1151
|
Martineau M, Raker C, Powrie R, Williamson C. Intrahepatic cholestasis of pregnancy is associated with an increased risk of gestational diabetes. Eur J Obstet Gynecol Reprod Biol 2014; 176:80-5. [PMID: 24462052 DOI: 10.1016/j.ejogrb.2013.12.037] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 12/13/2013] [Accepted: 12/22/2013] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To evaluate the association between intrahepatic cholestasis of pregnancy (ICP) and gestational diabetes mellitus (GDM). STUDY DESIGN A retrospective case-control study of pregnancy outcomes in 57,724 women managed at a university teaching hospital in Rhode Island, USA, in whom universal screening for GDM had been performed and who were assessed for the incidence of ICP. Pregnancies complicated by ICP or GDM between February 2005 and June 2011 were identified from the electronic patient records using appropriate ICD codes. A total of 125 cases were required to detect a difference in the incidence of GDM in ICP at 5% significance with 80% power. Demographic and clinical outcome data (including maternal age, ethnic group, BMI, and infant weight and gender) were also collected. RESULTS Of the 57,724 pregnancies, 143 were complicated by ICP (0.25%) and 4880 by GDM (8.5%). Nineteen ICP cases had GDM. The incidence of GDM in ICP was 13.6% (19/140, OR 1.68 CI 1.04-2.72). Where gestational ages were available (n=105), of those screened for GDM prior to developing ICP, 13.4% (11/82, OR 1.64 CI 0.88-3.06) had a confirmed diagnosis, rising to 30% (7/23, OR 4.69 CI 1.98-11.1) in cases that were screened following the onset of cholestasis. Simple linear regression analysis of adjusted birth weight centiles in ICP revealed a significant linear trend of increasing centiles with gestational age (p=0.005). CONCLUSIONS These data support the hypothesis that the incidence of GDM is higher in women predisposed to developing ICP. It is likely that this susceptibility increases further following the onset of cholestasis.
Collapse
Affiliation(s)
- Marcus Martineau
- Division of Obstetric & Consultative Medicine, Women and Infants Hospital, Alpert Medical School of Brown University, Providence, RI 02905, USA; Maternal and Fetal Disease Group, Institute of Reproductive and Developmental Biology, Imperial College, London W12 0NN, United Kingdom.
| | - Christina Raker
- Division of Research, Women and Infants Hospital of Rhode Island, Providence, RI 02903, USA.
| | - Raymond Powrie
- Division of Obstetric & Consultative Medicine, Women and Infants Hospital, Alpert Medical School of Brown University, Providence, RI 02905, USA; Division of Research, Women and Infants Hospital of Rhode Island, Providence, RI 02903, USA.
| | - Catherine Williamson
- Maternal and Fetal Disease Group, Institute of Reproductive and Developmental Biology, Imperial College, London W12 0NN, United Kingdom; Women's Health Academic Centre, Kings College London, 2nd Floor Hodgkin Building, King's College London, Guy's campus, London SE1 1UL, United Kingdom.
| |
Collapse
|
1152
|
Han LY, Fan YC, Mu NN, Gao S, Li F, Ji XF, Dou CY, Wang K. Aberrant DNA methylation of G-protein-coupled bile acid receptor Gpbar1 (TGR5) is a potential biomarker for hepatitis B Virus associated hepatocellular carcinoma. Int J Med Sci 2014; 11:164-171. [PMID: 24465162 PMCID: PMC3894401 DOI: 10.7150/ijms.6745] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/24/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND G-protein-coupled bile acid receptor Gpbar1 (TGR5) is a newly identified liver tumor suppressor in carcinogenesis. This present study was therefore to determine the potential value of serum TGR5 promoter methylation in identifying hepatocellular carcinoma (HCC) from chronic hepatitis B (CHB) patients. METHODS The circulating cell-free DNA (cfDNA) was extracted from a retrospective dataset including 160 HCC, 88 CHB and 45 healthy controls (HCs). Methylation status of TGR5 promoter was examined by methylation-specific polymerase chain reaction (MSP). RESULTS Hypermethylation of the TGR5 promoter occurred significantly more frequent in HCC (77/160, 48.13%) than CHB (12/88, 13.64%; p<0.01) and HCs (2/45, 4.44%; p<0.01). The methylation rate of TGR5 in HCC patients ≥60 years old was significantly higher than those <60 years old (p<0.05). Alpha fetoprotein (AFP) had sensitivity of 58.13%, 30.63% and 24.38% at cut-off points of 20, 200 and 400ng/ml respectively; while TGR5 methylation combined AFP had sensitivity of 81.25%, 68.13% and 65%. AFP had specificity of 47.73%, 92.05% and 98.86% at cut-off points of 20, 200 and 400ng/ml respectively; while TGR5 methylation combined AFP had specificity of 38.64%, 78.41% and 85.23%. AFP had Youden index of 0.06, 0.23 and 0.23 at cut-off points of 20, 200 and 400ng/ml respectively; while TGR5 methylation combined AFP had Youden index of 0.20, 0.47 and 0.50. CONCLUSIONS Our findings strongly suggested the combination of serum TGR5 promoter methylation and AFP enhanced the diagnostic value of AFP alone in discriminating HCC from CHB patients.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Carcinoma, Hepatocellular/blood
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/virology
- DNA Methylation/genetics
- Female
- Hepatitis B virus/genetics
- Hepatitis B virus/pathogenicity
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/pathology
- Humans
- Liver Neoplasms/blood
- Liver Neoplasms/genetics
- Liver Neoplasms/virology
- Male
- Middle Aged
- Promoter Regions, Genetic
- Receptors, G-Protein-Coupled/blood
- Receptors, G-Protein-Coupled/genetics
- alpha-Fetoproteins/genetics
Collapse
Affiliation(s)
- Li-Yan Han
- 1. Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
- 2. Institute of Hepatology, Shandong University, Jinan 250012, China
| | - Yu-Chen Fan
- 1. Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
- 2. Institute of Hepatology, Shandong University, Jinan 250012, China
| | - Nan-Nan Mu
- 3. Department of Ultrasound, the General Hospital Jinan Military Region, Jinan 250031, China
| | - Shuai Gao
- 1. Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Feng Li
- 1. Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiang-Fen Ji
- 1. Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Cheng-Yun Dou
- 1. Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Kai Wang
- 1. Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
- 2. Institute of Hepatology, Shandong University, Jinan 250012, China
| |
Collapse
|
1153
|
Albrechtsen NJW, Kuhre RE, Deacon CF, Holst JJ. Targeting the intestinal L-cell for obesity and type 2 diabetes treatment. Expert Rev Endocrinol Metab 2014; 9:61-72. [PMID: 30743739 DOI: 10.1586/17446651.2014.862152] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Degradation-resistant glucagon-like peptide-1 (GLP-1) mimetics and GLP-1 enhancers (inhibitors of dipeptidyl peptidase-4, the enzyme which degrades and inactivates GLP-1) have been used for treatment of type 2 diabetes mellitus since 2005-2006. Cutting-edge research is now focusing on uncovering the secretory mechanisms of the GLP-1-producing cells (L-cells) with the purpose of developing agonists that enhance endogenous hormone secretion. Since GLP-1 co-localizes with other anorectic peptides, cholecystokinin, oxyntomodulin/glicentin and peptide YY, L-cell targeting might cause release of several hormones at the same time, providing additive effects on appetite and glucose regulation. In this review, we explore the role of proglucagon-derived peptides and other L-cell co-localizing hormones, in appetite regulation and the mechanism regulating their secretion.
Collapse
Affiliation(s)
- Nicolai Jacob Wewer Albrechtsen
- a Faculty of Health and Medical Sciences, NNF Center for Basic Metabolic Research, Section for Translational Metabolism, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Rune Ehrenreich Kuhre
- a Faculty of Health and Medical Sciences, NNF Center for Basic Metabolic Research, Section for Translational Metabolism, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Carolyn F Deacon
- a Faculty of Health and Medical Sciences, NNF Center for Basic Metabolic Research, Section for Translational Metabolism, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jens Juul Holst
- a Faculty of Health and Medical Sciences, NNF Center for Basic Metabolic Research, Section for Translational Metabolism, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- b Department of Biomedical Sciences, Panum Institute, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
1154
|
Kida T, Omori K, Hori M, Ozaki H, Murata T. Stimulation of G protein-coupled bile acid receptor enhances vascular endothelial barrier function via activation of protein kinase A and Rac1. J Pharmacol Exp Ther 2014; 348:125-30. [PMID: 24144793 DOI: 10.1124/jpet.113.209288] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Bile acids are end products of cholesterol metabolism, and they constantly exist at high concentrations in the blood. Since vascular endothelial cells express G protein-coupled bile acid receptor (GPBAR), bile acids potentially modulate endothelial function. Here, we investigated whether and how GPBAR agonism affects endothelial barrier function. In bovine aortic endothelial cells (BAECs), treatment with a GPBAR agonist, taurolithocholic acid (TLCA) increased the transendothelial electrical resistance. In addition, TLCA suppressed the thrombin-induced dextran infiltration through the endothelial monolayer. Knockdown of GPBAR abolished the inhibitory effect of TLCA on hyperpermeability. These results indicate that stimulation of GPBAR enhances endothelial barrier function. TLCA increased intracellular cAMP production in BAECs. Inhibition of protein kinase A (PKA) or Rac1 significantly attenuated the TLCA-induced endothelial barrier protection. TLCA induced cortical actin polymerization, which was attenuated by a Rac1 inhibitor. In vivo, local administration of TLCA into the mouse ear significantly inhibited vascular leakage and edema formation induced by croton oil or vascular endothelial growth factor. These results indicate that stimulation of GPBAR enhances endothelial barrier function by cAMP/PKA/Rac1-dependent cytoskeletal rearrangement.
Collapse
Affiliation(s)
- Taiki Kida
- Department of Veterinary Pharmacology (T.K., K.O., M.H., H.O., T.M.) and Department of Animal Radiology (T.M.), Graduate School of Agriculture and Life Sciences, The University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
1155
|
Abstract
Bile acids are synthesized in the liver from cholesterol and have traditionally been recognized for their role in absorption of lipids and in cholesterol homeostasis. In recent years, however, bile acids have emerged as metabolic signaling molecules that are involved in the regulation of lipid and glucose metabolism, and possibly energy homeostasis, through activation of the bile acid receptors farnesoid X receptor (FXR) and TGR5. Bile acid sequestrants (BASs) constitute a class of drugs that bind bile acids in the intestine to form a nonabsorbable complex resulting in interruption of the enterohepatic circulation. This increases bile acid synthesis and consequently reduces serum low-density lipoprotein cholesterol. Also, BASs improve glycemic control in patients with type 2 diabetes. Despite a growing understanding of the impact of BASs on glucose metabolism, the mechanisms behind their glucose-lowering effect in patients with type 2 diabetes remain unclear. This article offers a review of the mechanisms behind the glucose-lowering effect of BASs, and the efficacy of BASs in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Morten Hansen
- Diabetes Research Division, Department of Medicine, Gentofte Hospital, University of Copenhagen, Niels Andersens Vej 65, DK-2900, Hellerup, Denmark
| | | | | |
Collapse
|
1156
|
Natalini B, Sardella R, Gioiello A, Ianni F, Di Michele A, Marinozzi M. Determination of bile salt critical micellization concentration on the road to drug discovery. J Pharm Biomed Anal 2014; 87:62-81. [DOI: 10.1016/j.jpba.2013.06.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/14/2013] [Indexed: 01/22/2023]
|
1157
|
Abstract
The intracellular nuclear receptor farnesoid X receptor and the transmembrane G protein-coupled receptor TGR5 respond to bile acids by activating transcriptional networks and/or signalling cascades. These cascades affect the expression of a great number of target genes relevant for bile acid, cholesterol, lipid and carbohydrate metabolism, as well as genes involved in inflammation, fibrosis and carcinogenesis. Pregnane X receptor, vitamin D receptor and constitutive androstane receptor are additional nuclear receptors that respond to bile acids, albeit to a more restricted set of species of bile acids. Recognition of dedicated bile acid receptors prompted the development of semi-synthetic bile acid analogues and nonsteroidal compounds that target these receptors. These agents hold promise to become a new class of drugs for the treatment of chronic liver disease, hepatocellular cancer and extrahepatic inflammatory and metabolic diseases. This Review discusses the relevant bile acid receptors, the new drugs that target bile acid signalling and their possible applications.
Collapse
Affiliation(s)
- Frank G Schaap
- Department of Surgery, NUTRIM School of Nutrition, Toxicology and Metabolism, Maastricht University, PO Box 616, 6200 MD, Maastricht, Netherlands
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Peter L M Jansen
- Department of Gastroenterology and Hepatology, Academic Medical Centre, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| |
Collapse
|
1158
|
Spomer L, Gertzen CGW, Schmitz B, Häussinger D, Gohlke H, Keitel V. A membrane-proximal, C-terminal α-helix is required for plasma membrane localization and function of the G Protein-coupled receptor (GPCR) TGR5. J Biol Chem 2013; 289:3689-702. [PMID: 24338481 DOI: 10.1074/jbc.m113.502344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The C terminus of G protein-coupled receptors (GPCRs) is important for G protein-coupling and activation; in addition, sorting motifs have been identified in the C termini of several GPCRs that facilitate correct trafficking from the endoplasmic reticulum to the plasma membrane. The C terminus of the GPCR TGR5 lacks any known sorting motif such that other factors must determine its trafficking. Here, we investigate deletion and substitution variants of the membrane-proximal C terminus of TGR5 with respect to plasma membrane localization and function using immunofluorescence staining, flow cytometry, and luciferase assays. Peptides of the membrane-proximal C-terminal variants are subjected to molecular dynamics simulations and analyzed with respect to their secondary structure. Our results reveal that TGR5 plasma membrane localization and responsiveness to extracellular ligands is fostered by a long (≥ 9 residues) α-helical stretch at the C terminus, whereas the presence of β-strands or only a short α-helical stretch leads to retention in the endoplasmic reticulum and a loss of function. As a proof-of-principle, chimeras of TGR5 containing the membrane-proximal amino acids of the β2 adrenergic receptor (β2AR), the sphingosine 1-phosphate receptor-1 (S1P1), or the κ-type opioid receptor (κOR) were generated. These TGR5β2AR, TGR5S1P1, or TGR5κOR chimeras were correctly sorted to the plasma membrane. As the exchanged amino acids of the β2AR, the S1P1, or the κOR form α-helices in crystal structures but lack significant sequence identity to the respective TGR5 sequence, we conclude that the secondary structure of the TGR5 membrane-proximal C terminus is the determining factor for plasma membrane localization and responsiveness towards extracellular ligands.
Collapse
Affiliation(s)
- Lina Spomer
- From the Clinic for Gastroenterology, Hepatology, and Infectious Diseases and
| | | | | | | | | | | |
Collapse
|
1159
|
Macchiarulo A, Gioiello A, Thomas C, Pols TWH, Nuti R, Ferrari C, Giacchè N, De Franco F, Pruzanski M, Auwerx J, Schoonjans K, Pellicciari R. Probing the Binding Site of Bile Acids in TGR5. ACS Med Chem Lett 2013; 4:1158-62. [PMID: 24900622 DOI: 10.1021/ml400247k] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/15/2013] [Indexed: 12/31/2022] Open
Abstract
TGR5 is a G-protein-coupled receptor (GPCR) mediating cellular responses to bile acids (BAs). Although some efforts have been devoted to generate homology models of TGR5 and draw structure-activity relationships of BAs, none of these studies has hitherto described how BAs bind to TGR5. Here, we present an integrated computational, chemical, and biological approach that has been instrumental to determine the binding mode of BAs to TGR5. As a result, key residues have been identified that are involved in mediating the binding of BAs to the receptor. Collectively, these results provide new hints to design potent and selective TGR5 agonists.
Collapse
Affiliation(s)
- Antonio Macchiarulo
- Dipartimento
di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Antimo Gioiello
- Dipartimento
di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Charles Thomas
- Laboratory
of Integrative and Systems Physiology (LISP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland
| | - Thijs W. H. Pols
- Laboratory
of Integrative and Systems Physiology (LISP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland
| | - Roberto Nuti
- TES Pharma S.r.l., via Palmiro
Togliatti 20, 06073 Corciano (Perugia), Italy
| | - Cristina Ferrari
- Dipartimento
di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Nicola Giacchè
- TES Pharma S.r.l., via Palmiro
Togliatti 20, 06073 Corciano (Perugia), Italy
| | - Francesca De Franco
- TES Pharma S.r.l., via Palmiro
Togliatti 20, 06073 Corciano (Perugia), Italy
| | - Mark Pruzanski
- Intercept Pharmaceuticals, 18 Desbrosses
Street, New York, New York 10013, United States
| | - Johan Auwerx
- Laboratory
of Integrative and Systems Physiology (LISP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland
| | - Kristina Schoonjans
- Laboratory
of Integrative and Systems Physiology (LISP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland
| | - Roberto Pellicciari
- Dipartimento
di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, 06123 Perugia, Italy
- TES Pharma S.r.l., via Palmiro
Togliatti 20, 06073 Corciano (Perugia), Italy
| |
Collapse
|
1160
|
Abstract
The gastrointestinal tract presents the largest and most vulnerable surface to the outside world. Simultaneously, it must be accessible and permeable to nutrients and must defend against pathogens and potentially injurious chemicals. Integrated responses to these challenges require the gut to sense its environment, which it does through a range of detection systems for specific chemical entities, pathogenic organisms and their products (including toxins), as well as physicochemical properties of its contents. Sensory information is then communicated to four major effector systems: the enteroendocrine hormonal signalling system; the innervation of the gut, both intrinsic and extrinsic; the gut immune system; and the local tissue defence system. Extensive endocrine-neuro-immune-organ-defence interactions are demonstrable, but under-investigated. A major challenge is to develop a comprehensive understanding of the integrated responses of the gut to the sensory information it receives. A major therapeutic opportunity exists to develop agents that target the receptors facing the gut lumen.
Collapse
Affiliation(s)
- John B Furness
- Department of Anatomy & Neuroscience, University of Melbourne, Grattan Street, Parkville, Vic 3010, Australia
| | | | | | | | | |
Collapse
|
1161
|
Cho YM, Wideman RD, Kieffer TJ. Clinical application of glucagon-like Peptide 1 receptor agonists for the treatment of type 2 diabetes mellitus. Endocrinol Metab (Seoul) 2013; 28:262-74. [PMID: 24396690 PMCID: PMC3871042 DOI: 10.3803/enm.2013.28.4.262] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glucagon-like peptide 1 (GLP-1) is secreted from enteroendocrine L-cells in response to oral nutrient intake and elicits glucose-stimulated insulin secretion while suppressing glucagon secretion. It also slows gastric emptying, which contributes to decreased postprandial glycemic excursions. In the 1990s, chronic subcutaneous infusion of GLP-1 was found to lower blood glucose levels in patients with type 2 diabetes. However, GLP-1's very short half-life, arising from cleavage by the enzyme dipeptidyl peptidase 4 (DPP-4) and glomerular filtration by the kidneys, presented challenges for clinical use. Hence, DPP-4 inhibitors were developed, as well as several GLP-1 analogs engineered to circumvent DPP-4-mediated breakdown and/or rapid renal elimination. Three categories of GLP-1 analogs, are being developed and/or are in clinical use: short-acting, long-acting, and prolonged-acting GLP-1 analogs. Each class has different plasma half-lives, molecular size, and homology to native GLP-1, and consequently different characteristic effects on glucose metabolism. In this article, we review current clinical data derived from each class of GLP-1 analogs, and consider the clinical effects reported for each category in recent head to head comparison studies. Given the relatively brief clinical history of these compounds, we also highlight several important efficacy and safety issues which will require further investigation.
Collapse
Affiliation(s)
- Young Min Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Rhonda D. Wideman
- Laboratory of Molecular and Cellular Medicine, Departments of Cellular and Physiological Sciences and Surgery, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J. Kieffer
- Laboratory of Molecular and Cellular Medicine, Departments of Cellular and Physiological Sciences and Surgery, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
1162
|
Ipharraguerre IR, Tedó G, Menoyo D, de Diego Cabero N, Holst JJ, Nofrarías M, Mereu A, Burrin DG. Bile acids induce glucagon-like peptide 2 secretion with limited effects on intestinal adaptation in early weaned pigs. J Nutr 2013; 143:1899-905. [PMID: 24047704 DOI: 10.3945/jn.113.177865] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Early weaning is a stressful event characterized by a transient period of intestinal atrophy that may be mediated by reduced secretion of glucagon-like peptide (GLP) 2. We tested whether enterally fed bile acids or plant sterols could increase nutrient-dependent GLP-2 secretion and improve intestinal adaptation in weanling pigs. During the first 6 d after weaning, piglets were intragastrically infused once daily with either deionized water (control), chenodeoxycholic acid (CDC; 60 mg/kg body weight), or β-sitoesterol (BSE; 100 mg/kg body weight). Infusing CDC increased plasma GLP-2 (P < 0.05) but did not affect plasma GLP-1 and feed intake. The intestinal expression of glucagon-like peptide 2 receptor, sodium-dependent bile acid transporter, farnesoid X receptor, and guanosine protein-coupled bile acid receptor genes were not affected by CDC treatment. The intragastric administration of CDC did not alter the weight and length of the intestine, yet increased the activation of caspase-3 in ileal villi (P < 0.02) and the expression of interleukin 6 (P < 0.002) in the jejunum. In contrast, infusing BSE did not affect any of the variables that were measured. Our results show that the enteral administration of the bile acid CDC potentiates the nutrient-induced secretion of endogenous GLP-2 in early-weaned pigs. Bile acid-enhanced release of GLP-2, however, did not result in improved intestinal growth, morphology, or inflammation during the postweaning degenerative phase.
Collapse
|
1163
|
Steinert RE, Peterli R, Keller S, Meyer-Gerspach AC, Drewe J, Peters T, Beglinger C. Bile acids and gut peptide secretion after bariatric surgery: a 1-year prospective randomized pilot trial. Obesity (Silver Spring) 2013; 21:E660-8. [PMID: 23804517 DOI: 10.1002/oby.20522] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 04/28/2013] [Accepted: 05/20/2013] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Increased delivery of bile acid salts (BA) to distal L-cells and altered TGR5 receptor activation may contribute to the early and substantial increases in gut peptide secretion seen after bariatric surgery. To further elucidate a potential role of BA in the secretion of GLP-1 and PYY, we analyzed plasma BA concentrations in 14 morbidly obese patients undergoing gastric bypass or sleeve gastrectomy in a prospective, randomized 1-year trial. DESIGN AND METHODS Patients received a standard test meal and blood was collected before and after eating, prior to, and 1 week, 3 months, and 12 months after surgery. RESULTS Pre-surgery, basal BA concentrations were significantly lower in bariatric patients than in healthy controls. One year post-surgery, bariatric patients expressed variably increased BA concentrations (gastric bypass patients ∼2 fold increase, P ≤ 0.05). However, whereas in both patient groups, marked increases in GLP-1 and PYY and improved glycemic control was seen already 1 week and 3 months post-surgery, changes in plasma BA followed a different pattern: basal and postprandial plasma BA concentrations increased much slower, more progressively with significant increases only 1-year post-surgery. CONCLUSIONS Based on these findings, BA do not appear to be key mediators of the early increase in GLP-1 and PYY response in post-bariatric patients.
Collapse
Affiliation(s)
- Robert E Steinert
- Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Switzerland; Discipline of Medicine, University of Adelaide, Level 6 Eleanor Harrald Building, Royal Adelaide Hospital, Frome Road, Adelaide, 5005, South Australia
| | | | | | | | | | | | | |
Collapse
|
1164
|
Abstract
Individual meals are products of a complex interaction of signals related to both short-term and long-term availability of energy stores. In addition to maintaining the metabolic demands of the individual in the short term, levels of energy intake must also maintain and defend body weight over longer periods. To accomplish this, satiety pathways are regulated by a sophisticated network of endocrine and neuroendocrine pathways. Higher brain centers modulate meal size through descending inputs to caudal brainstem regions responsible for the motor pattern generators associated with ingestion. Gastric and intestinal signals interact with central nervous system pathways to terminate food intake. These inputs can be modified as a function of internal metabolic signals, external environmental influences, and learning to regulate meal size.
Collapse
|
1165
|
Abstract
Bile acids are important physiological agents for intestinal nutrient absorption and biliary secretion of lipids, toxic metabolites, and xenobiotics. Bile acids also are signaling molecules and metabolic regulators that activate nuclear receptors and G protein-coupled receptor (GPCR) signaling to regulate hepatic lipid, glucose, and energy homeostasis and maintain metabolic homeostasis. Conversion of cholesterol to bile acids is critical for maintaining cholesterol homeostasis and preventing accumulation of cholesterol, triglycerides, and toxic metabolites, and injury in the liver and other organs. Enterohepatic circulation of bile acids from the liver to intestine and back to the liver plays a central role in nutrient absorption and distribution, and metabolic regulation and homeostasis. This physiological process is regulated by a complex membrane transport system in the liver and intestine regulated by nuclear receptors. Toxic bile acids may cause inflammation, apoptosis, and cell death. On the other hand, bile acid-activated nuclear and GPCR signaling protects against inflammation in liver, intestine, and macrophages. Disorders in bile acid metabolism cause cholestatic liver diseases, dyslipidemia, fatty liver diseases, cardiovascular diseases, and diabetes. Bile acids, bile acid derivatives, and bile acid sequestrants are therapeutic agents for treating chronic liver diseases, obesity, and diabetes in humans.
Collapse
|
1166
|
Abstract
Glucagon-like peptide-1 (GLP-1), an incretin hormone secreted primarily from the intestinal L-cells in response to meals, modulates nutrient homeostasis via actions exerted in multiple tissues and cell types. GLP-1 and its analogs, as well as compounds that inhibit endogenous GLP-1 breakdown, have become an effective therapeutic strategy for many subjects with type 2 diabetes. Here we review the discovery of GLP-1; its synthesis, secretion, and elimination from the circulation; and its multiple pancreatic and extrapancreatic effects. Finally, we review current options for GLP-1-based diabetes therapy, including GLP-1 receptor agonism and inhibition of GLP-1 breakdown, as well as the benefits and drawbacks of different modes of therapy and the potential for new therapeutic avenues.
Collapse
Affiliation(s)
- Young Min Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744, South Korea;
| | | | | |
Collapse
|
1167
|
Design, synthesis and biological evaluation of a novel class of potent TGR5 agonists based on a 4-phenyl pyridine scaffold. Eur J Med Chem 2013; 69:55-68. [DOI: 10.1016/j.ejmech.2013.07.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/26/2013] [Accepted: 07/30/2013] [Indexed: 01/22/2023]
|
1168
|
Abstract
The presence of brown adipose tissue (BAT) in adults has become increasingly well defined as a result of functional imaging studies of thermogenically active BAT. Findings from these studies have created a surge of scientific interest in BAT, because it represents a potential therapeutic target for obesity--a condition with profound health consequences and few successful therapies. BAT contributes to overall energy expenditure in small mammals and neonates through adaptive thermogenesis. Thyroid-hormone signalling, particularly through induction of type II deiodinase, has a central role in brown adipogenesis in vitro and BAT development in mouse embryos. Additionally, because of high intracellular expression of type II deiodinase, adult BAT has enhanced thyroid-hormone signalling with several thyroid-hormone-dependent thermogenic pathways, including expression of the genes Ppargc1a and Ucp1. BAT thermogenesis explains the essential part played by thyroid hormone in energy homoeostasis and adaptation to cold. Stimulation of BAT in adults, specifically through thyroid-hormone-mediated pathways, is a promising therapeutic target for obesity.
Collapse
Affiliation(s)
- Antonio C Bianco
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Elizabeth A McAninch
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
1169
|
Péan N, Doignon I, Garcin I, Besnard A, Julien B, Liu B, Branchereau S, Spraul A, Guettier C, Humbert L, Schoonjans K, Rainteau D, Tordjmann T. The receptor TGR5 protects the liver from bile acid overload during liver regeneration in mice. Hepatology 2013; 58:1451-60. [PMID: 23686672 DOI: 10.1002/hep.26463] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/07/2013] [Accepted: 04/08/2013] [Indexed: 12/14/2022]
Abstract
UNLABELLED Many regulatory pathways are involved in liver regeneration after partial hepatectomy (PH) to initiate growth, protect liver cells, and sustain functions of the remnant liver. Bile acids (BAs), whose levels rise in the blood early after PH, stimulate both hepatocyte proliferation and protection, in part through their binding to the nuclear farnesoid X receptor (FXR). However, the effect of the BA receptor, TGR5 (G-protein-coupled BA receptor 1) after PH remains to be studied. Liver histology, hepatocyte proliferation, BA concentrations (plasma, bile, liver, urine, and feces), bile flow and composition, and cytokine production were studied in wild-type (WT) and TGR5 KO (knockout) mice before and after PH. BA composition (plasma, bile, liver, urine, and feces) was more hydrophobic in TGR5 KO than in WT mice. After PH, severe hepatocyte necrosis, prolonged cholestasis, exacerbated inflammatory response, and delayed regeneration were observed in TGR5 KO mice. Although hepatocyte adaptive response to post-PH BA overload was similar in WT and TGR5 KO mice, kidney and biliary adaptive responses were strongly impaired in TGR5 KO mice. Cholestyramine treatment, as well as Kupffer cell depletion, significantly improved the post-PH TGR5 KO mice phenotype. After bile duct ligation or upon a cholic acid-enriched diet, TGR5 KO mice exhibited more severe liver injury than WT as well as impaired BA elimination in urine. CONCLUSION TGR5 is crucial for liver protection against BA overload after PH, primarily through the control of bile hydrophobicity and cytokine secretion. In the absence of TGR5, intrahepatic stasis of abnormally hydrophobic bile and excessive inflammation, in association with impaired bile flow adaptation and deficient urinary BA efflux, lead to BA overload-induced liver injury and delayed regeneration.
Collapse
Affiliation(s)
- Noémie Péan
- INSERM U.757, Université Paris Sud, Orsay, France; Université Paris Sud, Orsay, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1170
|
Gut microbiota, enteroendocrine functions and metabolism. Curr Opin Pharmacol 2013; 13:935-40. [PMID: 24075718 DOI: 10.1016/j.coph.2013.09.008] [Citation(s) in RCA: 266] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/21/2013] [Accepted: 09/04/2013] [Indexed: 12/14/2022]
Abstract
The gut microbiota affects host metabolism through a number of physiological processes. Emerging evidence suggests that gut microbes interact with the host through several pathways involving enteroendocrine cells (e.g. L cells). The activation of specific G protein coupled receptors expressed on L cells (e.g. GPR41, GPR43, GPR119 and TGR5) triggers the secretion of glucagon-like peptides (GLP-1 and GLP-2) and PYY. These gut peptides are known to control energy homeostasis, glucose metabolism, gut barrier function and metabolic inflammation. Here, we explore how crosstalk between the ligands produced by the gut microbiota (short chain fatty acids, or SCFAs), or produced by the host but influenced by gut microbes (endocannabinoids and bile acids), impact host physiology.
Collapse
|
1171
|
Kang SU. GPR119 agonists: a promising approach for T2DM treatment? A SWOT analysis of GPR119. Drug Discov Today 2013; 18:1309-15. [PMID: 24060477 DOI: 10.1016/j.drudis.2013.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/20/2013] [Accepted: 09/13/2013] [Indexed: 01/08/2023]
Abstract
Ever since its advent as a promising therapeutic target for type 2 diabetes mellitus (T2DM), G-protein-coupled receptor 119 (GPR119) has received much interest from the pharmaceutical industry. This interest peaked in June 2010, when Sanofi-Aventis agreed to pay Metabolex (Cymabay Therapeutics) US$375 million for MBX-2982, which was a representative orally active GPR119 agonist. However, Sanofi-Aventis opted to terminate the deal in May 2011 and another leading GPR119 agonist, GSK1292263, had a loss of efficacy during its clinical trial. In this review, I discuss the pros and cons of GPR119 through a strengths, weaknesses, opportunities, and threats (SWOT) analysis and propose development strategies for the eventual success of a GPR119 agonist development program.
Collapse
Affiliation(s)
- Sang-Uk Kang
- Kosin University, Department of Life Sciences, 149-1, Dongsam-dong, Yeongdogu, Busan, South Korea.
| |
Collapse
|
1172
|
Ezcurra M, Reimann F, Gribble FM, Emery E. Molecular mechanisms of incretin hormone secretion. Curr Opin Pharmacol 2013; 13:922-7. [PMID: 24035446 PMCID: PMC3838618 DOI: 10.1016/j.coph.2013.08.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/14/2013] [Accepted: 08/26/2013] [Indexed: 01/06/2023]
Abstract
Incretin peptides (glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP)) are secreted from enteroendocrine cells in the intestinal epithelium, and help to coordinate metabolic responses to food ingestion. A number of molecular mechanisms have recently been defined that underlie carbohydrate, lipid and protein sensing in gut endocrine cells. Knockout mice lacking sodium glucose tranporter-1 (SGLT-1) or the short chain fatty acid sensing receptor FFAR2 (GPR43), for example, have highlighted the importance of these molecules in incretin secretion. This review outlines our current understanding of sensory pathways in incretin secreting cells and highlights the therapeutic potential of targeting them for the development of novel therapies for obesity and diabetes.
Collapse
Affiliation(s)
- Marina Ezcurra
- Cambridge Institute for Medical Research, Wellcome Trust, MRC Building, Addenbrooke's Hospital, Box 139, Hills Road, Cambridge CB2 0XY, UK
| | | | | | | |
Collapse
|
1173
|
Cholesteryl ester transfer protein protects against insulin resistance in obese female mice. Mol Metab 2013; 2:457-67. [PMID: 24327961 DOI: 10.1016/j.molmet.2013.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/23/2013] [Accepted: 08/26/2013] [Indexed: 02/06/2023] Open
Abstract
Cholesteryl ester transfer protein (CETP) shuttles lipids between lipoproteins, culminating in cholesteryl ester delivery to liver and increased secretion of cholesterol as bile. Since gut bile acids promote insulin sensitivity, we aimed to define if CETP improves insulin sensitivity with high-fat feeding. CETP and nontransgenic mice of both sexes became obese. Female but not male CETP mice had increased ileal bile acid levels versus nontransgenic littermates. CETP expression protected female mice from insulin resistance but had a minimal effect in males. In liver, female CETP mice showed activation of bile acid-sensitive pathways including Erk1/2 phosphorylation and Fxr and Shp gene expression. In muscle, CETP females showed increased glycolysis, increased mRNA for Dio2, and increased Akt phosphorylation, known effects of bile acid signaling. These results suggest that CETP can ameliorate insulin resistance associated with obesity in female mice, an effect that correlates with increased gut bile acids and known bile-signaling pathways.
Collapse
|
1174
|
Li T, Francl JM, Boehme S, Chiang JYL. Regulation of cholesterol and bile acid homeostasis by the cholesterol 7α-hydroxylase/steroid response element-binding protein 2/microRNA-33a axis in mice. Hepatology 2013; 58:1111-21. [PMID: 23536474 PMCID: PMC3735649 DOI: 10.1002/hep.26427] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/25/2013] [Indexed: 12/11/2022]
Abstract
UNLABELLED Bile acid synthesis not only produces physiological detergents required for intestinal nutrient absorption, but also plays a critical role in regulating hepatic and whole-body metabolic homeostasis. We recently reported that overexpression of cholesterol 7α-hydroxylase (CYP7A1) in the liver resulted in improved metabolic homeostasis in Cyp7a1 transgenic (Cyp7a1-tg) mice. This study further investigated the molecular links between bile acid metabolism and lipid homeostasis. Microarray gene profiling revealed that CYP7A1 overexpression led to marked activation of the steroid response element-binding protein 2 (SREBP2)-regulated cholesterol metabolic network and absence of bile acid repression of lipogenic gene expression in livers of Cyp7a1-tg mice. Interestingly, Cyp7a1-tg mice showed significantly elevated hepatic cholesterol synthesis rates, but reduced hepatic fatty acid synthesis rates, which was accompanied by increased (14) C-glucose-derived acetyl-coenzyme A incorporation into sterols for fecal excretion. Induction of SREBP2 also coinduces intronic microRNA-33a (miR-33a) in the SREBP2 gene in Cyp7a1-tg mice. Overexpression of miR-33a in the liver resulted in decreased bile acid pool, increased hepatic cholesterol content, and lowered serum cholesterol in mice. CONCLUSION This study suggests that a CYP7A1/SREBP2/miR-33a axis plays a critical role in regulation of hepatic cholesterol, bile acid, and fatty acid synthesis. Antagonism of miR-33a may be a potential strategy to increase bile acid synthesis to maintain lipid homeostasis and prevent nonalcoholic fatty liver disease, diabetes, and obesity.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272,Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160
| | - Jessica M. Francl
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272
| | - Shannon Boehme
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272
| | - John Y. L. Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272,Corresponding address: John Chiang, Ph.D., Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272; Phone: 330-325-6694; Fax: 330-325-5910;
| |
Collapse
|
1175
|
Li Y, Jadhav K, Zhang Y. Bile acid receptors in non-alcoholic fatty liver disease. Biochem Pharmacol 2013; 86:1517-24. [PMID: 23988487 DOI: 10.1016/j.bcp.2013.08.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 12/17/2022]
Abstract
Accumulating data have shown that bile acids are important cell signaling molecules, which may activate several signaling pathways to regulate biological processes. Bile acids are endogenous ligands for the farnesoid X receptor (FXR) and TGR5, a G-protein coupled receptor. Gain- and loss-of-function studies have demonstrated that both FXR and TGR5 play important roles in regulating lipid and carbohydrate metabolism and inflammatory responses. Importantly, activation of FXR or TGR5 lowers hepatic triglyceride levels and inhibits inflammation. Such properties of FXR or TGR5 have indicated that these two bile acid receptors are ideal targets for treatment of non-alcoholic fatty liver disease, one of the major health concerns worldwide. In this article, we will focus on recent advances on the role of both FXR and TGR5 in regulating hepatic triglyceride metabolism and inflammatory responses under normal and disease conditions.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, United States
| | | | | |
Collapse
|
1176
|
Li H, Jia W. Cometabolism of microbes and host: implications for drug metabolism and drug-induced toxicity. Clin Pharmacol Ther 2013; 94:574-81. [PMID: 23933971 DOI: 10.1038/clpt.2013.157] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/29/2013] [Indexed: 01/16/2023]
Abstract
The recognition of the gut microbial-mammalian metabolic axis and its implications in human metabolic disease opens a new window to understanding the contribution of the gut microbiome to drug metabolism and drug-induced toxicity. The integrative omics approaches, including pharmacometabonomics and metagenomics, have demonstrated great promise for characterizing xenobiotic interventions that are associated with wide variation in efficacy or toxicity in humans, as well as for predicting individual response and susceptibility to toxicity.
Collapse
Affiliation(s)
- H Li
- Center for Chinese Medical Therapy and Systems Biology, E-Institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | |
Collapse
|
1177
|
Goldberg AA, Titorenko VI, Beach A, Sanderson JT. Bile acids induce apoptosis selectively in androgen-dependent and -independent prostate cancer cells. PeerJ 2013; 1:e122. [PMID: 23940835 PMCID: PMC3740138 DOI: 10.7717/peerj.122] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/12/2013] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer is a prevalent age-related disease in North America, accounting for about 15% of all diagnosed cancers. We have previously identified lithocholic acid (LCA) as a potential chemotherapeutic compound that selectively kills neuroblastoma cells while sparing normal human neurons. Now, we report that LCA inhibits the proliferation of androgen-dependent (AD) LNCaP prostate cancer cells and that LCA is the most potent bile acid with respect to inducing apoptosis in LNCaP as well as androgen-independent (AI) PC-3 cells, without killing RWPE-1 immortalized normal prostate epithelial cells. In LNCaP and PC-3 cells, LCA triggered the extrinsic pathway of apoptosis and cell death induced by LCA was partially dependent on the activation of caspase-8 and -3. Moreover, LCA increased cleavage of Bid and Bax, down-regulation of Bcl-2, permeabilization of the mitochondrial outer membrane and activation of caspase-9. The cytotoxic actions of LCA occurred despite the inability of this bile acid to enter the prostate cancer cells with about 98% of the nominal test concentrations present in the extracellular culture medium. With our findings, we provide evidence to support a mechanism of action underlying the broad anticancer activity of LCA in various human tissues.
Collapse
|
1178
|
Dehmlow H, Alvarez Sánchez R, Bachmann S, Bissantz C, Bliss F, Conde-Knape K, Graf M, Martin RE, Obst Sander U, Raab S, Richter HG, Sewing S, Sprecher U, Ullmer C, Mattei P. Discovery and optimisation of 1-hydroxyimino-3,3-diphenylpropanes, a new class of orally active GPBAR1 (TGR5) agonists. Bioorg Med Chem Lett 2013; 23:4627-32. [DOI: 10.1016/j.bmcl.2013.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/06/2013] [Accepted: 06/08/2013] [Indexed: 01/22/2023]
|
1179
|
Peripheral reduction of FGFR4 with antisense oligonucleotides increases metabolic rate and lowers adiposity in diet-induced obese mice. PLoS One 2013; 8:e66923. [PMID: 23922646 PMCID: PMC3726752 DOI: 10.1371/journal.pone.0066923] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/13/2013] [Indexed: 12/26/2022] Open
Abstract
Obesity is a primary risk factor for multiple metabolic disorders. Many drugs for the treatment of obesity, which mainly act through CNS as appetite suppressants, have failed during development or been removed from the market due to unacceptable adverse effects. Thus, there are very few efficacious drugs available and remains a great unmet medical need for anti-obesity drugs that increase energy expenditure by acting on peripheral tissues without severe side effects. Here, we report a novel approach involving antisense inhibition of fibroblast growth factor receptor 4 (FGFR4) in peripheral tissues. Treatment of diet-induce obese (DIO) mice with FGFR4 antisense oligonucleotides (ASO) specifically reduced liver FGFR4 expression that not only resulted in decrease in body weight (BW) and adiposity in free-feeding conditions, but also lowered BW and adiposity under caloric restriction. In addition, combination treatment with FGFR4 ASO and rimonabant showed additive reduction in BW and adiposity. FGFR4 ASO treatment increased basal metabolic rate during free-feeding conditions and, more importantly, prevented adaptive decreases of metabolic rate induced by caloric restriction. The treatment increased fatty acid oxidation while decreased lipogenesis in both liver and fat. Mechanistic studies indicated that anti-obesity effect of FGFR4 ASO was mediated at least in part through an induction of plasma FGF15 level resulted from reduction of hepatic FGFR4 expression. The anti-obesity effect was accompanied by improvement in plasma glycemia, whole body insulin sensitivity, plasma lipid levels and liver steatosis. Therefore, FGFR4 could be a potential novel target and antisense reduction of hepatic FGFR4 expression could be an efficacious therapy as an adjunct to diet restriction or to an appetite suppressant for the treatment of obesity and related metabolic disorders.
Collapse
|
1180
|
Abstract
Type 2 diabetes (T2DM) is a multi-causal, heterogeneous and progressive cardiometabolic condition, with an increasing prevalence worldwide. T2DM is associated with multiple comorbidities that may impact patients' quality of life. Treatment is multifactorial, but pharmacologic treatment of hyperglycemia is still regarded as the mainstay of diabetes management. Current established therapies include metformin, sulfonylurea agents and insulin, the long-term use of which was associated with reduced micro- and macrovascular events in the United Kingdom Prospective Diabetes Study. Despite major recent advances in diabetes care, a large proportion of patients remain in poor glycemic control, necessitating the development of new therapeutic options. The recently published position statement of the American Diabetes Association and European Association for the Study of Diabetes for the management of hyperglycemia in T2DM has accommodated this wider range of therapy choices, as it is less prescriptive and advocates an individualized treatment approach, taking into account many relevant patient- and disease-related factors. This review summarizes the updates on various established agents as well as the recent developments with regard to incretin-based therapies, inhibitors of the renal tubular sodium-glucose-linked-transporter-2 and ultra-long acting basal insulin formulations.
Collapse
|
1181
|
Jensen DD, Godfrey CB, Niklas C, Canals M, Kocan M, Poole DP, Murphy JE, Alemi F, Cottrell GS, Korbmacher C, Lambert NA, Bunnett NW, Corvera CU. The bile acid receptor TGR5 does not interact with β-arrestins or traffic to endosomes but transmits sustained signals from plasma membrane rafts. J Biol Chem 2013; 288:22942-60. [PMID: 23818521 DOI: 10.1074/jbc.m113.455774] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
TGR5 is a G protein-coupled receptor that mediates bile acid (BA) effects on energy balance, inflammation, digestion, and sensation. The mechanisms and spatiotemporal control of TGR5 signaling are poorly understood. We investigated TGR5 signaling and trafficking in transfected HEK293 cells and colonocytes (NCM460) that endogenously express TGR5. BAs (deoxycholic acid (DCA), taurolithocholic acid) and the selective agonists oleanolic acid and 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated cAMP formation but did not induce TGR5 endocytosis or recruitment of β-arrestins, as assessed by confocal microscopy. DCA, taurolithocholic acid, and oleanolic acid did not stimulate TGR5 association with β-arrestin 1/2 or G protein-coupled receptor kinase (GRK) 2/5/6, as determined by bioluminescence resonance energy transfer. 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated a low level of TGR5 interaction with β-arrestin 2 and GRK2. DCA induced cAMP formation at the plasma membrane and cytosol, as determined using exchange factor directly regulated by cAMP (Epac2)-based reporters, but cAMP signals did not desensitize. AG1478, an inhibitor of epidermal growth factor receptor tyrosine kinase, the metalloprotease inhibitor batimastat, and methyl-β-cyclodextrin and filipin, which block lipid raft formation, prevented DCA stimulation of ERK1/2. Bioluminescence resonance energy transfer analysis revealed TGR5 and EGFR interactions that were blocked by disruption of lipid rafts. DCA stimulated TGR5 redistribution to plasma membrane microdomains, as localized by immunogold electron microscopy. Thus, TGR5 does not interact with β-arrestins, desensitize, or traffic to endosomes. TGR5 signals from plasma membrane rafts that facilitate EGFR interaction and transactivation. An understanding of the spatiotemporal control of TGR5 signaling provides insights into the actions of BAs and therapeutic TGR5 agonists/antagonists.
Collapse
Affiliation(s)
- Dane D Jensen
- Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1182
|
Kohli R, Setchell KD, Kirby M, Myronovych A, Ryan KK, Ibrahim SH, Berger J, Smith K, Toure M, Woods SC, Seeley RJ. A surgical model in male obese rats uncovers protective effects of bile acids post-bariatric surgery. Endocrinology 2013; 154:2341-51. [PMID: 23592746 PMCID: PMC3689286 DOI: 10.1210/en.2012-2069] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bariatric surgery elevates serum bile acids. Conjugated bile acid administration, such as tauroursodeoxycholic acid (TUDCA), improves insulin sensitivity, whereas short-circuiting bile acid circulation through ileal interposition surgery in rats raises TUDCA levels. We hypothesized that bariatric surgery outcomes could be recapitulated by short circuiting the normal enterohepatic bile circulation. We established a model wherein male obese rats underwent either bile diversion (BD) or Sham (SH) surgery. The BD group had a catheter inserted into the common bile duct and its distal end anchored into the middistal jejunum for 4-5 weeks. Glucose tolerance, insulin and glucagon-like peptide-1 (GLP-1) response, hepatic steatosis, and endoplasmic reticulum (ER) stress were measured. Rats post-BD lost significantly more weight than the SH rats. BD rats gained less fat mass after surgery. BD rats had improved glucose tolerance, increased higher postprandial glucagon-like peptide-1 response and serum bile acids but less liver steatosis. Serum bile acid levels including TUDCA concentrations were higher in BD compared to SH pair-fed rats. Fecal bile acid levels were not different. Liver ER stress (C/EBP homologous protein mRNA and pJNK protein) was decreased in BD rats. Bile acid gavage (TUDCA/ursodeoxycholic acid [UDCA]) in diet-induced obese rats, elevated serum TUDCA and concomitantly reduced hepatic steatosis and ER stress (C/EBP homologous protein mRNA). These data demonstrate the ability of alterations in bile acids to recapitulate important metabolic improvements seen after bariatric surgery. Further, our work establishes a model for focused study of bile acids in the context of bariatric surgery that may lead to the identification of therapeutics for metabolic disease.
Collapse
Affiliation(s)
- Rohit Kohli
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1183
|
Stepanov V, Stankov K, Mikov M. The bile acid membrane receptor TGR5: a novel pharmacological target in metabolic, inflammatory and neoplastic disorders. J Recept Signal Transduct Res 2013; 33:213-23. [PMID: 23782454 DOI: 10.3109/10799893.2013.802805] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
TGR5 is the G-protein-coupled bile acid-activated receptor, found in many human and animal tissues. Considering different endocrine and paracrine functions of bile acids, the current review focuses on the role of TGR5 as a novel pharmacological target in the metabolic syndrome and related disorders, such as diabetes, obesity, atherosclerosis, liver diseases and cancer. TGR5 ligands improve insulin sensitivity and glucose homeostasis through the secretion of incretins. The bile acid/TGR5/cAMP signaling pathway increases energy expenditure in brown adipose tissue and skeletal muscle. Activation of TGR5 in macrophages inhibits production of proinflammatory cytokines and attenuates the development of atherosclerosis. This receptor has been detected in many cell types of the liver where it has anti-inflammatory effects, thus reducing liver steatosis and damage. TGR5 also modulates hepatic microcirculation and fluid secretion in the biliary tree. In cell culture models TGR5 has been linked to signaling pathways involved in metabolism, cell survival, proliferation and apoptosis, which suggest a possible role of TGR5 in cancer development. Despite the fact that TGR5 ligands may represent novel drugs for prevention and treatment of different aspects of the metabolic syndrome, clinical studies are awaited with the perspective that they will complete TGR5 biology and identify efficient and safe TGR5 agonists.
Collapse
Affiliation(s)
- Vanesa Stepanov
- Department of Pharmacology, Clinical Pharmacology and Toxicology, University of Novi Sad, Novi Sad, Serbia.
| | | | | |
Collapse
|
1184
|
des Rieux A, Pourcelle V, Cani PD, Marchand-Brynaert J, Préat V. Targeted nanoparticles with novel non-peptidic ligands for oral delivery. Adv Drug Deliv Rev 2013; 65:833-44. [PMID: 23454185 DOI: 10.1016/j.addr.2013.01.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/12/2013] [Accepted: 01/30/2013] [Indexed: 12/31/2022]
Abstract
Orally administered targeted nanoparticles have a large number of potential biomedical applications and display several putative advantages for oral drug delivery, such as the protection of fragile drugs or modification of drug pharmacokinetics. These advantages notwithstanding, oral drug delivery by nanoparticles remains challenging. The optimization of particle size and surface properties and targeting by ligand grafting have been shown to enhance nanoparticle transport across the intestinal epithelium. Here, different grafting strategies for non-peptidic ligands, e.g., peptidomimetics, lectin mimetics, sugars and vitamins, that are stable in the gastrointestinal tract are discussed. We demonstrate that the grafting of these non-peptidic ligands allows nanoparticles to be targeted to M cells, enterocytes, immune cells or L cells. We show that these grafted nanoparticles could be promising vehicles for oral vaccination by targeting M cells or for the delivery of therapeutic proteins. We suggest that targeting L cells could be useful for the treatment of type 2 diabetes or obesity.
Collapse
|
1185
|
Ao M, Sarathy J, Domingue J, Alrefai WA, Rao MC. Chenodeoxycholic acid stimulates Cl(-) secretion via cAMP signaling and increases cystic fibrosis transmembrane conductance regulator phosphorylation in T84 cells. Am J Physiol Cell Physiol 2013; 305:C447-56. [PMID: 23761628 DOI: 10.1152/ajpcell.00416.2012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
High levels of chenodeoxycholic acid (CDCA) and deoxycholic acid stimulate Cl(-) secretion in mammalian colonic epithelia. While different second messengers have been implicated in this action, the specific signaling pathway has not been fully delineated. Using human colon carcinoma T84 cells, we elucidated this cascade assessing Cl(-) transport by measuring I(-) efflux and short-circuit current (Isc). CDCA (500 μM) rapidly increases I(-) efflux, and we confirmed by Isc that it elicits a larger response when added to the basolateral vs. apical surface. However, preincubation with cytokines increases the monolayer responsiveness to apical addition by 55%. Nystatin permeabilization studies demonstrate that CDCA stimulates an eletrogenic apical Cl(-) but not a basolateral K(+) current. Furthermore, CDCA-induced Isc was inhibited (≥67%) by bumetanide, BaCl2, and the cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor CFTRinh-172. CDCA-stimulated Isc was decreased 43% by the adenylate cyclase inhibitor MDL12330A and CDCA increases intracellular cAMP concentration. The protein kinase A inhibitor H89 and the microtubule disrupting agent nocodazole, respectively, cause 94 and 47% reductions in CDCA-stimulated Isc. Immunoprecipitation with CFTR antibodies, followed by sequential immunoblotting with Pan-phospho and CFTR antibodies, shows that CDCA increases CFTR phosphorylation by approximately twofold. The rapidity and side specificity of the response to CDCA imply a membrane-mediated process. While CDCA effects are not blocked by the muscarinic receptor antagonist atropine, T84 cells possess transcript and protein for the bile acid G protein-coupled receptor TGR5. These results demonstrate for the first time that CDCA activates CFTR via a cAMP-PKA pathway involving microtubules and imply that this occurs via a basolateral membrane receptor.
Collapse
Affiliation(s)
- Mei Ao
- Department of Physiology and Biophysics, University of Illinois, Chicago, Illinois
| | | | | | | | | |
Collapse
|
1186
|
Hansen CF, Bueter M, Theis N, Lutz T, Paulsen S, Dalbøge LS, Vrang N, Jelsing J. Hypertrophy dependent doubling of L-cells in Roux-en-Y gastric bypass operated rats. PLoS One 2013; 8:e65696. [PMID: 23776529 PMCID: PMC3679162 DOI: 10.1371/journal.pone.0065696] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/29/2013] [Indexed: 12/31/2022] Open
Abstract
Background and Aims Roux-en-Y gastric bypass (RYGB) leads to a rapid remission of type 2 diabetes mellitus (T2DM), but the underlying mode of action remains incompletely understood. L-cell derived gut hormones such as glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) are thought to play a central role in the anti-diabetic effects of RYGB; therefore, an improved understanding of intestinal endocrine L-cell adaptability is considered pivotal. Methods The full rostrocaudal extension of the gut was analyzed in rats after RYGB and in sham-operated controls ad libitum fed or food restricted to match the body weight of RYGB rats. Total number of L-cells, as well as regional numbers, densities and mucosa volumes were quantified using stereological methods. Preproglucagon and PYY mRNA transcripts were quantified by qPCR to reflect the total and relative hormone production capacity of the L-cells. Results RYGB surgery induced hypertrophy of the gut mucosa in the food exposed regions of the small intestine coupled with a doubling in the total number of L-cells. No changes in L-cell density were observed in any region regardless of surgery or food restriction. The total gene expression capacity of the entire gut revealed a near 200% increase in both PYY and preproglucagon mRNA levels in RYGB rats associated with both increased L-cell number as well as region-specific increased transcription per cell. Conclusions Collectively, these findings indicate that RYGB in rats is associated with gut hypertrophy, an increase in L-cell number, but not density, and increased PYY and preproglucagon gene expression. This could explain the enhanced gut hormone dynamics seen after RYGB.
Collapse
Affiliation(s)
- Carl Frederik Hansen
- Department of Histology, Gubra, Hørsholm, Denmark
- Department of Human Nutrition, University of Copenhagen, Frederiksberg, Denmark
| | - Marco Bueter
- Department of Visceral and Transplant Surgery, University Hospital Zurich, Zurich, Switzerland
- Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Nadine Theis
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Thomas Lutz
- Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | | | - Niels Vrang
- Department of Histology, Gubra, Hørsholm, Denmark
| | - Jacob Jelsing
- Department of Histology, Gubra, Hørsholm, Denmark
- * E-mail:
| |
Collapse
|
1187
|
Design, Synthesis, and Structure-Activity Relationships of 3,4,5-Trisubstituted 4,5-Dihydro-1,2,4-oxadiazoles as TGR5 Agonists. ChemMedChem 2013; 8:1210-23. [DOI: 10.1002/cmdc.201300144] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/07/2013] [Indexed: 01/22/2023]
|
1188
|
Shih DM, Shaposhnik Z, Meng Y, Rosales M, Wang X, Wu J, Ratiner B, Zadini F, Zadini G, Lusis AJ. Hyodeoxycholic acid improves HDL function and inhibits atherosclerotic lesion formation in LDLR-knockout mice. FASEB J 2013; 27:3805-17. [PMID: 23752203 DOI: 10.1096/fj.12-223008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We examined the effects of a natural secondary bile acid, hyodeoxycholic acid (HDCA), on lipid metabolism and atherosclerosis in LDL receptor-null (LDLRKO) mice. Female LDLRKO mice were maintained on a Western diet for 8 wk and then divided into 2 groups that received chow, or chow + 1.25% HDCA, diets for 15 wk. We observed that mice fed the HDCA diet were leaner and exhibited a 37% (P<0.05) decrease in fasting plasma glucose level. HDCA supplementation significantly decreased atherosclerotic lesion size at the aortic root region, the entire aorta, and the innominate artery by 44% (P<0.0001), 48% (P<0.01), and 94% (P<0.01), respectively, as compared with the chow group. Plasma VLDL/IDL/LDL cholesterol levels were significantly decreased, by 61% (P<0.05), in the HDCA group as compared with the chow diet group. HDCA supplementation decreased intestinal cholesterol absorption by 76% (P<0.0001) as compared with the chow group. Furthermore, HDL isolated from the HDCA group exhibited significantly increased ability to mediate cholesterol efflux ex vivo as compared with HDL of the chow diet group. In addition, HDCA significantly increased the expression of genes involved in cholesterol efflux, such as Abca1, Abcg1, and Apoe, in a macrophage cell line. Thus, HDCA is a candidate for antiatherosclerotic drug therapy.
Collapse
Affiliation(s)
- Diana M Shih
- Division of Cardiology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., A2-237 CHS, Los Angeles, CA 90095-1679, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1189
|
Yoneno K, Hisamatsu T, Shimamura K, Kamada N, Ichikawa R, Kitazume MT, Mori M, Uo M, Namikawa Y, Matsuoka K, Sato T, Koganei K, Sugita A, Kanai T, Hibi T. TGR5 signalling inhibits the production of pro-inflammatory cytokines by in vitro differentiated inflammatory and intestinal macrophages in Crohn's disease. Immunology 2013; 139:19-29. [PMID: 23566200 PMCID: PMC3634536 DOI: 10.1111/imm.12045] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 10/30/2012] [Accepted: 11/05/2012] [Indexed: 12/13/2022] Open
Abstract
Bile acids (BAs) play important roles not only in lipid metabolism, but also in signal transduction. TGR5, a transmembrane receptor of BAs, is an immunomodulative factor, but its detailed mechanism remains unclear. Here, we aimed to delineate how BAs operate in immunological responses via the TGR5 pathway in human mononuclear cell lineages. We examined TGR5 expression in human peripheral blood monocytes, several types of in vitro differentiated macrophages (Mϕs) and dendritic cells. Mϕs differentiated with macrophage colony-stimulating factor and interferon-γ (Mγ-Mϕs), which are similar to the human intestinal lamina propria CD14+ Mϕs that contribute to Crohn's disease (CD) pathogenesis by production of pro-inflammatory cytokines, highly expressed TGR5 compared with any other type of differentiated Mϕ and dendritic cells. We also showed that a TGR5 agonist and two types of BAs, deoxycholic acid and lithocholic acid, could inhibit tumour necrosis factor-α production in Mγ-Mϕs stimulated by commensal bacterial antigen or lipopolysaccharide. This inhibitory effect was mediated by the TGR5–cAMP pathway to induce phosphorylation of c-Fos that regulated nuclear factor-κB p65 activation. Next, we analysed TGR5 levels in lamina propria mononuclear cells (LPMCs) obtained from the intestinal mucosa of patients with CD. Compared with non-inflammatory bowel disease, inflamed CD LPMCs contained more TGR5 transcripts. Among LPMCs, isolated CD14+ intestinal Mϕs from patients with CD expressed TGR5. In isolated intestinal CD14+ Mϕs, a TGR5 agonist could inhibit tumour necrosis factor-α production. These results indicate that TGR5 signalling may have the potential to modulate immune responses in inflammatory bowel disease.
Collapse
Affiliation(s)
- Kazuaki Yoneno
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1190
|
Wu Y, Aquino CJ, Cowan DJ, Anderson DL, Ambroso JL, Bishop MJ, Boros EE, Chen L, Cunningham A, Dobbins RL, Feldman PL, Harston LT, Kaldor IW, Klein R, Liang X, McIntyre MS, Merrill CL, Patterson KM, Prescott JS, Ray JS, Roller SG, Yao X, Young A, Yuen J, Collins JL. Discovery of a highly potent, nonabsorbable apical sodium-dependent bile acid transporter inhibitor (GSK2330672) for treatment of type 2 diabetes. J Med Chem 2013; 56:5094-114. [PMID: 23678871 DOI: 10.1021/jm400459m] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The apical sodium-dependent bile acid transporter (ASBT) transports bile salts from the lumen of the gastrointestinal (GI) tract to the liver via the portal vein. Multiple pharmaceutical companies have exploited the physiological link between ASBT and hepatic cholesterol metabolism, which led to the clinical investigation of ASBT inhibitors as lipid-lowering agents. While modest lipid effects were demonstrated, the potential utility of ASBT inhibitors for treatment of type 2 diabetes has been relatively unexplored. We initiated a lead optimization effort that focused on the identification of a potent, nonabsorbable ASBT inhibitor starting from the first-generation inhibitor 264W94 (1). Extensive SAR studies culminated in the discovery of GSK2330672 (56) as a highly potent, nonabsorbable ASBT inhibitor which lowers glucose in an animal model of type 2 diabetes and shows excellent developability properties for evaluating the potential therapeutic utility of a nonabsorbable ASBT inhibitor for treatment of patients with type 2 diabetes.
Collapse
Affiliation(s)
- Yulin Wu
- GlaxoSmithKline Research & Development, Five Moore Drive, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1191
|
Masyuk AI, Huang BQ, Radtke BN, Gajdos GB, Splinter PL, Masyuk TV, Gradilone SA, LaRusso NF. Ciliary subcellular localization of TGR5 determines the cholangiocyte functional response to bile acid signaling. Am J Physiol Gastrointest Liver Physiol 2013; 304:G1013-24. [PMID: 23578785 PMCID: PMC3680685 DOI: 10.1152/ajpgi.00383.2012] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
TGR5, the G protein-coupled bile acid receptor that transmits bile acid signaling into a cell functional response via the intracellular cAMP signaling pathway, is expressed in human and rodent cholangiocytes. However, detailed information on the localization and function of cholangiocyte TGR5 is limited. We demonstrated that in human (H69 cells) and rat cholangiocytes, TGR5 is localized to multiple, diverse subcellular compartments, with its strongest expression on the apical plasma, ciliary, and nuclear membranes. To evaluate the relationship between ciliary TGR5 and the cholangiocyte functional response to bile acid signaling, we used a model of ciliated and nonciliated H69 cells and demonstrated that TGR5 agonists induce opposite changes in cAMP and ERK levels in cells with and without primary cilia. The cAMP level was increased in nonciliated cholangiocytes but decreased in ciliated cells. In contrast, ERK signaling was induced in ciliated cholangiocytes but suppressed in cells without cilia. TGR5 agonists inhibited proliferation of ciliated cholangiocytes but activated proliferation of nonciliated cells. The observed differential effects of TGR5 agonists were associated with the coupling of TGR5 to Gαi protein in ciliated cells and Gαs protein in nonciliated cholangiocytes. The functional responses of nonciliated and ciliated cholangiocytes to TGR5-mediated bile acid signaling may have important pathophysiological significance in cilia-related liver disorders (i.e., cholangiociliopathies), such as polycystic liver disease. In summary, TGR5 is expressed on diverse cholangiocyte compartments, including a primary cilium, and its ciliary localization determines the cholangiocyte functional response to bile acid signaling.
Collapse
Affiliation(s)
- Anatoliy I. Masyuk
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota
| | - Bing Q. Huang
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota
| | - Brynn N. Radtke
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota
| | - Gabriella B. Gajdos
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota
| | - Patrick L. Splinter
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota
| | - Tatyana V. Masyuk
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota
| | - Sergio A. Gradilone
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota
| | - Nicholas F. LaRusso
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota
| |
Collapse
|
1192
|
Péan N, Doignon I, Tordjmann T. Bile acids and liver carcinogenesis: TGR5 as a novel piece in the puzzle? Clin Res Hepatol Gastroenterol 2013; 37:226-9. [PMID: 23434440 DOI: 10.1016/j.clinre.2012.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 12/28/2012] [Indexed: 02/04/2023]
Affiliation(s)
- Noémie Péan
- Inserm UMRS 757, université Paris Sud, bâtiment 443, 91405 Orsay, France
| | | | | |
Collapse
|
1193
|
Kirkwood JS, Legette LL, Miranda CL, Jiang Y, Stevens JF. A metabolomics-driven elucidation of the anti-obesity mechanisms of xanthohumol. J Biol Chem 2013; 288:19000-13. [PMID: 23673658 DOI: 10.1074/jbc.m112.445452] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mild, mitochondrial uncoupling increases energy expenditure and can reduce the generation of reactive oxygen species (ROS). Activation of cellular, adaptive stress response pathways can result in an enhanced capacity to reduce oxidative damage. Together, these strategies target energy imbalance and oxidative stress, both underlying factors of obesity and related conditions such as type 2 diabetes. Here we describe a metabolomics-driven effort to uncover the anti-obesity mechanism(s) of xanthohumol (XN), a prenylated flavonoid from hops. Metabolomics analysis of fasting plasma from obese, Zucker rats treated with XN revealed decreases in products of dysfunctional fatty acid oxidation and ROS, prompting us to explore the effects of XN on muscle cell bioenergetics. At low micromolar concentrations, XN acutely increased uncoupled respiration in several different cell types, including myocytes. Tetrahydroxanthohumol also increased respiration, suggesting electrophilicity did not play a role. At higher concentrations, XN inhibited respiration in a ROS-dependent manner. In myocytes, time course metabolomics revealed acute activation of glutathione recycling and long term induction of glutathione synthesis as well as several other changes indicative of short term elevated cellular stress and a concerted adaptive response. Based on these findings, we hypothesize that XN may ameliorate metabolic syndrome, at least in part, through mitochondrial uncoupling and stress response induction. In addition, time course metabolomics appears to be an effective strategy for uncovering metabolic events that occur during a stress response.
Collapse
Affiliation(s)
- Jay S Kirkwood
- Linus Pauling Institute and the Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | |
Collapse
|
1194
|
Hodge RJ, Lin J, Vasist Johnson LS, Gould EP, Bowers GD, Nunez DJ. Safety, Pharmacokinetics, and Pharmacodynamic Effects of a Selective TGR5 Agonist, SB-756050, in Type 2 Diabetes. Clin Pharmacol Drug Dev 2013; 2:213-22. [PMID: 27121782 DOI: 10.1002/cpdd.34] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 03/11/2013] [Indexed: 12/31/2022]
Abstract
TGR5 is a bile acid receptor and a potential target for the treatment of type 2 diabetes (T2D). We report here the safety, pharmacokinetics, and pharmacodynamic effects of a selective TGR5 agonist, SB-756050, in patients with T2D. Fifty-one subjects were randomized to receive either placebo or one of four doses of SB-756050 for 6 days. A single 100 mg dose of sitagliptin was co-administered on Day 6 to all subjects. SB-756050 was well-tolerated; it was readily absorbed, exhibited nonlinear pharmacokinetics with a less than dose-proportional increase in plasma exposure above 100 mg, and demonstrated no significant changes in exposure when co-administered with sitagliptin. SB-756050 demonstrated highly variable pharmacodynamic effects both within dose groups and between doses, with increases in glucose seen at the two lowest doses and no reduction in glucose seen at the two highest doses. The glucose effects of SB-756050 + sitagliptin were comparable to those of sitagliptin alone, even though gut hormone plasma profiles were different. This study was registered at ClinicalTrials.gov (NCT00733577).
Collapse
Affiliation(s)
- Rebecca J Hodge
- Discovery Medicine, GlaxoSmithKline, Research Triangle Park, NC, USA
| | - Jiang Lin
- Clinical Statistics, GlaxoSmithKline, Research Triangle Park, NC, USA
| | | | - Elizabeth P Gould
- Clinical Pharmacology Study Operations, GlaxoSmithKline, Research Triangle Park, NC, USA
| | - Gary D Bowers
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, NC, USA
| | - Derek J Nunez
- Discovery Medicine, GlaxoSmithKline, Research Triangle Park, NC, USA
| | | |
Collapse
|
1195
|
Abstract
Enzymatic oxidation of cholesterol generates numerous distinct bile acids that function both as detergents that facilitate digestion and absorption of dietary lipids, and as hormones that activate four distinct receptors. Activation of these receptors alters gene expression in multiple tissues, leading to changes not only in bile acid metabolism but also in glucose homeostasis, lipid and lipoprotein metabolism, energy expenditure, intestinal motility and bacterial growth, inflammation, liver regeneration, and hepatocarcinogenesis. This review covers the roles of specific bile acids, synthetic agonists, and their cognate receptors in controlling these diverse functions, as well as their current use in treating human diseases.
Collapse
Affiliation(s)
- Thomas Q de Aguiar Vallim
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
1196
|
Villarroya F, Vidal-Puig A. Beyond the sympathetic tone: the new brown fat activators. Cell Metab 2013; 17:638-43. [PMID: 23583169 DOI: 10.1016/j.cmet.2013.02.020] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 01/21/2013] [Accepted: 02/08/2013] [Indexed: 02/06/2023]
Abstract
If we could avoid the side effects associated with global sympathetic activation, activating brown adipose tissue to increase thermogenesis would be a safe way to lose weight. The discovery of adrenergic-independent brown fat activators opens the prospect of developing this alternative way to efficiently and safely induce negative energy balance.
Collapse
Affiliation(s)
- Francesc Villarroya
- Departament de Bioquimica i Biologia Molecular, Institute of Biomedicine (IBUB), University of Barcelona, and CIBER Fisiopatologia de la Obesidad y Nutrición, Av Diagonal 643, 08028 Barcelona, Catalonia, Spain.
| | | |
Collapse
|
1197
|
Burrin D, Stoll B, Moore D. Digestive physiology of the pig symposium: intestinal bile acid sensing is linked to key endocrine and metabolic signaling pathways. J Anim Sci 2013; 91:1991-2000. [PMID: 23729782 PMCID: PMC3984497 DOI: 10.2527/jas.2013-6331] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bile acids have historically been considered to mainly function in cholesterol homeostasis and facilitate fat digestion in the gastrointestinal tract. Recent discoveries show that bile acids also function as signaling molecules that exert diverse endocrine and metabolic actions by activating G protein-coupled bile acid receptor 1 (GPBAR1/G-protein-coupled bile acid receptor 1 or TGR5), a membrane G protein-coupled receptor, and farnesoid X receptor (FXR), a member of the nuclear hormone receptor superfamily. These bile acid sensing receptors are expressed in intestinal epithelial cells, TGR5 in enteroendocrine cells and FXR in enterocytes, which line the mucosa of gut lumen. A dominant effect of intestinal FXR activation by bile acids is secretion of fibroblast growth factor (FGF) 19, a novel enterokine that functions as a central enterohepatic signal to maintain bile acid homeostasis in the liver. Activation of TGR5 on enteroendocrine cells stimulates secretion of glucagon-like peptides (GLP)-1 and -2, which function, respectively, as the major incretin hormone involved in glucose homeostasis and key trophic hormone in intestinal adaptation and growth in response to food ingestion. The biological actions induced by bile acid activation of intestinal FXR and TGR5 have important therapeutic implications for the pathogenesis and treatment of several metabolic diseases, such as cholestasis and diabetes. This review highlights these new developments in the biology of intestinal bile acid sensing and metabolic function and discusses the potential implications for the health and agricultural production of domestic swine.
Collapse
Affiliation(s)
- D Burrin
- USDA Children's Nutrition Research Center, Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Houston, TX 77030, USA.
| | | | | |
Collapse
|
1198
|
Hamada Y, Nagasaki H, Fuchigami M, Furuta S, Seino Y, Nakamura J, Oiso Y. The alpha-glucosidase inhibitor miglitol affects bile acid metabolism and ameliorates obesity and insulin resistance in diabetic mice. Metabolism 2013. [PMID: 23194643 DOI: 10.1016/j.metabol.2012.10.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Alpha-glucosidase inhibitors (α-GIs) show various anti-diabetic or anti-obesity effects in addition to the suppression of postprandial hyperglycemia. Based on recent observations that bile acids (BAs) are involved in glucose and energy homeostasis, we examined the ability of miglitol, an α-GI, to influence BA metabolism and ameliorate insulin resistance and obesity. MATERIALS/METHODS NSY mice, representing an obese type 2 diabetic model, were fed with a high-fat diet and treated with miglitol for 4 or 12 weeks. BAs were quantified in feces, blood from the portal vein or the vena cava and in the liver. The gene expression of type 2 iodothyronine deiodinase (D2) in brown adipose tissues, gluconeogenetic enzymes in the liver and adipokines in epididymal fat was measured, and portal blood glucagon-like peptide-1 (GLP-1) levels, body weight changes, glucose tolerance along with insulin sensitivity were evaluated. RESULTS Miglitol significantly increased BAs in both feces and portal blood while the hepatic BA level was reduced. The drug clearly enhanced active GLP-1 secretion into the portal blood and there was a good positive correlation between the active GLP-1 levels and portal blood BA concentrations. D2 expression in brown adipose tended to increase in association with the elevated BA concentrations. Miglitol ameliorated body weight gain, glucose intolerance, insulin resistance and inflammatory adipokine upregulation that were induced by a high-fat diet. CONCLUSIONS Collectively, miglitol substantially affects BA regulation in mice and this novel finding may explain in part the known favourable effects of the drug on diabetes and obesity.
Collapse
MESH Headings
- 1-Deoxynojirimycin/administration & dosage
- 1-Deoxynojirimycin/analogs & derivatives
- 1-Deoxynojirimycin/therapeutic use
- Animals
- Bile Acids and Salts/analysis
- Bile Acids and Salts/blood
- Bile Acids and Salts/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Drug Evaluation, Preclinical
- Enzyme Inhibitors/administration & dosage
- Glycoside Hydrolase Inhibitors
- Hep G2 Cells
- Humans
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/therapeutic use
- Insulin Resistance/physiology
- Male
- Mice
- Obesity/blood
- Obesity/complications
- Obesity/drug therapy
- Obesity/metabolism
- Rats
- Rats, Wistar
Collapse
Affiliation(s)
- Yoji Hamada
- Department of Metabolic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | | | | | | | | | | | |
Collapse
|
1199
|
Wu T, Bound MJ, Standfield SD, Gedulin B, Jones KL, Horowitz M, Rayner CK. Effects of rectal administration of taurocholic acid on glucagon-like peptide-1 and peptide YY secretion in healthy humans. Diabetes Obes Metab 2013; 15:474-477. [PMID: 23181598 DOI: 10.1111/dom.12043] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 10/24/2012] [Accepted: 11/20/2012] [Indexed: 02/05/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), secreted by enteroendocrine L-cells located most densely in the colon and rectum, are of fundamental importance in blood glucose and appetite regulation. In animal models, colonic administration of bile acids can stimulate GLP-1 and PYY by TGR5 receptor activation. We evaluated the effects of taurocholic acid (TCA), administered as an enema, on plasma GLP-1 and PYY, as well as gastrointestinal sensations in 10 healthy male subjects, and observed that rectal administration of TCA promptly stimulated secretion of both GLP-1 and PYY, and increased fullness, in a dose-dependent manner. These observations confirm that topical application of bile acids to the distal gut may have potential for the management of type 2 diabetes and obesity.
Collapse
Affiliation(s)
- T Wu
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia
| | | | | | | | | | | | | |
Collapse
|
1200
|
Abstract
PURPOSE OF REVIEW TGR5 (Gpbar-1) is an emerging drug target for metabolic, intestinal and liver diseases. In liver, the highest expression of TGR5 is found in biliary epithelial cells. This review focusses on the function of TGR5 in cholangiocytes and the potential role of the receptor in biliary diseases. RECENT FINDINGS TGR5 is localized in the primary cilium and the apical membrane domain of cholangiocytes, where the receptor exerts secretory, proliferative and antiapoptotic effects. Recent human and animal studies using bile acid analogues suggest a therapeutic potential for TGR5 in primary biliary cirrhosis but not in primary sclerosing cholangitis. SUMMARY TGR5 has protective functions in cholangiocytes. Further studies are needed to determine the therapeutic potential of TGR5 agonists and antagonists in biliary diseases.
Collapse
|