuclear cells (PBMCs) from non-HD and HD individuals modulated the activities of endocannabinoid hydrolases monoacylglycerol lipase (MAGL) and carboxylesterase (CES). Baseline plasma IL-6 levels and 2-arachidonoylglycerol (2-AG) hydrolytic activity in PBMC lysates were not different in HD and non-HD individuals. Inhibition of MAGL and CES1 activity in PBMCs using the inhibitors JZL184 and WWL113, respectively, demonstrated that MAGL was the dominant 2-AG hydrolytic enzyme in PBMCs, regardless of disease state. Correlative analyses of 2-AG hydrolytic activity versus enzyme abundance confirmed this conclusion. Flow cytometric analysis of PBMCs showed that MAGL and CES1 were primarily expressed in monocytes and to a lesser extent in lymphocytes. In conclusion, these data suggest that IL-6 did not influence 2-AG hydrolytic activity in human PBMCs; however, monocytic MAGL was shown to be the predominant 2-AG hydrolytic enzyme.
Collapse
Affiliation(s)
- Brittany N Szafran
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39759, USA.
| | - Jung Hwa Lee
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39759, USA.
| | - Abdolsamad Borazjani
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39759, USA.
| | - Peter Morrison
- Department of Neurology, University of Rochester, Rochester, NY 14627, USA.
| | - Grace Zimmerman
- Department of Neurology, University of Rochester, Rochester, NY 14627, USA.
| | - Kelly L Andrzejewski
- Department of Neurology, University of Rochester, Rochester, NY 14627, USA.
- Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY 14211, USA.
| | - Matthew K Ross
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39759, USA.
| | - Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39759, USA.
| |
Collapse
|
1159
|
Jiang ZY, Lu MC, You QD. Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Inhibition: An Emerging Strategy in Cancer Therapy. J Med Chem 2018; 62:3840-3856. [PMID: 30444366 DOI: 10.1021/acs.jmedchem.8b01121] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pleiotropic transcription factor, especially for its complex and dual effects in cancer. With the continuous growing research, new regulatory modes and new functions of Nrf2 and tumor-promoting effects of Nrf2 in malignant transformed tumors have become increasingly clear. Accumulating evidence has established that Nrf2 contributes to the whole process of pathogenesis, progression, metastasis, and prognosis of cancer, and Nrf2 could be a promising target in cancer therapy. However, the development of Nrf2 inhibitor is still limited. In this perspective, we will briefly describe the biological function and modulating network of Nrf2, stress its oncogenic role, and point out possible ways to inhibit Nrf2, as well as summarize the reported Nrf2 inhibitors.
Collapse
Affiliation(s)
- Zheng-Yu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China.,Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Meng-Chen Lu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China.,Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China.,Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| |
Collapse
|
1160
|
Vuolo F, Abreu SC, Michels M, Xisto DG, Blanco NG, Hallak JE, Zuardi AW, Crippa JA, Reis C, Bahl M, Pizzichinni E, Maurici R, Pizzichinni MMM, Rocco PRM, Dal-Pizzol F. Cannabidiol reduces airway inflammation and fibrosis in experimental allergic asthma. Eur J Pharmacol 2018; 843:251-259. [PMID: 30481497 DOI: 10.1016/j.ejphar.2018.11.029] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 10/27/2022]
Abstract
Asthma is characterized by chronic lung inflammation and airway hyperresponsiveness. Asthma remains a major public health problem and, at present, there are no effective interventions capable of reversing airway remodelling. Cannabidiol (CBD) is known to exert immunomodulatory effects through the activation of cannabinoid-1 and - 2 (CB1 and CB2) receptors located in the central nervous system and immune cells, respectively. However, as the role of CBD on airway remodelling and the mechanisms of CB1 and CB2 aren't fully elucidated, this study was designed to evaluate the effects of cannabidiol in this scenario. Allergic asthma was induced in Balb/c mice exposed to ovalbumin, and respiratory mechanics, collagen fibre content in airway and alveolar septa, cytokine levels, and CB1 and CB2 expression were determined. Moreover, expressions of CB1 and CB2 in induced sputum of asthmatic individuals and their correlation with airway inflammation and lung function were also evaluated. CBD treatment, regardless of dosage, decreased airway hyperresponsiveness, whereas static lung elastance only reduced with high dose. These outcomes were accompanied by decreases in collagen fibre content in both airway and alveolar septa and the expression of markers associated with inflammation in the bronchoalveolar lavage fluid and lung homogenate. There was a significant and inverse correlation between CB1 levels and lung function in asthmatic patients. CBD treatment decreased the inflammatory and remodelling processes in the model of allergic asthma. The mechanisms of action appear to be mediated by CB1/CB2 signalling, but these receptors may act differently on lung inflammation and remodelling.
Collapse
Affiliation(s)
- Francieli Vuolo
- Laboratory of Experimental Pathophysiology, Extreme University South of Santa Catarina, Criciúma, Brazil
| | - Soraia C Abreu
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Extreme University South of Santa Catarina, Criciúma, Brazil
| | - Débora G Xisto
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália G Blanco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jaime Ec Hallak
- Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Antonio W Zuardi
- Department of Pneumology, Asthma Research Centre, Federal University of Santa Catarina, Florianópolis, Brazil
| | - José A Crippa
- Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Cardine Reis
- Department of Pneumology, Asthma Research Centre, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Marina Bahl
- Department of Pneumology, Asthma Research Centre, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Emílio Pizzichinni
- Department of Pneumology, Asthma Research Centre, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rosemeri Maurici
- Department of Pneumology, Asthma Research Centre, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Marcia M M Pizzichinni
- Department of Pneumology, Asthma Research Centre, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Extreme University South of Santa Catarina, Criciúma, Brazil; Department of Pneumology, Asthma Research Centre, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
1161
|
Xie XL, Zhou WT, Zhang KK, Chen LJ, Wang Q. METH-Induced Neurotoxicity Is Alleviated by Lactulose Pretreatment Through Suppressing Oxidative Stress and Neuroinflammation in Rat Striatum. Front Neurosci 2018; 12:802. [PMID: 30450033 PMCID: PMC6224488 DOI: 10.3389/fnins.2018.00802] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/15/2018] [Indexed: 11/13/2022] Open
Abstract
Abuse of methamphetamine (METH) results in neurological and psychiatric abnormalities. Lactulose is a poorly absorbed derivative of lactose and can effectively alleviate METH-induced neurotoxicity in rats. The present study was designed to investigate the effects of lactulose on METH-induced neurotoxicity. Rats received METH (15 mg/kg, 8 intraperitoneal injections, 12-h interval) or saline and received lactulose (5.3 g/kg, oral gavage, 12-h interval) or vehicle 2 days prior to the METH administration. Reactive oxygen species (ROS) and malondialdehyde (MDA) were measured. Protein levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), tumor necrosis factor receptor associated factor 6 (TRAF6), nuclear factor κB (NFκB), interleukin (IL)-1β, IL-6, TNF-α, cleaved caspase 3, and poly(ADP-ribose) polymerase-1 (PARP-1) were determined by western blotting. mRNA expressions of nuclear factor erythroid 2-relatted factor-2 (Nrf2), p62, and heme oxygenase-1 (HO-1) were assessed by RT-qPCR. The lactulose pretreatment decreased METH-induced cytoplasmic damage in rat livers according to histopathological observation. Compared to the control group, overproduction of ROS and MDA were observed in rat striatums in the METH alone-treated group, while the lactulose pretreatment significantly attenuated the METH-induced up-regulation of oxidative stress. The lactulose pretreatment significantly repressed over-expressions of proteins of TLR4, MyD88, TRAF6, NFκB, IL-1β, IL-6, TNF-α, cleaved caspase 3, PARP-1. The lactulose pretreatment increased mRNA expressions of Nrf2, p62, and HO-1. These findings suggest that lactulose pretreatment can alleviate METH-induced neurotoxicity through suppressing neuroinflammation and oxidative stress, which might be attributed to the activation of the Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, China
| | - Wen-Tao Zhou
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, China
| | - Kai-Kai Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Li-Jian Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
1162
|
Yang XL, Wang X, Peng BW. NFAT5 Has a Job in the Brain. Dev Neurosci 2018; 40:289-300. [PMID: 30391952 DOI: 10.1159/000493789] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/14/2018] [Indexed: 11/19/2022] Open
Abstract
Nuclear factor of activated T cells 5 (NFAT5) has recently been classified as a new member of the Rel family. In addition, there are 5 more well-defined members (NF-κB and NFAT1-4) in the Rel family, which participate in regulating the expression of immune and inflammatory response-related genes. NFAT5 was initially identified in renal medullary cells where it regulated the expression of osmoprotective-related genes during the osmotic response. Many studies have demonstrated that NFAT5 is highly expressed in the nuclei of neurons in fetal and adult brains. Additionally, its expression is approximately 10-fold higher in fetal brains. With the development of detection technologies (laser scanning confocal microscopy, transgene technology, etc.), recent studies suggest that NFAT5 is also expressed in glial cells and plays a more diverse functional role. This article aims to summarize the current knowledge regarding the expression of NFAT5, its regulation of activation, and varied biological functions in the brain.
Collapse
Affiliation(s)
- Xing-Liang Yang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xin Wang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China,
| |
Collapse
|
1163
|
Sun J, Fu J, Zhong Y, Li L, Chen C, Wang X, Wang L, Hou Y, Wang H, Zhao R, Zhang X, Yamamoto M, Xu Y, Pi J. NRF2 mitigates acute alcohol-induced hepatic and pancreatic injury in mice. Food Chem Toxicol 2018; 121:495-503. [PMID: 30248482 DOI: 10.1016/j.fct.2018.09.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022]
Abstract
Binge alcohol drinking is an important health concern and well-known risk factor for the development of numerous disorders. Oxidative stress plays a critical role in the pathogenesis of acute alcoholism. Nuclear factor erythroid 2 like 2 (NRF2) is a master regulator of cellular adaptive response to oxidative insults. However, the role of NRF2 in acute alcoholism and associated pathologies remains unclear. We found that Nrf2-knockout (Nrf2-KO) mice had exaggerated hypoglycemia and hypothermia and increased mortality compared to wildtype mice after binge ethanol exposure. This phenotype was partially rescued by providing warm environment and/or glucose administration. Acute high dose of alcohol exposure resulted in substantially worsened liver and pancreatic injuries in Nrf2-KO mice. Importantly, deficiency of Nrf2 allowed severe pancreatitis and pancreatic β-cell injury with increased insulin secretion and/or leaking during binge ethanol exposure, which contributed to hypoglycemia. In contrast, a clinically used NRF2 activator dimethyl fumarate (DMF) protected against hypoglycemia and lethality induced by acute ethanol exposure. Furthermore, Nrf2-KO mice likely had defective hepatic acetaldehyde metabolism. Taken together, NRF2 plays an important protective role against acute binge alcohol-induced hepatic and pancreatic damage, which may be partially attributable to its primary regulating role in antioxidant response and impact on ethanol metabolism.
Collapse
Affiliation(s)
- Jing Sun
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Yang Zhong
- Department of Chemistry, School of Fundamental Sciences, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Lu Li
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Chengjie Chen
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Xiaolei Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Linlin Wang
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Huihui Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Rui Zhao
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Xixuan Zhang
- Department of Chemistry, School of Fundamental Sciences, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Yuanyuan Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| |
Collapse
|
1164
|
Cui Q, Wang JQ, Assaraf YG, Ren L, Gupta P, Wei L, Ashby CR, Yang DH, Chen ZS. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist Updat 2018; 41:1-25. [DOI: 10.1016/j.drup.2018.11.001] [Citation(s) in RCA: 457] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023]
|
1165
|
Veremeyko T, Yung AWY, Anthony DC, Strekalova T, Ponomarev ED. Early Growth Response Gene-2 Is Essential for M1 and M2 Macrophage Activation and Plasticity by Modulation of the Transcription Factor CEBPβ. Front Immunol 2018; 9:2515. [PMID: 30443252 PMCID: PMC6221966 DOI: 10.3389/fimmu.2018.02515] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/11/2018] [Indexed: 12/24/2022] Open
Abstract
The process of macrophage polarization is involved in many pathologies such as anti-cancer immunity and autoimmune diseases. Polarized macrophages exhibit various levels of plasticity when M2/M(IL-4) macrophages are reprogrammed into an M1-like phenotype following treatment with IFNγ and/or LPS. At the same time, M1 macrophages are resistant to reprogramming in the presence of M2-like stimuli. The molecular mechanisms responsible for the macrophages polarization, plasticity of M2 macrophages, and lack of plasticity in M1 macrophages remain unknown. Here, we explored the role of Egr2 in the induction and maintenance of macrophage M1 and M2 polarization in the mouse in vitro and in vivo models of inflammation. Egr2 knockdown with siRNA treatment fail to upregulate either M1 or M2 markers upon stimulation, and the overexpression of Egr2 potentiated M1 or M2 marker expression following polarization. Polarisation with M2-like stimuli (IL-4 or IL-13) results in increased Egr2 expression, but macrophages stimulated with M1-like stimuli (IFNγ, LPS, IL-6, or TNF) exhibit a decrease in Egr2 expression. Egr2 was critical for the expression of transcription factors CEBPβ and PPARγ in M2 macrophages, and CEBPβ was highly expressed in M1-polarized macrophages. In siRNA knockdown studies the transcription factor CEBPβ was found to negatively regulate Egr2 expression and is likely to be responsible for the maintenance of the M1-like phenotype and lack plasticity. During thioglycolate-induced peritonitis, adoptively transferred macrophages with Egr2 knockdown failed to become activated as determined by upregulation of MHC class II and CD86. Thus, our study indicates that Egr2 expression is associated with the ability of unstimulated or M2 macrophages to respond to stimulation with inflammatory stimuli, while low levels of Egr2 expression is associated with non-responsiveness of macrophages to their activation.
Collapse
Affiliation(s)
- Tatyana Veremeyko
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Amanda W Y Yung
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Daniel C Anthony
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Tatyana Strekalova
- Department of Neuroscience, Maastricht University, Maastricht, Netherlands.,Institute of General Pathology and Pathophysiology, Moscow, Russia.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Eugene D Ponomarev
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming, China
| |
Collapse
|
1166
|
Matzinger M, Fischhuber K, Heiss EH. Activation of Nrf2 signaling by natural products-can it alleviate diabetes? Biotechnol Adv 2018; 36:1738-1767. [PMID: 29289692 PMCID: PMC5967606 DOI: 10.1016/j.biotechadv.2017.12.015] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/19/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (DM) has reached pandemic proportions and effective prevention strategies are wanted. Its onset is accompanied by cellular distress, the nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor boosting cytoprotective responses, and many phytochemicals activate Nrf2 signaling. Thus, Nrf2 activation by natural products could presumably alleviate DM. We summarize function, regulation and exogenous activation of Nrf2, as well as diabetes-linked and Nrf2-susceptible forms of cellular stress. The reported amelioration of insulin resistance, β-cell dysfunction and diabetic complications by activated Nrf2 as well as the status quo of Nrf2 in precision medicine for DM are reviewed.
Collapse
Affiliation(s)
- Manuel Matzinger
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Katrin Fischhuber
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Elke H Heiss
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
1167
|
Xu XY, Meng X, Li S, Gan RY, Li Y, Li HB. Bioactivity, Health Benefits, and Related Molecular Mechanisms of Curcumin: Current Progress, Challenges, and Perspectives. Nutrients 2018; 10:E1553. [PMID: 30347782 PMCID: PMC6213156 DOI: 10.3390/nu10101553] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
Curcumin is a principal curcuminoid of turmeric (Curcuma longa), which is commonly used as a spice in cooking and a yellow pigment in the food processing industry. Recent studies have demonstrated that curcumin has a variety of biological activities and pharmacological performances, providing protection and promotion of human health. In addition to presenting an overview of the gut metabolism of curcumin, this paper reviews the current research progress on its versatile bioactivity, such as antioxidant, anti-inflammatory, and immune-regulatory activities, and also intensively discusses its health benefits, including the protective or preventive effects on cancers and diabetes, as well as the liver, nervous system, and cardiovascular systems, highlighting the potential molecular mechanisms. Besides, the beneficial effects of curcumin on human are further stated based on clinical trials. Considering that there is still a debate on the beneficial effects of curcumin, we also discuss related challenges and prospects. Overall, curcumin is a promising ingredient of novel functional foods, with protective efficacy in preventing certain diseases. We hope this comprehensive and updated review will be helpful for promoting human-based studies to facilitate its use in human health and diseases in the future.
Collapse
Affiliation(s)
- Xiao-Yu Xu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Xiao Meng
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ya Li
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
1168
|
GSK3β: a plausible mechanism of cognitive and hippocampal changes induced by erythropoietin treatment in mood disorders? Transl Psychiatry 2018; 8:216. [PMID: 30310078 PMCID: PMC6181907 DOI: 10.1038/s41398-018-0270-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/11/2018] [Accepted: 07/14/2018] [Indexed: 12/16/2022] Open
Abstract
Mood disorders are associated with significant psychosocial and occupational disability. It is estimated that major depressive disorder (MDD) will become the second leading cause of disability worldwide by 2020. Existing pharmacological and psychological treatments are limited for targeting cognitive dysfunctions in mood disorders. However, growing evidence from human and animal studies has shown that treatment with erythropoietin (EPO) can improve cognitive function. A recent study involving EPO-treated patients with mood disorders showed that the neural basis for their cognitive improvements appeared to involve an increase in hippocampal volume. Molecular mechanisms underlying hippocampal changes have been proposed, including the activation of anti-apoptotic, antioxidant, pro-survival and anti-inflammatory signalling pathways. The aim of this review is to describe the potential importance of glycogen synthase kinase 3-beta (GSK3β) as a multi-potent molecular mechanism of EPO-induced hippocampal volume change in mood disorder patients. We first examine published associations between EPO administration, mood disorders, cognition and hippocampal volume. We then highlight evidence suggesting that GSK3β influences hippocampal volume in MDD patients, and how this could assist with targeting more precise treatments particularly for cognitive deficits in patients with mood disorders. We conclude by suggesting how this developing area of research can be further advanced, such as using pharmacogenetic studies of EPO treatment in patients with mood disorders.
Collapse
|
1169
|
Mabhida SE, Dludla PV, Johnson R, Ndlovu M, Louw J, Opoku AR, Mosa RA. Protective effect of triterpenes against diabetes-induced β-cell damage: An overview of in vitro and in vivo studies. Pharmacol Res 2018; 137:179-192. [PMID: 30315968 DOI: 10.1016/j.phrs.2018.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/27/2018] [Accepted: 10/04/2018] [Indexed: 12/14/2022]
Abstract
Accumulative evidence shows that chronic hyperglycaemia is a major factor implicated in the development of pancreatic β-cell dysfunction in diabetic patients. Furthermore, most of these patients display impaired insulin signalling that is responsible for accelerated pancreatic β-cell damage. Indeed, prominent pathways involved in glucose metabolism such as phosphatidylinositol 3-kinase/ protein kinase B (PI3-K/AKT) and 5' AMP-activated protein kinase (AMPK) are impaired in an insulin resistant state. The impairment of this pathway is associated with over production of reactive oxygen species and pro-inflammatory factors that supersede pancreatic β-cell damage. Although several antidiabetic drugs can improve β-cell function by modulating key regulators such as PI3-K/AKT and AMPK, evidence of their β-cell regenerative and protective effect is scanty. As a result, there has been continued exploration of novel antidiabetic therapeutics with abundant antioxidant and antiinflammatory properties that are essential in protecting against β-cell damage. Such therapies include triterpenes, which have displayed robust effects to improve glycaemic tolerance, insulin secretion, and pancreatic β-cell function. This review summarises most relevant effects of various triterpenes on improving pancreatic β-cell function in both in vitro and in vivo experimental models. A special focus falls on studies reporting on the ameliorative properties of these compounds against insulin resistance, oxidative stress and inflammation, the well-known factors involved in hyperglycaemia associated tissue damage.
Collapse
Affiliation(s)
- Sihle E Mabhida
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa; Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, 7505, South Africa.
| | - Phiwayinkosi V Dludla
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60121, Italy; Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, 7505, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, 7505, South Africa; Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, Stellenbosch, South Africa
| | - Musawenkosi Ndlovu
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Johan Louw
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa; Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, 7505, South Africa
| | - Andy R Opoku
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Rebamang A Mosa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| |
Collapse
|
1170
|
Zhou L, Zhou S, Yang P, Tian Y, Feng Z, Xie XQ, Liu Y. Targeted inhibition of the type 2 cannabinoid receptor is a novel approach to reduce renal fibrosis. Kidney Int 2018; 94:756-772. [PMID: 30093080 PMCID: PMC6151282 DOI: 10.1016/j.kint.2018.05.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 05/03/2018] [Accepted: 05/17/2018] [Indexed: 12/24/2022]
Abstract
The cannabinoid receptor type 2 (CB2) is a G protein-coupled seven transmembrane receptor that transmits endogenous cannabinoid signaling. The role of CB2 in the pathogenesis of kidney injury and fibrosis remains poorly understood. Here we demonstrate that CB2 was induced, predominantly in kidney tubular epithelium, in various models of kidney disease induced by unilateral ureteral obstruction, adriamycin or ischemia/reperfusion injury. In vitro, forced expression of CB2 or treatment with a CB2 agonist was sufficient to trigger matrix gene expression, whereas knockdown of CB2 by siRNA abolished transforming growth factor-β1-induced signaling and fibrogenic responses in kidney tubular cells. CB2 also mediated fibroblasts and macrophage activation in vitro. Mice with genetic ablation of CB2 were protected against kidney injury after ureteral obstruction, validating a pathogenic role of CB2 in renal fibrosis in vivo. By using in silico screening and medicinal chemistry modifications, we discovered a novel compound, XL-001, that bound to CB2 with high affinity and selectivity and acted as an inverse agonist. Incubation with XL-001 inhibited in a dose-dependent fashion the fibrogenic response induced by CB2 overexpression, CB2 agonist or transforming growth factor-β1. In vivo, intraperitoneal injections of XL-001 ameliorated kidney injury, fibrosis and inflammation in both the obstruction and ischemia/reperfusion models. Delayed administration of XL-001 was also effective in ameliorating kidney fibrosis and inflammation. Thus, CB2 is a pathogenic mediator in kidney fibrosis and targeted inhibition with the novel inverse agonist XL-001 may provide a strategy in the fight against fibrotic kidney diseases.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Drug Discovery
- Epithelium
- Extracellular Matrix/genetics
- Fibroblasts
- Fibrosis
- Gene Expression
- Gene Silencing
- Inflammation/etiology
- Inflammation/prevention & control
- Kidney Tubules/metabolism
- Kidney Tubules/pathology
- Macrophages
- Male
- Mice
- Mice, Inbred BALB C
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/prevention & control
- Reperfusion Injury/complications
- Signal Transduction
- Sulfonamides/chemistry
- Sulfonamides/pharmacology
- Transforming Growth Factor beta1/metabolism
- Ureteral Obstruction/complications
Collapse
Affiliation(s)
- Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Yang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuan Tian
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
1171
|
Yuan J, Zhang S, Zhang Y. Nrf1 is paved as a new strategic avenue to prevent and treat cancer, neurodegenerative and other diseases. Toxicol Appl Pharmacol 2018; 360:273-283. [PMID: 30267745 DOI: 10.1016/j.taap.2018.09.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/12/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
Transcription factor Nrf1 acts as a unique vital player in maintaining cellular homeostasis and organ integrity during normal development and growth throughout the life process. Loss-of-function of Nrf1 results in severe oxidative stress, genomic instability, embryonic lethality, developmental disorders, and adult diseases such as non-alcoholic steatohepatitis, hepatocellular carcinoma, diabetes and neurogenerative diseases. Thereby, Nrf1 is critically implicated in a variety of important physio-pathological processes by governing robust target genes in order to reinforce antioxidant, detoxification and cytoprotective responses to cellular stress. Notably, there also exists a proteasomal 'bounce-back' response mediated by Nrf1, insofar as to enhance the drug resistance to proteasomal inhibitors in clinical treatment of neuroblastoma, multiple myeloma and triple-negative breast cancers. Recently, several drugs or chemicals are found or re-found in new ways to block the proteasomal compensatory process through inhibiting the multistep processing of Nrf1. Conversely, activation of Nrf1 induced by some drugs or chemicals leads to cytoprotection from cell apoptosis and promotes cell viability. This is the start of constructive and meaningful studies, approaching to explore the mechanism(s) by which Nrf1 is activated to protect neurons and other cells from malignant and degenerative diseases. Overall, Nrf1 has appealed attentions as a new attractive therapeutic strategy for human diseases including cancers.
Collapse
Affiliation(s)
- Jianxin Yuan
- Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Shuwei Zhang
- Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Yiguo Zhang
- Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| |
Collapse
|
1172
|
Vermette D, Hu P, Canarie MF, Funaro M, Glover J, Pierce RW. Tight junction structure, function, and assessment in the critically ill: a systematic review. Intensive Care Med Exp 2018; 6:37. [PMID: 30259344 PMCID: PMC6158145 DOI: 10.1186/s40635-018-0203-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/20/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Epithelial and endothelial barrier integrity, essential for homeostasis, is maintained by cellular boarder structures known as tight junctions (TJs). In critical illness, TJs may become disrupted, resulting in barrier dysfunction manifesting as capillary leak, pulmonary edema, gut bacterial translocation, and multiple organ failure. We aim to provide a clinically focused overview of TJ structure and function and systematically review and analyze all studies assessing markers of endothelial and epithelial TJ breakdown correlated with clinical outcomes in critically ill humans. METHODS We systematically searched MEDLINE, EMBASE, and PubMed. Additional articles were identified by targeted searches. We included studies that looked at the relationship between biomarkers of endothelial or epithelial TJ structure or function and critical illness. Results were qualitatively analyzed due to sample size and heterogeneity. RESULTS A total of 5297 abstracts met search criteria, of which 150 articles met requirements for full text review. Of these, 30 studies met inclusion criteria. Fifteen of the 30 reports investigated proteins of endothelial tight junctions and 15 investigated epithelial TJ markers, exclusively in the gastrointestinal epithelium. No studies investigated TJ-derived proteins in primary cardiac or pulmonary pathology. CONCLUSIONS TJ integrity is essential for homeostasis. We identified multiple studies that indicate TJs are disrupted by critical illness. These studies highlight the significance of barrier disruption across many critical disease states and correlate TJ-associated markers to clinically relevant outcomes. Further study on the role of multiple tissue-specific claudins, particularly in the setting of respiratory or cardiac failure, may lead to diagnostic and therapeutic advances. SYSTEMATIC REVIEW REGISTRATION This systematic review is registered in the PROSPERO database: CRD42017074546 .
Collapse
Affiliation(s)
- David Vermette
- Department of Pediatrics, Yale University, 333 Cedar Street, PO Box 208064, New Haven, CT 06520 USA
| | - Pamela Hu
- Department of Pediatrics, Yale University, 333 Cedar Street, PO Box 208064, New Haven, CT 06520 USA
| | - Michael F Canarie
- Department of Pediatrics, Yale University, 333 Cedar Street, PO Box 208064, New Haven, CT 06520 USA
| | - Melissa Funaro
- Cushing/Whitney Medical Library, Yale University, 333 Cedar Street, PO Box 208064, New Haven, CT 06520 USA
| | - Janis Glover
- Cushing/Whitney Medical Library, Yale University, 333 Cedar Street, PO Box 208064, New Haven, CT 06520 USA
| | - Richard W Pierce
- Department of Pediatrics, Yale University, 333 Cedar Street, PO Box 208064, New Haven, CT 06520 USA
| |
Collapse
|
1173
|
Abstract
Cannabis ( Cannabis sativa/indica), also known as marijuana, has been used for medicinal and recreational purposes for millennia. There has been a recent trend to legalize the use of cannabis, as illustrated by the recent legalization votes in numerous states in the United States and legislation in Canada to allow recreational cannabis use. With this increasing consumption of cannabis, dermatologists will see increased pressure to prescribe cannabis and will see the side effects of cannabis use with greater frequency. There are several approved medical indications for cannabis use, including psoriasis, lupus, nail-patella syndrome, and severe pain. In addition, very preliminary studies have suggested cannabis and its derivatives might have use in acne, dermatitis, pruritus, wound healing, and skin cancer. Further well-controlled studies are required to explore these potential uses. Conversely, the side effects of cannabis use are relatively well documented, and dermatologists should be aware of these presentations. Side effects of cannabis use include cannabis allergy manifesting as urticaria and pruritus, cannabis arteritis presenting with necrosis and ulcers, and oral cancers from cannabis smoke. In this review, we summarize some of the studies and reports regarding the medicinal uses of cannabis in the dermatology clinic and some of the side effects that might present more often to dermatologists as the use of cannabis increases.
Collapse
Affiliation(s)
- Gurbir Dhadwal
- 1 Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | - Mark G Kirchhof
- 2 Division of Dermatology, Department of Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
1174
|
Yang B, Cheng H, Wang L, Fu J, Zhang G, Guan D, Qi R, Gao X, Zhao R. Protective roles of NRF2 signaling pathway in cobalt chloride-induced hypoxic cytotoxicity in human HaCaT keratinocytes. Toxicol Appl Pharmacol 2018; 355:189-197. [PMID: 29966676 DOI: 10.1016/j.taap.2018.06.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022]
Abstract
Hypoxia is a key pathological process involved in many cutaneous diseases. Nuclear factor E2-related factor 2 (NRF2) is a central regulator of antioxidant response element (ARE)-dependent transcription and plays a pivotal role in the cellular adaptive response to oxidative stress. Kelch-like ECH-associated protein 1 (KEAP1) is a cullin-3-adapter protein that represses the activity of NRF2 by mediating its ubiquitination and degradation. In the present study, we examined the role of NRF2 signaling pathway in the cytotoxicity induced by cobalt chloride(CoCl2), a hypoxia-mimicking agent, in human keratinocyte HaCaT cells with stable knockdown of NRF2 (NRF2-KD) and KEAP1 (KEAP1-KD). Acute CoCl2 exposure markedly increased the levels of intracellular reactive oxygen species (ROS), and resulted in hypoxic damage and cytotoxicity of HaCaT cells. Stable knockdown of NRF2 dramatically reduced the expression of many antioxidant enzymes and sensitized the cells to acute CoCl2-induced oxidative stress and cytotoxicity. In contrast, KEAP1-KD cells observably enhanced the activity of NRF2 and ARE-regulated genes and led to a significant resistance to CoCl2-induced cellular damage. In addition, pretreatment of HaCaT cells with tert-butylhydroquinone, a well-known NRF2 activator, protected HaCaT cells from CoCl2-induced cellular injury in a NRF2-dependent fashion. Likewise, physical hypoxia-induced cytotoxicity could be significantly ameliorated through NRF2 signaling pathway in HaCaT cells. Together, our results suggest that NRF2 signaling pathway is involved in antioxidant response triggered by CoCl2-induced oxidative stress and could protect human keratinocytes against acute CoCl2 -induced hypoxic cytotoxicity.
Collapse
Affiliation(s)
- Bei Yang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China; Department of Histology and Embryology, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Hao Cheng
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Linlin Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Guohua Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Dawei Guan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Ruiqun Qi
- Department of Dermatology, No.1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang 110001, China
| | - Xinghua Gao
- Department of Dermatology, No.1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang 110001, China.
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China.
| |
Collapse
|
1175
|
R Ebrahim A, El-Mesery M, El-Karef A, Eissa LA. Vitamin D potentiates anti-tumor activity of 5-fluorouracil via modulating caspase-3 and TGF-β1 expression in hepatocellular carcinoma-induced in rats. Can J Physiol Pharmacol 2018; 96:1218-1225. [PMID: 30205014 DOI: 10.1139/cjpp-2018-0445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We investigated the role of vitamin D (Vit D) alone and in combination with 5-fluorouracil (5-FU) in thioacetamide (TAA)-induced hepatocellular carcinoma (HCC) in rats. Fifty male Sprague-Dawley rats were randomized into a control group and 4 groups that received TAA (200 mg/kg, i.p.) twice per week for 16 weeks. These 4 groups were further divided as follows: HCC group; 5-FU group (75 mg/kg, i.p., once weekly for 3 weeks starting from the 12th week); Vit D group (200 IU/kg daily by oral tube for 16 weeks); and 5-FU + Vit D group (received the previously mentioned dosage regimens of 5-FU and Vit D). HCC was detected by histopathological changes in liver sections and the elevation of serum α-fetoprotein (AFP). Treatment with 5-FU + Vit D significantly decreased gene expression of nuclear factor erythroid 2-related factor 2 (NrF2) and transforming growth factor β1 (TGF-β1) at both the gene and protein level and serum AFP concentrations in comparison with their corresponding monotherapy. Moreover, 5-FU + Vit D treatment enhanced apoptosis by increasing caspase-3 gene and protein expression. Conclusively, Vit D enhances antitumor activity of 5-FU in an HCC-induced model and improves liver function of treated animals. Combination therapy in a TAA-induced HCC rat model was more effective than 5-FU or Vit D through the modulation of TGF-β1, caspase-3, and NrF2 expressions.
Collapse
Affiliation(s)
- Amal R Ebrahim
- a Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed El-Mesery
- a Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Amro El-Karef
- b Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Laila A Eissa
- a Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
1176
|
Zhu J, Wang H, Chen F, Lv H, Xu Z, Fu J, Hou Y, Xu Y, Pi J. Triptolide enhances chemotherapeutic efficacy of antitumor drugs in non-small-cell lung cancer cells by inhibiting Nrf2-ARE activity. Toxicol Appl Pharmacol 2018; 358:1-9. [PMID: 30196066 DOI: 10.1016/j.taap.2018.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022]
Abstract
Non-small cell lung cancer (NSCLC) has a high mortality rate worldwide. Various treatments strategies have been used against NSCLC including individualized chemotherapies, but innate or acquired cancer cell drug resistance remains a major obstacle. Recent studies revealed that the Kelch-like ECH associated protein 1/Nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2) pathway is intimately involved in cancer progression and chemoresistance. Thus, antagonizing Nrf2 would seem to be a viable strategy in cancer therapy. In the present study a traditional Chinese medicine, triptolide, was identified that markedly inhibited expression and transcriptional activity of Nrf2 in various cancer cells, including NSCLC and liver cancer cells. Consequently, triptolide made cancer cells more chemosensitivity toward antitumor drugs both in vitro and in a xenograft tumor model system using lung carcinoma cells. These results suggest that triptolide blocks chemoresistance in cancer cells by targeting the Nrf2 pathway. Triptolide should be further investigated in clinical cancer trials.
Collapse
Affiliation(s)
- Jiayu Zhu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New area, Shenyang 110122, China
| | - Huihui Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New area, Shenyang 110122, China.
| | - Feng Chen
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Road, Heping Area, Shenyang, 110001, China; Interventional Department, Qianfoshan Hospital, Shandong University, No.16766 Jingshi Road, Jinan 250014, China
| | - Hang Lv
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New area, Shenyang 110122, China
| | - Zijin Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New area, Shenyang 110122, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New area, Shenyang 110122, China
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New area, Shenyang 110122, China
| | - Yuanyuan Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New area, Shenyang 110122, China
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New area, Shenyang 110122, China.
| |
Collapse
|
1177
|
Bonam SR, Wu YS, Tunki L, Chellian R, Halmuthur MSK, Muller S, Pandy V. What Has Come out from Phytomedicines and Herbal Edibles for the Treatment of Cancer? ChemMedChem 2018; 13:1854-1872. [PMID: 29927521 DOI: 10.1002/cmdc.201800343] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Several modern treatment strategies have been adopted to combat cancer with the aim of minimizing toxicity. Medicinal plant-based compounds with the potential to treat cancer have been widely studied in preclinical research and have elicited many innovations in cutting-edge clinical research. In parallel, researchers have eagerly tried to decrease the toxicity of current chemotherapeutic agents either by combining them with herbals or in using herbals alone. The aim of this article is to present an update of medicinal plants and their bioactive compounds, or mere changes in the bioactive compounds, along with herbal edibles, which display efficacy against diverse cancer cells and in anticancer therapy. It describes the basic mechanism(s) of action of phytochemicals used either alone or in combination therapy with other phytochemicals or herbal edibles. This review also highlights the remarkable synergistic effects that arise between certain herbals and chemotherapeutic agents used in oncology. The anticancer phytochemicals used in clinical research are also described; furthermore, we discuss our own experience related to semisynthetic derivatives, which are developed based on phytochemicals. Overall, this compilation is intended to facilitate research and development projects on phytopharmaceuticals for successful anticancer drug discovery.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- UMR 7242 CNRS, Biotechnology and Cell Signaling, University of Strasbourg, Laboratory of Excellence Medalis, Illkirch, 67400, France.,Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Yuan Seng Wu
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lakshmi Tunki
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India
| | - Ranjithkumar Chellian
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mahabalarao Sampath Kumar Halmuthur
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Sylviane Muller
- UMR 7242 CNRS, Biotechnology and Cell Signaling, University of Strasbourg, Laboratory of Excellence Medalis, Illkirch, 67400, France.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, 67000, France
| | - Vijayapandi Pandy
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Pharmacology, Chalapathi Institute of Pharmaceutical Sciences, Lam, Guntur, Andhra Pradesh, 522034, India
| |
Collapse
|
1178
|
Janasik B, Reszka E, Stanislawska M, Jablonska E, Kuras R, Wieczorek E, Malachowska B, Fendler W, Wasowicz W. Effect of Arsenic Exposure on NRF2-KEAP1 Pathway and Epigenetic Modification. Biol Trace Elem Res 2018; 185:11-19. [PMID: 29247444 PMCID: PMC6097044 DOI: 10.1007/s12011-017-1219-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/06/2017] [Indexed: 01/13/2023]
Abstract
Arsenic (As) is a known toxic element and carcinogen. Transcription factor nuclear factor-erythroid 2-related factor 2 (NRF2) controls cellular adaptation to oxidants and electrophiles by inducing antioxidant genes in response to redox stress. To explore associations between As level and NRF2-regulated cytoprotective genes expression, an observational study was conducted in a population of 61 occupationally exposed men with median (Me) age 50 years (interquartile range (IQR) 42-54) and in a control group of 52 men aged 40 (IQR 31-51.5) without occupational exposure. NRF2, KEAP1, GSTP1, HMOX1, NQO1, PRDX1, and TXNRD1 transcript levels were determined by means of quantitative real-time PCR along with the gene expression, methylation of NRF2 and KEAP1, as well as global DNA methylation were assessed. The median urine As tot. level in the exposed and control group was found to be 21.8 μg/g creat. (IQR 15.5-39.8 μg/g creat.) and 3.8 μg/g creat. (IQR 2.5-9.3) (p < 0.001). Global DNA methylation was significantly higher in occupationally exposed workers than in controls (Me 14.1 (IQR 9.5-18.1) vs Me 8.5 (IQR 5.9-12.6) p < 0.0001). NRF2 mRNA level was positively correlated with expression of all investigated NRF2-target genes in both groups (0.37 > R < 0.76, all p values < 0.0001). The multivariate linear regression adjusting for global methylation showed that As(III) level was significantly associated with expression of TXNRD1, GSTP1, HMOX1, and PRDX1. The results of this study indicate that arsenic occupational exposure is positively associated with global DNA methylation. The findings provide evidence for rather inactivation of NRF2-KEAP1 pathway in response to chronic arsenic exposure.
Collapse
Affiliation(s)
- Beata Janasik
- Department of Environmental and Biological Monitoring, Nofer Institute of Occupational Medicine, St. Teresy 8, 91-348, Lodz, Poland.
| | - Edyta Reszka
- Department of Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Magdalena Stanislawska
- Department of Environmental and Biological Monitoring, Nofer Institute of Occupational Medicine, St. Teresy 8, 91-348, Lodz, Poland
| | - Ewa Jablonska
- Department of Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Renata Kuras
- Department of Environmental and Biological Monitoring, Nofer Institute of Occupational Medicine, St. Teresy 8, 91-348, Lodz, Poland
| | - Edyta Wieczorek
- Department of Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Beata Malachowska
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Studies in Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Wojciech Wasowicz
- Department of Environmental and Biological Monitoring, Nofer Institute of Occupational Medicine, St. Teresy 8, 91-348, Lodz, Poland
| |
Collapse
|
1179
|
Hou Y, Liu Z, Zuo Z, Gao T, Fu J, Wang H, Xu Y, Liu D, Yamamoto M, Zhu B, Zhang Y, Andersen ME, Zhang Q, Pi J. Adipocyte-specific deficiency of Nfe2l1 disrupts plasticity of white adipose tissues and metabolic homeostasis in mice. Biochem Biophys Res Commun 2018; 503:264-270. [DOI: 10.1016/j.bbrc.2018.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 01/10/2023]
|
1180
|
Pericytes reduce inflammation and collagen deposition in acute wounds. Cytotherapy 2018; 20:1046-1060. [PMID: 30093323 DOI: 10.1016/j.jcyt.2018.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/22/2018] [Accepted: 06/22/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Pericytes have been shown to have mesenchymal stromal cell-like properties and play a role in tissue regeneration. The goal of this study was to determine whether the addition of a pericyte sheet to a full-thickness dermal wound would enhance the healing of an acute wound. METHODS Human muscle-derived pericytes and human dermal fibroblasts were formed into cell sheets, then applied to full-thickness excisional wounds on the dorsum of nu/nu mice. Histology was performed to evaluate epidermal and dermal reformation, inflammation and fibrosis. In addition, real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was used to determine cytokine response. RESULTS Pericytes were detected in the wounds until day 16 but not fibroblasts. Decrease in wound size was noted in pericyte sheet-treated wounds. Enhanced neo-vascularization and healthy granulation tissue formation were noted in the pericyte-treated wounds. Expression of type I collagen messenger RNA (mRNA) was significantly higher in the fibroblast-treated group, whereas Type III collagen mRNA showed significant increase in the pericyte group at days 3, 6 and 9 compared with the fibroblast and no-cell groups. Trichrome staining revealed thick unorganized collagen fibrils in the fibroblast-treated wounds, whereas pericyte-treated wounds contained thinner and more alligned collagen fibrils. Tumor necrosis factor (TNF)-α mRNA levels were increased in the fibroblast-treated wounds compared with pericyte-treated wounds. DISCUSSION The addition of pericytes may confer beneficial effects to wound healing resulting in reduced recruitment of inflammatory cells and collagen I deposition, potential to enhance wound closure and better collagen alignment promoting stronger tissue.
Collapse
|
1181
|
Ahmed HI, Abdel-Sattar SA, Zaky HS. Vinpocetine halts ketamine-induced schizophrenia-like deficits in rats: impact on BDNF and GSK-3β/β-catenin pathway. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1327-1338. [PMID: 30083945 DOI: 10.1007/s00210-018-1552-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/31/2018] [Indexed: 01/03/2023]
Abstract
There are increasing evidences supporting the involvement of oxidative stress and neuroinflammation in schizophrenia. Vinpocetine, a nootropic phosphodiesterase-1 inhibitor, was proven to possess anti-oxidant and anti-inflammatory potentials. This research aimed to reveal the likely protective features of vinpocetine against ketamine-induced schizophrenia-like deficits in rats. Additionally, the probable mechanisms contributing to this neuroprotection were also elucidated. Vinpocetine was given (20 mg/kg, i.p.) once a day for 14 days commencing 7 days before administrating ketamine (25 mg/kg i.p.). Risperidone was applied as a reference antipsychotic. Vinpocetine pre-treatment revealed a marked amendment in the hyperlocomotion, anxiety, and short-term memory deficits induced by ketamine in rats. In rats' hippocampus, ketamine induced a drastic increase in tissue levels of dopamine, lipid peroxidation, and pro-inflammatory cytokines along with a significant decrease in glutamate, GABA, SOD, and total anti-oxidant capacity. Also, ketamine induced a reduced level of BDNF together with the potentiation of GSK-3β/β-catenin pathway that led to the destruction of β-catenin. Pre-treatment of ketamine-challenged animals with vinpocetine significantly attenuated oxidative stress, inflammation, and neurotransmitter alterations. Vinpocetine also elevated BDNF expression and prevented ketamine-induced stimulation of the GSK-3β/β-catenin signaling. This research presents enlightenments into the role of vinpocetine in schizophrenia. This role may be accomplished through its effect on oxidative stress, inflammation as well as modulating BDNF and the GSK-3β/β-catenin pathway.
Collapse
Affiliation(s)
- Hebatalla I Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt.
| | - Somaia A Abdel-Sattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
| | - Heba S Zaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
| |
Collapse
|
1182
|
Wang X, Yu H, You J, Wang C, Feng C, Liu Z, Li Y, Wei R, Xu S, Zhao R, Wu X, Zhang G. Memantine can improve chronic ethanol exposure-induced spatial memory impairment in male C57BL/6 mice by reducing hippocampal apoptosis. Toxicology 2018; 406-407:21-32. [PMID: 29800586 DOI: 10.1016/j.tox.2018.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 01/08/2023]
Abstract
Chronic ethanol intake can induce neuronal apoptosis, leading to dementia. We investigated the protective effects of memantine on spatial memory impairment induced by chronic ethanol exposure in mice. Male C57BL/6 mice were administered 10% (m/V) or 20% (m/V) ethanol as the only choice of drinking water. Mice were treated for 60 d, 90 d, or 180 d. Mice were treated with memantine for the same duration (daily 10 mg/kg oral). The Morris water maze and radial arm maze test were used to measure spatial memory. Mice were sacrificed after the behavioral tests. Brains were removed to prepare for paraffin sections, and hippocampi were isolated for protein and RNA extraction. 4',6-diamidino-2-phenylindole (DAPI) staining and immunohistochemical staining of cleaved caspase-3 were performed. Western blot analysis was used to detect the expression of cleaved caspase-3 and calcium-related proteins, including N-methyl-d-aspartic acid receptor 1 (NR1), 1,4,5-trisphosphate receptor 1 (IP3R1), and sarco/endoplasmic reticulum calcium adenosine triphosphatase 1 (SERCA1). The changes of NR1, IP3R1 and SERCA1 mRNA were detected using quantitative polymerase chain reaction (qPCR). The results revealed that chronic ethanol exposure induced spatial memory impairment in mice, as well as increasing the expression of NR1, IP3R1 and SERCA1, the activation of caspase-3 and apoptosis in hippocampus. The effect was particularly prominent in the 20% ethanol group after 180 d exposure. Memantine decreased ethanol-induced spatial memory impairment, caspase-3 activation and apoptosis in the mouse hippocampus. These results suggest that disruption of intracellular calcium balance by ethanol can induce caspase-3 activation and apoptosis, which underlies subsequent spatial memory impairment in mice.
Collapse
Affiliation(s)
- Xiaolong Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Hao Yu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Jiabin You
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Changliang Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Chunmei Feng
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Zhaodi Liu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Ya Li
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Rucheng Wei
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Siqi Xu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Rui Zhao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Xu Wu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China.
| | - Guohua Zhang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
1183
|
Schaller SJ, Nagashima M, Schönfelder M, Sasakawa T, Schulz F, Khan MAS, Kem WR, Schneider G, Schlegel J, Lewald H, Blobner M, Jeevendra Martyn JA. GTS-21 attenuates loss of body mass, muscle mass, and function in rats having systemic inflammation with and without disuse atrophy. Pflugers Arch 2018; 470:1647-1657. [PMID: 30006848 DOI: 10.1007/s00424-018-2180-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/19/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022]
Abstract
Muscle changes of critical illness are attributed to systemic inflammatory responses and disuse atrophy. GTS-21 (3-(2,4-dimethoxy-benzylidene)anabaseine), also known as DMBX-A) is a synthetic derivative of the natural product anabaseine that acts as an agonist at α7-acetylcholine receptors (α7nAChRs). Hypothesis tested was that modulation of inflammation by agonist GTS-21 (10 mg/kg b.i.d. intraperitoneally) will attenuate body weight (BW) and muscle changes. Systemic sham inflammation was produced in 125 rats by Cornyebacterium parvum (C.p.) or saline injection on days 0/4/8. Seventy-four rats had one immobilized-limb producing disuse atrophy. GTS-21 effects on BW, tibialis muscle mass (TMM), and function were assessed on day 12. Systemically, methemoglobin levels increased 26-fold with C.p. (p < 0.001) and decreased significantly (p < 0.033) with GTS-21. Control BW increased (+ 30 ± 9 g, mean ± SD) at day 12, but decreased with C.p. and superimposed disuse (p = 0.005). GTS-21 attenuated BW loss in C.p. (p = 0.005). Compared to controls, TMM decreased with C.p. (0.43 ± 0.06 g to 0.26 ± 0.03 g) and with superimposed disuse (0.18 ± 0.04 g); GTS-21 ameliorated TMM loss to 0.32 ± 0.04 (no disuse, p = 0.028) and to 0.22 ± 0.03 (with disuse, p = 0.004). Tetanic tensions decreased with C.p. or disuse and GTS-21 attenuated tension decrease in animals with disuse (p = 0.006) and in animals with C.p. and disuse (p = 0.029). C.p.-induced 11-fold increased muscle α7nAChR expression was decreased by > 60% with GTS-21 treatment. In conclusion, GTS-21 modulates systemic inflammation, evidenced by both decreased methemoglobin levels and decrease of α7nAChR expression, and mitigates inflammation-mediated loss of BW, TMM, fiber size, and function.
Collapse
Affiliation(s)
- Stefan J Schaller
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children®-Boston, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA.
- Klinik für Anaesthesiologie, Klinikum rechts der Isar, Technische Universität München, Ismaningertr. 22, 81675, Munich, Germany.
| | - Michio Nagashima
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children®-Boston, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
- Department of Intensive Care Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Martin Schönfelder
- Institute of Exercise Biology, Technische Universität München, Georg-Brauchle-Ring 60/62, 80992, Munich, Germany
| | - Tomoki Sasakawa
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children®-Boston, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
- Department of Anesthesiology and Critical Care Medicine, Asahikawa Medical University, 1 Chome-1-1 Midorigaoka Higashi 2 Jō, Asahikawa-shi, Hokkaidō, 078-8802, Japan
| | - Fabian Schulz
- Klinik für Anaesthesiologie, Klinikum rechts der Isar, Technische Universität München, Ismaningertr. 22, 81675, Munich, Germany
| | - Mohammed A S Khan
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children®-Boston, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
| | - William R Kem
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, P.O. Box 100267, Gainesville, FL, 32610-0267, USA
| | - Gerhard Schneider
- Klinik für Anaesthesiologie, Klinikum rechts der Isar, Technische Universität München, Ismaningertr. 22, 81675, Munich, Germany
| | - Jürgen Schlegel
- Institute of Pathology, Technische Universität München, Ismaningerstr. 22, 81675, Munich, Germany
| | - Heidrun Lewald
- Klinik für Anaesthesiologie, Klinikum rechts der Isar, Technische Universität München, Ismaningertr. 22, 81675, Munich, Germany
| | - Manfred Blobner
- Klinik für Anaesthesiologie, Klinikum rechts der Isar, Technische Universität München, Ismaningertr. 22, 81675, Munich, Germany
| | - J A Jeevendra Martyn
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children®-Boston, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
| |
Collapse
|
1184
|
Miragliotta V, Ricci PL, Albanese F, Pirone A, Tognotti D, Abramo F. Cannabinoid receptor types 1 and 2 and peroxisome proliferator-activated receptor-α: distribution in the skin of clinically healthy cats and cats with hypersensitivity dermatitis. Vet Dermatol 2018; 29:316. [PMID: 29920828 DOI: 10.1111/vde.12658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cannabinoid receptors and peroxisome proliferator-activated receptor-alpha (PPAR-α) are gaining recognition as potential therapeutic targets for the treatment of skin disorders. HYPOTHESIS/OBJECTIVES The aim of this study was to investigate the distribution of cannabinoid type 1 and 2 receptors (CBR1 and CBR2) and PPAR-α in feline skin and verify whether changes occur in the course of hypersensitivity dermatitis. ANIMALS Twelve privately owned cats. Skin samples were obtained from five healthy cats with no skin lesions and seven cats clinically diagnosed with hypersensitivity dermatitis. METHODS AND MATERIALS Haematoxylin and eosin stained skin sections were investigated for histopathological changes. Indirect immunofluorescence for CBR1, CBR2 and PPAR-α was performed on paraffin-embedded sections, and antibody specificity tested by Western blot analysis. RESULTS Skin samples from cats with hypersensitivity dermatitis were all histopathologically diagnosed with eosinophilic dermatitis. CB receptors and PPAR-α were distributed throughout the skin in both healthy and allergic cats. In normal feline skin, these receptors were mainly distributed in the epithelial compartment. Receptor expression increased in hypersensitivity compared to healthy skin, with the main distribution changes being suprabasal for CBR1, dermal for CBR2 and marked expression of PPAR-α in hyperplastic epidermis and perivascular infiltrate. CONCLUSIONS AND CLINICAL IMPORTANCE Increased expression of cannabinoid receptors in the skin of cats with hypersensitivity dermatitis suggests an endogenous protective strategy and may support the use of natural cannabinoid receptor or PPAR-α agonists to treat feline hypersensitivity dermatitis.
Collapse
Affiliation(s)
- Vincenzo Miragliotta
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, I-56124, Pisa, Italy
| | - Pier Luca Ricci
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, I-56124, Pisa, Italy
| | - Francesco Albanese
- Private Veterinary Laboratory "LaVallonea", Via Giuseppe Sirtori, 9, 20017, Passirana di Rho, Italy
| | - Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, I-56124, Pisa, Italy
| | - Danika Tognotti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Francesca Abramo
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, I-56124, Pisa, Italy
| |
Collapse
|
1185
|
Yang Y, Deng Y, Chen X, Zhang J, Chen Y, Li H, Wu Q, Yang Z, Zhang L, Liu B. Inhibition of PDGFR by CP-673451 induces apoptosis and increases cisplatin cytotoxicity in NSCLC cells via inhibiting the Nrf2-mediated defense mechanism. Toxicol Lett 2018; 295:88-98. [PMID: 29857117 DOI: 10.1016/j.toxlet.2018.05.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/13/2018] [Accepted: 05/27/2018] [Indexed: 10/16/2022]
Abstract
Platelet-derived growth factor receptors (PDGFRs) are abundantly expressed by stromal cells in the non-small cell lung cancer (NSCLC) microenvironment, and in a subset of cancer cells, usually with their overexpression and/or activating mutation. However, the effect of PDGFR inhibition on lung cancer cells themselves has been largely neglected. In this study, we investigated the anticancer activity of CP-673451, a potent and selective inhibitor of PDGFRβ, on NSCLC cell lines (A549 and H358) and the potential mechanism. The results showed that inhibition of PDGFRβ by CP-673451 induced a significant increase in cell apoptosis, accompanied by ROS accumulation. However, CP-673451 exerted less cytotoxicity in normal lung epithelial cell line BEAS-2B cells determined by MTT and apoptosis assay. Elimination of ROS by NAC reversed the CP-673451-induced apoptosis in NSCLC cells. Furthermore, CP-673451 down-regulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) probably through inhibition of PI3K/Akt pathway. Rescue of Nrf2 activity counteracted the effects of CP-673451 on cell apoptosis and ROS accumulation. Silencing PDGFRβ expression by PDGFRβ siRNA exerted similar effects with CP-673451 in A549 cells, and when PDGFRβ was knockdowned by PDGFRβ siRNA, CP-673451 produced no additional effects on cell viability, ROS and GSH production, Nrf2 expression as well as PI3K/Akt pathway activity. Specifically, Nrf2 plays an indispensable role in NSCLC cell sensitivity to platinum-based treatments and we found that combination of CP-673451 and cisplatin produced a synergistic anticancer effect and substantial ROS production in vitro. Therefore, these results clearly demonstrate the effectiveness of inhibition of PDGFRβ against NSCLC cells and strongly suggest that CP-673451 may be a promising adjuvant chemotherapeutic drug.
Collapse
Affiliation(s)
- Yang Yang
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yanchao Deng
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiangcui Chen
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiahao Zhang
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yueming Chen
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huachao Li
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qipeng Wu
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhicheng Yang
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Luyong Zhang
- Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Bing Liu
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
1186
|
Tang M, Cao X, Zhang K, Li Y, Zheng QY, Li GQ, He QH, Li SJ, Xu GL, Zhang KQ. Celastrol alleviates renal fibrosis by upregulating cannabinoid receptor 2 expression. Cell Death Dis 2018; 9:601. [PMID: 29789558 PMCID: PMC5964092 DOI: 10.1038/s41419-018-0666-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/24/2018] [Accepted: 05/04/2018] [Indexed: 12/31/2022]
Abstract
Renal fibrosis is the final manifestation of various chronic kidney diseases, and no effective therapy is available to prevent or reverse it. Celastrol, a triterpene that derived from traditional Chinese medicine, is a known potent anti-fibrotic agent. However, the underlying mechanisms of action of celastrol on renal fibrosis remain unknown. In this study, we found that celastrol treatment remarkably attenuated unilateral ureteral obstruction (UUO)-induced mouse renal fibrosis. This was evidenced by the significant reduction in tubular injury; collagen deposition; accumulation of fibronectin, collagen I, and α-smooth muscle actin; and the expression levels of pro-fibrotic factors Vim, Cola1, and TGF-β1 mRNA, as well as inflammatory responses. Celastrol showed similar effects in a folic acid-induced mouse renal fibrosis model. Furthermore, celastrol potentiated the expression of the anti-fibrotic factor cannabinoid receptor 2 (CB2R) in established mouse fibrotic kidney tissues and transforming growth factor β1 (TGF-β1)-stimulated human kidney 2 (HK-2) cells. In addition, the CB2R antagonist (SR144528) abolished celastrol-mediated beneficial effects on renal fibrosis. Moreover, UUO- or TGF-β1-induced activation of the pro-fibrotic factor SMAD family member 3 (Smad3) was markedly inhibited by celastrol. Inhibition of Smad3 activation by an inhibitor (SIS3) markedly reduced TGF-β1-induced downregulation of CB2R expression. In conclusion, our study provides the first direct evidence that celastrol significantly alleviated renal fibrosis, by contributing to the upregulation of CB2R expression through inhibiting Smad3 signaling pathway activation. Therefore, celastrol could be a potential drug for treating patients with renal fibrosis.
Collapse
Affiliation(s)
- Ming Tang
- Department of Nephrology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.,Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xu Cao
- Department of Nephrology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Kun Zhang
- Department of Nephrology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - You Li
- Department of Nephrology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Quan-You Zheng
- Department of Nephrology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Gui-Qing Li
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qian-Hui He
- Department of Nephrology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Shu-Jing Li
- Department of Nephrology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Gui-Lian Xu
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Ke-Qin Zhang
- Department of Nephrology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
1187
|
Sattar Y, Wilson J, Khan AM, Adnan M, Azzopardi Larios D, Shrestha S, Rahman Q, Mansuri Z, Hassan A, Patel NB, Tariq N, Latchana S, Lopez Pantoja SC, Vargas S, Shaikh NA, Syed F, Mittal D, Rumesa F. A Review of the Mechanism of Antagonism of N-methyl-D-aspartate Receptor by Ketamine in Treatment-resistant Depression. Cureus 2018; 10:e2652. [PMID: 30034974 PMCID: PMC6051558 DOI: 10.7759/cureus.2652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/18/2018] [Indexed: 12/19/2022] Open
Abstract
The biochemical processes involved in depression go beyond serotonin, norepinephrine, and dopamine. The N-methyl-D-aspartate (NMDA) receptor has a major role in the neurophysiology of depression. Ketamine, one of the prototypical NMDA antagonists, works rapidly in controlling depressive symptoms, including acutely suicidal behavior, by just a single injection. Ketamine may rapidly increase the glutamate levels and lead to structural neuronal changes. Increased neuronal dendritic growth may contribute to synaptogenesis and an increase in brain-derived neurotrophic factor (BDNF). Activation of the mechanistic target of rapamycin (mTOR), as well as increased levels of BDNF, may increase long-term potentiation and result in an improvement in the symptoms of depression. The mechanisms of ketamine's proposed effect as an off-label treatment for resistant depression are outlined in this paper.
Collapse
Affiliation(s)
- Yasar Sattar
- Research Assistant, Kings County Hospital Center, New York, USA
| | - John Wilson
- Adult Psychiatry, SUNY Downstate Medical Center
| | - Ali M Khan
- Psychiatry Resident, University of Texas Rio Grande Valley, Harlingen, Texas, USA
| | - Mahwish Adnan
- Center for Addiction and Mental Health, University of Toronto, toronto, CAN
| | | | | | | | - Zeeshan Mansuri
- Psychiatry, Texas Tech University Health Sciences Center at Odessa/permian Basin
| | - Ali Hassan
- Medical Graduate, American University of Antigua
| | | | | | | | | | - Sadiasept Vargas
- Department of Medicine, Instituto Tecnológico De Santo Domingo, Santo Domingo, DOM
| | | | - Fawaduzzaman Syed
- Internal Medicine, Sindh Medical College, Dow University of Health Sciences, Chicago, USA
| | - Daaman Mittal
- Pediatrics, Punjab Institute of Medical Sciences, ludhiana, IND
| | | |
Collapse
|
1188
|
Qu Y, Cao C, Wu Q, Huang A, Song Y, Li H, Zuo Y, Chu C, Li J, Man Y. The dual delivery of KGF and bFGF by collagen membrane to promote skin wound healing. J Tissue Eng Regen Med 2018; 12:1508-1518. [PMID: 29706001 DOI: 10.1002/term.2691] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 08/17/2017] [Accepted: 04/16/2018] [Indexed: 02/05/2023]
Abstract
The major challenges associated with skin regeneration can include hindered vascularization and an insufficient degree of epithelization. In view of the complexity of these processes and the control signals on which they depend, one possible solution to these limitations could be simulating normal skin development and wound repair via the exogenous delivery of multiple cytokines. Here, we report the use of keratinocyte growth factor (KGF or FGF-7) and basic fibroblast growth factor (bFGF or FGF-2) released chemically modified collagen membranes to facilitate skin wound healing. The results from in vitro studies confirmed that this system resulted in higher cellular proliferation and faster cell migration. After transplanting the biomaterial onto an excisional wound healing model, the dual growth factor group, compared with the single growth factor groups and empty control group, showed more highly developed vascular networks and organized epidermal regeneration in the wounds. As a consequence, this experimental group showed mature epidermal coverage. Overall, this novel approach of releasing growth factors from a collagen membrane opens new avenues for fulfilling unmet clinical needs for wound care.
Collapse
Affiliation(s)
- Yili Qu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, P. R. China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Cong Cao
- Center of Stomatology, China-Japan Friendship Hospital, Beijing, P. R. China
| | - Qingqing Wu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Ai Huang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, P. R. China
| | - Ying Song
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, P. R. China
| | - Hongling Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, P. R. China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, and Analytical and Testing Center, Sichuan University, Chengdu, P. R. China
| | - Chenyu Chu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, P. R. China
| | - Jidong Li
- Research Center for Nano-Biomaterials, and Analytical and Testing Center, Sichuan University, Chengdu, P. R. China
| | - Yi Man
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, P. R. China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
1189
|
Brzica H, Abdullahi W, Reilly BG, Ronaldson PT. A Simple and Reproducible Method to Prepare Membrane Samples from Freshly Isolated Rat Brain Microvessels. J Vis Exp 2018. [PMID: 29782001 DOI: 10.3791/57698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The blood-brain barrier (BBB) is a dynamic barrier tissue that responds to various pathophysiological and pharmacological stimuli. Such changes resulting from these stimuli can greatly modulate drug delivery to the brain and, by extension, cause considerable challenges in the treatment of central nervous system (CNS) diseases. Many BBB changes that affect pharmacotherapy, involve proteins that are localized and expressed at the level of endothelial cells. Indeed, such knowledge on BBB physiology in health and disease has sparked considerable interest in the study of these membrane proteins. From a basic science research standpoint, this implies a requirement for a simple but robust and reproducible method for isolation of microvessels from brain tissue harvested from experimental animals. In order to prepare membrane samples from freshly isolated microvessels, it is essential that sample preparations be enriched in endothelial cells but limited in the presence of other cell types of the neurovascular unit (i.e., astrocytes, microglia, neurons, pericytes). An added benefit is the ability to prepare samples from individual animals in order to capture the true variability of protein expression in an experimental population. In this manuscript, details regarding a method that is utilized for isolation of rat brain microvessels and preparation of membrane samples are provided. Microvessel enrichment, from samples derived, is achieved by using four centrifugation steps where dextran is included in the sample buffer. This protocol can easily be adapted by other laboratories for their own specific applications. Samples generated from this protocol have been shown to yield robust experimental data from protein analysis experiments that can greatly aid the understanding of BBB responses to physiological, pathophysiological, and pharmacological stimuli.
Collapse
Affiliation(s)
- Hrvoje Brzica
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson
| | - Wazir Abdullahi
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson
| | - Bianca G Reilly
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson;
| |
Collapse
|
1190
|
Fan X, Deng H, Sang J, Li N, Zhang X, Han Q, Liu Z. High Serum Procalcitonin Concentrations in Patients With Hemorrhagic Fever With Renal Syndrome Caused by Hantaan Virus. Front Cell Infect Microbiol 2018; 8:129. [PMID: 29868489 PMCID: PMC5952221 DOI: 10.3389/fcimb.2018.00129] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022] Open
Abstract
Objective: This study analyzed the significance of procalcitonin (PCT) in patients with hemorrhagic fever with renal syndrome (HFRS) caused by Hantaan virus. Methods: The demographics and clinical and laboratory data including PCT at hospital admission in 146 adults with HFRS were retrospectively analyzed. Results: PCT level was significantly higher in severe patients (n = 72) than in mild patients (n = 74, p < 0.001) and independently associated with disease severity (OR 2.544, 95% CI 1.330-4.868, p = 0.005). PCT had an area under the receiver operating characteristic curve (AUC) value of 0.738 (95% CI 0.657-0.820, p < 0.001) for predicting severity. PCT level was significantly increased in patients with bacterial infection (n = 87) compared with those without (n = 59, p = 0.037) and associated with bacterial infection (OR 1.685, 95% CI 1.026-2.768, p = 0.039). The AUC value of PCT for predicting bacterial infection was 0.618 (95% CI 0.524-0.711, p = 0.016). PCT level was significantly elevated in non-survivors (n = 13) compared with survivors (n = 133, p < 0.001) and independently associated with mortality (OR 1.075, 95% CI 1.003-1.152, p = 0.041). The AUC value of PCT for predicting mortality was 0.819 (95% CI 0.724-0.914, p < 0.001). Conclusion: PCT concentrations at admission would be predictive of disease severity, secondary bacterial infection and mortality in patients with HFRS caused by Hantaan virus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhengwen Liu
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
1191
|
Tahamtan A, Tavakoli-Yaraki M, Shadab A, Rezaei F, Marashi SM, Shokri F, Mokhatri-Azad T, Salimi V. The Role of Cannabinoid Receptor 1 in the Immunopathology of Respiratory Syncytial Virus. Viral Immunol 2018; 31:292-298. [DOI: 10.1089/vim.2017.0098] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Alireza Tahamtan
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Shadab
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahdi Marashi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Talat Mokhatri-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
1192
|
Sample A, Zhao B, Wu C, Qian S, Shi X, Aplin A, He YY. The Autophagy Receptor Adaptor p62 is Up-regulated by UVA Radiation in Melanocytes and in Melanoma Cells. Photochem Photobiol 2018; 94:432-437. [PMID: 28715145 PMCID: PMC5771989 DOI: 10.1111/php.12809] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/21/2017] [Indexed: 12/18/2022]
Abstract
UVA (315-400 nm) is the most abundant form of UV radiation in sunlight and indoor tanning beds. However, much remains to be understood about the regulation of the UVA damage response in melanocytes and melanoma. Here, we show that UVA, but not the shorter waveband UVB (280-315 nm), up-regulates adaptor protein p62 in an Nrf2- and reactive oxygen species (ROS)-dependent manner, suggesting a UVA-specific effect on p62 regulation. UVA-induced p62 up-regulation was inhibited by a mitochondria-targeted antioxidant or Nrf2 knockdown. In addition, p62 knockdown inhibited UVA-induced ROS production and Nrf2 up-regulation. We also report here a novel regulatory feedback loop between p62 and PTEN in melanoma cells. PTEN overexpression reduced p62 protein levels, and p62 knockdown increased PTEN protein levels. As compared with normal human skin, p62 was up-regulated in human nevus, malignant melanoma and metastatic melanoma. Furthermore, p62 was up-regulated in melanoma cells relative to normal human epidermal melanocytes, independent of their BRAF or NRAS mutation status. Our results demonstrated that UVA up-regulates p62 and induces a p62-Nrf2 positive feedback loop to counteract oxidative stress. Additionally, p62 forms a feedback loop with PTEN in melanoma cells, suggesting p62 functions as an oncogene in UVA-associated melanoma development and progression.
Collapse
Affiliation(s)
- Ashley Sample
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| | - Baozhong Zhao
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Chunli Wu
- Department of Radiation Oncology, The Fourth Hospital, China Medical University, Shenyang, China
| | - Steven Qian
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Xianglin Shi
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY, USA
| | - Andrew Aplin
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| |
Collapse
|
1193
|
Dong W, Yang B, Wang L, Li B, Guo X, Zhang M, Jiang Z, Fu J, Pi J, Guan D, Zhao R. Curcumin plays neuroprotective roles against traumatic brain injury partly via Nrf2 signaling. Toxicol Appl Pharmacol 2018; 346:28-36. [PMID: 29571711 DOI: 10.1016/j.taap.2018.03.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 12/28/2022]
Abstract
Traumatic brain injury (TBI), which leads to high mortality and morbidity, is a prominent public health problem worldwide with no effective treatment. Curcumin has been shown to be beneficial for neuroprotection in vivo and in vitro, but the underlying mechanism remains unclear. This study determined whether the neuroprotective role of curcumin in mouse TBI is dependent on the NF-E2-related factor (Nrf2) pathway. The Feeney weight-drop contusion model was used to mimic TBI. Curcumin was administered intraperitoneally 15 min after TBI induction, and brains were collected at 24 h after TBI. The levels of Nrf2 and its downstream genes (Hmox-1, Nqo1, Gclm, and Gclc) were detected by Western blot and qRT-PCR at 24 h after TBI. In addition, edema, oxidative damage, cell apoptosis and inflammatory reactions were evaluated in wild type (WT) and Nrf2-knockout (Nrf2-KO) mice to explore the role of Nrf2 signaling after curcumin treatment. In wild type mice, curcumin treatment resulted in reduced ipsilateral cortex injury, neutrophil infiltration, and microglia activation, improving neuron survival against TBI-induced apoptosis and degeneration. These effects were accompanied by increased expression and nuclear translocation of Nrf2, and enhanced expression of antioxidant enzymes. However, Nrf2 deletion attenuated the neuroprotective effects of curcumin in Nrf2-KO mice after TBI. These findings demonstrated that curcumin effects on TBI are associated with the activation the Nrf2 pathway, providing novel insights into the neuroprotective role of Nrf2 and the potential therapeutic use of curcumin for TBI.
Collapse
Affiliation(s)
- Wenwen Dong
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Bei Yang
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
| | - Linlin Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Bingxuan Li
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Xiangshen Guo
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Miao Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Zhenfei Jiang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical Univeristy, Shenyang 110122, China
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical Univeristy, Shenyang 110122, China
| | - Dawei Guan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China.
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China.
| |
Collapse
|
1194
|
Visonà SD, Benati D, Monti MC, Galiè M, Andrello L, Frontini A, Osculati A. Diagnosis of sudden cardiac death due to early myocardial ischemia: An ultrastructural and immunohistochemical study. Eur J Histochem 2018; 62:2866. [PMID: 29943950 PMCID: PMC6038110 DOI: 10.4081/ejh.2018.2866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/13/2018] [Accepted: 02/20/2018] [Indexed: 01/06/2023] Open
Abstract
The aim of this post-mortem ultrastructural and immunohistochemical study is to explore the characteristics of acute myocardial ischemia in the context of sudden death, using the combination of two different methods, both more insightful than ordinary histology. Transmission electron microscopy and immunohistochemistry, in addition to the traditional histology, were applied to study human heart specimens collected during forensic autopsies. The whole series was sub-grouped into cases (n=17) and controls (N=10). The control group consisted of unnatural death with a short agonal period (immediately lethal injuries). Heart samples of the two cohorts of subjects were prepared for electron microscopy. On the other hand, each specimen, formalin fixed and paraffin embedded, was stained with haematoxylin and eosin and immunoreacted with the following primary antibodies: anti-Fibronectin, anti- Connexin-43, anti-npCx43 (dephosphorylated form of Connexin43), anti-Zonula occludens-1. Immunopositivity for each marker in the myocardium was semi-quantitatively graded. Electron microscopy revealed a number of interesting differences, statistically significant, between acute myocardial ischemia and controls, regarding the morphology of nucleus, mitochondria and intercellular junctions. By immunohistochemistry, fibronectin was found to be increased in the extracellular matrix of the acute myocardial ischemia cases, with a statistically significant difference compared to the controls. Connexin 43 staining disclosed a slight increase (not statistically significant) in the cytoplasm of acute myocardial ischemia cases compared to the controls, whereas no significant differences were seen between cases and controls at intercellular junctions. npCx43 showed an evident difference of intensity and pattern (even though not statistically significant) in cases compared to controls and overall this difference was more evident in the cytoplasm. Zonula occludens 1, described as an important marker for functional modification of cardiac muscle fibers, resulted negative or very weak in the vast majority of both cases and controls. The present study attempts to simultaneously apply electron microscopy and immunohistochemistry, in order to figure out the morphological changes that might lead to pathological processes underlying the sudden, unexpected death due to acute myocardial ischemia, and consequently to find useful diagnostic markers of very early ischemic injury. Both methods showed significant differences between acute myocardial ischemia and controls, regarding, overall nuclei, mitochondria, and intercellular junctions.
Collapse
|
1195
|
He JT, Huang HY, Qu D, Xue Y, Zhang KK, Xie XL, Wang Q. CXCL1 and CXCR2 as potential markers for vital reactions in skin contusions. Forensic Sci Med Pathol 2018; 14:174-179. [PMID: 29607464 DOI: 10.1007/s12024-018-9969-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2018] [Indexed: 12/22/2022]
Abstract
Detection of the vitality of wounds is one of the most important issues in forensic practice. This study investigated mRNA and protein levels of CXCL1 and CXCR2 in skin wounds in mice and humans. Western blot analysis of CXCL1 and CXCR2 protein levels showed no difference between wounded and intact skin. However, mRNA levels demonstrated higher expression of CXCL1 and CXCR2 in contused mouse and human skin, compared with intact skin. At postmortem there were no remarkable changes in CXCL1 and CXCR2 mRNA levels in contused mouse skin. Increased mRNA expression was observed in contused mouse skin up to 96 h and 72 h after death for CXCL1 and CXCR2 respectively. In human samples of wounded skin, increased CXCL1 mRNA levels were detected up to 48 h after autopsy in all 5 cases, while increased CXCR2 mRNA levels were observed 48 h after autopsy in 4 of 5 cases. These findings suggest that the levels of CXCL1 and CXCR2 mRNA present in contused skin can be used as potential markers for a vital reaction in forensic practice.
Collapse
Affiliation(s)
- Jie-Tao He
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong, China
| | - Hong-Yan Huang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong, China
| | - Dong Qu
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong, China
| | - Ye Xue
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong, China
| | - Kai-Kai Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health and Tropical Medicine, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong, China.
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong, China.
| |
Collapse
|
1196
|
Dimethyl fumarate in a patient with multiple sclerosis and type 1 diabetes mellitus: The importance of ketonuria. Mult Scler Relat Disord 2018; 21:42-45. [DOI: 10.1016/j.msard.2018.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/20/2018] [Accepted: 02/05/2018] [Indexed: 12/26/2022]
|
1197
|
Li N, Du Q, Bai R, Sun J. Vitality and wound-age estimation in forensic pathology: review and future prospects. Forensic Sci Res 2018; 5:15-24. [PMID: 32490306 PMCID: PMC7241561 DOI: 10.1080/20961790.2018.1445441] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/12/2018] [Indexed: 01/01/2023] Open
Abstract
Determining the age of a wound is challenging in forensic pathology, but it can contribute to the reconstruction of crime scenes and lead to arrest of suspects. Forensic scholars have tended to focus on evaluating wound vitality and determining the time elapsed since the wound was sustained. Recent progress in forensic techniques, particularly high-throughput analyses, has enabled evaluation of materials at the cellular and molecular levels, as well as simultaneous assessment of multiple markers. This paper provides an update on wound-age estimation in forensic pathology, summarizes the recent literature, and considers useful additional information provided by each marker. Finally, the future prospects for estimating wound age in forensic practise are discussed with the hope of providing something useful for further study.
Collapse
Affiliation(s)
- Na Li
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Forensic Science, Shanxi Medical University, Taiyuan, China
| | - Qiuxiang Du
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Forensic Science, Shanxi Medical University, Taiyuan, China
| | - Rufeng Bai
- Key Laboratory of Evidence Science, China University of Political Science and Law, Beijing, China.,Collaborative Innovation Centre of Judicial Civilization, Beijing, China
| | - Junhong Sun
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Forensic Science, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
1198
|
Sarkar N, Sinha D. Epigallocatechin-3-gallate partially restored redox homeostasis in arsenite-stressed keratinocytes. J Appl Toxicol 2018; 38:1071-1080. [PMID: 29572906 DOI: 10.1002/jat.3616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 01/09/2023]
Abstract
Arsenite (AsIII) is known for inducing severe oxidative stress and skin carcinogenesis. Contrastingly, phytochemical, epigallocatechin-3-gallate (EGCG) combats toxic insults. Our study focused on the effect of EGCG on redox status of AsIII-stressed normal human keratinocytes, HaCaT cells. EGCG (50 μm) increased the cell viability by 29% in AsIII (50 μm) insulted HaCaT cells but exhibited pro-oxidant activity by elevated expression of the oxidative stress markers. EGCG was effective not only in reducing AsIII-induced nuclear expression of Nrf2 and Nrf2Ser40 but also in increasing nuclear expression of Keap1 both at protein and mRNA level. EGCG did not have similar effects on all Nrf2 downstream targets. EGCG elevated expression of HO-1 and γ-GCL,showed no change in MRP1 but decreased superoxide dismutase, NAD(P)H dehydrogenase quinone 1 and glutathione S transferase activity in AsIII-treated HaCaT cells. EGCG along with AsIII caused decreased phosphorylation of Nrf2 at ser40 residue, which might have facilitated Keap1-mediated nuclear export and degradation of Nrf2 and paved the pro-survival signal for AsIII-insulted HaCaT cells. In conclusion, it might be indicated that EGCG in spite of inducing the pro-oxidant effect was effective in increasing the viability of AsIII-treated HaCaT cells by partially restoring the Nrf2/Keap1-mediated signaling axis.
Collapse
Affiliation(s)
- Nivedita Sarkar
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India
| |
Collapse
|
1199
|
Xie XL, He JT, Wang ZT, Xiao HQ, Zhou WT, Du SH, Xue Y, Wang Q. Lactulose attenuates METH-induced neurotoxicity by alleviating the impaired autophagy, stabilizing the perturbed antioxidant system and suppressing apoptosis in rat striatum. Toxicol Lett 2018; 289:107-113. [PMID: 29550550 DOI: 10.1016/j.toxlet.2018.03.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 12/25/2022]
Abstract
Methamphetamine (METH) is a widely abused psychostimulant. Lactulose is a non-absorbable sugar, which effectively decreases METH-induced neurotoxicity in rat. However, the exact mechanisms need further investigation. In this study, 5-week-old male Sprague Dawley rats received METH (15 mg/kg, 8 intraperitoneal injections, 12-h interval) or saline and received lactulose (5.3 g/kg, oral gavage, 12-h interval) or vehicle 2 days prior to the METH administration. Compared to the control group, in the METH alone group, cytoplasmic vacuolar degeneration in hepatocytes, higher levels of alanine transaminase, aspartate transaminase and ammonia, overproduction of reactive oxygen species (ROS) and increase of superoxide dismutase activity in the blood were observed. Moreover, in rat striatum, expressions of nuclear factor erythroid 2-relatted factor-2 (Nrf2) and heme oxygenase-1 were suppressed in the nucleus, although over-expression of Nrf2 were observed in cytoplasm. Over-expressions of BECN1 and LC3-II indicated initiation of autophagy, while overproduction of p62 might suggest deficient autophagic vesicle turnover and impaired autophagy. Furthermore, accumulation of p62 cloud interact with Keap1 and then aggravate cytoplasmic accumulation of Nrf2. Consistently, over-expressions of cleaved caspase 3 and poly(ADP-ribose) polymerase-1 suggested the activation of apoptosis. The pretreatment with lactulose significantly decreased rat hepatic injury, suppressed hyperammonemia and ROS generation, alleviated the impaired autophagy in striatum, rescued the antioxidant system and repressed apoptosis. Taken together, with decreased blood ammonia, lactulose pretreatment reduced METH-induced neurotoxicity through alleviating the impaired autophagy, stabilizing the perturbed antioxidant system and suppressing apoptosis in rat striatum.
Collapse
Affiliation(s)
- Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Jie-Tao He
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Zheng-Tao Wang
- The 2013 Class, 8-Year Program, The First Clinical Medical School, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Huan-Qin Xiao
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, 510000 Guangzhou, China
| | - Wen-Tao Zhou
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Si-Hao Du
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Ye Xue
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China.
| |
Collapse
|
1200
|
Zákány N, Oláh A, Markovics A, Takács E, Aranyász A, Nicolussi S, Piscitelli F, Allarà M, Pór Á, Kovács I, Zouboulis CC, Gertsch J, Di Marzo V, Bíró T, Szabó T. Endocannabinoid Tone Regulates Human Sebocyte Biology. J Invest Dermatol 2018; 138:1699-1706. [PMID: 29501385 DOI: 10.1016/j.jid.2018.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/19/2018] [Accepted: 02/19/2018] [Indexed: 12/20/2022]
Abstract
We have previously shown that endocannabinoids (eCBs) (e.g., anandamide) are involved in the maintenance of homeostatic sebaceous lipid production in human sebaceous glands and that eCB treatment dramatically increases sebaceous lipid production. Here, we aimed to investigate the expression of the major eCB synthesizing and degrading enzymes and to study the effects of eCB uptake inhibitors on human SZ95 sebocytes, thus exploring the role of the putative eCB membrane transporter, which has been hypothesized to facilitate the cellular uptake and subsequent degradation of eCBs. We found that the major eCB synthesizing (N-acyl phosphatidylethanolamine-specific phospholipase D, and diacylglycerol lipase-α and -β) and degrading (fatty acid amide hydrolase, monoacylglycerol lipase) enzymes are expressed in SZ95 sebocytes and also in sebaceous glands (except for diacylglycerol lipase-α, the staining of which was dubious in histological preparations). eCB uptake-inhibition with VDM11 induced a moderate increase in sebaceous lipid production and also elevated the levels of various eCBs and related acylethanolamides. Finally, we found that VDM11 was able to interfere with the proinflammatory action of the TLR4 activator lipopolysaccharide. Collectively, our data suggest that inhibition of eCB uptake exerts anti-inflammatory actions and elevates both sebaceous lipid production and eCB levels; thus, these inhibitors might be beneficial in cutaneous inflammatory conditions accompanied by dry skin.
Collapse
Affiliation(s)
- Nóra Zákány
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Arnold Markovics
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Erika Takács
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Aranyász
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Simon Nicolussi
- Institute of Biochemistry and Molecular Medicine, National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Marco Allarà
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Ágnes Pór
- Department of Pathology, Gyula Kenézy University Hospital, University of Debrecen, Debrecen, Hungary
| | - Ilona Kovács
- Department of Pathology, Gyula Kenézy University Hospital, University of Debrecen, Debrecen, Hungary
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodore Fontane, Dessau, Germany
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Tamás Szabó
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|